llvm-project/llvm/tools/llvm-jitlink/llvm-jitlink.cpp
Lang Hames 8b1771bd9f [ORC] Move most ORC APIs to ExecutorAddr, introduce ExecutorSymbolDef.
ExecutorAddr was introduced in b8e5f918166 as an eventual replacement for
JITTargetAddress. ExecutorSymbolDef is introduced in this patch as a
replacement for JITEvaluatedSymbol: ExecutorSymbolDef is an (ExecutorAddr,
JITSymbolFlags) pair, where JITEvaluatedSymbol was a (JITTargetAddress,
JITSymbolFlags) pair.

A number of APIs had already migrated from JITTargetAddress to ExecutorAddr,
but many of ORC's internals were still using the older type. This patch aims
to address that.

Some public APIs are affected as well. If you need to migrate your APIs you can
use the following operations:

* ExecutorAddr::toPtr replaces jitTargetAddressToPointer and
  jitTargetAddressToFunction.

* ExecutorAddr::fromPtr replace pointerToJITTargetAddress.

* ExecutorAddr(JITTargetAddress) creates an ExecutorAddr value from a
  JITTargetAddress.

* ExecutorAddr::getValue() creates a JITTargetAddress value from an
  ExecutorAddr.

JITTargetAddress and JITEvaluatedSymbol will remain in JITSymbol.h for now, but
the aim will be to eventually deprecate and remove these types (probably when
MCJIT and RuntimeDyld are deprecated).
2023-03-27 17:37:58 -07:00

2097 lines
72 KiB
C++

//===- llvm-jitlink.cpp -- Command line interface/tester for llvm-jitlink -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This utility provides a simple command line interface to the llvm jitlink
// library, which makes relocatable object files executable in memory. Its
// primary function is as a testing utility for the jitlink library.
//
//===----------------------------------------------------------------------===//
#include "llvm-jitlink.h"
#include "llvm/BinaryFormat/Magic.h"
#include "llvm/ExecutionEngine/Orc/COFFPlatform.h"
#include "llvm/ExecutionEngine/Orc/COFFVCRuntimeSupport.h"
#include "llvm/ExecutionEngine/Orc/DebugObjectManagerPlugin.h"
#include "llvm/ExecutionEngine/Orc/DebuggerSupportPlugin.h"
#include "llvm/ExecutionEngine/Orc/ELFNixPlatform.h"
#include "llvm/ExecutionEngine/Orc/EPCDebugObjectRegistrar.h"
#include "llvm/ExecutionEngine/Orc/EPCDynamicLibrarySearchGenerator.h"
#include "llvm/ExecutionEngine/Orc/EPCEHFrameRegistrar.h"
#include "llvm/ExecutionEngine/Orc/ExecutionUtils.h"
#include "llvm/ExecutionEngine/Orc/IndirectionUtils.h"
#include "llvm/ExecutionEngine/Orc/MachOPlatform.h"
#include "llvm/ExecutionEngine/Orc/MapperJITLinkMemoryManager.h"
#include "llvm/ExecutionEngine/Orc/ObjectFileInterface.h"
#include "llvm/ExecutionEngine/Orc/Shared/OrcRTBridge.h"
#include "llvm/ExecutionEngine/Orc/TargetProcess/JITLoaderGDB.h"
#include "llvm/ExecutionEngine/Orc/TargetProcess/RegisterEHFrames.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDisassembler/MCDisassembler.h"
#include "llvm/MC/MCInstPrinter.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Object/COFF.h"
#include "llvm/Object/MachO.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/InitLLVM.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/Timer.h"
#include <cstring>
#include <deque>
#include <list>
#include <string>
#ifdef LLVM_ON_UNIX
#include <netdb.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <unistd.h>
#endif // LLVM_ON_UNIX
#define DEBUG_TYPE "llvm_jitlink"
using namespace llvm;
using namespace llvm::jitlink;
using namespace llvm::orc;
static cl::OptionCategory JITLinkCategory("JITLink Options");
static cl::list<std::string> InputFiles(cl::Positional, cl::OneOrMore,
cl::desc("input files"),
cl::cat(JITLinkCategory));
static cl::list<std::string>
LibrarySearchPaths("L",
cl::desc("Add dir to the list of library search paths"),
cl::Prefix, cl::cat(JITLinkCategory));
static cl::list<std::string>
Libraries("l",
cl::desc("Link against library X in the library search paths"),
cl::Prefix, cl::cat(JITLinkCategory));
static cl::list<std::string>
