llvm-project/clang/lib/CodeGen/BackendUtil.cpp
Pavel Samolysov 87b28f5092 [clang][NFC] Extract the EmitAssemblyHelper::TargetTriple member
Few times in different methods of the EmitAssemblyHelper class the following
code snippet is used to get the TargetTriple and then use it's single method
to check some conditions:

TargetTriple(TheModule->getTargetTriple())

The parsing of a target triple string is not a trivial operation and it takes
time to repeat the parsing many times in different methods of the class and
even numerous times in one method just to call a getter
(llvm::Triple(TheModule->getTargetTriple()).getVendor()), for example.
The patch extracts the TargetTriple member of the EmitAssemblyHelper class to
parse the triple only once in the class' constructor.

Reviewed By: tejohnson

Differential Revision: https://reviews.llvm.org/D122587
2022-04-04 12:16:39 +03:00

1781 lines
71 KiB
C++

//===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/CodeGen/BackendUtil.h"
#include "clang/Basic/CodeGenOptions.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/TargetOptions.h"
#include "clang/Frontend/FrontendDiagnostic.h"
#include "clang/Frontend/Utils.h"
#include "clang/Lex/HeaderSearchOptions.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/StackSafetyAnalysis.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Bitcode/BitcodeReader.h"
#include "llvm/Bitcode/BitcodeWriter.h"
#include "llvm/Bitcode/BitcodeWriterPass.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/SchedulerRegistry.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/IRPrintingPasses.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Verifier.h"
#include "llvm/LTO/LTOBackend.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Passes/PassBuilder.h"
#include "llvm/Passes/PassPlugin.h"
#include "llvm/Passes/StandardInstrumentations.h"
#include "llvm/Support/BuryPointer.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/TimeProfiler.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/ToolOutputFile.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/Coroutines.h"
#include "llvm/Transforms/Coroutines/CoroCleanup.h"
#include "llvm/Transforms/Coroutines/CoroEarly.h"
#include "llvm/Transforms/Coroutines/CoroElide.h"
#include "llvm/Transforms/Coroutines/CoroSplit.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/AlwaysInliner.h"
#include "llvm/Transforms/IPO/LowerTypeTests.h"
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm/Transforms/IPO/ThinLTOBitcodeWriter.h"
#include "llvm/Transforms/InstCombine/InstCombine.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Instrumentation/AddressSanitizer.h"
#include "llvm/Transforms/Instrumentation/AddressSanitizerOptions.h"
#include "llvm/Transforms/Instrumentation/BoundsChecking.h"
#include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h"
#include "llvm/Transforms/Instrumentation/GCOVProfiler.h"
#include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h"
#include "llvm/Transforms/Instrumentation/InstrProfiling.h"
#include "llvm/Transforms/Instrumentation/MemProfiler.h"
#include "llvm/Transforms/Instrumentation/MemorySanitizer.h"
#include "llvm/Transforms/Instrumentation/SanitizerCoverage.h"
#include "llvm/Transforms/Instrumentation/ThreadSanitizer.h"
#include "llvm/Transforms/ObjCARC.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/EarlyCSE.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/CanonicalizeAliases.h"
#include "llvm/Transforms/Utils/Debugify.h"
#include "llvm/Transforms/Utils/EntryExitInstrumenter.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include "llvm/Transforms/Utils/NameAnonGlobals.h"
#include "llvm/Transforms/Utils/SymbolRewriter.h"
#include <memory>
using namespace clang;
using namespace llvm;
#define HANDLE_EXTENSION(Ext) \
llvm::PassPluginLibraryInfo get##Ext##PluginInfo();
#include "llvm/Support/Extension.def"
namespace llvm {
extern cl::opt<bool> DebugInfoCorrelate;
}
namespace {
// Default filename used for profile generation.
std::string getDefaultProfileGenName() {
return DebugInfoCorrelate ? "default_%p.proflite" : "default_%m.profraw";
}
class EmitAssemblyHelper {
DiagnosticsEngine &Diags;
const HeaderSearchOptions &HSOpts;
const CodeGenOptions &CodeGenOpts;
const clang::TargetOptions &TargetOpts;
const LangOptions &LangOpts;
Module *TheModule;
Timer CodeGenerationTime;
std::unique_ptr<raw_pwrite_stream> OS;
Triple TargetTriple;
TargetIRAnalysis getTargetIRAnalysis() const {
if (TM)
return TM->getTargetIRAnalysis();
return TargetIRAnalysis();
}
void CreatePasses(legacy::PassManager &MPM, legacy::FunctionPassManager &FPM);
/// Generates the TargetMachine.
/// Leaves TM unchanged if it is unable to create the target machine.
/// Some of our clang tests specify triples which are not built
/// into clang. This is okay because these tests check the generated
/// IR, and they require DataLayout which depends on the triple.
/// In this case, we allow this method to fail and not report an error.
/// When MustCreateTM is used, we print an error if we are unable to load
/// the requested target.
void CreateTargetMachine(bool MustCreateTM);
/// Add passes necessary to emit assembly or LLVM IR.
///
/// \return True on success.
bool AddEmitPasses(legacy::PassManager &CodeGenPasses, BackendAction Action,
raw_pwrite_stream &OS, raw_pwrite_stream *DwoOS);
std::unique_ptr<llvm::ToolOutputFile> openOutputFile(StringRef Path) {
std::error_code EC;
auto F = std::make_unique<llvm::ToolOutputFile>(Path, EC,
llvm::sys::fs::OF_None);
if (EC) {
Diags.Report(diag::err_fe_unable_to_open_output) << Path << EC.message();
F.reset();
}
return F;
}
void
RunOptimizationPipeline(BackendAction Action,
std::unique_ptr<raw_pwrite_stream> &OS,
std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS);
void RunCodegenPipeline(BackendAction Action,
std::unique_ptr<raw_pwrite_stream> &OS,
std::unique_ptr<llvm::ToolOutputFile> &DwoOS);
public:
EmitAssemblyHelper(DiagnosticsEngine &_Diags,
const HeaderSearchOptions &HeaderSearchOpts,
const CodeGenOptions &CGOpts,
const clang::TargetOptions &TOpts,
const LangOptions &LOpts, Module *M)
: Diags(_Diags), HSOpts(HeaderSearchOpts), CodeGenOpts(CGOpts),
TargetOpts(TOpts), LangOpts(LOpts), TheModule(M),
CodeGenerationTime("codegen", "Code Generation Time"),
TargetTriple(TheModule->getTargetTriple()) {}
~EmitAssemblyHelper() {
if (CodeGenOpts.DisableFree)
BuryPointer(std::move(TM));
}
std::unique_ptr<TargetMachine> TM;
// Emit output using the legacy pass manager for the optimization pipeline.
// This will be removed soon when using the legacy pass manager for the
// optimization pipeline is no longer supported.
void EmitAssemblyWithLegacyPassManager(BackendAction Action,
std::unique_ptr<raw_pwrite_stream> OS);
// Emit output using the new pass manager for the optimization pipeline. This
// is the default.
void EmitAssembly(BackendAction Action,
std::unique_ptr<raw_pwrite_stream> OS);
};
// We need this wrapper to access LangOpts and CGOpts from extension functions
// that we add to the PassManagerBuilder.
class PassManagerBuilderWrapper : public PassManagerBuilder {
public:
PassManagerBuilderWrapper(const Triple &TargetTriple,
const CodeGenOptions &CGOpts,
const LangOptions &LangOpts)
: TargetTriple(TargetTriple), CGOpts(CGOpts), LangOpts(LangOpts) {}
const Triple &getTargetTriple() const { return TargetTriple; }
const CodeGenOptions &getCGOpts() const { return CGOpts; }
const LangOptions &getLangOpts() const { return LangOpts; }
private:
const Triple &TargetTriple;
const CodeGenOptions &CGOpts;
const LangOptions &LangOpts;
};
}
static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
if (Builder.OptLevel > 0)
PM.add(createObjCARCAPElimPass());
}
static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
if (Builder.OptLevel > 0)
PM.add(createObjCARCExpandPass());
}
static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) {
if (Builder.OptLevel > 0)
PM.add(createObjCARCOptPass());
}
static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder,
legacy::PassManagerBase &PM) {
PM.add(createAddDiscriminatorsPass());
}
static void addBoundsCheckingPass(const PassManagerBuilder &Builder,
legacy::PassManagerBase &PM) {
PM.add(createBoundsCheckingLegacyPass());
}
static SanitizerCoverageOptions
getSancovOptsFromCGOpts(const CodeGenOptions &CGOpts) {
SanitizerCoverageOptions Opts;
Opts.CoverageType =
static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType);
Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls;
Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB;
Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp;
Opts.TraceDiv = CGOpts.SanitizeCoverageTraceDiv;
Opts.TraceGep = CGOpts.SanitizeCoverageTraceGep;
Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters;
Opts.TracePC = CGOpts.SanitizeCoverageTracePC;
Opts.TracePCGuard = CGOpts.SanitizeCoverageTracePCGuard;
Opts.NoPrune = CGOpts.SanitizeCoverageNoPrune;
Opts.Inline8bitCounters = CGOpts.SanitizeCoverageInline8bitCounters;
Opts.InlineBoolFlag = CGOpts.SanitizeCoverageInlineBoolFlag;
Opts.PCTable = CGOpts.SanitizeCoveragePCTable;
Opts.StackDepth = CGOpts.SanitizeCoverageStackDepth;
Opts.TraceLoads = CGOpts.SanitizeCoverageTraceLoads;
Opts.TraceStores = CGOpts.SanitizeCoverageTraceStores;
return Opts;
}
static void addSanitizerCoveragePass(const PassManagerBuilder &Builder,
legacy::PassManagerBase &PM) {
const PassManagerBuilderWrapper &BuilderWrapper =
static_cast<const PassManagerBuilderWrapper &>(Builder);
const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
auto Opts = getSancovOptsFromCGOpts(CGOpts);
PM.add(createModuleSanitizerCoverageLegacyPassPass(
Opts, CGOpts.SanitizeCoverageAllowlistFiles,
CGOpts.SanitizeCoverageIgnorelistFiles));
}
// Check if ASan should use GC-friendly instrumentation for globals.
