mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-28 00:26:05 +00:00

Ensure that function definitions match their declrations in header files, even if they have no effect on linking. This includes 1. Both have the same __isl_* annotations 2. Both use the same type alias 3. Remove unused declarations that have no definition 4. Use explicit polly namespace qualifier for definitions; generally, the .cpp file should use at most an anon namespace region since only symbols declared in the header file can be accessed from other translation units anyway. For defintions that have been declared in the header file, the explicit namespace qualifier ensures that both match.
1796 lines
67 KiB
C++
1796 lines
67 KiB
C++
//===--- BlockGenerators.cpp - Generate code for statements -----*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the BlockGenerator and VectorBlockGenerator classes,
|
|
// which generate sequential code and vectorized code for a polyhedral
|
|
// statement, respectively.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "polly/CodeGen/BlockGenerators.h"
|
|
#include "polly/CodeGen/IslExprBuilder.h"
|
|
#include "polly/CodeGen/RuntimeDebugBuilder.h"
|
|
#include "polly/Options.h"
|
|
#include "polly/ScopInfo.h"
|
|
#include "polly/Support/ISLTools.h"
|
|
#include "polly/Support/ScopHelper.h"
|
|
#include "polly/Support/VirtualInstruction.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/RegionInfo.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "isl/ast.h"
|
|
#include <deque>
|
|
|
|
using namespace llvm;
|
|
using namespace polly;
|
|
|
|
static cl::opt<bool> Aligned("enable-polly-aligned",
|
|
cl::desc("Assumed aligned memory accesses."),
|
|
cl::Hidden, cl::init(false), cl::ZeroOrMore,
|
|
cl::cat(PollyCategory));
|
|
|
|
bool PollyDebugPrinting;
|
|
static cl::opt<bool, true> DebugPrintingX(
|
|
"polly-codegen-add-debug-printing",
|
|
cl::desc("Add printf calls that show the values loaded/stored."),
|
|
cl::location(PollyDebugPrinting), cl::Hidden, cl::init(false),
|
|
cl::ZeroOrMore, cl::cat(PollyCategory));
|
|
|
|
static cl::opt<bool> TraceStmts(
|
|
"polly-codegen-trace-stmts",
|
|
cl::desc("Add printf calls that print the statement being executed"),
|
|
cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
|
|
|
|
static cl::opt<bool> TraceScalars(
|
|
"polly-codegen-trace-scalars",
|
|
cl::desc("Add printf calls that print the values of all scalar values "
|
|
"used in a statement. Requires -polly-codegen-trace-stmts."),
|
|
cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
|
|
|
|
BlockGenerator::BlockGenerator(
|
|
PollyIRBuilder &B, LoopInfo &LI, ScalarEvolution &SE, DominatorTree &DT,
|
|
AllocaMapTy &ScalarMap, EscapeUsersAllocaMapTy &EscapeMap,
|
|
ValueMapT &GlobalMap, IslExprBuilder *ExprBuilder, BasicBlock *StartBlock)
|
|
: Builder(B), LI(LI), SE(SE), ExprBuilder(ExprBuilder), DT(DT),
|
|
EntryBB(nullptr), ScalarMap(ScalarMap), EscapeMap(EscapeMap),
|
|
GlobalMap(GlobalMap), StartBlock(StartBlock) {}
|
|
|
|
Value *BlockGenerator::trySynthesizeNewValue(ScopStmt &Stmt, Value *Old,
|
|
ValueMapT &BBMap,
|
|
LoopToScevMapT <S,
|
|
Loop *L) const {
|
|
if (!SE.isSCEVable(Old->getType()))
|
|
return nullptr;
|
|
|
|
const SCEV *Scev = SE.getSCEVAtScope(Old, L);
|
|
if (!Scev)
|
|
return nullptr;
|
|
|
|
if (isa<SCEVCouldNotCompute>(Scev))
|
|
return nullptr;
|
|
|
|
const SCEV *NewScev = SCEVLoopAddRecRewriter::rewrite(Scev, LTS, SE);
|
|
ValueMapT VTV;
|
|
VTV.insert(BBMap.begin(), BBMap.end());
|
|
VTV.insert(GlobalMap.begin(), GlobalMap.end());
|
|
|
|
Scop &S = *Stmt.getParent();
|
|
const DataLayout &DL = S.getFunction().getParent()->getDataLayout();
|
|
auto IP = Builder.GetInsertPoint();
|
|
|
|
assert(IP != Builder.GetInsertBlock()->end() &&
|
|
"Only instructions can be insert points for SCEVExpander");
|
|
Value *Expanded =
|
|
expandCodeFor(S, SE, DL, "polly", NewScev, Old->getType(), &*IP, &VTV,
|
|
StartBlock->getSinglePredecessor());
|
|
|
|
BBMap[Old] = Expanded;
|
|
return Expanded;
|
|
}
|
|
|
|
Value *BlockGenerator::getNewValue(ScopStmt &Stmt, Value *Old, ValueMapT &BBMap,
|
|
LoopToScevMapT <S, Loop *L) const {
|
|
|
|
auto lookupGlobally = [this](Value *Old) -> Value * {
|
|
Value *New = GlobalMap.lookup(Old);
|
|
if (!New)
|
|
return nullptr;
|
|
|
|
// Required by:
|
|
// * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded.ll
|
|
// * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_different_bb.ll
|
|
// * Isl/CodeGen/OpenMP/invariant_base_pointer_preloaded_pass_only_needed.ll
|
|
// * Isl/CodeGen/OpenMP/invariant_base_pointers_preloaded.ll
|
|
// * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll
|
|
// * Isl/CodeGen/OpenMP/single_loop_with_loop_invariant_baseptr.ll
|
|
// GlobalMap should be a mapping from (value in original SCoP) to (copied
|
|
// value in generated SCoP), without intermediate mappings, which might
|
|
// easily require transitiveness as well.
|
|
if (Value *NewRemapped = GlobalMap.lookup(New))
|
|
New = NewRemapped;
|
|
|
|
// No test case for this code.
|
|
if (Old->getType()->getScalarSizeInBits() <
|
|
New->getType()->getScalarSizeInBits())
|
|
New = Builder.CreateTruncOrBitCast(New, Old->getType());
|
|
|
|
return New;
|
|
};
|
|
|
|
Value *New = nullptr;
|
|
auto VUse = VirtualUse::create(&Stmt, L, Old, true);
|
|
switch (VUse.getKind()) {
|
|
case VirtualUse::Block:
|
|
// BasicBlock are constants, but the BlockGenerator copies them.
|
|
New = BBMap.lookup(Old);
|
|
break;
|
|
|
|
case VirtualUse::Constant:
|
|
// Used by:
|
|
// * Isl/CodeGen/OpenMP/reference-argument-from-non-affine-region.ll
|
|
// Constants should not be redefined. In this case, the GlobalMap just
|
|
// contains a mapping to the same constant, which is unnecessary, but
|
|
// harmless.
|
|
if ((New = lookupGlobally(Old)))
|
|
break;
|
|
|
|
assert(!BBMap.count(Old));
|
|
New = Old;
|
|
break;
|
|
|
|
case VirtualUse::ReadOnly:
|
|
assert(!GlobalMap.count(Old));
|
|
|
|
// Required for:
|
|
// * Isl/CodeGen/MemAccess/create_arrays.ll
|
|
// * Isl/CodeGen/read-only-scalars.ll
|
|
// * ScheduleOptimizer/pattern-matching-based-opts_10.ll
|
|
// For some reason these reload a read-only value. The reloaded value ends
|
|
// up in BBMap, buts its value should be identical.
|
|
//
|
|
// Required for:
|
|
// * Isl/CodeGen/OpenMP/single_loop_with_param.ll
|
|
// The parallel subfunctions need to reference the read-only value from the
|
|
// parent function, this is done by reloading them locally.
|
|
if ((New = BBMap.lookup(Old)))
|
|
break;
|
|
|
|
New = Old;
|
|
break;
|
|
|
|
case VirtualUse::Synthesizable:
|
|
// Used by:
|
|
// * Isl/CodeGen/OpenMP/loop-body-references-outer-values-3.ll
|
|
// * Isl/CodeGen/OpenMP/recomputed-srem.ll
|
|
// * Isl/CodeGen/OpenMP/reference-other-bb.ll
|
|
// * Isl/CodeGen/OpenMP/two-parallel-loops-reference-outer-indvar.ll
|
|
// For some reason synthesizable values end up in GlobalMap. Their values
|
|
// are the same as trySynthesizeNewValue would return. The legacy
|
|
// implementation prioritized GlobalMap, so this is what we do here as well.
|
|
// Ideally, synthesizable values should not end up in GlobalMap.
|
|
if ((New = lookupGlobally(Old)))
|
|
break;
|
|
|
|
// Required for:
|
|
// * Isl/CodeGen/RuntimeDebugBuilder/combine_different_values.ll
|
|
// * Isl/CodeGen/getNumberOfIterations.ll
|
|
// * Isl/CodeGen/non_affine_float_compare.ll
|
|
// * ScheduleOptimizer/pattern-matching-based-opts_10.ll
|
|
// Ideally, synthesizable values are synthesized by trySynthesizeNewValue,
|
|
// not precomputed (SCEVExpander has its own caching mechanism).
|
|
// These tests fail without this, but I think trySynthesizeNewValue would
|
|
// just re-synthesize the same instructions.
|
|
if ((New = BBMap.lookup(Old)))
|
|
break;
|
|
|
|
New = trySynthesizeNewValue(Stmt, Old, BBMap, LTS, L);
|
|
break;
|
|
|
|
case VirtualUse::Hoisted:
|
|
// TODO: Hoisted invariant loads should be found in GlobalMap only, but not
|
|
// redefined locally (which will be ignored anyway). That is, the following
|
|
// assertion should apply: assert(!BBMap.count(Old))
|
|
|
|
New = lookupGlobally(Old);
|
|
break;
|
|
|
|
case VirtualUse::Intra:
|
|
case VirtualUse::Inter:
|
|
assert(!GlobalMap.count(Old) &&
|
|
"Intra and inter-stmt values are never global");
|
|
New = BBMap.lookup(Old);
|
|
break;
|
|
}
|
|
assert(New && "Unexpected scalar dependence in region!");
|
|
return New;
|
|
}
|
|
|
|
void BlockGenerator::copyInstScalar(ScopStmt &Stmt, Instruction *Inst,
|
|
ValueMapT &BBMap, LoopToScevMapT <S) {
|
|
// We do not generate debug intrinsics as we did not investigate how to
|
|
// copy them correctly. At the current state, they just crash the code
|
|
// generation as the meta-data operands are not correctly copied.
|
|
if (isa<DbgInfoIntrinsic>(Inst))
|
|
return;
|
|
|
|
Instruction *NewInst = Inst->clone();
|
|
|
|
// Replace old operands with the new ones.