LibrariesHidden("hidden-l",
cl::desc("Link against library X in the library search "
"paths with hidden visibility"),
cl::Prefix, cl::cat(JITLinkCategory));
static cl::list<std::string>
LoadHidden("load_hidden",
cl::desc("Link against library X with hidden visibility"),
cl::cat(JITLinkCategory));
static cl::opt<bool> SearchSystemLibrary(
"search-sys-lib",
cl::desc("Add system library paths to library search paths"),
cl::init(false), cl::cat(JITLinkCategory));
static cl::opt<bool> NoExec("noexec", cl::desc("Do not execute loaded code"),
cl::init(false), cl::cat(JITLinkCategory));
static cl::list<std::string>
CheckFiles("check", cl::desc("File containing verifier checks"),
cl::cat(JITLinkCategory));
static cl::opt<std::string>
CheckName("check-name", cl::desc("Name of checks to match against"),
cl::init("jitlink-check"), cl::cat(JITLinkCategory));
static cl::opt<std::string>
EntryPointName("entry", cl::desc("Symbol to call as main entry point"),
cl::init(""), cl::cat(JITLinkCategory));
static cl::list<std::string> JITDylibs(
"jd",
cl::desc("Specifies the JITDylib to be used for any subsequent "
"input file, -L<seacrh-path>, and -l<library> arguments"),
cl::cat(JITLinkCategory));
static cl::list<std::string>
Dylibs("preload",
cl::desc("Pre-load dynamic libraries (e.g. language runtimes "
"required by the ORC runtime)"),
cl::cat(JITLinkCategory));
static cl::list<std::string> InputArgv("args", cl::Positional,
cl::desc("<program arguments>..."),
cl::PositionalEatsArgs,
cl::cat(JITLinkCategory));
static cl::opt<bool>
DebuggerSupport("debugger-support",
cl::desc("Enable debugger suppport (default = !-noexec)"),
cl::init(true), cl::Hidden, cl::cat(JITLinkCategory));
static cl::opt<bool>
NoProcessSymbols("no-process-syms",
cl::desc("Do not resolve to llvm-jitlink process symbols"),
cl::init(false), cl::cat(JITLinkCategory));
static cl::list<std::string> AbsoluteDefs(
"abs",
cl::desc("Inject absolute symbol definitions (syntax: <name>=<addr>)"),
cl::cat(JITLinkCategory));
static cl::list<std::string>
Aliases("alias",
cl::desc("Inject symbol aliases (syntax: <alias-name>=<aliasee>)"),
cl::cat(JITLinkCategory));
static cl::list<std::string> TestHarnesses("harness", cl::Positional,
cl::desc("Test harness files"),
cl::PositionalEatsArgs,
cl::cat(JITLinkCategory));
static cl::opt<bool> ShowInitialExecutionSessionState(
"show-init-es",
cl::desc("Print ExecutionSession state before resolving entry point"),
cl::init(false), cl::cat(JITLinkCategory));
static cl::opt<bool> ShowEntryExecutionSessionState(
"show-entry-es",
cl::desc("Print ExecutionSession state after resolving entry point"),
cl::init(false), cl::cat(JITLinkCategory));
static cl::opt<bool> ShowAddrs(
"show-addrs",
cl::desc("Print registered symbol, section, got and stub addresses"),
cl::init(false), cl::cat(JITLinkCategory));
static cl::opt<std::string> ShowLinkGraphs(
"show-graphs",
cl::desc("Takes a posix regex and prints the link graphs of all files "
"matching that regex after fixups have been applied"),
cl::Optional, cl::cat(JITLinkCategory));
static cl::opt<bool> ShowSizes(
"show-sizes",
cl::desc("Show sizes pre- and post-dead stripping, and allocations"),
cl::init(false), cl::cat(JITLinkCategory));
static cl::opt<bool> ShowTimes("show-times",
cl::desc("Show times for llvm-jitlink phases"),
cl::init(false), cl::cat(JITLinkCategory));
static cl::opt<std::string> SlabAllocateSizeString(
"slab-allocate",
cl::desc("Allocate from a slab of the given size "
"(allowable suffixes: Kb, Mb, Gb. default = "
"Kb)"),
cl::init(""), cl::cat(JITLinkCategory));
static cl::opt<uint64_t> SlabAddress(
"slab-address",
cl::desc("Set slab target address (requires -slab-allocate and -noexec)"),
cl::init(~0ULL), cl::cat(JITLinkCategory));
static cl::opt<uint64_t> SlabPageSize(
"slab-page-size",
cl::desc("Set page size for slab (requires -slab-allocate and -noexec)"),
cl::init(0), cl::cat(JITLinkCategory));