// First of all, there is no point if -fdata-sections is off (expect for MachO,
// where this is not a factor). Also, on ELF this feature requires an assembler
// extension that only works with -integrated-as at the moment.
static bool asanUseGlobalsGC(const Triple &T, const CodeGenOptions &CGOpts) {
if (!CGOpts.SanitizeAddressGlobalsDeadStripping)
return false;
switch (T.getObjectFormat()) {
case Triple::MachO:
case Triple::COFF:
return true;
case Triple::ELF:
return !CGOpts.DisableIntegratedAS;
case Triple::GOFF:
llvm::report_fatal_error("ASan not implemented for GOFF");
case Triple::XCOFF:
llvm::report_fatal_error("ASan not implemented for XCOFF.");
case Triple::Wasm:
case Triple::DXContainer:
case Triple::UnknownObjectFormat:
break;
}
return false;
}
static void addMemProfilerPasses(const PassManagerBuilder &Builder,
legacy::PassManagerBase &PM) {
PM.add(createMemProfilerFunctionPass());
PM.add(createModuleMemProfilerLegacyPassPass());
}
static void addAddressSanitizerPasses(const PassManagerBuilder &Builder,
legacy::PassManagerBase &PM) {
const PassManagerBuilderWrapper &BuilderWrapper =
static_cast<const PassManagerBuilderWrapper&>(Builder);
const Triple &T = BuilderWrapper.getTargetTriple();
const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address);
bool UseAfterScope = CGOpts.SanitizeAddressUseAfterScope;
bool UseOdrIndicator = CGOpts.SanitizeAddressUseOdrIndicator;
bool UseGlobalsGC = asanUseGlobalsGC(T, CGOpts);
llvm::AsanDtorKind DestructorKind = CGOpts.getSanitizeAddressDtor();
llvm::AsanDetectStackUseAfterReturnMode UseAfterReturn =
CGOpts.getSanitizeAddressUseAfterReturn();
PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/ false, Recover,
UseAfterScope, UseAfterReturn));
PM.add(createModuleAddressSanitizerLegacyPassPass(
/*CompileKernel*/ false, Recover, UseGlobalsGC, UseOdrIndicator,
DestructorKind));
}
static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder,
legacy::PassManagerBase &PM) {
PM.add(createAddressSanitizerFunctionPass(
/*CompileKernel*/ true, /*Recover*/ true, /*UseAfterScope*/ false,
/*UseAfterReturn*/ llvm::AsanDetectStackUseAfterReturnMode::Never));
PM.add(createModuleAddressSanitizerLegacyPassPass(
/*CompileKernel*/ true, /*Recover*/ true, /*UseGlobalsGC*/ true,
/*UseOdrIndicator*/ false));
}
static void addHWAddressSanitizerPasses(const PassManagerBuilder &Builder,
legacy::PassManagerBase &PM) {
const PassManagerBuilderWrapper &BuilderWrapper =
static_cast<const PassManagerBuilderWrapper &>(Builder);
const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::HWAddress);
PM.add(createHWAddressSanitizerLegacyPassPass(
/*CompileKernel*/ false, Recover,
/*DisableOptimization*/ CGOpts.OptimizationLevel == 0));
}
static void addKernelHWAddressSanitizerPasses(const PassManagerBuilder &Builder,
legacy::PassManagerBase &PM) {
const PassManagerBuilderWrapper &BuilderWrapper =
static_cast<const PassManagerBuilderWrapper &>(Builder);
const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
PM.add(createHWAddressSanitizerLegacyPassPass(
/*CompileKernel*/ true, /*Recover*/ true,
/*DisableOptimization*/ CGOpts.OptimizationLevel == 0));
}
static void addGeneralOptsForMemorySanitizer(const PassManagerBuilder &Builder,
legacy::PassManagerBase &PM,
bool CompileKernel) {
const PassManagerBuilderWrapper &BuilderWrapper =
static_cast<const PassManagerBuilderWrapper&>(Builder);
const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts();
int TrackOrigins = CGOpts.SanitizeMemoryTrackOrigins;
bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Memory);
PM.add(createMemorySanitizerLegacyPassPass(
MemorySanitizerOptions{TrackOrigins, Recover, CompileKernel,
CGOpts.SanitizeMemoryParamRetval != 0}));
// MemorySanitizer inserts complex instrumentation that mostly follows
// the logic of the original code, but operates on "shadow" values.
// It can benefit from re-running some general purpose optimization passes.
if (Builder.OptLevel > 0) {
PM.add(createEarlyCSEPass());
PM.add(createReassociatePass());
PM.add(createLICMPass());
PM.add(createGVNPass());
PM.add(createInstructionCombiningPass());
PM.add(createDeadStoreEliminationPass());
}
}
static void addMemorySanitizerPass(const PassManagerBuilder &Builder,
legacy::PassManagerBase &PM) {
addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ false);
}
static void addKernelMemorySanitizerPass(const PassManagerBuilder &Builder,
legacy::PassManagerBase &PM) {
addGeneralOptsForMemorySanitizer(Builder, PM, /*CompileKernel*/ true);
}
static void addThreadSanitizerPass(const PassManagerBuilder &Builder,
legacy::PassManagerBase &PM) {
PM.add(createThreadSanitizerLegacyPassPass());
}
static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder,
legacy::PassManagerBase &PM) {
const PassManagerBuilderWrapper &BuilderWrapper =
static_cast<const PassManagerBuilderWrapper&>(Builder);
const LangOptions &LangOpts = BuilderWrapper.getLangOpts();
PM.add(createDataFlowSanitizerLegacyPassPass(LangOpts.NoSanitizeFiles));
}
static void addEntryExitInstrumentationPass(const PassManagerBuilder &Builder,
legacy::PassManagerBase &PM) {
PM.add(createEntryExitInstrumenterPass());
}
static void
addPostInlineEntryExitInstrumentationPass(const PassManagerBuilder &Builder,
legacy::PassManagerBase &PM) {
PM.add(createPostInlineEntryExitInstrumenterPass());
}
static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple,
const CodeGenOptions &CodeGenOpts) {
TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple);
switch (CodeGenOpts.getVecLib()) {
case CodeGenOptions::Accelerate:
TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate);
break;
case CodeGenOptions::LIBMVEC:
switch(TargetTriple.getArch()) {
default:
break;
case llvm::Triple::x86_64:
TLII->addVectorizableFunctionsFromVecLib
(TargetLibraryInfoImpl::LIBMVEC_X86);
break;
}
break;
case CodeGenOptions::MASSV:
TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::MASSV);
break;
case CodeGenOptions::SVML:
TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::SVML);
break;
case CodeGenOptions::Darwin_libsystem_m:
TLII->addVectorizableFunctionsFromVecLib(
TargetLibraryInfoImpl::DarwinLibSystemM);
break;
default:
break;
}
return TLII;
}
static void addSymbolRewriterPass(const CodeGenOptions &Opts,
legacy::PassManager *MPM) {
llvm::SymbolRewriter::RewriteDescriptorList DL;
llvm::SymbolRewriter::RewriteMapParser MapParser;
for (const auto &MapFile : Opts.RewriteMapFiles)
MapParser.parse(MapFile, &DL);
MPM->add(createRewriteSymbolsPass(DL));
}
static CodeGenOpt::Level getCGOptLevel(const CodeGenOptions &CodeGenOpts) {
switch (CodeGenOpts.OptimizationLevel) {
default:
llvm_unreachable("Invalid optimization level!");
case 0:
return CodeGenOpt::None;
case 1:
return CodeGenOpt::Less;
case 2:
return CodeGenOpt::Default; // O2/Os/Oz
case 3:
return CodeGenOpt::Aggressive;
}
}
static Optional<llvm::CodeModel::Model>
getCodeModel(const CodeGenOptions &CodeGenOpts) {
unsigned CodeModel = llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel)
.Case("tiny", llvm::CodeModel::Tiny)
.Case("small", llvm::CodeModel::Small)
.Case("kernel", llvm::CodeModel::Kernel)
.Case("medium", llvm::CodeModel::Medium)
.Case("large", llvm::CodeModel::Large)
.Case("default", ~1u)
.Default(~0u);
assert(CodeModel != ~0u && "invalid code model!");
if (CodeModel == ~1u)
return None;
return static_cast<llvm::CodeModel::Model>(CodeModel);
}
static CodeGenFileType getCodeGenFileType(BackendAction Action) {
if (Action == Backend_EmitObj)
return CGFT_ObjectFile;
else if (Action == Backend_EmitMCNull)
return CGFT_Null;
else {
assert(Action == Backend_EmitAssembly && "Invalid action!");
return CGFT_AssemblyFile;
}
}
static bool actionRequiresCodeGen(BackendAction Action) {
return Action != Backend_EmitNothing && Action != Backend_EmitBC &&
Action != Backend_EmitLL;
}
static bool initTargetOptions(DiagnosticsEngine &Diags,
llvm::TargetOptions &Options,
const CodeGenOptions &CodeGenOpts,
const clang::TargetOptions &TargetOpts,
const LangOptions &LangOpts,
const HeaderSearchOptions &HSOpts) {
switch (LangOpts.getThreadModel()) {
case LangOptions::ThreadModelKind::POSIX:
Options.ThreadModel = llvm::ThreadModel::POSIX;
break;
case LangOptions::ThreadModelKind::Single:
Options.ThreadModel = llvm::ThreadModel::Single;
break;
}
// Set float ABI type.
assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" ||
CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) &&
"Invalid Floating Point ABI!");
Options.FloatABIType =
llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI)
.Case("soft", llvm::FloatABI::Soft)
.Case("softfp", llvm::FloatABI::Soft)
.Case("hard", llvm::FloatABI::Hard)
.Default(llvm::FloatABI::Default);
// Set FP fusion mode.
switch (LangOpts.getDefaultFPContractMode()) {
case LangOptions::FPM_Off:
// Preserve any contraction performed by the front-end. (Strict performs
// splitting of the muladd intrinsic in the backend.)
Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
break;
case LangOptions::FPM_On:
case LangOptions::FPM_FastHonorPragmas:
Options.AllowFPOpFusion = llvm::FPOpFusion::Standard;
break;
case LangOptions::FPM_Fast:
Options.AllowFPOpFusion = llvm::FPOpFusion::Fast;
break;
}
Options.BinutilsVersion =
llvm::TargetMachine::parseBinutilsVersion(CodeGenOpts.BinutilsVersion);
Options.UseInitArray = CodeGenOpts.UseInitArray;
Options.LowerGlobalDtorsViaCxaAtExit =
CodeGenOpts.RegisterGlobalDtorsWithAtExit;
Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS;
Options.CompressDebugSections = CodeGenOpts.getCompressDebugSections();
Options.RelaxELFRelocations = CodeGenOpts.RelaxELFRelocations;
// Set EABI version.
Options.EABIVersion = TargetOpts.EABIVersion;
if (LangOpts.hasSjLjExceptions())
Options.ExceptionModel = llvm::ExceptionHandling::SjLj;
if (LangOpts.hasSEHExceptions())
Options.ExceptionModel = llvm::ExceptionHandling::WinEH;
if (LangOpts.hasDWARFExceptions())
Options.ExceptionModel = llvm::ExceptionHandling::DwarfCFI;
if (LangOpts.hasWasmExceptions())
Options.ExceptionModel = llvm::ExceptionHandling::Wasm;
Options.NoInfsFPMath = LangOpts.NoHonorInfs;
Options.NoNaNsFPMath = LangOpts.NoHonorNaNs;
Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS;
Options.UnsafeFPMath = LangOpts.UnsafeFPMath;
Options.ApproxFuncFPMath = LangOpts.ApproxFunc;
Options.BBSections =
llvm::StringSwitch<llvm::BasicBlockSection>(CodeGenOpts.BBSections)
.Case("all", llvm::BasicBlockSection::All)
.Case("labels", llvm::BasicBlockSection::Labels)
.StartsWith("list=", llvm::BasicBlockSection::List)
.Case("none", llvm::BasicBlockSection::None)
.Default(llvm::BasicBlockSection::None);
if (Options.BBSections == llvm::BasicBlockSection::List) {
ErrorOr<std::unique_ptr<MemoryBuffer>> MBOrErr =
MemoryBuffer::getFile(CodeGenOpts.BBSections.substr(5));
if (!MBOrErr) {
Diags.Report(diag::err_fe_unable_to_load_basic_block_sections_file)
<< MBOrErr.getError().message();
return false;
}
Options.BBSectionsFuncListBuf = std::move(*MBOrErr);
}
Options.EnableMachineFunctionSplitter = CodeGenOpts.SplitMachineFunctions;
Options.FunctionSections = CodeGenOpts.FunctionSections;
Options.DataSections = CodeGenOpts.DataSections;
Options.IgnoreXCOFFVisibility = LangOpts.IgnoreXCOFFVisibility;
Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames;
Options.UniqueBasicBlockSectionNames =
CodeGenOpts.UniqueBasicBlockSectionNames;
Options.TLSSize = CodeGenOpts.TLSSize;
Options.EmulatedTLS = CodeGenOpts.EmulatedTLS;
Options.ExplicitEmulatedTLS = CodeGenOpts.ExplicitEmulatedTLS;
Options.DebuggerTuning = CodeGenOpts.getDebuggerTuning();
Options.EmitStackSizeSection = CodeGenOpts.StackSizeSection;
Options.StackUsageOutput = CodeGenOpts.StackUsageOutput;
Options.EmitAddrsig = CodeGenOpts.Addrsig;
Options.ForceDwarfFrameSection = CodeGenOpts.ForceDwarfFrameSection;
Options.EmitCallSiteInfo = CodeGenOpts.EmitCallSiteInfo;
Options.EnableAIXExtendedAltivecABI = CodeGenOpts.EnableAIXExtendedAltivecABI;
Options.XRayOmitFunctionIndex = CodeGenOpts.XRayOmitFunctionIndex;
Options.LoopAlignment = CodeGenOpts.LoopAlignment;
Options.DebugStrictDwarf = CodeGenOpts.DebugStrictDwarf;
Options.ObjectFilenameForDebug = CodeGenOpts.ObjectFilenameForDebug;
Options.Hotpatch = CodeGenOpts.HotPatch;
Options.JMCInstrument = CodeGenOpts.JMCInstrument;
switch (CodeGenOpts.getSwiftAsyncFramePointer()) {
case CodeGenOptions::SwiftAsyncFramePointerKind::Auto:
Options.SwiftAsyncFramePointer =
SwiftAsyncFramePointerMode::DeploymentBased;
break;
case CodeGenOptions::SwiftAsyncFramePointerKind::Always:
Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Always;
break;
case CodeGenOptions::SwiftAsyncFramePointerKind::Never:
Options.SwiftAsyncFramePointer = SwiftAsyncFramePointerMode::Never;
break;
}
Options.MCOptions.SplitDwarfFile = CodeGenOpts.SplitDwarfFile;
Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll;
Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels;
Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm;
Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack;
Options.MCOptions.MCIncrementalLinkerCompatible =
CodeGenOpts.IncrementalLinkerCompatible;
Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings;
Options.MCOptions.MCNoWarn = CodeGenOpts.NoWarn;
Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose;
Options.MCOptions.Dwarf64 = CodeGenOpts.Dwarf64;
Options.MCOptions.PreserveAsmComments = CodeGenOpts.PreserveAsmComments;
Options.MCOptions.ABIName = TargetOpts.ABI;
for (const auto &Entry : HSOpts.UserEntries)
if (!Entry.IsFramework &&
(Entry.Group == frontend::IncludeDirGroup::Quoted ||
Entry.Group == frontend::IncludeDirGroup::Angled ||
Entry.Group == frontend::IncludeDirGroup::System))
Options.MCOptions.IASSearchPaths.push_back(
Entry.IgnoreSysRoot ? Entry.Path : HSOpts.Sysroot + Entry.Path);
Options.MCOptions.Argv0 = CodeGenOpts.Argv0;
Options.MCOptions.CommandLineArgs = CodeGenOpts.CommandLineArgs;
return true;
}
static Optional<GCOVOptions> getGCOVOptions(const CodeGenOptions &CodeGenOpts,
const LangOptions &LangOpts) {
if (!CodeGenOpts.EmitGcovArcs && !CodeGenOpts.EmitGcovNotes)
return None;
// Not using 'GCOVOptions::getDefault' allows us to avoid exiting if
// LLVM's -default-gcov-version flag is set to something invalid.