|
|
for (Value *OldOperand : Inst->operands()) {
|
|
Value *NewOperand =
|
|
getNewValue(Stmt, OldOperand, BBMap, LTS, getLoopForStmt(Stmt));
|
|
|
|
if (!NewOperand) {
|
|
assert(!isa<StoreInst>(NewInst) &&
|
|
"Store instructions are always needed!");
|
|
NewInst->deleteValue();
|
|
return;
|
|
}
|
|
|
|
NewInst->replaceUsesOfWith(OldOperand, NewOperand);
|
|
}
|
|
|
|
Builder.Insert(NewInst);
|
|
BBMap[Inst] = NewInst;
|
|
|
|
// When copying the instruction onto the Module meant for the GPU,
|
|
// debug metadata attached to an instruction causes all related
|
|
// metadata to be pulled into the Module. This includes the DICompileUnit,
|
|
// which will not be listed in llvm.dbg.cu of the Module since the Module
|
|
// doesn't contain one. This fails the verification of the Module and the
|
|
// subsequent generation of the ASM string.
|
|
if (NewInst->getModule() != Inst->getModule())
|
|
NewInst->setDebugLoc(llvm::DebugLoc());
|
|
|
|
if (!NewInst->getType()->isVoidTy())
|
|
NewInst->setName("p_" + Inst->getName());
|
|
}
|
|
|
|
Value *
|
|
BlockGenerator::generateLocationAccessed(ScopStmt &Stmt, MemAccInst Inst,
|
|
ValueMapT &BBMap, LoopToScevMapT <S,
|
|
isl_id_to_ast_expr *NewAccesses) {
|
|
const MemoryAccess &MA = Stmt.getArrayAccessFor(Inst);
|
|
return generateLocationAccessed(
|
|
Stmt, getLoopForStmt(Stmt),
|
|
Inst.isNull() ? nullptr : Inst.getPointerOperand(), BBMap, LTS,
|
|
NewAccesses, MA.getId().release(), MA.getAccessValue()->getType());
|
|
}
|
|
|
|
Value *BlockGenerator::generateLocationAccessed(
|
|
ScopStmt &Stmt, Loop *L, Value *Pointer, ValueMapT &BBMap,
|
|
LoopToScevMapT <S, isl_id_to_ast_expr *NewAccesses, __isl_take isl_id *Id,
|
|
Type *ExpectedType) {
|
|
isl_ast_expr *AccessExpr = isl_id_to_ast_expr_get(NewAccesses, Id);
|
|
|
|
if (AccessExpr) {
|
|
AccessExpr = isl_ast_expr_address_of(AccessExpr);
|
|
auto Address = ExprBuilder->create(AccessExpr);
|
|
|
|
// Cast the address of this memory access to a pointer type that has the
|
|
// same element type as the original access, but uses the address space of
|
|
// the newly generated pointer.
|
|
auto OldPtrTy = ExpectedType->getPointerTo();
|
|
auto NewPtrTy = Address->getType();
|
|
OldPtrTy = PointerType::getWithSamePointeeType(
|
|
OldPtrTy, NewPtrTy->getPointerAddressSpace());
|
|
|
|
if (OldPtrTy != NewPtrTy)
|
|
Address = Builder.CreateBitOrPointerCast(Address, OldPtrTy);
|
|
return Address;
|
|
}
|
|
assert(
|
|
Pointer &&
|
|
"If expression was not generated, must use the original pointer value");
|
|
return getNewValue(Stmt, Pointer, BBMap, LTS, L);
|
|
}
|
|
|
|
Value *
|
|
BlockGenerator::getImplicitAddress(MemoryAccess &Access, Loop *L,
|
|
LoopToScevMapT <S, ValueMapT &BBMap,
|
|
__isl_keep isl_id_to_ast_expr *NewAccesses) {
|
|
if (Access.isLatestArrayKind())
|
|
return generateLocationAccessed(*Access.getStatement(), L, nullptr, BBMap,
|
|
LTS, NewAccesses, Access.getId().release(),
|
|
Access.getAccessValue()->getType());
|
|
|
|
return getOrCreateAlloca(Access);
|
|
}
|
|
|
|
Loop *BlockGenerator::getLoopForStmt(const ScopStmt &Stmt) const {
|
|
auto *StmtBB = Stmt.getEntryBlock();
|
|
return LI.getLoopFor(StmtBB);
|
|
}
|
|
|
|
Value *BlockGenerator::generateArrayLoad(ScopStmt &Stmt, LoadInst *Load,
|
|
ValueMapT &BBMap, LoopToScevMapT <S,
|
|
isl_id_to_ast_expr *NewAccesses) {
|
|
if (Value *PreloadLoad = GlobalMap.lookup(Load))
|
|
return PreloadLoad;
|
|
|
|
Value *NewPointer =
|
|
generateLocationAccessed(Stmt, Load, BBMap, LTS, NewAccesses);
|
|
Value *ScalarLoad =
|
|
Builder.CreateAlignedLoad(Load->getType(), NewPointer, Load->getAlign(),
|
|
Load->getName() + "_p_scalar_");
|
|
|
|
if (PollyDebugPrinting)
|
|
RuntimeDebugBuilder::createCPUPrinter(Builder, "Load from ", NewPointer,
|
|
": ", ScalarLoad, "\n");
|
|
|
|
return ScalarLoad;
|
|
}
|
|
|
|
void BlockGenerator::generateArrayStore(ScopStmt &Stmt, StoreInst *Store,
|
|
ValueMapT &BBMap, LoopToScevMapT <S,
|
|
isl_id_to_ast_expr *NewAccesses) {
|
|
MemoryAccess &MA = Stmt.getArrayAccessFor(Store);
|
|
isl::set AccDom = MA.getAccessRelation().domain();
|
|
std::string Subject = MA.getId().get_name();
|
|
|
|
generateConditionalExecution(Stmt, AccDom, Subject.c_str(), [&, this]() {
|
|
Value *NewPointer =
|
|
generateLocationAccessed(Stmt, Store, BBMap, LTS, NewAccesses);
|
|
Value *ValueOperand = getNewValue(Stmt, Store->getValueOperand(), BBMap,
|
|
LTS, getLoopForStmt(Stmt));
|
|
|
|
if (PollyDebugPrinting)
|
|
RuntimeDebugBuilder::createCPUPrinter(Builder, "Store to ", NewPointer,
|
|
": ", ValueOperand, "\n");
|
|
|
|
Builder.CreateAlignedStore(ValueOperand, NewPointer, Store->getAlign());
|
|
});
|
|
}
|
|
|
|
bool BlockGenerator::canSyntheziseInStmt(ScopStmt &Stmt, Instruction *Inst) {
|
|
Loop *L = getLoopForStmt(Stmt);
|
|
return (Stmt.isBlockStmt() || !Stmt.getRegion()->contains(L)) &&
|
|
canSynthesize(Inst, *Stmt.getParent(), &SE, L);
|
|
}
|
|
|
|
void BlockGenerator::copyInstruction(ScopStmt &Stmt, Instruction *Inst,
|
|
ValueMapT &BBMap, LoopToScevMapT <S,
|
|
isl_id_to_ast_expr *NewAccesses) {
|
|
// Terminator instructions control the control flow. They are explicitly
|
|
// expressed in the clast and do not need to be copied.
|
|
if (Inst->isTerminator())
|
|
return;
|
|
|
|
// Synthesizable statements will be generated on-demand.
|
|
if (canSyntheziseInStmt(Stmt, Inst))
|
|
return;
|
|
|
|
if (auto *Load = dyn_cast<LoadInst>(Inst)) {
|
|
Value *NewLoad = generateArrayLoad(Stmt, Load, BBMap, LTS, NewAccesses);
|
|
// Compute NewLoad before its insertion in BBMap to make the insertion
|
|
// deterministic.
|
|
BBMap[Load] = NewLoad;
|
|
return;
|
|
}
|
|
|
|
if (auto *Store = dyn_cast<StoreInst>(Inst)) {
|
|
// Identified as redundant by -polly-simplify.
|
|
if (!Stmt.getArrayAccessOrNULLFor(Store))
|
|
return;
|
|
|
|
generateArrayStore(Stmt, Store, BBMap, LTS, NewAccesses);
|
|
return;
|
|
}
|
|
|
|
if (auto *PHI = dyn_cast<PHINode>(Inst)) {
|
|
copyPHIInstruction(Stmt, PHI, BBMap, LTS);
|
|
return;
|
|
}
|
|
|
|
// Skip some special intrinsics for which we do not adjust the semantics to
|
|
// the new schedule. All others are handled like every other instruction.
|
|
if (isIgnoredIntrinsic(Inst))
|
|
return;
|
|
|
|
copyInstScalar(Stmt, Inst, BBMap, LTS);
|
|
}
|
|
|
|
void BlockGenerator::removeDeadInstructions(BasicBlock *BB, ValueMapT &BBMap) {
|
|
auto NewBB = Builder.GetInsertBlock();
|
|
for (auto I = NewBB->rbegin(); I != NewBB->rend(); I++) {
|
|
Instruction *NewInst = &*I;
|
|
|
|
if (!isInstructionTriviallyDead(NewInst))
|
|
continue;
|
|
|
|
for (auto Pair : BBMap)
|
|
if (Pair.second == NewInst) {
|
|
BBMap.erase(Pair.first);
|
|
}
|
|
|
|
NewInst->eraseFromParent();
|
|
I = NewBB->rbegin();
|
|
}
|
|
}
|
|
|
|
void BlockGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S,
|
|
__isl_keep isl_id_to_ast_expr *NewAccesses) {
|
|
assert(Stmt.isBlockStmt() &&
|
|
"Only block statements can be copied by the block generator");
|
|
|
|
ValueMapT BBMap;
|
|
|
|
BasicBlock *BB = Stmt.getBasicBlock();
|
|
copyBB(Stmt, BB, BBMap, LTS, NewAccesses);
|
|
removeDeadInstructions(BB, BBMap);
|
|
}
|
|
|
|
BasicBlock *BlockGenerator::splitBB(BasicBlock *BB) {
|
|
BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(),
|
|
&*Builder.GetInsertPoint(), &DT, &LI);
|
|
CopyBB->setName("polly.stmt." + BB->getName());
|
|
return CopyBB;
|
|
}
|
|
|
|
BasicBlock *BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB,
|
|
ValueMapT &BBMap, LoopToScevMapT <S,
|
|
isl_id_to_ast_expr *NewAccesses) {
|
|
BasicBlock *CopyBB = splitBB(BB);
|
|
Builder.SetInsertPoint(&CopyBB->front());
|
|
generateScalarLoads(Stmt, LTS, BBMap, NewAccesses);
|
|
generateBeginStmtTrace(Stmt, LTS, BBMap);
|
|
|
|
copyBB(Stmt, BB, CopyBB, BBMap, LTS, NewAccesses);
|
|
|
|
// After a basic block was copied store all scalars that escape this block in
|
|
// their alloca.