static cl::opt<bool> ShowRelocatedSectionContents(
"show-relocated-section-contents",
cl::desc("show section contents after fixups have been applied"),
cl::init(false), cl::cat(JITLinkCategory));
static cl::opt<bool> PhonyExternals(
"phony-externals",
cl::desc("resolve all otherwise unresolved externals to null"),
cl::init(false), cl::cat(JITLinkCategory));
static cl::opt<std::string> OutOfProcessExecutor(
"oop-executor", cl::desc("Launch an out-of-process executor to run code"),
cl::ValueOptional, cl::cat(JITLinkCategory));
static cl::opt<std::string> OutOfProcessExecutorConnect(
"oop-executor-connect",
cl::desc("Connect to an out-of-process executor via TCP"),
cl::cat(JITLinkCategory));
static cl::opt<std::string>
OrcRuntime("orc-runtime", cl::desc("Use ORC runtime from given path"),
cl::init(""), cl::cat(JITLinkCategory));
static cl::opt<bool> AddSelfRelocations(
"add-self-relocations",
cl::desc("Add relocations to function pointers to the current function"),
cl::init(false), cl::cat(JITLinkCategory));
static cl::opt<bool>
ShowErrFailedToMaterialize("show-err-failed-to-materialize",
cl::desc("Show FailedToMaterialize errors"),
cl::init(false), cl::cat(JITLinkCategory));
static cl::opt<bool> UseSharedMemory(
"use-shared-memory",
cl::desc("Use shared memory to transfer generated code and data"),
cl::init(false), cl::cat(JITLinkCategory));
static ExitOnError ExitOnErr;
static LLVM_ATTRIBUTE_USED void linkComponents() {
errs() << (void *)&llvm_orc_registerEHFrameSectionWrapper
<< (void *)&llvm_orc_deregisterEHFrameSectionWrapper
<< (void *)&llvm_orc_registerJITLoaderGDBWrapper
<< (void *)&llvm_orc_registerJITLoaderGDBAllocAction;
}
static bool UseTestResultOverride = false;
static int64_t TestResultOverride = 0;
extern "C" LLVM_ATTRIBUTE_USED void
llvm_jitlink_setTestResultOverride(int64_t Value) {
TestResultOverride = Value;
UseTestResultOverride = true;
}
static Error addSelfRelocations(LinkGraph &G);
namespace {
template <typename ErrT>
class ConditionalPrintErr {
public:
ConditionalPrintErr(bool C) : C(C) {}
void operator()(ErrT &EI) {
if (C) {
errs() << "llvm-jitlink error: ";
EI.log(errs());
errs() << "\n";
}
}
private:
bool C;
};
Expected<std::unique_ptr<MemoryBuffer>> getFile(const Twine &FileName) {
if (auto F = MemoryBuffer::getFile(FileName))
return std::move(*F);
else
return createFileError(FileName, F.getError());
}
void reportLLVMJITLinkError(Error Err) {
handleAllErrors(
std::move(Err),
ConditionalPrintErr<orc::FailedToMaterialize>(ShowErrFailedToMaterialize),
ConditionalPrintErr<ErrorInfoBase>(true));
}
} // end anonymous namespace
namespace llvm {
static raw_ostream &
operator<<(raw_ostream &OS, const Session::MemoryRegionInfo &MRI) {
return OS << "target addr = "
<< format("0x%016" PRIx64, MRI.getTargetAddress())
<< ", content: " << (const void *)MRI.getContent().data() << " -- "
<< (const void *)(MRI.getContent().data() + MRI.getContent().size())
<< " (" << MRI.getContent().size() << " bytes)";
}
static raw_ostream &
operator<<(raw_ostream &OS, const Session::SymbolInfoMap &SIM) {
OS << "Symbols:\n";
for (auto &SKV : SIM)
OS << " \"" << SKV.first() << "\" " << SKV.second << "\n";
return OS;
}
static raw_ostream &
operator<<(raw_ostream &OS, const Session::FileInfo &FI) {
for (auto &SIKV : FI.SectionInfos)
OS << " Section \"" << SIKV.first() << "\": " << SIKV.second << "\n";
for (auto &GOTKV : FI.GOTEntryInfos)
OS << " GOT \"" << GOTKV.first() << "\": " << GOTKV.second << "\n";
for (auto &StubKV : FI.StubInfos)
OS << " Stub \"" << StubKV.first() << "\": " << StubKV.second << "\n";
return OS;
}
static raw_ostream &
operator<<(raw_ostream &OS, const Session::FileInfoMap &FIM) {
for (auto &FIKV : FIM)
OS << "File \"" << FIKV.first() << "\":\n" << FIKV.second;
return OS;
}
static Error applyHarnessPromotions(Session &S, LinkGraph &G) {
// If this graph is part of the test harness there's nothing to do.