GCOVOptions Options;
Options.EmitNotes = CodeGenOpts.EmitGcovNotes;
Options.EmitData = CodeGenOpts.EmitGcovArcs;
llvm::copy(CodeGenOpts.CoverageVersion, std::begin(Options.Version));
Options.NoRedZone = CodeGenOpts.DisableRedZone;
Options.Filter = CodeGenOpts.ProfileFilterFiles;
Options.Exclude = CodeGenOpts.ProfileExcludeFiles;
Options.Atomic = CodeGenOpts.AtomicProfileUpdate;
return Options;
}
static Optional<InstrProfOptions>
getInstrProfOptions(const CodeGenOptions &CodeGenOpts,
const LangOptions &LangOpts) {
if (!CodeGenOpts.hasProfileClangInstr())
return None;
InstrProfOptions Options;
Options.NoRedZone = CodeGenOpts.DisableRedZone;
Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput;
Options.Atomic = CodeGenOpts.AtomicProfileUpdate;
return Options;
}
void EmitAssemblyHelper::CreatePasses(legacy::PassManager &MPM,
legacy::FunctionPassManager &FPM) {
// Handle disabling of all LLVM passes, where we want to preserve the
// internal module before any optimization.
if (CodeGenOpts.DisableLLVMPasses)
return;
// Figure out TargetLibraryInfo. This needs to be added to MPM and FPM
// manually (and not via PMBuilder), since some passes (eg. InstrProfiling)
// are inserted before PMBuilder ones - they'd get the default-constructed
// TLI with an unknown target otherwise.
std::unique_ptr<TargetLibraryInfoImpl> TLII(
createTLII(TargetTriple, CodeGenOpts));
// If we reached here with a non-empty index file name, then the index file
// was empty and we are not performing ThinLTO backend compilation (used in
// testing in a distributed build environment). Drop any the type test
// assume sequences inserted for whole program vtables so that codegen doesn't
// complain.
if (!CodeGenOpts.ThinLTOIndexFile.empty())
MPM.add(createLowerTypeTestsPass(/*ExportSummary=*/nullptr,
/*ImportSummary=*/nullptr,
/*DropTypeTests=*/true));
PassManagerBuilderWrapper PMBuilder(TargetTriple, CodeGenOpts, LangOpts);
// At O0 and O1 we only run the always inliner which is more efficient. At
// higher optimization levels we run the normal inliner.
if (CodeGenOpts.OptimizationLevel <= 1) {
bool InsertLifetimeIntrinsics = ((CodeGenOpts.OptimizationLevel != 0 &&
!CodeGenOpts.DisableLifetimeMarkers) ||
LangOpts.Coroutines);
PMBuilder.Inliner = createAlwaysInlinerLegacyPass(InsertLifetimeIntrinsics);
} else {
// We do not want to inline hot callsites for SamplePGO module-summary build
// because profile annotation will happen again in ThinLTO backend, and we
// want the IR of the hot path to match the profile.
PMBuilder.Inliner = createFunctionInliningPass(
CodeGenOpts.OptimizationLevel, CodeGenOpts.OptimizeSize,
(!CodeGenOpts.SampleProfileFile.empty() &&
CodeGenOpts.PrepareForThinLTO));
}
PMBuilder.OptLevel = CodeGenOpts.OptimizationLevel;
PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize;
PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP;
PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop;
// Only enable CGProfilePass when using integrated assembler, since
// non-integrated assemblers don't recognize .cgprofile section.
PMBuilder.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS;
PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops;
// Loop interleaving in the loop vectorizer has historically been set to be
// enabled when loop unrolling is enabled.
PMBuilder.LoopsInterleaved = CodeGenOpts.UnrollLoops;
PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions;
PMBuilder.PrepareForThinLTO = CodeGenOpts.PrepareForThinLTO;
PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO;
PMBuilder.RerollLoops = CodeGenOpts.RerollLoops;
MPM.add(new TargetLibraryInfoWrapperPass(*TLII));
if (TM)
TM->adjustPassManager(PMBuilder);
if (CodeGenOpts.DebugInfoForProfiling ||
!CodeGenOpts.SampleProfileFile.empty())
PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
addAddDiscriminatorsPass);
// In ObjC ARC mode, add the main ARC optimization passes.
if (LangOpts.ObjCAutoRefCount) {
PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
addObjCARCExpandPass);
PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly,
addObjCARCAPElimPass);
PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
addObjCARCOptPass);
}
if (LangOpts.Coroutines)
addCoroutinePassesToExtensionPoints(PMBuilder);
if (!CodeGenOpts.MemoryProfileOutput.empty()) {
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
addMemProfilerPasses);
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
addMemProfilerPasses);
}
if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) {
PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate,
addBoundsCheckingPass);
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
addBoundsCheckingPass);
}
if (CodeGenOpts.hasSanitizeCoverage()) {
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
addSanitizerCoveragePass);
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
addSanitizerCoveragePass);
}
if (LangOpts.Sanitize.has(SanitizerKind::Address)) {
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
addAddressSanitizerPasses);
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
addAddressSanitizerPasses);
}
if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) {
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
addKernelAddressSanitizerPasses);
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
addKernelAddressSanitizerPasses);
}
if (LangOpts.Sanitize.has(SanitizerKind::HWAddress)) {
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
addHWAddressSanitizerPasses);
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
addHWAddressSanitizerPasses);
}
if (LangOpts.Sanitize.has(SanitizerKind::KernelHWAddress)) {
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
addKernelHWAddressSanitizerPasses);
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
addKernelHWAddressSanitizerPasses);
}
if (LangOpts.Sanitize.has(SanitizerKind::Memory)) {
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
addMemorySanitizerPass);
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
addMemorySanitizerPass);
}
if (LangOpts.Sanitize.has(SanitizerKind::KernelMemory)) {
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
addKernelMemorySanitizerPass);
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
addKernelMemorySanitizerPass);
}
if (LangOpts.Sanitize.has(SanitizerKind::Thread)) {
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
addThreadSanitizerPass);
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
addThreadSanitizerPass);
}
if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) {
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
addDataFlowSanitizerPass);
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
addDataFlowSanitizerPass);
}
if (CodeGenOpts.InstrumentFunctions ||
CodeGenOpts.InstrumentFunctionEntryBare ||
CodeGenOpts.InstrumentFunctionsAfterInlining ||
CodeGenOpts.InstrumentForProfiling) {
PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible,
addEntryExitInstrumentationPass);
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
addEntryExitInstrumentationPass);
PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast,
addPostInlineEntryExitInstrumentationPass);
PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0,
addPostInlineEntryExitInstrumentationPass);
}
// Set up the per-function pass manager.
FPM.add(new TargetLibraryInfoWrapperPass(*TLII));
if (CodeGenOpts.VerifyModule)
FPM.add(createVerifierPass());
// Set up the per-module pass manager.
if (!CodeGenOpts.RewriteMapFiles.empty())
addSymbolRewriterPass(CodeGenOpts, &MPM);
if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts)) {
MPM.add(createGCOVProfilerPass(*Options));
if (CodeGenOpts.getDebugInfo() == codegenoptions::NoDebugInfo)
MPM.add(createStripSymbolsPass(true));
}
if (Optional<InstrProfOptions> Options =
getInstrProfOptions(CodeGenOpts, LangOpts))
MPM.add(createInstrProfilingLegacyPass(*Options, false));
bool hasIRInstr = false;
if (CodeGenOpts.hasProfileIRInstr()) {
PMBuilder.EnablePGOInstrGen = true;
hasIRInstr = true;
}
if (CodeGenOpts.hasProfileCSIRInstr()) {
assert(!CodeGenOpts.hasProfileCSIRUse() &&
"Cannot have both CSProfileUse pass and CSProfileGen pass at the "
"same time");
assert(!hasIRInstr &&
"Cannot have both ProfileGen pass and CSProfileGen pass at the "
"same time");
PMBuilder.EnablePGOCSInstrGen = true;
hasIRInstr = true;
}
if (hasIRInstr) {
if (!CodeGenOpts.InstrProfileOutput.empty())
PMBuilder.PGOInstrGen = CodeGenOpts.InstrProfileOutput;
else
PMBuilder.PGOInstrGen = getDefaultProfileGenName();
}
if (CodeGenOpts.hasProfileIRUse()) {
PMBuilder.PGOInstrUse = CodeGenOpts.ProfileInstrumentUsePath;
PMBuilder.EnablePGOCSInstrUse = CodeGenOpts.hasProfileCSIRUse();
}
if (!CodeGenOpts.SampleProfileFile.empty())
PMBuilder.PGOSampleUse = CodeGenOpts.SampleProfileFile;
PMBuilder.populateFunctionPassManager(FPM);
PMBuilder.populateModulePassManager(MPM);
}
static void setCommandLineOpts(const CodeGenOptions &CodeGenOpts) {
SmallVector<const char *, 16> BackendArgs;
BackendArgs.push_back("clang"); // Fake program name.
if (!CodeGenOpts.DebugPass.empty()) {
BackendArgs.push_back("-debug-pass");
BackendArgs.push_back(CodeGenOpts.DebugPass.c_str());
}
if (!CodeGenOpts.LimitFloatPrecision.empty()) {
BackendArgs.push_back("-limit-float-precision");
BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str());
}
// Check for the default "clang" invocation that won't set any cl::opt values.