|
|
generateScalarStores(Stmt, LTS, BBMap, NewAccesses);
|
|
return CopyBB;
|
|
}
|
|
|
|
void BlockGenerator::copyBB(ScopStmt &Stmt, BasicBlock *BB, BasicBlock *CopyBB,
|
|
ValueMapT &BBMap, LoopToScevMapT <S,
|
|
isl_id_to_ast_expr *NewAccesses) {
|
|
EntryBB = &CopyBB->getParent()->getEntryBlock();
|
|
|
|
// Block statements and the entry blocks of region statement are code
|
|
// generated from instruction lists. This allow us to optimize the
|
|
// instructions that belong to a certain scop statement. As the code
|
|
// structure of region statements might be arbitrary complex, optimizing the
|
|
// instruction list is not yet supported.
|
|
if (Stmt.isBlockStmt() || (Stmt.isRegionStmt() && Stmt.getEntryBlock() == BB))
|
|
for (Instruction *Inst : Stmt.getInstructions())
|
|
copyInstruction(Stmt, Inst, BBMap, LTS, NewAccesses);
|
|
else
|
|
for (Instruction &Inst : *BB)
|
|
copyInstruction(Stmt, &Inst, BBMap, LTS, NewAccesses);
|
|
}
|
|
|
|
Value *BlockGenerator::getOrCreateAlloca(const MemoryAccess &Access) {
|
|
assert(!Access.isLatestArrayKind() && "Trying to get alloca for array kind");
|
|
|
|
return getOrCreateAlloca(Access.getLatestScopArrayInfo());
|
|
}
|
|
|
|
Value *BlockGenerator::getOrCreateAlloca(const ScopArrayInfo *Array) {
|
|
assert(!Array->isArrayKind() && "Trying to get alloca for array kind");
|
|
|
|
auto &Addr = ScalarMap[Array];
|
|
|
|
if (Addr) {
|
|
// Allow allocas to be (temporarily) redirected once by adding a new
|
|
// old-alloca-addr to new-addr mapping to GlobalMap. This functionality
|
|
// is used for example by the OpenMP code generation where a first use
|
|
// of a scalar while still in the host code allocates a normal alloca with
|
|
// getOrCreateAlloca. When the values of this scalar are accessed during
|
|
// the generation of the parallel subfunction, these values are copied over
|
|
// to the parallel subfunction and each request for a scalar alloca slot
|
|
// must be forwarded to the temporary in-subfunction slot. This mapping is
|
|
// removed when the subfunction has been generated and again normal host
|
|
// code is generated. Due to the following reasons it is not possible to
|
|
// perform the GlobalMap lookup right after creating the alloca below, but
|
|
// instead we need to check GlobalMap at each call to getOrCreateAlloca:
|
|
//
|
|
// 1) GlobalMap may be changed multiple times (for each parallel loop),
|
|
// 2) The temporary mapping is commonly only known after the initial
|
|
// alloca has already been generated, and
|
|
// 3) The original alloca value must be restored after leaving the
|
|
// sub-function.
|
|
if (Value *NewAddr = GlobalMap.lookup(&*Addr))
|
|
return NewAddr;
|
|
return Addr;
|
|
}
|
|
|
|
Type *Ty = Array->getElementType();
|
|
Value *ScalarBase = Array->getBasePtr();
|
|
std::string NameExt;
|
|
if (Array->isPHIKind())
|
|
NameExt = ".phiops";
|
|
else
|
|
NameExt = ".s2a";
|
|
|
|
const DataLayout &DL = Builder.GetInsertBlock()->getModule()->getDataLayout();
|
|
|
|
Addr =
|
|
new AllocaInst(Ty, DL.getAllocaAddrSpace(), nullptr,
|
|
DL.getPrefTypeAlign(Ty), ScalarBase->getName() + NameExt);
|
|
EntryBB = &Builder.GetInsertBlock()->getParent()->getEntryBlock();
|
|
Addr->insertBefore(&*EntryBB->getFirstInsertionPt());
|
|
|
|
return Addr;
|
|
}
|
|
|
|
void BlockGenerator::handleOutsideUsers(const Scop &S, ScopArrayInfo *Array) {
|
|
Instruction *Inst = cast<Instruction>(Array->getBasePtr());
|
|
|
|
// If there are escape users we get the alloca for this instruction and put it
|
|
// in the EscapeMap for later finalization. Lastly, if the instruction was
|
|
// copied multiple times we already did this and can exit.
|
|
if (EscapeMap.count(Inst))
|
|
return;
|
|
|
|
EscapeUserVectorTy EscapeUsers;
|
|
for (User *U : Inst->users()) {
|
|
|
|
// Non-instruction user will never escape.
|
|
Instruction *UI = dyn_cast<Instruction>(U);
|
|
if (!UI)
|
|
continue;
|
|
|
|
if (S.contains(UI))
|
|
continue;
|
|
|
|
EscapeUsers.push_back(UI);
|
|
}
|
|
|
|
// Exit if no escape uses were found.
|
|
if (EscapeUsers.empty())
|
|
return;
|
|
|
|
// Get or create an escape alloca for this instruction.
|
|
auto *ScalarAddr = getOrCreateAlloca(Array);
|
|
|
|
// Remember that this instruction has escape uses and the escape alloca.
|
|
EscapeMap[Inst] = std::make_pair(ScalarAddr, std::move(EscapeUsers));
|
|
}
|
|
|
|
void BlockGenerator::generateScalarLoads(
|
|
ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap,
|
|
__isl_keep isl_id_to_ast_expr *NewAccesses) {
|
|
for (MemoryAccess *MA : Stmt) {
|
|
if (MA->isOriginalArrayKind() || MA->isWrite())
|
|
continue;
|
|
|
|
#ifndef NDEBUG
|
|
auto StmtDom =
|
|
Stmt.getDomain().intersect_params(Stmt.getParent()->getContext());
|
|
auto AccDom = MA->getAccessRelation().domain();
|
|
assert(!StmtDom.is_subset(AccDom).is_false() &&
|
|
"Scalar must be loaded in all statement instances");
|
|
#endif
|
|
|
|
auto *Address =
|
|
getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS, BBMap, NewAccesses);
|
|
assert((!isa<Instruction>(Address) ||
|
|
DT.dominates(cast<Instruction>(Address)->getParent(),
|
|
Builder.GetInsertBlock())) &&
|
|
"Domination violation");
|
|
BBMap[MA->getAccessValue()] = Builder.CreateLoad(
|
|
MA->getElementType(), Address, Address->getName() + ".reload");
|
|
}
|
|
}
|
|
|
|
Value *BlockGenerator::buildContainsCondition(ScopStmt &Stmt,
|
|
const isl::set &Subdomain) {
|
|
isl::ast_build AstBuild = Stmt.getAstBuild();
|
|
isl::set Domain = Stmt.getDomain();
|
|
|
|
isl::union_map USchedule = AstBuild.get_schedule();
|
|
USchedule = USchedule.intersect_domain(Domain);
|
|
|
|
assert(!USchedule.is_empty());
|
|
isl::map Schedule = isl::map::from_union_map(USchedule);
|
|
|
|
isl::set ScheduledDomain = Schedule.range();
|
|
isl::set ScheduledSet = Subdomain.apply(Schedule);
|
|
|
|
isl::ast_build RestrictedBuild = AstBuild.restrict(ScheduledDomain);
|
|
|
|
isl::ast_expr IsInSet = RestrictedBuild.expr_from(ScheduledSet);
|
|
Value *IsInSetExpr = ExprBuilder->create(IsInSet.copy());
|
|
IsInSetExpr = Builder.CreateICmpNE(
|
|
IsInSetExpr, ConstantInt::get(IsInSetExpr->getType(), 0));
|
|
|
|
return IsInSetExpr;
|
|
}
|
|
|
|
void BlockGenerator::generateConditionalExecution(
|
|
ScopStmt &Stmt, const isl::set &Subdomain, StringRef Subject,
|
|
const std::function<void()> &GenThenFunc) {
|
|
isl::set StmtDom = Stmt.getDomain();
|
|
|
|
// If the condition is a tautology, don't generate a condition around the
|
|
// code.
|
|
bool IsPartialWrite =
|
|
!StmtDom.intersect_params(Stmt.getParent()->getContext())
|
|
.is_subset(Subdomain);
|
|
if (!IsPartialWrite) {
|
|
GenThenFunc();
|
|
return;
|
|
}
|
|
|
|
// Generate the condition.
|
|
Value *Cond = buildContainsCondition(Stmt, Subdomain);
|
|
|
|
// Don't call GenThenFunc if it is never executed. An ast index expression
|
|
// might not be defined in this case.
|
|
if (auto *Const = dyn_cast<ConstantInt>(Cond))
|
|
if (Const->isZero())
|
|
return;
|
|
|
|
BasicBlock *HeadBlock = Builder.GetInsertBlock();
|
|
StringRef BlockName = HeadBlock->getName();
|
|
|
|
// Generate the conditional block.
|
|
SplitBlockAndInsertIfThen(Cond, &*Builder.GetInsertPoint(), false, nullptr,
|
|
&DT, &LI);
|
|
BranchInst *Branch = cast<BranchInst>(HeadBlock->getTerminator());
|
|
BasicBlock *ThenBlock = Branch->getSuccessor(0);
|
|
BasicBlock *TailBlock = Branch->getSuccessor(1);
|
|
|
|
// Assign descriptive names.
|
|
if (auto *CondInst = dyn_cast<Instruction>(Cond))
|
|
CondInst->setName("polly." + Subject + ".cond");
|
|
ThenBlock->setName(BlockName + "." + Subject + ".partial");
|
|
TailBlock->setName(BlockName + ".cont");
|
|
|
|
// Put the client code into the conditional block and continue in the merge
|
|
// block afterwards.
|
|
Builder.SetInsertPoint(ThenBlock, ThenBlock->getFirstInsertionPt());
|
|
GenThenFunc();
|
|
Builder.SetInsertPoint(TailBlock, TailBlock->getFirstInsertionPt());
|
|
}
|
|
|
|
static std::string getInstName(Value *Val) {
|
|
std::string Result;
|
|
raw_string_ostream OS(Result);
|
|
Val->printAsOperand(OS, false);
|
|
return OS.str();
|
|
}
|
|
|
|
void BlockGenerator::generateBeginStmtTrace(ScopStmt &Stmt, LoopToScevMapT <S,
|
|
ValueMapT &BBMap) {
|
|
if (!TraceStmts)
|
|
return;
|
|
|
|
Scop *S = Stmt.getParent();
|
|
const char *BaseName = Stmt.getBaseName();
|
|
|
|
isl::ast_build AstBuild = Stmt.getAstBuild();
|
|
isl::set Domain = Stmt.getDomain();
|
|
|
|
isl::union_map USchedule = AstBuild.get_schedule().intersect_domain(Domain);
|
|
isl::map Schedule = isl::map::from_union_map(USchedule);
|
|
assert(Schedule.is_empty().is_false() &&
|
|
"The stmt must have a valid instance");
|
|
|
|
isl::multi_pw_aff ScheduleMultiPwAff =
|
|
isl::pw_multi_aff::from_map(Schedule.reverse());
|
|
isl::ast_build RestrictedBuild = AstBuild.restrict(Schedule.range());
|
|
|
|
// Sequence of strings to print.