if (S.HarnessFiles.empty() || S.HarnessFiles.count(G.getName()))
return Error::success();
LLVM_DEBUG(dbgs() << "Applying promotions to graph " << G.getName() << "\n");
// If this graph is part of the test then promote any symbols referenced by
// the harness to default scope, remove all symbols that clash with harness
// definitions.
std::vector<Symbol *> DefinitionsToRemove;
for (auto *Sym : G.defined_symbols()) {
if (!Sym->hasName())
continue;
if (Sym->getLinkage() == Linkage::Weak) {
if (!S.CanonicalWeakDefs.count(Sym->getName()) ||
S.CanonicalWeakDefs[Sym->getName()] != G.getName()) {
LLVM_DEBUG({
dbgs() << " Externalizing weak symbol " << Sym->getName() << "\n";
});
DefinitionsToRemove.push_back(Sym);
} else {
LLVM_DEBUG({
dbgs() << " Making weak symbol " << Sym->getName() << " strong\n";
});
if (S.HarnessExternals.count(Sym->getName()))
Sym->setScope(Scope::Default);
else
Sym->setScope(Scope::Hidden);
Sym->setLinkage(Linkage::Strong);
}
} else if (S.HarnessExternals.count(Sym->getName())) {
LLVM_DEBUG(dbgs() << " Promoting " << Sym->getName() << "\n");
Sym->setScope(Scope::Default);
Sym->setLive(true);
continue;
} else if (S.HarnessDefinitions.count(Sym->getName())) {
LLVM_DEBUG(dbgs() << " Externalizing " << Sym->getName() << "\n");
DefinitionsToRemove.push_back(Sym);
}
}
for (auto *Sym : DefinitionsToRemove)
G.makeExternal(*Sym);
return Error::success();
}
static uint64_t computeTotalBlockSizes(LinkGraph &G) {
uint64_t TotalSize = 0;
for (auto *B : G.blocks())
TotalSize += B->getSize();
return TotalSize;
}
static void dumpSectionContents(raw_ostream &OS, LinkGraph &G) {
constexpr orc::ExecutorAddrDiff DumpWidth = 16;
static_assert(isPowerOf2_64(DumpWidth), "DumpWidth must be a power of two");
// Put sections in address order.
std::vector<Section *> Sections;
for (auto &S : G.sections())
Sections.push_back(&S);
llvm::sort(Sections, [](const Section *LHS, const Section *RHS) {
if (LHS->symbols().empty() && RHS->symbols().empty())
return false;
if (LHS->symbols().empty())
return false;
if (RHS->symbols().empty())
return true;
SectionRange LHSRange(*LHS);
SectionRange RHSRange(*RHS);
return LHSRange.getStart() < RHSRange.getStart();
});
for (auto *S : Sections) {
OS << S->getName() << " content:";
if (S->symbols().empty()) {
OS << "\n section empty\n";
continue;
}
// Sort symbols into order, then render.
std::vector<Symbol *> Syms(S->symbols().begin(), S->symbols().end());
llvm::sort(Syms, [](const Symbol *LHS, const Symbol *RHS) {
return LHS->getAddress() < RHS->getAddress();
});
orc::ExecutorAddr NextAddr(Syms.front()->getAddress().getValue() &
~(DumpWidth - 1));
for (auto *Sym : Syms) {
bool IsZeroFill = Sym->getBlock().isZeroFill();
auto SymStart = Sym->getAddress();
auto SymSize = Sym->getSize();
auto SymEnd = SymStart + SymSize;
const uint8_t *SymData = IsZeroFill ? nullptr
: reinterpret_cast<const uint8_t *>(
Sym->getSymbolContent().data());
// Pad any space before the symbol starts.