// Skip trying to parse the command line invocation to avoid the issues
// described below.
if (BackendArgs.size() == 1)
return;
BackendArgs.push_back(nullptr);
// FIXME: The command line parser below is not thread-safe and shares a global
// state, so this call might crash or overwrite the options of another Clang
// instance in the same process.
llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1,
BackendArgs.data());
}
void EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) {
// Create the TargetMachine for generating code.
std::string Error;
std::string Triple = TheModule->getTargetTriple();
const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error);
if (!TheTarget) {
if (MustCreateTM)
Diags.Report(diag::err_fe_unable_to_create_target) << Error;
return;
}
Optional<llvm::CodeModel::Model> CM = getCodeModel(CodeGenOpts);
std::string FeaturesStr =
llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ",");
llvm::Reloc::Model RM = CodeGenOpts.RelocationModel;
CodeGenOpt::Level OptLevel = getCGOptLevel(CodeGenOpts);
llvm::TargetOptions Options;
if (!initTargetOptions(Diags, Options, CodeGenOpts, TargetOpts, LangOpts,
HSOpts))
return;
TM.reset(TheTarget->createTargetMachine(Triple, TargetOpts.CPU, FeaturesStr,
Options, RM, CM, OptLevel));
}
bool EmitAssemblyHelper::AddEmitPasses(legacy::PassManager &CodeGenPasses,
BackendAction Action,
raw_pwrite_stream &OS,
raw_pwrite_stream *DwoOS) {
// Add LibraryInfo.
std::unique_ptr<TargetLibraryInfoImpl> TLII(
createTLII(TargetTriple, CodeGenOpts));
CodeGenPasses.add(new TargetLibraryInfoWrapperPass(*TLII));
// Normal mode, emit a .s or .o file by running the code generator. Note,
// this also adds codegenerator level optimization passes.
CodeGenFileType CGFT = getCodeGenFileType(Action);
// Add ObjC ARC final-cleanup optimizations. This is done as part of the
// "codegen" passes so that it isn't run multiple times when there is
// inlining happening.
if (CodeGenOpts.OptimizationLevel > 0)
CodeGenPasses.add(createObjCARCContractPass());
if (TM->addPassesToEmitFile(CodeGenPasses, OS, DwoOS, CGFT,
/*DisableVerify=*/!CodeGenOpts.VerifyModule)) {
Diags.Report(diag::err_fe_unable_to_interface_with_target);
return false;
}
return true;
}
void EmitAssemblyHelper::EmitAssemblyWithLegacyPassManager(
BackendAction Action, std::unique_ptr<raw_pwrite_stream> OS) {
TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr);
setCommandLineOpts(CodeGenOpts);
bool UsesCodeGen = actionRequiresCodeGen(Action);
CreateTargetMachine(UsesCodeGen);
if (UsesCodeGen && !TM)
return;
if (TM)
TheModule->setDataLayout(TM->createDataLayout());
DebugifyCustomPassManager PerModulePasses;
DebugInfoPerPass DebugInfoBeforePass;
if (CodeGenOpts.EnableDIPreservationVerify) {
PerModulePasses.setDebugifyMode(DebugifyMode::OriginalDebugInfo);
PerModulePasses.setDebugInfoBeforePass(DebugInfoBeforePass);
if (!CodeGenOpts.DIBugsReportFilePath.empty())
PerModulePasses.setOrigDIVerifyBugsReportFilePath(
CodeGenOpts.DIBugsReportFilePath);
}
PerModulePasses.add(
createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
legacy::FunctionPassManager PerFunctionPasses(TheModule);
PerFunctionPasses.add(
createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
CreatePasses(PerModulePasses, PerFunctionPasses);
// Add a verifier pass if requested. We don't have to do this if the action
// requires code generation because there will already be a verifier pass in
// the code-generation pipeline.
if (!UsesCodeGen && CodeGenOpts.VerifyModule)
PerModulePasses.add(createVerifierPass());
legacy::PassManager CodeGenPasses;
CodeGenPasses.add(
createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS;
switch (Action) {
case Backend_EmitNothing:
break;
case Backend_EmitBC:
if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) {
if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) {
ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile);
if (!ThinLinkOS)
return;
}
if (!TheModule->getModuleFlag("EnableSplitLTOUnit"))
TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit",
CodeGenOpts.EnableSplitLTOUnit);
PerModulePasses.add(createWriteThinLTOBitcodePass(
*OS, ThinLinkOS ? &ThinLinkOS->os() : nullptr));
} else {
// Emit a module summary by default for Regular LTO except for ld64
// targets
bool EmitLTOSummary =
(CodeGenOpts.PrepareForLTO && !CodeGenOpts.DisableLLVMPasses &&
TargetTriple.getVendor() != llvm::Triple::Apple);
if (EmitLTOSummary) {
if (!TheModule->getModuleFlag("ThinLTO"))
TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
if (!TheModule->getModuleFlag("EnableSplitLTOUnit"))
TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit",
uint32_t(1));
}
PerModulePasses.add(createBitcodeWriterPass(
*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary));
}
break;
case Backend_EmitLL:
PerModulePasses.add(
createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists));
break;
default:
if (!CodeGenOpts.SplitDwarfOutput.empty()) {
DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput);
if (!DwoOS)
return;
}
if (!AddEmitPasses(CodeGenPasses, Action, *OS,
DwoOS ? &DwoOS->os() : nullptr))
return;
}
// Before executing passes, print the final values of the LLVM options.
cl::PrintOptionValues();
// Run passes. For now we do all passes at once, but eventually we
// would like to have the option of streaming code generation.
{
PrettyStackTraceString CrashInfo("Per-function optimization");
llvm::TimeTraceScope TimeScope("PerFunctionPasses");
PerFunctionPasses.doInitialization();
for (Function &F : *TheModule)
if (!F.isDeclaration())
PerFunctionPasses.run(F);
PerFunctionPasses.doFinalization();
}
{
PrettyStackTraceString CrashInfo("Per-module optimization passes");
llvm::TimeTraceScope TimeScope("PerModulePasses");
PerModulePasses.run(*TheModule);
}
{
PrettyStackTraceString CrashInfo("Code generation");
llvm::TimeTraceScope TimeScope("CodeGenPasses");
CodeGenPasses.run(*TheModule);
}
if (ThinLinkOS)
ThinLinkOS->keep();
if (DwoOS)
DwoOS->keep();
}
static OptimizationLevel mapToLevel(const CodeGenOptions &Opts) {
switch (Opts.OptimizationLevel) {
default:
llvm_unreachable("Invalid optimization level!");
case 0:
return OptimizationLevel::O0;
case 1:
return OptimizationLevel::O1;
case 2:
switch (Opts.OptimizeSize) {
default:
llvm_unreachable("Invalid optimization level for size!");
case 0:
return OptimizationLevel::O2;
case 1:
return OptimizationLevel::Os;
case 2:
return OptimizationLevel::Oz;
}
case 3:
return OptimizationLevel::O3;
}
}
static void addSanitizers(const Triple &TargetTriple,
const CodeGenOptions &CodeGenOpts,
const LangOptions &LangOpts, PassBuilder &PB) {
PB.registerOptimizerLastEPCallback([&](ModulePassManager &MPM,
OptimizationLevel Level) {
if (CodeGenOpts.hasSanitizeCoverage()) {
auto SancovOpts = getSancovOptsFromCGOpts(CodeGenOpts);
MPM.addPass(ModuleSanitizerCoveragePass(
SancovOpts, CodeGenOpts.SanitizeCoverageAllowlistFiles,
CodeGenOpts.SanitizeCoverageIgnorelistFiles));
}
auto MSanPass = [&](SanitizerMask Mask, bool CompileKernel) {
if (LangOpts.Sanitize.has(Mask)) {
int TrackOrigins = CodeGenOpts.SanitizeMemoryTrackOrigins;
bool Recover = CodeGenOpts.SanitizeRecover.has(Mask);
MemorySanitizerOptions options(TrackOrigins, Recover, CompileKernel,
CodeGenOpts.SanitizeMemoryParamRetval);
MPM.addPass(ModuleMemorySanitizerPass(options));
FunctionPassManager FPM;
FPM.addPass(MemorySanitizerPass(options));
if (Level != OptimizationLevel::O0) {
// MemorySanitizer inserts complex instrumentation that mostly
// follows the logic of the original code, but operates on
// "shadow" values. It can benefit from re-running some
// general purpose optimization passes.
