mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-25 08:56:07 +00:00

Bit shift operations with a shift operand greater than or equal to the bit width of the (promoted) value type result in undefined behavior according to C++ [expr.shift]p1. This change adds checking for this situation and avoids attempts to constant fold DIExpressions that would otherwise provoke such behavior. An existing test that presumably intended to exercise shifts at the UB boundary has been updated; it now checks for shifts of 64 bits instead of 65. This issue was reported by a static analysis tool; no actual cases of shift operations that would result in undefined behavior in practice have been identified.
381 lines
12 KiB
C++
381 lines
12 KiB
C++
//===- DIExpressionOptimizer.cpp - Constant folding of DIExpressions ------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements functions to constant fold DIExpressions. Which were
|
|
// declared in DIExpressionOptimizer.h
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/BinaryFormat/Dwarf.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
|
|
using namespace llvm;
|
|
|
|
/// Returns true if the Op is a DW_OP_constu.
|
|
static std::optional<uint64_t> isConstantVal(DIExpression::ExprOperand Op) {
|
|
if (Op.getOp() == dwarf::DW_OP_constu)
|
|
return Op.getArg(0);
|
|
return std::nullopt;
|
|
}
|
|
|
|
/// Returns true if an operation and operand result in a No Op.
|
|
static bool isNeutralElement(uint64_t Op, uint64_t Val) {
|
|
switch (Op) {
|
|
case dwarf::DW_OP_plus:
|
|
case dwarf::DW_OP_minus:
|
|
case dwarf::DW_OP_shl:
|
|
case dwarf::DW_OP_shr:
|
|
return Val == 0;
|
|
case dwarf::DW_OP_mul:
|
|
case dwarf::DW_OP_div:
|
|
return Val == 1;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// Try to fold \p Const1 and \p Const2 by applying \p Operator and returning
|
|
/// the result, if there is an overflow, return a std::nullopt.
|
|
static std::optional<uint64_t>
|
|
foldOperationIfPossible(uint64_t Const1, uint64_t Const2,
|
|
dwarf::LocationAtom Operator) {
|
|
|
|
bool ResultOverflowed;
|
|
switch (Operator) {
|
|
case dwarf::DW_OP_plus: {
|
|
auto Result = SaturatingAdd(Const1, Const2, &ResultOverflowed);
|
|
if (ResultOverflowed)
|
|
return std::nullopt;
|
|
return Result;
|
|
}
|
|
case dwarf::DW_OP_minus: {
|
|
if (Const1 < Const2)
|
|
return std::nullopt;
|
|
return Const1 - Const2;
|
|
}
|
|
case dwarf::DW_OP_shl: {
|
|
if (Const2 >= std::numeric_limits<uint64_t>::digits ||
|
|
static_cast<uint64_t>(countl_zero(Const1)) < Const2)
|
|
return std::nullopt;
|
|
return Const1 << Const2;
|
|
}
|
|
case dwarf::DW_OP_shr: {
|
|
if (Const2 >= std::numeric_limits<uint64_t>::digits ||
|
|
static_cast<uint64_t>(countr_zero(Const1)) < Const2)
|
|
return std::nullopt;
|
|
return Const1 >> Const2;
|
|
}
|
|
case dwarf::DW_OP_mul: {
|
|
auto Result = SaturatingMultiply(Const1, Const2, &ResultOverflowed);
|
|
if (ResultOverflowed)
|
|
return std::nullopt;
|
|
return Result;
|
|
}
|
|
case dwarf::DW_OP_div: {
|
|
if (Const2)
|
|
return Const1 / Const2;
|
|
return std::nullopt;
|
|
}
|
|
default:
|
|
return std::nullopt;
|
|
}
|
|
}
|
|
|
|
/// Returns true if the two operations \p Operator1 and \p Operator2 are
|
|
/// commutative and can be folded.
|
|
static bool operationsAreFoldableAndCommutative(dwarf::LocationAtom Operator1,
|
|
dwarf::LocationAtom Operator2) {
|
|
return Operator1 == Operator2 &&
|
|
(Operator1 == dwarf::DW_OP_plus || Operator1 == dwarf::DW_OP_mul);
|
|
}
|
|
|
|
/// Consume one operator and its operand(s).
|
|
static void consumeOneOperator(DIExpressionCursor &Cursor, uint64_t &Loc,
|
|
const DIExpression::ExprOperand &Op) {
|
|
Cursor.consume(1);
|
|
Loc = Loc + Op.getSize();
|
|
}
|
|
|
|
/// Reset the Cursor to the beginning of the WorkingOps.