while (NextAddr != SymStart) {
if (NextAddr % DumpWidth == 0)
OS << formatv("\n{0:x16}:", NextAddr);
OS << " ";
++NextAddr;
}
// Render the symbol content.
while (NextAddr != SymEnd) {
if (NextAddr % DumpWidth == 0)
OS << formatv("\n{0:x16}:", NextAddr);
if (IsZeroFill)
OS << " 00";
else
OS << formatv(" {0:x-2}", SymData[NextAddr - SymStart]);
++NextAddr;
}
}
OS << "\n";
}
}
// A memory mapper with a fake offset applied only used for -noexec testing
class InProcessDeltaMapper final : public InProcessMemoryMapper {
public:
InProcessDeltaMapper(size_t PageSize, uint64_t TargetAddr)
: InProcessMemoryMapper(PageSize), TargetMapAddr(TargetAddr),
DeltaAddr(0) {}
static Expected<std::unique_ptr<InProcessDeltaMapper>> Create() {
size_t PageSize = SlabPageSize;
if (!PageSize) {
if (auto PageSizeOrErr = sys::Process::getPageSize())
PageSize = *PageSizeOrErr;
else
return PageSizeOrErr.takeError();
}
if (PageSize == 0)
return make_error<StringError>("Page size is zero",
inconvertibleErrorCode());
return std::make_unique<InProcessDeltaMapper>(PageSize, SlabAddress);
}
void reserve(size_t NumBytes, OnReservedFunction OnReserved) override {
InProcessMemoryMapper::reserve(
NumBytes, [this, OnReserved = std::move(OnReserved)](
Expected<ExecutorAddrRange> Result) mutable {
if (!Result)
return OnReserved(Result.takeError());
assert(DeltaAddr == 0 && "Overwriting previous offset");
if (TargetMapAddr != ~0ULL)
DeltaAddr = TargetMapAddr - Result->Start.getValue();
auto OffsetRange = ExecutorAddrRange(Result->Start + DeltaAddr,
Result->End + DeltaAddr);
OnReserved(OffsetRange);
});
}
char *prepare(ExecutorAddr Addr, size_t ContentSize) override {
return InProcessMemoryMapper::prepare(Addr - DeltaAddr, ContentSize);
}
void initialize(AllocInfo &AI, OnInitializedFunction OnInitialized) override {
// Slide mapping based on delta, make all segments read-writable, and
// discard allocation actions.
auto FixedAI = std::move(AI);
FixedAI.MappingBase -= DeltaAddr;
for (auto &Seg : FixedAI.Segments)
Seg.AG = {MemProt::Read | MemProt::Write, Seg.AG.getMemLifetimePolicy()};
FixedAI.Actions.clear();
InProcessMemoryMapper::initialize(
FixedAI, [this, OnInitialized = std::move(OnInitialized)](
Expected<ExecutorAddr> Result) mutable {
if (!Result)
return OnInitialized(Result.takeError());
OnInitialized(ExecutorAddr(Result->getValue() + DeltaAddr));
});
}
void deinitialize(ArrayRef<ExecutorAddr> Allocations,
OnDeinitializedFunction OnDeInitialized) override {
std::vector<ExecutorAddr> Addrs(Allocations.size());
for (const auto Base : Allocations) {
Addrs.push_back(Base - DeltaAddr);
}
InProcessMemoryMapper::deinitialize(Addrs, std::move(OnDeInitialized));
}
void release(ArrayRef<ExecutorAddr> Reservations,
OnReleasedFunction OnRelease) override {
std::vector<ExecutorAddr> Addrs(Reservations.size());
for (const auto Base : Reservations) {
Addrs.push_back(Base - DeltaAddr);
}
InProcessMemoryMapper::release(Addrs, std::move(OnRelease));
}
private:
uint64_t TargetMapAddr;
uint64_t DeltaAddr;
};
Expected<uint64_t> getSlabAllocSize(StringRef SizeString) {
SizeString = SizeString.trim();
uint64_t Units = 1024;
if (SizeString.endswith_insensitive("kb"))
SizeString = SizeString.drop_back(2).rtrim();
else if (SizeString.endswith_insensitive("mb")) {
Units = 1024 * 1024;
SizeString = SizeString.drop_back(2).rtrim();
} else if (SizeString.endswith_insensitive("gb")) {
Units = 1024 * 1024 * 1024;
SizeString = SizeString.drop_back(2).rtrim();
}
uint64_t SlabSize = 0;
if (SizeString.getAsInteger(10, SlabSize))
return make_error<StringError>("Invalid numeric format for slab size",
inconvertibleErrorCode());
return SlabSize * Units;
}
static std::unique_ptr<JITLinkMemoryManager> createInProcessMemoryManager() {
uint64_t SlabSize;
#ifdef _WIN32
SlabSize = 1024 * 1024;
#else
SlabSize = 1024 * 1024 * 1024;
#endif
if (!SlabAllocateSizeString.empty())
SlabSize = ExitOnErr(getSlabAllocSize(SlabAllocateSizeString));
// If this is a -no-exec case and we're tweaking the slab address or size then
// use the delta mapper.