|
|
SmallVector<llvm::Value *, 8> Values;
|
|
|
|
// Print the name of the statement.
|
|
// TODO: Indent by the depth of the statement instance in the schedule tree.
|
|
Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, BaseName));
|
|
Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, "("));
|
|
|
|
// Add the coordinate of the statement instance.
|
|
for (unsigned i : rangeIslSize(0, ScheduleMultiPwAff.dim(isl::dim::out))) {
|
|
if (i > 0)
|
|
Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, ","));
|
|
|
|
isl::ast_expr IsInSet = RestrictedBuild.expr_from(ScheduleMultiPwAff.at(i));
|
|
Values.push_back(ExprBuilder->create(IsInSet.copy()));
|
|
}
|
|
|
|
if (TraceScalars) {
|
|
Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, ")"));
|
|
DenseSet<Instruction *> Encountered;
|
|
|
|
// Add the value of each scalar (and the result of PHIs) used in the
|
|
// statement.
|
|
// TODO: Values used in region-statements.
|
|
for (Instruction *Inst : Stmt.insts()) {
|
|
if (!RuntimeDebugBuilder::isPrintable(Inst->getType()))
|
|
continue;
|
|
|
|
if (isa<PHINode>(Inst)) {
|
|
Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, " "));
|
|
Values.push_back(RuntimeDebugBuilder::getPrintableString(
|
|
Builder, getInstName(Inst)));
|
|
Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, "="));
|
|
Values.push_back(getNewValue(Stmt, Inst, BBMap, LTS,
|
|
LI.getLoopFor(Inst->getParent())));
|
|
} else {
|
|
for (Value *Op : Inst->operand_values()) {
|
|
// Do not print values that cannot change during the execution of the
|
|
// SCoP.
|
|
auto *OpInst = dyn_cast<Instruction>(Op);
|
|
if (!OpInst)
|
|
continue;
|
|
if (!S->contains(OpInst))
|
|
continue;
|
|
|
|
// Print each scalar at most once, and exclude values defined in the
|
|
// statement itself.
|
|
if (Encountered.count(OpInst))
|
|
continue;
|
|
|
|
Values.push_back(
|
|
RuntimeDebugBuilder::getPrintableString(Builder, " "));
|
|
Values.push_back(RuntimeDebugBuilder::getPrintableString(
|
|
Builder, getInstName(OpInst)));
|
|
Values.push_back(
|
|
RuntimeDebugBuilder::getPrintableString(Builder, "="));
|
|
Values.push_back(getNewValue(Stmt, OpInst, BBMap, LTS,
|
|
LI.getLoopFor(Inst->getParent())));
|
|
Encountered.insert(OpInst);
|
|
}
|
|
}
|
|
|
|
Encountered.insert(Inst);
|
|
}
|
|
|
|
Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, "\n"));
|
|
} else {
|
|
Values.push_back(RuntimeDebugBuilder::getPrintableString(Builder, ")\n"));
|
|
}
|
|
|
|
RuntimeDebugBuilder::createCPUPrinter(Builder, ArrayRef<Value *>(Values));
|
|
}
|
|
|
|
void BlockGenerator::generateScalarStores(
|
|
ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap,
|
|
__isl_keep isl_id_to_ast_expr *NewAccesses) {
|
|
Loop *L = LI.getLoopFor(Stmt.getBasicBlock());
|
|
|
|
assert(Stmt.isBlockStmt() &&
|
|
"Region statements need to use the generateScalarStores() function in "
|
|
"the RegionGenerator");
|
|
|
|
for (MemoryAccess *MA : Stmt) {
|
|
if (MA->isOriginalArrayKind() || MA->isRead())
|
|
continue;
|
|
|
|
isl::set AccDom = MA->getAccessRelation().domain();
|
|
std::string Subject = MA->getId().get_name();
|
|
|
|
generateConditionalExecution(
|
|
Stmt, AccDom, Subject.c_str(), [&, this, MA]() {
|
|
Value *Val = MA->getAccessValue();
|
|
if (MA->isAnyPHIKind()) {
|
|
assert(MA->getIncoming().size() >= 1 &&
|
|
"Block statements have exactly one exiting block, or "
|
|
"multiple but "
|
|
"with same incoming block and value");
|
|
assert(std::all_of(MA->getIncoming().begin(),
|
|
MA->getIncoming().end(),
|
|
[&](std::pair<BasicBlock *, Value *> p) -> bool {
|
|
return p.first == Stmt.getBasicBlock();
|
|
}) &&
|
|
"Incoming block must be statement's block");
|
|
Val = MA->getIncoming()[0].second;
|
|
}
|
|
auto Address = getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS,
|
|
BBMap, NewAccesses);
|
|
|
|
Val = getNewValue(Stmt, Val, BBMap, LTS, L);
|
|
assert((!isa<Instruction>(Val) ||
|
|
DT.dominates(cast<Instruction>(Val)->getParent(),
|
|
Builder.GetInsertBlock())) &&
|
|
"Domination violation");
|
|
assert((!isa<Instruction>(Address) ||
|
|
DT.dominates(cast<Instruction>(Address)->getParent(),
|
|
Builder.GetInsertBlock())) &&
|
|
"Domination violation");
|
|
|
|
// The new Val might have a different type than the old Val due to
|
|
// ScalarEvolution looking through bitcasts.
|
|
Address = Builder.CreateBitOrPointerCast(
|
|
Address, Val->getType()->getPointerTo(
|
|
Address->getType()->getPointerAddressSpace()));
|
|
|
|
Builder.CreateStore(Val, Address);
|
|
});
|
|
}
|
|
}
|
|
|
|
void BlockGenerator::createScalarInitialization(Scop &S) {
|
|
BasicBlock *ExitBB = S.getExit();
|
|
BasicBlock *PreEntryBB = S.getEnteringBlock();
|
|
|
|
Builder.SetInsertPoint(&*StartBlock->begin());
|
|
|
|
for (auto &Array : S.arrays()) {
|
|
if (Array->getNumberOfDimensions() != 0)
|
|
continue;
|
|
if (Array->isPHIKind()) {
|
|
// For PHI nodes, the only values we need to store are the ones that
|
|
// reach the PHI node from outside the region. In general there should
|
|
// only be one such incoming edge and this edge should enter through
|
|
// 'PreEntryBB'.
|
|
auto PHI = cast<PHINode>(Array->getBasePtr());
|
|
|
|
for (auto BI = PHI->block_begin(), BE = PHI->block_end(); BI != BE; BI++)
|
|
if (!S.contains(*BI) && *BI != PreEntryBB)
|
|
llvm_unreachable("Incoming edges from outside the scop should always "
|
|
"come from PreEntryBB");
|
|
|
|
int Idx = PHI->getBasicBlockIndex(PreEntryBB);
|
|
if (Idx < 0)
|
|
continue;
|
|
|
|
Value *ScalarValue = PHI->getIncomingValue(Idx);
|
|
|
|
Builder.CreateStore(ScalarValue, getOrCreateAlloca(Array));
|
|
continue;
|
|
}
|
|
|
|
auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());
|
|
|
|
if (Inst && S.contains(Inst))
|
|
continue;
|
|
|
|
// PHI nodes that are not marked as such in their SAI object are either exit
|
|
// PHI nodes we model as common scalars but without initialization, or
|
|
// incoming phi nodes that need to be initialized. Check if the first is the
|
|
// case for Inst and do not create and initialize memory if so.
|
|
if (auto *PHI = dyn_cast_or_null<PHINode>(Inst))
|
|
if (!S.hasSingleExitEdge() && PHI->getBasicBlockIndex(ExitBB) >= 0)
|
|
continue;
|
|
|
|
Builder.CreateStore(Array->getBasePtr(), getOrCreateAlloca(Array));
|
|
}
|
|
}
|
|
|
|
void BlockGenerator::createScalarFinalization(Scop &S) {
|
|
// The exit block of the __unoptimized__ region.
|
|
BasicBlock *ExitBB = S.getExitingBlock();
|
|
// The merge block __just after__ the region and the optimized region.
|
|
BasicBlock *MergeBB = S.getExit();
|
|
|
|
// The exit block of the __optimized__ region.
|
|
BasicBlock *OptExitBB = *(pred_begin(MergeBB));
|
|
if (OptExitBB == ExitBB)
|
|
OptExitBB = *(++pred_begin(MergeBB));
|
|
|
|
Builder.SetInsertPoint(OptExitBB->getTerminator());
|
|
for (const auto &EscapeMapping : EscapeMap) {
|
|
// Extract the escaping instruction and the escaping users as well as the
|
|
// alloca the instruction was demoted to.
|
|
Instruction *EscapeInst = EscapeMapping.first;
|
|
const auto &EscapeMappingValue = EscapeMapping.second;
|
|
const EscapeUserVectorTy &EscapeUsers = EscapeMappingValue.second;
|
|
auto *ScalarAddr = cast<AllocaInst>(&*EscapeMappingValue.first);
|
|
|
|
// Reload the demoted instruction in the optimized version of the SCoP.
|
|
Value *EscapeInstReload =
|
|
Builder.CreateLoad(ScalarAddr->getAllocatedType(), ScalarAddr,
|
|
EscapeInst->getName() + ".final_reload");
|
|
EscapeInstReload =
|
|
Builder.CreateBitOrPointerCast(EscapeInstReload, EscapeInst->getType());
|
|
|
|
// Create the merge PHI that merges the optimized and unoptimized version.
|
|
PHINode *MergePHI = PHINode::Create(EscapeInst->getType(), 2,
|
|
EscapeInst->getName() + ".merge");
|
|
MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt());
|
|
|
|
// Add the respective values to the merge PHI.
|
|
MergePHI->addIncoming(EscapeInstReload, OptExitBB);
|
|
MergePHI->addIncoming(EscapeInst, ExitBB);
|
|
|
|
// The information of scalar evolution about the escaping instruction needs
|
|
// to be revoked so the new merged instruction will be used.
|
|
if (SE.isSCEVable(EscapeInst->getType()))
|
|
SE.forgetValue(EscapeInst);
|
|
|
|
// Replace all uses of the demoted instruction with the merge PHI.
|
|
for (Instruction *EUser : EscapeUsers)
|
|
EUser->replaceUsesOfWith(EscapeInst, MergePHI);
|
|
}
|
|
}
|
|
|
|
void BlockGenerator::findOutsideUsers(Scop &S) {
|
|
for (auto &Array : S.arrays()) {
|
|
|
|
if (Array->getNumberOfDimensions() != 0)
|
|
continue;
|
|
|
|
if (Array->isPHIKind())
|
|
continue;
|
|
|
|
auto *Inst = dyn_cast<Instruction>(Array->getBasePtr());
|
|
|
|
if (!Inst)
|
|
continue;
|
|
|
|
// Scop invariant hoisting moves some of the base pointers out of the scop.