FPM.addPass(EarlyCSEPass());
// TODO: Consider add more passes like in
// addGeneralOptsForMemorySanitizer. EarlyCSEPass makes visible
// difference on size. It's not clear if the rest is still
// usefull. InstCombinePass breakes
// compiler-rt/test/msan/select_origin.cpp.
}
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
}
};
MSanPass(SanitizerKind::Memory, false);
MSanPass(SanitizerKind::KernelMemory, true);
if (LangOpts.Sanitize.has(SanitizerKind::Thread)) {
MPM.addPass(ModuleThreadSanitizerPass());
MPM.addPass(createModuleToFunctionPassAdaptor(ThreadSanitizerPass()));
}
auto ASanPass = [&](SanitizerMask Mask, bool CompileKernel) {
if (LangOpts.Sanitize.has(Mask)) {
bool UseGlobalGC = asanUseGlobalsGC(TargetTriple, CodeGenOpts);
bool UseOdrIndicator = CodeGenOpts.SanitizeAddressUseOdrIndicator;
llvm::AsanDtorKind DestructorKind =
CodeGenOpts.getSanitizeAddressDtor();
AddressSanitizerOptions Opts;
Opts.CompileKernel = CompileKernel;
Opts.Recover = CodeGenOpts.SanitizeRecover.has(Mask);
Opts.UseAfterScope = CodeGenOpts.SanitizeAddressUseAfterScope;
Opts.UseAfterReturn = CodeGenOpts.getSanitizeAddressUseAfterReturn();
MPM.addPass(RequireAnalysisPass<ASanGlobalsMetadataAnalysis, Module>());
MPM.addPass(ModuleAddressSanitizerPass(
Opts, UseGlobalGC, UseOdrIndicator, DestructorKind));
}
};
ASanPass(SanitizerKind::Address, false);
ASanPass(SanitizerKind::KernelAddress, true);
auto HWASanPass = [&](SanitizerMask Mask, bool CompileKernel) {
if (LangOpts.Sanitize.has(Mask)) {
bool Recover = CodeGenOpts.SanitizeRecover.has(Mask);
MPM.addPass(HWAddressSanitizerPass(
{CompileKernel, Recover,
/*DisableOptimization=*/CodeGenOpts.OptimizationLevel == 0}));
}
};
HWASanPass(SanitizerKind::HWAddress, false);
HWASanPass(SanitizerKind::KernelHWAddress, true);
if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) {
MPM.addPass(DataFlowSanitizerPass(LangOpts.NoSanitizeFiles));
}
});
}
void EmitAssemblyHelper::RunOptimizationPipeline(
BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS,
std::unique_ptr<llvm::ToolOutputFile> &ThinLinkOS) {
Optional<PGOOptions> PGOOpt;
if (CodeGenOpts.hasProfileIRInstr())
// -fprofile-generate.
PGOOpt = PGOOptions(CodeGenOpts.InstrProfileOutput.empty()
? getDefaultProfileGenName()
: CodeGenOpts.InstrProfileOutput,
"", "", PGOOptions::IRInstr, PGOOptions::NoCSAction,
CodeGenOpts.DebugInfoForProfiling);
else if (CodeGenOpts.hasProfileIRUse()) {
// -fprofile-use.
auto CSAction = CodeGenOpts.hasProfileCSIRUse() ? PGOOptions::CSIRUse
: PGOOptions::NoCSAction;
PGOOpt = PGOOptions(CodeGenOpts.ProfileInstrumentUsePath, "",
CodeGenOpts.ProfileRemappingFile, PGOOptions::IRUse,
CSAction, CodeGenOpts.DebugInfoForProfiling);
} else if (!CodeGenOpts.SampleProfileFile.empty())
// -fprofile-sample-use
PGOOpt = PGOOptions(
CodeGenOpts.SampleProfileFile, "", CodeGenOpts.ProfileRemappingFile,
PGOOptions::SampleUse, PGOOptions::NoCSAction,
CodeGenOpts.DebugInfoForProfiling, CodeGenOpts.PseudoProbeForProfiling);
else if (CodeGenOpts.PseudoProbeForProfiling)
// -fpseudo-probe-for-profiling
PGOOpt =
PGOOptions("", "", "", PGOOptions::NoAction, PGOOptions::NoCSAction,
CodeGenOpts.DebugInfoForProfiling, true);
else if (CodeGenOpts.DebugInfoForProfiling)
// -fdebug-info-for-profiling
PGOOpt = PGOOptions("", "", "", PGOOptions::NoAction,
PGOOptions::NoCSAction, true);
// Check to see if we want to generate a CS profile.
if (CodeGenOpts.hasProfileCSIRInstr()) {
assert(!CodeGenOpts.hasProfileCSIRUse() &&
"Cannot have both CSProfileUse pass and CSProfileGen pass at "
"the same time");
if (PGOOpt.hasValue()) {
assert(PGOOpt->Action != PGOOptions::IRInstr &&
PGOOpt->Action != PGOOptions::SampleUse &&
"Cannot run CSProfileGen pass with ProfileGen or SampleUse "
" pass");
PGOOpt->CSProfileGenFile = CodeGenOpts.InstrProfileOutput.empty()
? getDefaultProfileGenName()
: CodeGenOpts.InstrProfileOutput;
PGOOpt->CSAction = PGOOptions::CSIRInstr;
} else
PGOOpt = PGOOptions("",
CodeGenOpts.InstrProfileOutput.empty()
? getDefaultProfileGenName()
: CodeGenOpts.InstrProfileOutput,
"", PGOOptions::NoAction, PGOOptions::CSIRInstr,
CodeGenOpts.DebugInfoForProfiling);
}
if (TM)
TM->setPGOOption(PGOOpt);
PipelineTuningOptions PTO;
PTO.LoopUnrolling = CodeGenOpts.UnrollLoops;
// For historical reasons, loop interleaving is set to mirror setting for loop
// unrolling.
PTO.LoopInterleaving = CodeGenOpts.UnrollLoops;
PTO.LoopVectorization = CodeGenOpts.VectorizeLoop;
PTO.SLPVectorization = CodeGenOpts.VectorizeSLP;
PTO.MergeFunctions = CodeGenOpts.MergeFunctions;
// Only enable CGProfilePass when using integrated assembler, since
// non-integrated assemblers don't recognize .cgprofile section.
PTO.CallGraphProfile = !CodeGenOpts.DisableIntegratedAS;
LoopAnalysisManager LAM;
FunctionAnalysisManager FAM;
CGSCCAnalysisManager CGAM;
ModuleAnalysisManager MAM;
bool DebugPassStructure = CodeGenOpts.DebugPass == "Structure";
PassInstrumentationCallbacks PIC;
PrintPassOptions PrintPassOpts;
PrintPassOpts.Indent = DebugPassStructure;
PrintPassOpts.SkipAnalyses = DebugPassStructure;
StandardInstrumentations SI(CodeGenOpts.DebugPassManager ||
DebugPassStructure,
/*VerifyEach*/ false, PrintPassOpts);
SI.registerCallbacks(PIC, &FAM);
PassBuilder PB(TM.get(), PTO, PGOOpt, &PIC);
// Attempt to load pass plugins and register their callbacks with PB.
for (auto &PluginFN : CodeGenOpts.PassPlugins) {
auto PassPlugin = PassPlugin::Load(PluginFN);
if (PassPlugin) {
PassPlugin->registerPassBuilderCallbacks(PB);
} else {
Diags.Report(diag::err_fe_unable_to_load_plugin)
<< PluginFN << toString(PassPlugin.takeError());
}
}
#define HANDLE_EXTENSION(Ext) \
get##Ext##PluginInfo().RegisterPassBuilderCallbacks(PB);
#include "llvm/Support/Extension.def"
// Register the target library analysis directly and give it a customized
// preset TLI.
std::unique_ptr<TargetLibraryInfoImpl> TLII(
createTLII(TargetTriple, CodeGenOpts));
FAM.registerPass([&] { return TargetLibraryAnalysis(*TLII); });
// Register all the basic analyses with the managers.
PB.registerModuleAnalyses(MAM);
PB.registerCGSCCAnalyses(CGAM);
PB.registerFunctionAnalyses(FAM);
PB.registerLoopAnalyses(LAM);
PB.crossRegisterProxies(LAM, FAM, CGAM, MAM);
ModulePassManager MPM;
if (!CodeGenOpts.DisableLLVMPasses) {
// Map our optimization levels into one of the distinct levels used to
// configure the pipeline.