if (NoExec && (SlabAddress || SlabPageSize))
return ExitOnErr(
MapperJITLinkMemoryManager::CreateWithMapper<InProcessDeltaMapper>(
SlabSize));
// Otherwise use the standard in-process mapper.
return ExitOnErr(
MapperJITLinkMemoryManager::CreateWithMapper<InProcessMemoryMapper>(
SlabSize));
}
Expected<std::unique_ptr<jitlink::JITLinkMemoryManager>>
createSharedMemoryManager(SimpleRemoteEPC &SREPC) {
SharedMemoryMapper::SymbolAddrs SAs;
if (auto Err = SREPC.getBootstrapSymbols(
{{SAs.Instance, rt::ExecutorSharedMemoryMapperServiceInstanceName},
{SAs.Reserve,
rt::ExecutorSharedMemoryMapperServiceReserveWrapperName},
{SAs.Initialize,
rt::ExecutorSharedMemoryMapperServiceInitializeWrapperName},
{SAs.Deinitialize,
rt::ExecutorSharedMemoryMapperServiceDeinitializeWrapperName},
{SAs.Release,
rt::ExecutorSharedMemoryMapperServiceReleaseWrapperName}}))
return std::move(Err);
#ifdef _WIN32
size_t SlabSize = 1024 * 1024;
#else
size_t SlabSize = 1024 * 1024 * 1024;
#endif
if (!SlabAllocateSizeString.empty())
SlabSize = ExitOnErr(getSlabAllocSize(SlabAllocateSizeString));
return MapperJITLinkMemoryManager::CreateWithMapper<SharedMemoryMapper>(
SlabSize, SREPC, SAs);
}
static Expected<MaterializationUnit::Interface>
getTestObjectFileInterface(Session &S, MemoryBufferRef O) {
// Get the standard interface for this object, but ignore the symbols field.
// We'll handle that manually to include promotion.
auto I = getObjectFileInterface(S.ES, O);
if (!I)
return I.takeError();
I->SymbolFlags.clear();
// If creating an object file was going to fail it would have happened above,
// so we can 'cantFail' this.
auto Obj = cantFail(object::ObjectFile::createObjectFile(O));
// The init symbol must be included in the SymbolFlags map if present.
if (I->InitSymbol)
I->SymbolFlags[I->InitSymbol] =
JITSymbolFlags::MaterializationSideEffectsOnly;
for (auto &Sym : Obj->symbols()) {
Expected<uint32_t> SymFlagsOrErr = Sym.getFlags();
if (!SymFlagsOrErr)
// TODO: Test this error.
return SymFlagsOrErr.takeError();
// Skip symbols not defined in this object file.
if ((*SymFlagsOrErr & object::BasicSymbolRef::SF_Undefined))
continue;
auto Name = Sym.getName();
if (!Name)
return Name.takeError();
// Skip symbols that have type SF_File.
if (auto SymType = Sym.getType()) {
if (*SymType == object::SymbolRef::ST_File)
continue;
} else
return SymType.takeError();
auto SymFlags = JITSymbolFlags::fromObjectSymbol(Sym);
if (!SymFlags)
return SymFlags.takeError();
if (SymFlags->isWeak()) {
// If this is a weak symbol that's not defined in the harness then we
// need to either mark it as strong (if this is the first definition
// that we've seen) or discard it.