|
|
// We can ignore these, as the invariant load hoisting already registers the
|
|
// relevant outside users.
|
|
if (!S.contains(Inst))
|
|
continue;
|
|
|
|
handleOutsideUsers(S, Array);
|
|
}
|
|
}
|
|
|
|
void BlockGenerator::createExitPHINodeMerges(Scop &S) {
|
|
if (S.hasSingleExitEdge())
|
|
return;
|
|
|
|
auto *ExitBB = S.getExitingBlock();
|
|
auto *MergeBB = S.getExit();
|
|
auto *AfterMergeBB = MergeBB->getSingleSuccessor();
|
|
BasicBlock *OptExitBB = *(pred_begin(MergeBB));
|
|
if (OptExitBB == ExitBB)
|
|
OptExitBB = *(++pred_begin(MergeBB));
|
|
|
|
Builder.SetInsertPoint(OptExitBB->getTerminator());
|
|
|
|
for (auto &SAI : S.arrays()) {
|
|
auto *Val = SAI->getBasePtr();
|
|
|
|
// Only Value-like scalars need a merge PHI. Exit block PHIs receive either
|
|
// the original PHI's value or the reloaded incoming values from the
|
|
// generated code. An llvm::Value is merged between the original code's
|
|
// value or the generated one.
|
|
if (!SAI->isExitPHIKind())
|
|
continue;
|
|
|
|
PHINode *PHI = dyn_cast<PHINode>(Val);
|
|
if (!PHI)
|
|
continue;
|
|
|
|
if (PHI->getParent() != AfterMergeBB)
|
|
continue;
|
|
|
|
std::string Name = PHI->getName().str();
|
|
Value *ScalarAddr = getOrCreateAlloca(SAI);
|
|
Value *Reload = Builder.CreateLoad(SAI->getElementType(), ScalarAddr,
|
|
Name + ".ph.final_reload");
|
|
Reload = Builder.CreateBitOrPointerCast(Reload, PHI->getType());
|
|
Value *OriginalValue = PHI->getIncomingValueForBlock(MergeBB);
|
|
assert((!isa<Instruction>(OriginalValue) ||
|
|
cast<Instruction>(OriginalValue)->getParent() != MergeBB) &&
|
|
"Original value must no be one we just generated.");
|
|
auto *MergePHI = PHINode::Create(PHI->getType(), 2, Name + ".ph.merge");
|
|
MergePHI->insertBefore(&*MergeBB->getFirstInsertionPt());
|
|
MergePHI->addIncoming(Reload, OptExitBB);
|
|
MergePHI->addIncoming(OriginalValue, ExitBB);
|
|
int Idx = PHI->getBasicBlockIndex(MergeBB);
|
|
PHI->setIncomingValue(Idx, MergePHI);
|
|
}
|
|
}
|
|
|
|
void BlockGenerator::invalidateScalarEvolution(Scop &S) {
|
|
for (auto &Stmt : S)
|
|
if (Stmt.isCopyStmt())
|
|
continue;
|
|
else if (Stmt.isBlockStmt())
|
|
for (auto &Inst : *Stmt.getBasicBlock())
|
|
SE.forgetValue(&Inst);
|
|
else if (Stmt.isRegionStmt())
|
|
for (auto *BB : Stmt.getRegion()->blocks())
|
|
for (auto &Inst : *BB)
|
|
SE.forgetValue(&Inst);
|
|
else
|
|
llvm_unreachable("Unexpected statement type found");
|
|
|
|
// Invalidate SCEV of loops surrounding the EscapeUsers.
|
|
for (const auto &EscapeMapping : EscapeMap) {
|
|
const EscapeUserVectorTy &EscapeUsers = EscapeMapping.second.second;
|
|
for (Instruction *EUser : EscapeUsers) {
|
|
if (Loop *L = LI.getLoopFor(EUser->getParent()))
|
|
while (L) {
|
|
SE.forgetLoop(L);
|
|
L = L->getParentLoop();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void BlockGenerator::finalizeSCoP(Scop &S) {
|
|
findOutsideUsers(S);
|
|
createScalarInitialization(S);
|
|
createExitPHINodeMerges(S);
|
|
createScalarFinalization(S);
|
|
invalidateScalarEvolution(S);
|
|
}
|
|
|
|
VectorBlockGenerator::VectorBlockGenerator(BlockGenerator &BlockGen,
|
|
std::vector<LoopToScevMapT> &VLTS,
|
|
isl_map *Schedule)
|
|
: BlockGenerator(BlockGen), VLTS(VLTS), Schedule(Schedule) {
|
|
assert(Schedule && "No statement domain provided");
|
|
}
|
|
|
|
Value *VectorBlockGenerator::getVectorValue(ScopStmt &Stmt, Value *Old,
|
|
ValueMapT &VectorMap,
|
|
VectorValueMapT &ScalarMaps,
|
|
Loop *L) {
|
|
if (Value *NewValue = VectorMap.lookup(Old))
|
|
return NewValue;
|
|
|
|
int Width = getVectorWidth();
|
|
|
|
Value *Vector = UndefValue::get(FixedVectorType::get(Old->getType(), Width));
|
|
|
|
for (int Lane = 0; Lane < Width; Lane++)
|
|
Vector = Builder.CreateInsertElement(
|
|
Vector, getNewValue(Stmt, Old, ScalarMaps[Lane], VLTS[Lane], L),
|
|
Builder.getInt32(Lane));
|
|
|
|
VectorMap[Old] = Vector;
|
|
|
|
return Vector;
|
|
}
|
|
|
|
Value *VectorBlockGenerator::generateStrideOneLoad(
|
|
ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps,
|
|
__isl_keep isl_id_to_ast_expr *NewAccesses, bool NegativeStride = false) {
|
|
unsigned VectorWidth = getVectorWidth();
|
|
Type *VectorType = FixedVectorType::get(Load->getType(), VectorWidth);
|
|
Type *VectorPtrType =
|
|
PointerType::get(VectorType, Load->getPointerAddressSpace());
|
|
unsigned Offset = NegativeStride ? VectorWidth - 1 : 0;
|
|
|
|
Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[Offset],
|
|
VLTS[Offset], NewAccesses);
|
|
Value *VectorPtr =
|
|
Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
|
|
LoadInst *VecLoad = Builder.CreateLoad(VectorType, VectorPtr,
|
|
Load->getName() + "_p_vec_full");
|
|
if (!Aligned)
|
|
VecLoad->setAlignment(Align(8));
|
|
|
|
if (NegativeStride) {
|
|
SmallVector<Constant *, 16> Indices;
|
|
for (int i = VectorWidth - 1; i >= 0; i--)
|
|
Indices.push_back(ConstantInt::get(Builder.getInt32Ty(), i));
|
|
Constant *SV = llvm::ConstantVector::get(Indices);
|
|
Value *RevVecLoad = Builder.CreateShuffleVector(
|
|
VecLoad, VecLoad, SV, Load->getName() + "_reverse");
|
|
return RevVecLoad;
|
|
}
|
|
|
|
return VecLoad;
|
|
}
|
|
|
|
Value *VectorBlockGenerator::generateStrideZeroLoad(
|
|
ScopStmt &Stmt, LoadInst *Load, ValueMapT &BBMap,
|
|
__isl_keep isl_id_to_ast_expr *NewAccesses) {
|
|
Type *VectorType = FixedVectorType::get(Load->getType(), 1);
|
|
Type *VectorPtrType =
|
|
PointerType::get(VectorType, Load->getPointerAddressSpace());
|
|
Value *NewPointer =
|
|
generateLocationAccessed(Stmt, Load, BBMap, VLTS[0], NewAccesses);
|
|
Value *VectorPtr = Builder.CreateBitCast(NewPointer, VectorPtrType,
|
|
Load->getName() + "_p_vec_p");
|
|
LoadInst *ScalarLoad = Builder.CreateLoad(VectorType, VectorPtr,
|
|
Load->getName() + "_p_splat_one");
|
|
|
|
if (!Aligned)
|
|
ScalarLoad->setAlignment(Align(8));
|
|
|
|
Constant *SplatVector = Constant::getNullValue(
|
|
FixedVectorType::get(Builder.getInt32Ty(), getVectorWidth()));
|
|
|
|
Value *VectorLoad = Builder.CreateShuffleVector(
|
|
ScalarLoad, ScalarLoad, SplatVector, Load->getName() + "_p_splat");
|
|
return VectorLoad;
|
|
}
|
|
|
|
Value *VectorBlockGenerator::generateUnknownStrideLoad(
|
|
ScopStmt &Stmt, LoadInst *Load, VectorValueMapT &ScalarMaps,
|
|
__isl_keep isl_id_to_ast_expr *NewAccesses) {
|
|
int VectorWidth = getVectorWidth();
|
|
Type *ElemTy = Load->getType();
|
|
auto *FVTy = FixedVectorType::get(ElemTy, VectorWidth);
|
|
|
|
Value *Vector = UndefValue::get(FVTy);
|
|
|
|
for (int i = 0; i < VectorWidth; i++) {
|
|
Value *NewPointer = generateLocationAccessed(Stmt, Load, ScalarMaps[i],
|
|
VLTS[i], NewAccesses);
|
|
Value *ScalarLoad =
|
|
Builder.CreateLoad(ElemTy, NewPointer, Load->getName() + "_p_scalar_");
|
|
Vector = Builder.CreateInsertElement(
|
|
Vector, ScalarLoad, Builder.getInt32(i), Load->getName() + "_p_vec_");
|
|
}
|
|
|
|
return Vector;
|
|
}
|
|
|
|
void VectorBlockGenerator::generateLoad(
|
|
ScopStmt &Stmt, LoadInst *Load, ValueMapT &VectorMap,
|
|
VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
|
|
if (Value *PreloadLoad = GlobalMap.lookup(Load)) {
|
|
VectorMap[Load] = Builder.CreateVectorSplat(getVectorWidth(), PreloadLoad,
|
|
Load->getName() + "_p");
|
|
return;
|
|
}
|
|
|
|
if (!VectorType::isValidElementType(Load->getType())) {
|
|
for (int i = 0; i < getVectorWidth(); i++)
|
|
ScalarMaps[i][Load] =
|
|
generateArrayLoad(Stmt, Load, ScalarMaps[i], VLTS[i], NewAccesses);
|
|
return;
|
|
}
|
|
|
|
const MemoryAccess &Access = Stmt.getArrayAccessFor(Load);
|
|
|
|
// Make sure we have scalar values available to access the pointer to
|
|
// the data location.