|
|
void startFromBeginning(uint64_t &Loc, DIExpressionCursor &Cursor,
|
|
ArrayRef<uint64_t> WorkingOps) {
|
|
Cursor.assignNewExpr(WorkingOps);
|
|
Loc = 0;
|
|
}
|
|
|
|
/// This function will canonicalize:
|
|
/// 1. DW_OP_plus_uconst to DW_OP_constu <const-val> DW_OP_plus
|
|
/// 2. DW_OP_lit<n> to DW_OP_constu <n>
|
|
static SmallVector<uint64_t>
|
|
canonicalizeDwarfOperations(ArrayRef<uint64_t> WorkingOps) {
|
|
DIExpressionCursor Cursor(WorkingOps);
|
|
uint64_t Loc = 0;
|
|
SmallVector<uint64_t> ResultOps;
|
|
while (Loc < WorkingOps.size()) {
|
|
auto Op = Cursor.peek();
|
|
/// Expression has no operations, break.
|
|
if (!Op)
|
|
break;
|
|
auto OpRaw = Op->getOp();
|
|
|
|
if (OpRaw >= dwarf::DW_OP_lit0 && OpRaw <= dwarf::DW_OP_lit31) {
|
|
ResultOps.push_back(dwarf::DW_OP_constu);
|
|
ResultOps.push_back(OpRaw - dwarf::DW_OP_lit0);
|
|
consumeOneOperator(Cursor, Loc, *Cursor.peek());
|
|
continue;
|
|
}
|
|
if (OpRaw == dwarf::DW_OP_plus_uconst) {
|
|
ResultOps.push_back(dwarf::DW_OP_constu);
|
|
ResultOps.push_back(Op->getArg(0));
|
|
ResultOps.push_back(dwarf::DW_OP_plus);
|
|
consumeOneOperator(Cursor, Loc, *Cursor.peek());
|
|
continue;
|
|
}
|
|
uint64_t PrevLoc = Loc;
|
|
consumeOneOperator(Cursor, Loc, *Cursor.peek());
|
|
ResultOps.append(WorkingOps.begin() + PrevLoc, WorkingOps.begin() + Loc);
|
|
}
|
|
return ResultOps;
|
|
}
|
|
|
|
/// This function will convert:
|
|
/// 1. DW_OP_constu <const-val> DW_OP_plus to DW_OP_plus_uconst
|
|
/// 2. DW_OP_constu, 0 to DW_OP_lit0
|
|
static SmallVector<uint64_t>
|
|
optimizeDwarfOperations(ArrayRef<uint64_t> WorkingOps) {
|
|
DIExpressionCursor Cursor(WorkingOps);
|
|
uint64_t Loc = 0;
|
|
SmallVector<uint64_t> ResultOps;
|
|
while (Loc < WorkingOps.size()) {
|
|
auto Op1 = Cursor.peek();
|
|
/// Expression has no operations, exit.
|
|
if (!Op1)
|
|
break;
|
|
auto Op1Raw = Op1->getOp();
|
|
|
|
if (Op1Raw == dwarf::DW_OP_constu && Op1->getArg(0) == 0) {
|
|
ResultOps.push_back(dwarf::DW_OP_lit0);
|
|
consumeOneOperator(Cursor, Loc, *Cursor.peek());
|
|
continue;
|
|
}
|
|
|
|
auto Op2 = Cursor.peekNext();
|
|
/// Expression has no more operations, copy into ResultOps and exit.