if (S.HarnessDefinitions.count(*Name) || S.CanonicalWeakDefs.count(*Name))
continue;
S.CanonicalWeakDefs[*Name] = O.getBufferIdentifier();
*SymFlags &= ~JITSymbolFlags::Weak;
if (!S.HarnessExternals.count(*Name))
*SymFlags &= ~JITSymbolFlags::Exported;
} else if (S.HarnessExternals.count(*Name)) {
*SymFlags |= JITSymbolFlags::Exported;
} else if (S.HarnessDefinitions.count(*Name) ||
!(*SymFlagsOrErr & object::BasicSymbolRef::SF_Global))
continue;
auto InternedName = S.ES.intern(*Name);
I->SymbolFlags[InternedName] = std::move(*SymFlags);
}
return I;
}
static Error loadProcessSymbols(Session &S) {
auto FilterMainEntryPoint =
[EPName = S.ES.intern(EntryPointName)](SymbolStringPtr Name) {
return Name != EPName;
};
S.MainJD->addGenerator(
ExitOnErr(orc::EPCDynamicLibrarySearchGenerator::GetForTargetProcess(
S.ES, std::move(FilterMainEntryPoint))));
return Error::success();
}
static Error loadDylibs(Session &S) {
LLVM_DEBUG(dbgs() << "Loading dylibs...\n");
for (const auto &Dylib : Dylibs) {
LLVM_DEBUG(dbgs() << " " << Dylib << "\n");
if (auto Err = S.loadAndLinkDynamicLibrary(*S.MainJD, Dylib))
return Err;
}
return Error::success();
}
static Expected<std::unique_ptr<ExecutorProcessControl>> launchExecutor() {
#ifndef LLVM_ON_UNIX
// FIXME: Add support for Windows.
return make_error<StringError>("-" + OutOfProcessExecutor.ArgStr +
" not supported on non-unix platforms",
inconvertibleErrorCode());
#elif !LLVM_ENABLE_THREADS
// Out of process mode using SimpleRemoteEPC depends on threads.
return make_error<StringError>(
"-" + OutOfProcessExecutor.ArgStr +
" requires threads, but LLVM was built with "
"LLVM_ENABLE_THREADS=Off",
inconvertibleErrorCode());
#else
constexpr int ReadEnd = 0;
constexpr int WriteEnd = 1;
// Pipe FDs.
int ToExecutor[2];
int FromExecutor[2];
pid_t ChildPID;
// Create pipes to/from the executor..
if (pipe(ToExecutor) != 0 || pipe(FromExecutor) != 0)
return make_error<StringError>("Unable to create pipe for executor",
inconvertibleErrorCode());
ChildPID = fork();
if (ChildPID == 0) {
// In the child...
// Close the parent ends of the pipes
close(ToExecutor[WriteEnd]);
close(FromExecutor[ReadEnd]);
// Execute the child process.
std::unique_ptr<char[]> ExecutorPath, FDSpecifier;
{
ExecutorPath = std::make_unique<char[]>(OutOfProcessExecutor.size() + 1);
strcpy(ExecutorPath.get(), OutOfProcessExecutor.data());
std::string FDSpecifierStr("filedescs=");
FDSpecifierStr += utostr(ToExecutor[ReadEnd]);
FDSpecifierStr += ',';
FDSpecifierStr += utostr(FromExecutor[WriteEnd]);
FDSpecifier = std::make_unique<char[]>(FDSpecifierStr.size() + 1);
strcpy(FDSpecifier.get(), FDSpecifierStr.c_str());
}
char *const Args[] = {ExecutorPath.get(), FDSpecifier.get(), nullptr};
int RC = execvp(ExecutorPath.get(), Args);
if (RC != 0) {
errs() << "unable to launch out-of-process executor \""
<< ExecutorPath.get() << "\"\n";
exit(1);
}
}
// else we're the parent...