|
|
extractScalarValues(Load, VectorMap, ScalarMaps);
|
|
|
|
Value *NewLoad;
|
|
if (Access.isStrideZero(isl::manage_copy(Schedule)))
|
|
NewLoad = generateStrideZeroLoad(Stmt, Load, ScalarMaps[0], NewAccesses);
|
|
else if (Access.isStrideOne(isl::manage_copy(Schedule)))
|
|
NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses);
|
|
else if (Access.isStrideX(isl::manage_copy(Schedule), -1))
|
|
NewLoad = generateStrideOneLoad(Stmt, Load, ScalarMaps, NewAccesses, true);
|
|
else
|
|
NewLoad = generateUnknownStrideLoad(Stmt, Load, ScalarMaps, NewAccesses);
|
|
|
|
VectorMap[Load] = NewLoad;
|
|
}
|
|
|
|
void VectorBlockGenerator::copyUnaryInst(ScopStmt &Stmt, UnaryInstruction *Inst,
|
|
ValueMapT &VectorMap,
|
|
VectorValueMapT &ScalarMaps) {
|
|
int VectorWidth = getVectorWidth();
|
|
Value *NewOperand = getVectorValue(Stmt, Inst->getOperand(0), VectorMap,
|
|
ScalarMaps, getLoopForStmt(Stmt));
|
|
|
|
assert(isa<CastInst>(Inst) && "Can not generate vector code for instruction");
|
|
|
|
const CastInst *Cast = dyn_cast<CastInst>(Inst);
|
|
auto *DestType = FixedVectorType::get(Inst->getType(), VectorWidth);
|
|
VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, DestType);
|
|
}
|
|
|
|
void VectorBlockGenerator::copyBinaryInst(ScopStmt &Stmt, BinaryOperator *Inst,
|
|
ValueMapT &VectorMap,
|
|
VectorValueMapT &ScalarMaps) {
|
|
Loop *L = getLoopForStmt(Stmt);
|
|
Value *OpZero = Inst->getOperand(0);
|
|
Value *OpOne = Inst->getOperand(1);
|
|
|
|
Value *NewOpZero, *NewOpOne;
|
|
NewOpZero = getVectorValue(Stmt, OpZero, VectorMap, ScalarMaps, L);
|
|
NewOpOne = getVectorValue(Stmt, OpOne, VectorMap, ScalarMaps, L);
|
|
|
|
Value *NewInst = Builder.CreateBinOp(Inst->getOpcode(), NewOpZero, NewOpOne,
|
|
Inst->getName() + "p_vec");
|
|
VectorMap[Inst] = NewInst;
|
|
}
|
|
|
|
void VectorBlockGenerator::copyStore(
|
|
ScopStmt &Stmt, StoreInst *Store, ValueMapT &VectorMap,
|
|
VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
|
|
const MemoryAccess &Access = Stmt.getArrayAccessFor(Store);
|
|
|
|
Value *Vector = getVectorValue(Stmt, Store->getValueOperand(), VectorMap,
|
|
ScalarMaps, getLoopForStmt(Stmt));
|
|
|
|
// Make sure we have scalar values available to access the pointer to
|
|
// the data location.
|
|
extractScalarValues(Store, VectorMap, ScalarMaps);
|
|
|
|
if (Access.isStrideOne(isl::manage_copy(Schedule))) {
|
|
Type *VectorType = FixedVectorType::get(Store->getValueOperand()->getType(),
|
|
getVectorWidth());
|
|
Type *VectorPtrType =
|
|
PointerType::get(VectorType, Store->getPointerAddressSpace());
|
|
Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[0],
|
|
VLTS[0], NewAccesses);
|
|
|
|
Value *VectorPtr =
|
|
Builder.CreateBitCast(NewPointer, VectorPtrType, "vector_ptr");
|
|
StoreInst *Store = Builder.CreateStore(Vector, VectorPtr);
|
|
|
|
if (!Aligned)
|
|
Store->setAlignment(Align(8));
|
|
} else {
|
|
for (unsigned i = 0; i < ScalarMaps.size(); i++) {
|
|
Value *Scalar = Builder.CreateExtractElement(Vector, Builder.getInt32(i));
|
|
Value *NewPointer = generateLocationAccessed(Stmt, Store, ScalarMaps[i],
|
|
VLTS[i], NewAccesses);
|
|
Builder.CreateStore(Scalar, NewPointer);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool VectorBlockGenerator::hasVectorOperands(const Instruction *Inst,
|
|
ValueMapT &VectorMap) {
|
|
for (Value *Operand : Inst->operands())
|
|
if (VectorMap.count(Operand))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool VectorBlockGenerator::extractScalarValues(const Instruction *Inst,
|
|
ValueMapT &VectorMap,
|
|
VectorValueMapT &ScalarMaps) {
|
|
bool HasVectorOperand = false;
|
|
int VectorWidth = getVectorWidth();
|
|
|
|
for (Value *Operand : Inst->operands()) {
|
|
ValueMapT::iterator VecOp = VectorMap.find(Operand);
|
|
|
|
if (VecOp == VectorMap.end())
|
|
continue;
|
|
|
|
HasVectorOperand = true;
|
|
Value *NewVector = VecOp->second;
|
|
|
|
for (int i = 0; i < VectorWidth; ++i) {
|
|
ValueMapT &SM = ScalarMaps[i];
|
|
|
|
// If there is one scalar extracted, all scalar elements should have
|
|
// already been extracted by the code here. So no need to check for the
|
|
// existence of all of them.
|
|
if (SM.count(Operand))
|
|
break;
|
|
|
|
SM[Operand] =
|
|
Builder.CreateExtractElement(NewVector, Builder.getInt32(i));
|
|
}
|
|
}
|
|
|
|
return HasVectorOperand;
|
|
}
|
|
|
|
void VectorBlockGenerator::copyInstScalarized(
|
|
ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap,
|
|
VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
|
|
bool HasVectorOperand;
|
|
int VectorWidth = getVectorWidth();
|
|
|
|
HasVectorOperand = extractScalarValues(Inst, VectorMap, ScalarMaps);
|
|
|
|
for (int VectorLane = 0; VectorLane < getVectorWidth(); VectorLane++)
|
|
BlockGenerator::copyInstruction(Stmt, Inst, ScalarMaps[VectorLane],
|
|
VLTS[VectorLane], NewAccesses);
|
|
|
|
if (!VectorType::isValidElementType(Inst->getType()) || !HasVectorOperand)
|
|
return;
|
|
|
|
// Make the result available as vector value.
|
|
auto *FVTy = FixedVectorType::get(Inst->getType(), VectorWidth);
|
|
Value *Vector = UndefValue::get(FVTy);
|
|
|
|
for (int i = 0; i < VectorWidth; i++)
|
|
Vector = Builder.CreateInsertElement(Vector, ScalarMaps[i][Inst],
|
|
Builder.getInt32(i));
|
|
|
|
VectorMap[Inst] = Vector;
|
|
}
|
|
|
|
int VectorBlockGenerator::getVectorWidth() { return VLTS.size(); }
|
|
|
|
void VectorBlockGenerator::copyInstruction(
|
|
ScopStmt &Stmt, Instruction *Inst, ValueMapT &VectorMap,
|
|
VectorValueMapT &ScalarMaps, __isl_keep isl_id_to_ast_expr *NewAccesses) {
|
|
// Terminator instructions control the control flow. They are explicitly
|
|
// expressed in the clast and do not need to be copied.
|
|
if (Inst->isTerminator())
|
|
return;
|
|
|
|
if (canSyntheziseInStmt(Stmt, Inst))
|
|
return;
|
|
|
|
if (auto *Load = dyn_cast<LoadInst>(Inst)) {
|
|
generateLoad(Stmt, Load, VectorMap, ScalarMaps, NewAccesses);
|
|
return;
|
|
}
|
|
|
|
if (hasVectorOperands(Inst, VectorMap)) {
|
|
if (auto *Store = dyn_cast<StoreInst>(Inst)) {
|
|
// Identified as redundant by -polly-simplify.
|
|
if (!Stmt.getArrayAccessOrNULLFor(Store))
|
|
return;
|
|
|
|
copyStore(Stmt, Store, VectorMap, ScalarMaps, NewAccesses);
|
|
return;
|
|
}
|
|
|
|
if (auto *Unary = dyn_cast<UnaryInstruction>(Inst)) {
|
|
copyUnaryInst(Stmt, Unary, VectorMap, ScalarMaps);
|
|
return;
|
|
}
|
|
|
|
if (auto *Binary = dyn_cast<BinaryOperator>(Inst)) {
|
|
copyBinaryInst(Stmt, Binary, VectorMap, ScalarMaps);
|
|
return;
|
|
}
|
|
|
|
// Fallthrough: We generate scalar instructions, if we don't know how to
|
|
// generate vector code.
|
|
}
|
|
|
|
copyInstScalarized(Stmt, Inst, VectorMap, ScalarMaps, NewAccesses);
|
|
}
|
|
|
|
void VectorBlockGenerator::generateScalarVectorLoads(
|
|
ScopStmt &Stmt, ValueMapT &VectorBlockMap) {
|
|
for (MemoryAccess *MA : Stmt) {
|
|
if (MA->isArrayKind() || MA->isWrite())
|
|
continue;
|
|
|
|
auto *Address = getOrCreateAlloca(*MA);
|
|
Type *VectorType = FixedVectorType::get(MA->getElementType(), 1);
|
|
Type *VectorPtrType = PointerType::get(
|
|
VectorType, Address->getType()->getPointerAddressSpace());
|
|
Value *VectorPtr = Builder.CreateBitCast(Address, VectorPtrType,
|
|
Address->getName() + "_p_vec_p");
|
|
auto *Val = Builder.CreateLoad(VectorType, VectorPtr,
|
|
Address->getName() + ".reload");
|
|
Constant *SplatVector = Constant::getNullValue(
|
|
FixedVectorType::get(Builder.getInt32Ty(), getVectorWidth()));
|
|
|
|
Value *VectorVal = Builder.CreateShuffleVector(
|
|
Val, Val, SplatVector, Address->getName() + "_p_splat");
|
|
VectorBlockMap[MA->getAccessValue()] = VectorVal;
|
|
}
|
|
}
|
|
|
|
void VectorBlockGenerator::verifyNoScalarStores(ScopStmt &Stmt) {
|
|
for (MemoryAccess *MA : Stmt) {
|
|
if (MA->isArrayKind() || MA->isRead())
|
|
continue;
|
|
|
|
llvm_unreachable("Scalar stores not expected in vector loop");
|
|
}
|
|
}
|
|
|
|
void VectorBlockGenerator::copyStmt(
|
|
ScopStmt &Stmt, __isl_keep isl_id_to_ast_expr *NewAccesses) {
|
|
assert(Stmt.isBlockStmt() &&
|
|
"TODO: Only block statements can be copied by the vector block "
|
|
"generator");
|
|
|
|
BasicBlock *BB = Stmt.getBasicBlock();
|
|
BasicBlock *CopyBB = SplitBlock(Builder.GetInsertBlock(),
|
|
&*Builder.GetInsertPoint(), &DT, &LI);
|
|
CopyBB->setName("polly.stmt." + BB->getName());
|
|
Builder.SetInsertPoint(&CopyBB->front());
|
|
|
|
// Create two maps that store the mapping from the original instructions of
|
|
// the old basic block to their copies in the new basic block. Those maps
|
|
// are basic block local.