|
|
if (!Op2) {
|
|
uint64_t PrevLoc = Loc;
|
|
consumeOneOperator(Cursor, Loc, *Cursor.peek());
|
|
ResultOps.append(WorkingOps.begin() + PrevLoc, WorkingOps.begin() + Loc);
|
|
break;
|
|
}
|
|
auto Op2Raw = Op2->getOp();
|
|
|
|
if (Op1Raw == dwarf::DW_OP_constu && Op2Raw == dwarf::DW_OP_plus) {
|
|
ResultOps.push_back(dwarf::DW_OP_plus_uconst);
|
|
ResultOps.push_back(Op1->getArg(0));
|
|
consumeOneOperator(Cursor, Loc, *Cursor.peek());
|
|
consumeOneOperator(Cursor, Loc, *Cursor.peek());
|
|
continue;
|
|
}
|
|
uint64_t PrevLoc = Loc;
|
|
consumeOneOperator(Cursor, Loc, *Cursor.peek());
|
|
ResultOps.append(WorkingOps.begin() + PrevLoc, WorkingOps.begin() + Loc);
|
|
}
|
|
return ResultOps;
|
|
}
|
|
|
|
/// {DW_OP_constu, 0, DW_OP_[plus, minus, shl, shr]} -> {}
|
|
/// {DW_OP_constu, 1, DW_OP_[mul, div]} -> {}
|
|
static bool tryFoldNoOpMath(uint64_t Const1,
|
|
ArrayRef<DIExpression::ExprOperand> Ops,
|
|
uint64_t &Loc, DIExpressionCursor &Cursor,
|
|
SmallVectorImpl<uint64_t> &WorkingOps) {
|
|
|
|
if (isNeutralElement(Ops[1].getOp(), Const1)) {
|
|
WorkingOps.erase(WorkingOps.begin() + Loc, WorkingOps.begin() + Loc + 3);
|
|
startFromBeginning(Loc, Cursor, WorkingOps);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// {DW_OP_constu, Const1, DW_OP_constu, Const2, DW_OP_[plus,
|
|
/// minus, mul, div, shl, shr] -> {DW_OP_constu, Const1 [+, -, *, /, <<, >>]
|
|
/// Const2}
|
|
static bool tryFoldConstants(uint64_t Const1,
|
|
ArrayRef<DIExpression::ExprOperand> Ops,
|
|
uint64_t &Loc, DIExpressionCursor &Cursor,
|
|
SmallVectorImpl<uint64_t> &WorkingOps) {
|
|
|
|
auto Const2 = isConstantVal(Ops[1]);
|
|
if (!Const2)
|
|
return false;
|
|
|
|
auto Result = foldOperationIfPossible(
|
|
Const1, *Const2, static_cast<dwarf::LocationAtom>(Ops[2].getOp()));
|
|
if (!Result) {
|
|
consumeOneOperator(Cursor, Loc, Ops[0]);
|
|
return true;
|
|
}
|
|
WorkingOps.erase(WorkingOps.begin() + Loc + 2, WorkingOps.begin() + Loc + 5);
|
|
WorkingOps[Loc] = dwarf::DW_OP_constu;
|
|
WorkingOps[Loc + 1] = *Result;
|
|
startFromBeginning(Loc, Cursor, WorkingOps);
|
|
return true;
|
|
}
|
|
|
|
/// {DW_OP_constu, Const1, DW_OP_[plus, mul], DW_OP_constu, Const2,
|
|
/// DW_OP_[plus, mul]} -> {DW_OP_constu, Const1 [+, *] Const2, DW_OP_[plus,
|
|
/// mul]}
|
|
static bool tryFoldCommutativeMath(uint64_t Const1,
|
|
ArrayRef<DIExpression::ExprOperand> Ops,
|
|
uint64_t &Loc, DIExpressionCursor &Cursor,
|
|
SmallVectorImpl<uint64_t> &WorkingOps) {
|
|
|
|
auto Const2 = isConstantVal(Ops[2]);
|
|
auto Operand1 = static_cast<dwarf::LocationAtom>(Ops[1].getOp());
|
|
auto Operand2 = static_cast<dwarf::LocationAtom>(Ops[3].getOp());
|
|
|
|
if (!Const2 || !operationsAreFoldableAndCommutative(Operand1, Operand2))
|
|
return false;
|
|
|
|
auto Result = foldOperationIfPossible(Const1, *Const2, Operand1);
|
|
if (!Result) {
|
|
consumeOneOperator(Cursor, Loc, Ops[0]);
|
|
return true;
|
|
}
|
|
WorkingOps.erase(WorkingOps.begin() + Loc + 3, WorkingOps.begin() + Loc + 6);
|
|
WorkingOps[Loc] = dwarf::DW_OP_constu;
|
|
WorkingOps[Loc + 1] = *Result;
|
|
startFromBeginning(Loc, Cursor, WorkingOps);
|
|
return true;
|
|
}
|
|
|
|
/// {DW_OP_constu, Const1, DW_OP_[plus, mul], DW_OP_LLVM_arg, Arg1,
|
|
/// DW_OP_[plus, mul], DW_OP_constu, Const2, DW_OP_[plus, mul]} ->
|
|
/// {DW_OP_constu, Const1 [+, *] Const2, DW_OP_[plus, mul], DW_OP_LLVM_arg,
|
|
/// Arg1, DW_OP_[plus, mul]}
|
|
static bool tryFoldCommutativeMathWithArgInBetween(
|
|
uint64_t Const1, ArrayRef<DIExpression::ExprOperand> Ops, uint64_t &Loc,