OptimizationLevel Level = mapToLevel(CodeGenOpts);
bool IsThinLTO = CodeGenOpts.PrepareForThinLTO;
bool IsLTO = CodeGenOpts.PrepareForLTO;
if (LangOpts.ObjCAutoRefCount) {
PB.registerPipelineStartEPCallback(
[](ModulePassManager &MPM, OptimizationLevel Level) {
if (Level != OptimizationLevel::O0)
MPM.addPass(
createModuleToFunctionPassAdaptor(ObjCARCExpandPass()));
});
PB.registerPipelineEarlySimplificationEPCallback(
[](ModulePassManager &MPM, OptimizationLevel Level) {
if (Level != OptimizationLevel::O0)
MPM.addPass(ObjCARCAPElimPass());
});
PB.registerScalarOptimizerLateEPCallback(
[](FunctionPassManager &FPM, OptimizationLevel Level) {
if (Level != OptimizationLevel::O0)
FPM.addPass(ObjCARCOptPass());
});
}
// If we reached here with a non-empty index file name, then the index
// file was empty and we are not performing ThinLTO backend compilation
// (used in testing in a distributed build environment).
bool IsThinLTOPostLink = !CodeGenOpts.ThinLTOIndexFile.empty();
// If so drop any the type test assume sequences inserted for whole program
// vtables so that codegen doesn't complain.
if (IsThinLTOPostLink)
PB.registerPipelineStartEPCallback(
[](ModulePassManager &MPM, OptimizationLevel Level) {
MPM.addPass(LowerTypeTestsPass(/*ExportSummary=*/nullptr,
/*ImportSummary=*/nullptr,
/*DropTypeTests=*/true));
});
if (CodeGenOpts.InstrumentFunctions ||
CodeGenOpts.InstrumentFunctionEntryBare ||
CodeGenOpts.InstrumentFunctionsAfterInlining ||
CodeGenOpts.InstrumentForProfiling) {
PB.registerPipelineStartEPCallback(
[](ModulePassManager &MPM, OptimizationLevel Level) {
MPM.addPass(createModuleToFunctionPassAdaptor(
EntryExitInstrumenterPass(/*PostInlining=*/false)));
});
PB.registerOptimizerLastEPCallback(
[](ModulePassManager &MPM, OptimizationLevel Level) {
MPM.addPass(createModuleToFunctionPassAdaptor(
EntryExitInstrumenterPass(/*PostInlining=*/true)));
});
}
// Register callbacks to schedule sanitizer passes at the appropriate part
// of the pipeline.
if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds))
PB.registerScalarOptimizerLateEPCallback(
[](FunctionPassManager &FPM, OptimizationLevel Level) {
FPM.addPass(BoundsCheckingPass());
});
// Don't add sanitizers if we are here from ThinLTO PostLink. That already
// done on PreLink stage.
if (!IsThinLTOPostLink)
addSanitizers(TargetTriple, CodeGenOpts, LangOpts, PB);
if (Optional<GCOVOptions> Options = getGCOVOptions(CodeGenOpts, LangOpts))
PB.registerPipelineStartEPCallback(
[Options](ModulePassManager &MPM, OptimizationLevel Level) {
MPM.addPass(GCOVProfilerPass(*Options));
});
if (Optional<InstrProfOptions> Options =
getInstrProfOptions(CodeGenOpts, LangOpts))
PB.registerPipelineStartEPCallback(
[Options](ModulePassManager &MPM, OptimizationLevel Level) {
MPM.addPass(InstrProfiling(*Options, false));
});
if (CodeGenOpts.OptimizationLevel == 0) {
MPM = PB.buildO0DefaultPipeline(Level, IsLTO || IsThinLTO);
} else if (IsThinLTO) {
MPM = PB.buildThinLTOPreLinkDefaultPipeline(Level);
} else if (IsLTO) {
MPM = PB.buildLTOPreLinkDefaultPipeline(Level);
} else {
MPM = PB.buildPerModuleDefaultPipeline(Level);
}
if (!CodeGenOpts.MemoryProfileOutput.empty()) {
MPM.addPass(createModuleToFunctionPassAdaptor(MemProfilerPass()));
MPM.addPass(ModuleMemProfilerPass());
}
}
// Add a verifier pass if requested. We don't have to do this if the action
// requires code generation because there will already be a verifier pass in
// the code-generation pipeline.
if (!actionRequiresCodeGen(Action) && CodeGenOpts.VerifyModule)
MPM.addPass(VerifierPass());
switch (Action) {
case Backend_EmitBC:
if (CodeGenOpts.PrepareForThinLTO && !CodeGenOpts.DisableLLVMPasses) {
if (!CodeGenOpts.ThinLinkBitcodeFile.empty()) {
ThinLinkOS = openOutputFile(CodeGenOpts.ThinLinkBitcodeFile);
if (!ThinLinkOS)
return;
}
if (!TheModule->getModuleFlag("EnableSplitLTOUnit"))
TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit",
CodeGenOpts.EnableSplitLTOUnit);
MPM.addPass(ThinLTOBitcodeWriterPass(*OS, ThinLinkOS ? &ThinLinkOS->os()
: nullptr));
} else {
// Emit a module summary by default for Regular LTO except for ld64
// targets
bool EmitLTOSummary =
(CodeGenOpts.PrepareForLTO && !CodeGenOpts.DisableLLVMPasses &&
TargetTriple.getVendor() != llvm::Triple::Apple);
if (EmitLTOSummary) {
if (!TheModule->getModuleFlag("ThinLTO"))
TheModule->addModuleFlag(Module::Error, "ThinLTO", uint32_t(0));
if (!TheModule->getModuleFlag("EnableSplitLTOUnit"))
TheModule->addModuleFlag(Module::Error, "EnableSplitLTOUnit",
uint32_t(1));
}
MPM.addPass(
BitcodeWriterPass(*OS, CodeGenOpts.EmitLLVMUseLists, EmitLTOSummary));
}
break;
case Backend_EmitLL:
MPM.addPass(PrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists));
break;
default:
break;
}
// Now that we have all of the passes ready, run them.
{
PrettyStackTraceString CrashInfo("Optimizer");
llvm::TimeTraceScope TimeScope("Optimizer");
MPM.run(*TheModule, MAM);
}
}
void EmitAssemblyHelper::RunCodegenPipeline(
BackendAction Action, std::unique_ptr<raw_pwrite_stream> &OS,
std::unique_ptr<llvm::ToolOutputFile> &DwoOS) {
// We still use the legacy PM to run the codegen pipeline since the new PM
// does not work with the codegen pipeline.
// FIXME: make the new PM work with the codegen pipeline.
legacy::PassManager CodeGenPasses;
// Append any output we need to the pass manager.
switch (Action) {
case Backend_EmitAssembly:
case Backend_EmitMCNull:
case Backend_EmitObj:
CodeGenPasses.add(
createTargetTransformInfoWrapperPass(getTargetIRAnalysis()));
if (!CodeGenOpts.SplitDwarfOutput.empty()) {
DwoOS = openOutputFile(CodeGenOpts.SplitDwarfOutput);
if (!DwoOS)
return;
}
if (!AddEmitPasses(CodeGenPasses, Action, *OS,
DwoOS ? &DwoOS->os() : nullptr))
// FIXME: Should we handle this error differently?
return;
break;
default:
return;
}
{
PrettyStackTraceString CrashInfo("Code generation");
llvm::TimeTraceScope TimeScope("CodeGenPasses");
CodeGenPasses.run(*TheModule);
}
}
/// A clean version of `EmitAssembly` that uses the new pass manager.
///
/// Not all features are currently supported in this system, but where
/// necessary it falls back to the legacy pass manager to at least provide
/// basic functionality.
///
/// This API is planned to have its functionality finished and then to replace
/// `EmitAssembly` at some point in the future when the default switches.
void EmitAssemblyHelper::EmitAssembly(BackendAction Action,
std::unique_ptr<raw_pwrite_stream> OS) {
TimeRegion Region(CodeGenOpts.TimePasses ? &CodeGenerationTime : nullptr);
setCommandLineOpts(CodeGenOpts);
bool RequiresCodeGen = actionRequiresCodeGen(Action);
CreateTargetMachine(RequiresCodeGen);
if (RequiresCodeGen && !TM)
return;
if (TM)
TheModule->setDataLayout(TM->createDataLayout());
// Before executing passes, print the final values of the LLVM options.
cl::PrintOptionValues();
std::unique_ptr<llvm::ToolOutputFile> ThinLinkOS, DwoOS;
RunOptimizationPipeline(Action, OS, ThinLinkOS);
RunCodegenPipeline(Action, OS, DwoOS);
if (ThinLinkOS)
ThinLinkOS->keep();
if (DwoOS)
DwoOS->keep();
}
static void runThinLTOBackend(
DiagnosticsEngine &Diags, ModuleSummaryIndex *CombinedIndex, Module *M,
const HeaderSearchOptions &HeaderOpts, const CodeGenOptions &CGOpts,
const clang::TargetOptions &TOpts, const LangOptions &LOpts,
std::unique_ptr<raw_pwrite_stream> OS, std::string SampleProfile,
std::string ProfileRemapping, BackendAction Action) {
StringMap<DenseMap<GlobalValue::GUID, GlobalValueSummary *>>
ModuleToDefinedGVSummaries;
CombinedIndex->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);
setCommandLineOpts(CGOpts);
// We can simply import the values mentioned in the combined index, since
// we should only invoke this using the individual indexes written out
// via a WriteIndexesThinBackend.