|
|
//
|
|
// As vector code generation is supported there is one map for scalar values
|
|
// and one for vector values.
|
|
//
|
|
// In case we just do scalar code generation, the vectorMap is not used and
|
|
// the scalarMap has just one dimension, which contains the mapping.
|
|
//
|
|
// In case vector code generation is done, an instruction may either appear
|
|
// in the vector map once (as it is calculating >vectorwidth< values at a
|
|
// time. Or (if the values are calculated using scalar operations), it
|
|
// appears once in every dimension of the scalarMap.
|
|
VectorValueMapT ScalarBlockMap(getVectorWidth());
|
|
ValueMapT VectorBlockMap;
|
|
|
|
generateScalarVectorLoads(Stmt, VectorBlockMap);
|
|
|
|
for (Instruction *Inst : Stmt.getInstructions())
|
|
copyInstruction(Stmt, Inst, VectorBlockMap, ScalarBlockMap, NewAccesses);
|
|
|
|
verifyNoScalarStores(Stmt);
|
|
}
|
|
|
|
BasicBlock *RegionGenerator::repairDominance(BasicBlock *BB,
|
|
BasicBlock *BBCopy) {
|
|
|
|
BasicBlock *BBIDom = DT.getNode(BB)->getIDom()->getBlock();
|
|
BasicBlock *BBCopyIDom = EndBlockMap.lookup(BBIDom);
|
|
|
|
if (BBCopyIDom)
|
|
DT.changeImmediateDominator(BBCopy, BBCopyIDom);
|
|
|
|
return StartBlockMap.lookup(BBIDom);
|
|
}
|
|
|
|
// This is to determine whether an llvm::Value (defined in @p BB) is usable when
|
|
// leaving a subregion. The straight-forward DT.dominates(BB, R->getExitBlock())
|
|
// does not work in cases where the exit block has edges from outside the
|
|
// region. In that case the llvm::Value would never be usable in in the exit
|
|
// block. The RegionGenerator however creates an new exit block ('ExitBBCopy')
|
|
// for the subregion's exiting edges only. We need to determine whether an
|
|
// llvm::Value is usable in there. We do this by checking whether it dominates
|
|
// all exiting blocks individually.
|
|
static bool isDominatingSubregionExit(const DominatorTree &DT, Region *R,
|
|
BasicBlock *BB) {
|
|
for (auto ExitingBB : predecessors(R->getExit())) {
|
|
// Check for non-subregion incoming edges.
|
|
if (!R->contains(ExitingBB))
|
|
continue;
|
|
|
|
if (!DT.dominates(BB, ExitingBB))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Find the direct dominator of the subregion's exit block if the subregion was
|
|
// simplified.
|
|
static BasicBlock *findExitDominator(DominatorTree &DT, Region *R) {
|
|
BasicBlock *Common = nullptr;
|
|
for (auto ExitingBB : predecessors(R->getExit())) {
|
|
// Check for non-subregion incoming edges.
|
|
if (!R->contains(ExitingBB))
|
|
continue;
|
|
|
|
// First exiting edge.
|
|
if (!Common) {
|
|
Common = ExitingBB;
|
|
continue;
|
|
}
|
|
|
|
Common = DT.findNearestCommonDominator(Common, ExitingBB);
|
|
}
|
|
|
|
assert(Common && R->contains(Common));
|
|
return Common;
|
|
}
|
|
|
|
void RegionGenerator::copyStmt(ScopStmt &Stmt, LoopToScevMapT <S,
|
|
__isl_keep isl_id_to_ast_expr *IdToAstExp) {
|
|
assert(Stmt.isRegionStmt() &&
|
|
"Only region statements can be copied by the region generator");
|
|
|
|
// Forget all old mappings.
|
|
StartBlockMap.clear();
|
|
EndBlockMap.clear();
|
|
RegionMaps.clear();
|
|
IncompletePHINodeMap.clear();
|
|
|
|
// Collection of all values related to this subregion.
|
|
ValueMapT ValueMap;
|
|
|
|
// The region represented by the statement.
|
|
Region *R = Stmt.getRegion();
|
|
|
|
// Create a dedicated entry for the region where we can reload all demoted
|
|
// inputs.
|
|
BasicBlock *EntryBB = R->getEntry();
|
|
BasicBlock *EntryBBCopy = SplitBlock(Builder.GetInsertBlock(),
|
|
&*Builder.GetInsertPoint(), &DT, &LI);
|
|
EntryBBCopy->setName("polly.stmt." + EntryBB->getName() + ".entry");
|
|
Builder.SetInsertPoint(&EntryBBCopy->front());
|
|
|
|
ValueMapT &EntryBBMap = RegionMaps[EntryBBCopy];
|
|
generateScalarLoads(Stmt, LTS, EntryBBMap, IdToAstExp);
|
|
generateBeginStmtTrace(Stmt, LTS, EntryBBMap);
|
|
|
|
for (auto PI = pred_begin(EntryBB), PE = pred_end(EntryBB); PI != PE; ++PI)
|
|
if (!R->contains(*PI)) {
|
|
StartBlockMap[*PI] = EntryBBCopy;
|
|
EndBlockMap[*PI] = EntryBBCopy;
|
|
}
|
|
|
|
// Iterate over all blocks in the region in a breadth-first search.
|
|
std::deque<BasicBlock *> Blocks;
|
|
SmallSetVector<BasicBlock *, 8> SeenBlocks;
|
|
Blocks.push_back(EntryBB);
|
|
SeenBlocks.insert(EntryBB);
|
|
|
|
while (!Blocks.empty()) {
|
|
BasicBlock *BB = Blocks.front();
|
|
Blocks.pop_front();
|
|
|
|
// First split the block and update dominance information.
|
|
BasicBlock *BBCopy = splitBB(BB);
|
|
BasicBlock *BBCopyIDom = repairDominance(BB, BBCopy);
|
|
|
|
// Get the mapping for this block and initialize it with either the scalar
|
|
// loads from the generated entering block (which dominates all blocks of
|
|
// this subregion) or the maps of the immediate dominator, if part of the
|
|
// subregion. The latter necessarily includes the former.
|
|
ValueMapT *InitBBMap;
|
|
if (BBCopyIDom) {
|
|
assert(RegionMaps.count(BBCopyIDom));
|
|
InitBBMap = &RegionMaps[BBCopyIDom];
|
|
} else
|
|
InitBBMap = &EntryBBMap;
|
|
auto Inserted = RegionMaps.insert(std::make_pair(BBCopy, *InitBBMap));
|
|
ValueMapT &RegionMap = Inserted.first->second;
|
|
|
|
// Copy the block with the BlockGenerator.
|
|
Builder.SetInsertPoint(&BBCopy->front());
|
|
copyBB(Stmt, BB, BBCopy, RegionMap, LTS, IdToAstExp);
|
|
|
|
// In order to remap PHI nodes we store also basic block mappings.
|
|
StartBlockMap[BB] = BBCopy;
|
|
EndBlockMap[BB] = Builder.GetInsertBlock();
|
|
|
|
// Add values to incomplete PHI nodes waiting for this block to be copied.
|
|
for (const PHINodePairTy &PHINodePair : IncompletePHINodeMap[BB])
|
|
addOperandToPHI(Stmt, PHINodePair.first, PHINodePair.second, BB, LTS);
|
|
IncompletePHINodeMap[BB].clear();
|
|
|
|
// And continue with new successors inside the region.
|
|
for (auto SI = succ_begin(BB), SE = succ_end(BB); SI != SE; SI++)
|
|
if (R->contains(*SI) && SeenBlocks.insert(*SI))
|
|
Blocks.push_back(*SI);
|
|
|
|
// Remember value in case it is visible after this subregion.
|
|
if (isDominatingSubregionExit(DT, R, BB))
|
|
ValueMap.insert(RegionMap.begin(), RegionMap.end());
|
|
}
|
|
|
|
// Now create a new dedicated region exit block and add it to the region map.
|
|
BasicBlock *ExitBBCopy = SplitBlock(Builder.GetInsertBlock(),
|
|
&*Builder.GetInsertPoint(), &DT, &LI);
|
|
ExitBBCopy->setName("polly.stmt." + R->getExit()->getName() + ".exit");
|
|
StartBlockMap[R->getExit()] = ExitBBCopy;
|
|
EndBlockMap[R->getExit()] = ExitBBCopy;
|
|
|
|
BasicBlock *ExitDomBBCopy = EndBlockMap.lookup(findExitDominator(DT, R));
|
|
assert(ExitDomBBCopy &&
|
|
"Common exit dominator must be within region; at least the entry node "
|
|
"must match");
|
|
DT.changeImmediateDominator(ExitBBCopy, ExitDomBBCopy);
|
|
|
|
// As the block generator doesn't handle control flow we need to add the
|
|
// region control flow by hand after all blocks have been copied.
|
|
for (BasicBlock *BB : SeenBlocks) {
|
|
|
|
BasicBlock *BBCopyStart = StartBlockMap[BB];
|
|
BasicBlock *BBCopyEnd = EndBlockMap[BB];
|
|
Instruction *TI = BB->getTerminator();
|
|
if (isa<UnreachableInst>(TI)) {
|
|
while (!BBCopyEnd->empty())
|
|
BBCopyEnd->begin()->eraseFromParent();
|
|
new UnreachableInst(BBCopyEnd->getContext(), BBCopyEnd);
|
|
continue;
|
|
}
|
|
|
|
Instruction *BICopy = BBCopyEnd->getTerminator();
|
|
|
|
ValueMapT &RegionMap = RegionMaps[BBCopyStart];
|
|
RegionMap.insert(StartBlockMap.begin(), StartBlockMap.end());
|
|
|
|
Builder.SetInsertPoint(BICopy);
|
|
copyInstScalar(Stmt, TI, RegionMap, LTS);
|
|
BICopy->eraseFromParent();
|
|
}
|
|
|
|
// Add counting PHI nodes to all loops in the region that can be used as
|
|
// replacement for SCEVs referring to the old loop.