|
|
DIExpressionCursor &Cursor, SmallVectorImpl<uint64_t> &WorkingOps) {
|
|
|
|
auto Const2 = isConstantVal(Ops[4]);
|
|
auto Operand1 = static_cast<dwarf::LocationAtom>(Ops[1].getOp());
|
|
auto Operand2 = static_cast<dwarf::LocationAtom>(Ops[3].getOp());
|
|
auto Operand3 = static_cast<dwarf::LocationAtom>(Ops[5].getOp());
|
|
|
|
if (!Const2 || Ops[2].getOp() != dwarf::DW_OP_LLVM_arg ||
|
|
!operationsAreFoldableAndCommutative(Operand1, Operand2) ||
|
|
!operationsAreFoldableAndCommutative(Operand2, Operand3))
|
|
return false;
|
|
|
|
auto Result = foldOperationIfPossible(Const1, *Const2, Operand1);
|
|
if (!Result) {
|
|
consumeOneOperator(Cursor, Loc, Ops[0]);
|
|
return true;
|
|
}
|
|
WorkingOps.erase(WorkingOps.begin() + Loc + 6, WorkingOps.begin() + Loc + 9);
|
|
WorkingOps[Loc] = dwarf::DW_OP_constu;
|
|
WorkingOps[Loc + 1] = *Result;
|
|
startFromBeginning(Loc, Cursor, WorkingOps);
|
|
return true;
|
|
}
|
|
|
|
DIExpression *DIExpression::foldConstantMath() {
|
|
|
|
SmallVector<uint64_t, 8> WorkingOps(Elements.begin(), Elements.end());
|
|
uint64_t Loc = 0;
|
|
SmallVector<uint64_t> ResultOps = canonicalizeDwarfOperations(WorkingOps);
|
|
DIExpressionCursor Cursor(ResultOps);
|
|
SmallVector<DIExpression::ExprOperand, 8> Ops;
|
|
|
|
// Iterate over all Operations in a DIExpression to match the smallest pattern
|
|
// that can be folded.
|
|
while (Loc < ResultOps.size()) {
|
|
Ops.clear();
|
|
|
|
auto Op = Cursor.peek();
|
|
// Expression has no operations, exit.
|
|
if (!Op)
|
|
break;
|
|
|
|
auto Const1 = isConstantVal(*Op);
|
|
|
|
if (!Const1) {
|
|
// Early exit, all of the following patterns start with a constant value.
|
|
consumeOneOperator(Cursor, Loc, *Op);
|
|
continue;
|
|
}
|
|
|
|
Ops.push_back(*Op);
|
|
|
|
Op = Cursor.peekNext();
|
|
// All following patterns require at least 2 Operations, exit.
|
|
if (!Op)
|
|
break;
|
|
|
|
Ops.push_back(*Op);
|
|
|
|
// Try to fold a constant no-op, such as {+ 0}
|
|
if (tryFoldNoOpMath(*Const1, Ops, Loc, Cursor, ResultOps))
|
|
continue;
|
|
|
|
Op = Cursor.peekNextN(2);
|
|
// Op[1] could still match a pattern, skip iteration.
|
|
if (!Op) {
|
|
consumeOneOperator(Cursor, Loc, Ops[0]);
|
|
continue;
|
|
}
|
|
|
|
Ops.push_back(*Op);
|
|
|
|
// Try to fold a pattern of two constants such as {C1 + C2}.
|
|
if (tryFoldConstants(*Const1, Ops, Loc, Cursor, ResultOps))
|
|
continue;
|
|
|
|
Op = Cursor.peekNextN(3);
|
|
// Op[1] and Op[2] could still match a pattern, skip iteration.
|
|
if (!Op) {
|
|
consumeOneOperator(Cursor, Loc, Ops[0]);
|
|
continue;
|
|
}
|
|
|
|
Ops.push_back(*Op);
|
|
|
|
// Try to fold commutative constant math, such as {C1 + C2 +}.
|
|
if (tryFoldCommutativeMath(*Const1, Ops, Loc, Cursor, ResultOps))
|
|
continue;
|
|
|
|
Op = Cursor.peekNextN(4);
|
|
if (!Op) {
|
|
consumeOneOperator(Cursor, Loc, Ops[0]);
|
|
continue;
|
|
}
|
|
|
|
Ops.push_back(*Op);
|
|
Op = Cursor.peekNextN(5);
|
|
if (!Op) {
|
|
consumeOneOperator(Cursor, Loc, Ops[0]);
|
|
continue;
|
|
}
|
|
|
|
Ops.push_back(*Op);
|
|
|
|
// Try to fold commutative constant math with an LLVM_Arg in between, such
|
|
// as {C1 + Arg + C2 +}.
|
|
if (tryFoldCommutativeMathWithArgInBetween(*Const1, Ops, Loc, Cursor,
|
|
ResultOps))
|
|
continue;
|
|
|
|
consumeOneOperator(Cursor, Loc, Ops[0]);
|
|
}
|
|
ResultOps = optimizeDwarfOperations(ResultOps);
|
|
auto *Result = DIExpression::get(getContext(), ResultOps);
|
|
assert(Result->isValid() && "concatenated expression is not valid");
|
|
return Result;
|
|
}
|