FunctionImporter::ImportMapTy ImportList;
if (!lto::initImportList(*M, *CombinedIndex, ImportList))
return;
auto AddStream = [&](size_t Task) {
return std::make_unique<CachedFileStream>(std::move(OS),
CGOpts.ObjectFilenameForDebug);
};
lto::Config Conf;
if (CGOpts.SaveTempsFilePrefix != "") {
if (Error E = Conf.addSaveTemps(CGOpts.SaveTempsFilePrefix + ".",
/* UseInputModulePath */ false)) {
handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) {
errs() << "Error setting up ThinLTO save-temps: " << EIB.message()
<< '\n';
});
}
}
Conf.CPU = TOpts.CPU;
Conf.CodeModel = getCodeModel(CGOpts);
Conf.MAttrs = TOpts.Features;
Conf.RelocModel = CGOpts.RelocationModel;
Conf.CGOptLevel = getCGOptLevel(CGOpts);
Conf.OptLevel = CGOpts.OptimizationLevel;
initTargetOptions(Diags, Conf.Options, CGOpts, TOpts, LOpts, HeaderOpts);
Conf.SampleProfile = std::move(SampleProfile);
Conf.PTO.LoopUnrolling = CGOpts.UnrollLoops;
// For historical reasons, loop interleaving is set to mirror setting for loop
// unrolling.
Conf.PTO.LoopInterleaving = CGOpts.UnrollLoops;
Conf.PTO.LoopVectorization = CGOpts.VectorizeLoop;
Conf.PTO.SLPVectorization = CGOpts.VectorizeSLP;
// Only enable CGProfilePass when using integrated assembler, since
// non-integrated assemblers don't recognize .cgprofile section.
Conf.PTO.CallGraphProfile = !CGOpts.DisableIntegratedAS;
// Context sensitive profile.
if (CGOpts.hasProfileCSIRInstr()) {
Conf.RunCSIRInstr = true;
Conf.CSIRProfile = std::move(CGOpts.InstrProfileOutput);
} else if (CGOpts.hasProfileCSIRUse()) {
Conf.RunCSIRInstr = false;
Conf.CSIRProfile = std::move(CGOpts.ProfileInstrumentUsePath);
}
Conf.ProfileRemapping = std::move(ProfileRemapping);
Conf.UseNewPM = !CGOpts.LegacyPassManager;
Conf.DebugPassManager = CGOpts.DebugPassManager;
Conf.RemarksWithHotness = CGOpts.DiagnosticsWithHotness;
Conf.RemarksFilename = CGOpts.OptRecordFile;
Conf.RemarksPasses = CGOpts.OptRecordPasses;
Conf.RemarksFormat = CGOpts.OptRecordFormat;
Conf.SplitDwarfFile = CGOpts.SplitDwarfFile;
Conf.SplitDwarfOutput = CGOpts.SplitDwarfOutput;
switch (Action) {
case Backend_EmitNothing:
Conf.PreCodeGenModuleHook = [](size_t Task, const Module &Mod) {
return false;
};
break;
case Backend_EmitLL:
Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) {
M->print(*OS, nullptr, CGOpts.EmitLLVMUseLists);
return false;
};
break;
case Backend_EmitBC:
Conf.PreCodeGenModuleHook = [&](size_t Task, const Module &Mod) {
WriteBitcodeToFile(*M, *OS, CGOpts.EmitLLVMUseLists);
return false;
};
break;
default:
Conf.CGFileType = getCodeGenFileType(Action);
break;
}
if (Error E =
thinBackend(Conf, -1, AddStream, *M, *CombinedIndex, ImportList,
ModuleToDefinedGVSummaries[M->getModuleIdentifier()],
/* ModuleMap */ nullptr, CGOpts.CmdArgs)) {
handleAllErrors(std::move(E), [&](ErrorInfoBase &EIB) {
errs() << "Error running ThinLTO backend: " << EIB.message() << '\n';
});
}
}
void clang::EmitBackendOutput(DiagnosticsEngine &Diags,
const HeaderSearchOptions &HeaderOpts,
const CodeGenOptions &CGOpts,
const clang::TargetOptions &TOpts,
const LangOptions &LOpts,
StringRef TDesc, Module *M,
BackendAction Action,
std::unique_ptr<raw_pwrite_stream> OS) {
llvm::TimeTraceScope TimeScope("Backend");
std::unique_ptr<llvm::Module> EmptyModule;
if (!CGOpts.ThinLTOIndexFile.empty()) {
// If we are performing a ThinLTO importing compile, load the function index
// into memory and pass it into runThinLTOBackend, which will run the
// function importer and invoke LTO passes.
std::unique_ptr<ModuleSummaryIndex> CombinedIndex;
if (Error E = llvm::getModuleSummaryIndexForFile(
CGOpts.ThinLTOIndexFile,
/*IgnoreEmptyThinLTOIndexFile*/ true)
.moveInto(CombinedIndex)) {
logAllUnhandledErrors(std::move(E), errs(),
"Error loading index file '" +
CGOpts.ThinLTOIndexFile + "': ");
return;
}
// A null CombinedIndex means we should skip ThinLTO compilation
// (LLVM will optionally ignore empty index files, returning null instead
// of an error).
if (CombinedIndex) {
if (!CombinedIndex->skipModuleByDistributedBackend()) {
runThinLTOBackend(Diags, CombinedIndex.get(), M, HeaderOpts, CGOpts,
TOpts, LOpts, std::move(OS), CGOpts.SampleProfileFile,
CGOpts.ProfileRemappingFile, Action);
return;
}
// Distributed indexing detected that nothing from the module is needed
// for the final linking. So we can skip the compilation. We sill need to
// output an empty object file to make sure that a linker does not fail
// trying to read it. Also for some features, like CFI, we must skip
// the compilation as CombinedIndex does not contain all required
// information.
EmptyModule = std::make_unique<llvm::Module>("empty", M->getContext());
EmptyModule->setTargetTriple(M->getTargetTriple());
M = EmptyModule.get();
}
}
EmitAssemblyHelper AsmHelper(Diags, HeaderOpts, CGOpts, TOpts, LOpts, M);
if (CGOpts.LegacyPassManager)
AsmHelper.EmitAssemblyWithLegacyPassManager(Action, std::move(OS));
else
AsmHelper.EmitAssembly(Action, std::move(OS));
// Verify clang's TargetInfo DataLayout against the LLVM TargetMachine's
// DataLayout.
if (AsmHelper.TM) {
std::string DLDesc = M->getDataLayout().getStringRepresentation();
if (DLDesc != TDesc) {
unsigned DiagID = Diags.getCustomDiagID(
DiagnosticsEngine::Error, "backend data layout '%0' does not match "
"expected target description '%1'");
Diags.Report(DiagID) << DLDesc << TDesc;
}
}
}
// With -fembed-bitcode, save a copy of the llvm IR as data in the
// __LLVM,__bitcode section.
void clang::EmbedBitcode(llvm::Module *M, const CodeGenOptions &CGOpts,
llvm::MemoryBufferRef Buf) {
if (CGOpts.getEmbedBitcode() == CodeGenOptions::Embed_Off)
return;
llvm::embedBitcodeInModule(
*M, Buf, CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Marker,
CGOpts.getEmbedBitcode() != CodeGenOptions::Embed_Bitcode,
CGOpts.CmdArgs);
}
void clang::EmbedObject(llvm::Module *M, const CodeGenOptions &CGOpts,
DiagnosticsEngine &Diags) {
if (CGOpts.OffloadObjects.empty())
return;
for (StringRef OffloadObject : CGOpts.OffloadObjects) {
if (OffloadObject.count(',') != 1)
Diags.Report(Diags.getCustomDiagID(
DiagnosticsEngine::Error, "Invalid string pair for embedding '%0'"))
<< OffloadObject;
auto FilenameAndSection = OffloadObject.split(',');
llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> ObjectOrErr =
llvm::MemoryBuffer::getFileOrSTDIN(FilenameAndSection.first);
if (std::error_code EC = ObjectOrErr.getError()) {
auto DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error,
"could not open '%0' for embedding");
Diags.Report(DiagID) << FilenameAndSection.first;
return;
}
SmallString<128> SectionName(
{".llvm.offloading.", FilenameAndSection.second});
llvm::embedBufferInModule(*M, **ObjectOrErr, SectionName);
}
}