|
|
for (BasicBlock *BB : SeenBlocks) {
|
|
Loop *L = LI.getLoopFor(BB);
|
|
if (L == nullptr || L->getHeader() != BB || !R->contains(L))
|
|
continue;
|
|
|
|
BasicBlock *BBCopy = StartBlockMap[BB];
|
|
Value *NullVal = Builder.getInt32(0);
|
|
PHINode *LoopPHI =
|
|
PHINode::Create(Builder.getInt32Ty(), 2, "polly.subregion.iv");
|
|
Instruction *LoopPHIInc = BinaryOperator::CreateAdd(
|
|
LoopPHI, Builder.getInt32(1), "polly.subregion.iv.inc");
|
|
LoopPHI->insertBefore(&BBCopy->front());
|
|
LoopPHIInc->insertBefore(BBCopy->getTerminator());
|
|
|
|
for (auto *PredBB : make_range(pred_begin(BB), pred_end(BB))) {
|
|
if (!R->contains(PredBB))
|
|
continue;
|
|
if (L->contains(PredBB))
|
|
LoopPHI->addIncoming(LoopPHIInc, EndBlockMap[PredBB]);
|
|
else
|
|
LoopPHI->addIncoming(NullVal, EndBlockMap[PredBB]);
|
|
}
|
|
|
|
for (auto *PredBBCopy : make_range(pred_begin(BBCopy), pred_end(BBCopy)))
|
|
if (LoopPHI->getBasicBlockIndex(PredBBCopy) < 0)
|
|
LoopPHI->addIncoming(NullVal, PredBBCopy);
|
|
|
|
LTS[L] = SE.getUnknown(LoopPHI);
|
|
}
|
|
|
|
// Continue generating code in the exit block.
|
|
Builder.SetInsertPoint(&*ExitBBCopy->getFirstInsertionPt());
|
|
|
|
// Write values visible to other statements.
|
|
generateScalarStores(Stmt, LTS, ValueMap, IdToAstExp);
|
|
StartBlockMap.clear();
|
|
EndBlockMap.clear();
|
|
RegionMaps.clear();
|
|
IncompletePHINodeMap.clear();
|
|
}
|
|
|
|
PHINode *RegionGenerator::buildExitPHI(MemoryAccess *MA, LoopToScevMapT <S,
|
|
ValueMapT &BBMap, Loop *L) {
|
|
ScopStmt *Stmt = MA->getStatement();
|
|
Region *SubR = Stmt->getRegion();
|
|
auto Incoming = MA->getIncoming();
|
|
|
|
PollyIRBuilder::InsertPointGuard IPGuard(Builder);
|
|
PHINode *OrigPHI = cast<PHINode>(MA->getAccessInstruction());
|
|
BasicBlock *NewSubregionExit = Builder.GetInsertBlock();
|
|
|
|
// This can happen if the subregion is simplified after the ScopStmts
|
|
// have been created; simplification happens as part of CodeGeneration.
|
|
if (OrigPHI->getParent() != SubR->getExit()) {
|
|
BasicBlock *FormerExit = SubR->getExitingBlock();
|
|
if (FormerExit)
|
|
NewSubregionExit = StartBlockMap.lookup(FormerExit);
|
|
}
|
|
|
|
PHINode *NewPHI = PHINode::Create(OrigPHI->getType(), Incoming.size(),
|
|
"polly." + OrigPHI->getName(),
|
|
NewSubregionExit->getFirstNonPHI());
|
|
|
|
// Add the incoming values to the PHI.
|
|
for (auto &Pair : Incoming) {
|
|
BasicBlock *OrigIncomingBlock = Pair.first;
|
|
BasicBlock *NewIncomingBlockStart = StartBlockMap.lookup(OrigIncomingBlock);
|
|
BasicBlock *NewIncomingBlockEnd = EndBlockMap.lookup(OrigIncomingBlock);
|
|
Builder.SetInsertPoint(NewIncomingBlockEnd->getTerminator());
|
|
assert(RegionMaps.count(NewIncomingBlockStart));
|
|
assert(RegionMaps.count(NewIncomingBlockEnd));
|
|
ValueMapT *LocalBBMap = &RegionMaps[NewIncomingBlockStart];
|
|
|
|
Value *OrigIncomingValue = Pair.second;
|
|
Value *NewIncomingValue =
|
|
getNewValue(*Stmt, OrigIncomingValue, *LocalBBMap, LTS, L);
|
|
NewPHI->addIncoming(NewIncomingValue, NewIncomingBlockEnd);
|
|
}
|
|
|
|
return NewPHI;
|
|
}
|
|
|
|
Value *RegionGenerator::getExitScalar(MemoryAccess *MA, LoopToScevMapT <S,
|
|
ValueMapT &BBMap) {
|
|
ScopStmt *Stmt = MA->getStatement();
|
|
|
|
// TODO: Add some test cases that ensure this is really the right choice.
|
|
Loop *L = LI.getLoopFor(Stmt->getRegion()->getExit());
|
|
|
|
if (MA->isAnyPHIKind()) {
|
|
auto Incoming = MA->getIncoming();
|
|
assert(!Incoming.empty() &&
|
|
"PHI WRITEs must have originate from at least one incoming block");
|
|
|
|
// If there is only one incoming value, we do not need to create a PHI.
|
|
if (Incoming.size() == 1) {
|
|
Value *OldVal = Incoming[0].second;
|
|
return getNewValue(*Stmt, OldVal, BBMap, LTS, L);
|
|
}
|
|
|
|
return buildExitPHI(MA, LTS, BBMap, L);
|
|
}
|
|
|
|
// MemoryKind::Value accesses leaving the subregion must dominate the exit
|
|
// block; just pass the copied value.
|
|
Value *OldVal = MA->getAccessValue();
|
|
return getNewValue(*Stmt, OldVal, BBMap, LTS, L);
|
|
}
|
|
|
|
void RegionGenerator::generateScalarStores(
|
|
ScopStmt &Stmt, LoopToScevMapT <S, ValueMapT &BBMap,
|
|
__isl_keep isl_id_to_ast_expr *NewAccesses) {
|
|
assert(Stmt.getRegion() &&
|
|
"Block statements need to use the generateScalarStores() "
|
|
"function in the BlockGenerator");
|
|
|
|
// Get the exit scalar values before generating the writes.
|
|
// This is necessary because RegionGenerator::getExitScalar may insert
|
|
// PHINodes that depend on the region's exiting blocks. But
|
|
// BlockGenerator::generateConditionalExecution may insert a new basic block
|
|
// such that the current basic block is not a direct successor of the exiting
|
|
// blocks anymore. Hence, build the PHINodes while the current block is still
|
|
// the direct successor.
|
|
SmallDenseMap<MemoryAccess *, Value *> NewExitScalars;
|
|
for (MemoryAccess *MA : Stmt) {
|
|
if (MA->isOriginalArrayKind() || MA->isRead())
|
|
continue;
|
|
|
|
Value *NewVal = getExitScalar(MA, LTS, BBMap);
|
|
NewExitScalars[MA] = NewVal;
|
|
}
|
|
|
|
for (MemoryAccess *MA : Stmt) {
|
|
if (MA->isOriginalArrayKind() || MA->isRead())
|
|
continue;
|
|
|
|
isl::set AccDom = MA->getAccessRelation().domain();
|
|
std::string Subject = MA->getId().get_name();
|
|
generateConditionalExecution(
|
|
Stmt, AccDom, Subject.c_str(), [&, this, MA]() {
|
|
Value *NewVal = NewExitScalars.lookup(MA);
|
|
assert(NewVal && "The exit scalar must be determined before");
|
|
Value *Address = getImplicitAddress(*MA, getLoopForStmt(Stmt), LTS,
|
|
BBMap, NewAccesses);
|
|
assert((!isa<Instruction>(NewVal) ||
|
|
DT.dominates(cast<Instruction>(NewVal)->getParent(),
|
|
Builder.GetInsertBlock())) &&
|
|
"Domination violation");
|
|
assert((!isa<Instruction>(Address) ||
|
|
DT.dominates(cast<Instruction>(Address)->getParent(),
|
|
Builder.GetInsertBlock())) &&
|
|
"Domination violation");
|
|
Builder.CreateStore(NewVal, Address);
|
|
});
|
|
}
|
|
}
|
|
|
|
void RegionGenerator::addOperandToPHI(ScopStmt &Stmt, PHINode *PHI,
|
|
PHINode *PHICopy, BasicBlock *IncomingBB,
|
|
LoopToScevMapT <S) {
|
|
// If the incoming block was not yet copied mark this PHI as incomplete.
|
|
// Once the block will be copied the incoming value will be added.
|
|
BasicBlock *BBCopyStart = StartBlockMap[IncomingBB];
|
|
BasicBlock *BBCopyEnd = EndBlockMap[IncomingBB];
|
|
if (!BBCopyStart) {
|
|
assert(!BBCopyEnd);
|
|
assert(Stmt.represents(IncomingBB) &&
|
|
"Bad incoming block for PHI in non-affine region");
|
|
IncompletePHINodeMap[IncomingBB].push_back(std::make_pair(PHI, PHICopy));
|
|
return;
|
|
}
|
|
|
|
assert(RegionMaps.count(BBCopyStart) &&
|
|
"Incoming PHI block did not have a BBMap");
|
|
ValueMapT &BBCopyMap = RegionMaps[BBCopyStart];
|
|
|
|
Value *OpCopy = nullptr;
|
|
|
|
if (Stmt.represents(IncomingBB)) {
|
|
Value *Op = PHI->getIncomingValueForBlock(IncomingBB);
|
|
|
|
// If the current insert block is different from the PHIs incoming block
|
|
// change it, otherwise do not.
|
|
auto IP = Builder.GetInsertPoint();
|
|
if (IP->getParent() != BBCopyEnd)
|
|
Builder.SetInsertPoint(BBCopyEnd->getTerminator());
|
|
OpCopy = getNewValue(Stmt, Op, BBCopyMap, LTS, getLoopForStmt(Stmt));
|
|
if (IP->getParent() != BBCopyEnd)
|
|
Builder.SetInsertPoint(&*IP);
|
|
} else {
|
|
// All edges from outside the non-affine region become a single edge
|
|
// in the new copy of the non-affine region. Make sure to only add the
|
|
// corresponding edge the first time we encounter a basic block from
|
|
// outside the non-affine region.
|
|
if (PHICopy->getBasicBlockIndex(BBCopyEnd) >= 0)
|
|
return;
|
|
|
|
// Get the reloaded value.
|
|
OpCopy = getNewValue(Stmt, PHI, BBCopyMap, LTS, getLoopForStmt(Stmt));
|
|
}
|
|
|
|
assert(OpCopy && "Incoming PHI value was not copied properly");
|
|
PHICopy->addIncoming(OpCopy, BBCopyEnd);
|
|
}
|
|
|
|
void RegionGenerator::copyPHIInstruction(ScopStmt &Stmt, PHINode *PHI,
|
|
ValueMapT &BBMap,
|
|
LoopToScevMapT <S) {
|
|
unsigned NumIncoming = PHI->getNumIncomingValues();
|
|
PHINode *PHICopy =
|
|
Builder.CreatePHI(PHI->getType(), NumIncoming, "polly." + PHI->getName());
|
|
PHICopy->moveBefore(PHICopy->getParent()->getFirstNonPHI());
|
|
BBMap[PHI] = PHICopy;
|
|
|
|
for (BasicBlock *IncomingBB : PHI->blocks())
|
|
addOperandToPHI(Stmt, PHI, PHICopy, IncomingBB, LTS);
|
|
}
|