// Close the child ends of the pipes
close(ToExecutor[ReadEnd]);
close(FromExecutor[WriteEnd]);
auto S = SimpleRemoteEPC::Setup();
if (UseSharedMemory)
S.CreateMemoryManager = createSharedMemoryManager;
return SimpleRemoteEPC::Create<FDSimpleRemoteEPCTransport>(
std::make_unique<DynamicThreadPoolTaskDispatcher>(), std::move(S),
FromExecutor[ReadEnd], ToExecutor[WriteEnd]);
#endif
}
#if LLVM_ON_UNIX && LLVM_ENABLE_THREADS
static Error createTCPSocketError(Twine Details) {
return make_error<StringError>(
formatv("Failed to connect TCP socket '{0}': {1}",
OutOfProcessExecutorConnect, Details),
inconvertibleErrorCode());
}
static Expected<int> connectTCPSocket(std::string Host, std::string PortStr) {
addrinfo *AI;
addrinfo Hints{};
Hints.ai_family = AF_INET;
Hints.ai_socktype = SOCK_STREAM;
Hints.ai_flags = AI_NUMERICSERV;
if (int EC = getaddrinfo(Host.c_str(), PortStr.c_str(), &Hints, &AI))
return createTCPSocketError("Address resolution failed (" +
StringRef(gai_strerror(EC)) + ")");
// Cycle through the returned addrinfo structures and connect to the first
// reachable endpoint.
int SockFD;
addrinfo *Server;
for (Server = AI; Server != nullptr; Server = Server->ai_next) {
// socket might fail, e.g. if the address family is not supported. Skip to
// the next addrinfo structure in such a case.
if ((SockFD = socket(AI->ai_family, AI->ai_socktype, AI->ai_protocol)) < 0)
continue;
// If connect returns null, we exit the loop with a working socket.
if (connect(SockFD, Server->ai_addr, Server->ai_addrlen) == 0)
break;
close(SockFD);
}
freeaddrinfo(AI);
// If we reached the end of the loop without connecting to a valid endpoint,
// dump the last error that was logged in socket() or connect().
if (Server == nullptr)
return createTCPSocketError(std::strerror(errno));
return SockFD;
}
#endif
static Expected<std::unique_ptr<ExecutorProcessControl>> connectToExecutor() {
#ifndef LLVM_ON_UNIX
// FIXME: Add TCP support for Windows.
return make_error<StringError>("-" + OutOfProcessExecutorConnect.ArgStr +
" not supported on non-unix platforms",
inconvertibleErrorCode());
#elif !LLVM_ENABLE_THREADS
// Out of process mode using SimpleRemoteEPC depends on threads.
return make_error<StringError>(
"-" + OutOfProcessExecutorConnect.ArgStr +
" requires threads, but LLVM was built with "
"LLVM_ENABLE_THREADS=Off",
inconvertibleErrorCode());
#else
StringRef Host, PortStr;
std::tie(Host, PortStr) = StringRef(OutOfProcessExecutorConnect).split(':');
if (Host.empty())
return createTCPSocketError("Host name for -" +
OutOfProcessExecutorConnect.ArgStr +
" can not be empty");
if (PortStr.empty())
return createTCPSocketError("Port number in -" +
OutOfProcessExecutorConnect.ArgStr +
" can not be empty");
int Port = 0;
if (PortStr.getAsInteger(10, Port))
return createTCPSocketError("Port number '" + PortStr +
"' is not a valid integer");
Expected<int> SockFD = connectTCPSocket(Host.str(), PortStr.str());
if (!SockFD)
return SockFD.takeError();
auto S = SimpleRemoteEPC::Setup();
if (UseSharedMemory)
S.CreateMemoryManager = createSharedMemoryManager;
return SimpleRemoteEPC::Create<FDSimpleRemoteEPCTransport>(
std::make_unique<DynamicThreadPoolTaskDispatcher>(),
std::move(S), *SockFD, *SockFD);
#endif
}
class PhonyExternalsGenerator : public DefinitionGenerator {
public:
Error tryToGenerate(LookupState &LS, LookupKind K, JITDylib &JD,
JITDylibLookupFlags JDLookupFlags,
const SymbolLookupSet &LookupSet) override {
SymbolMap PhonySymbols;
for (auto &KV : LookupSet)
PhonySymbols[KV.first] = {ExecutorAddr(), JITSymbolFlags::Exported};
return JD.define(absoluteSymbols(std::move(PhonySymbols)));
}
};
Expected<std::unique_ptr<Session>> Session::Create(Triple TT) {
std::unique_ptr<ExecutorProcessControl> EPC;
if (OutOfProcessExecutor.getNumOccurrences()) {
/// If -oop-executor is passed then launch the executor.
if (auto REPC = launchExecutor())
EPC = std::move(*REPC);
else
return REPC.takeError();
} else if (OutOfProcessExecutorConnect.getNumOccurrences()) {
/// If -oop-executor-connect is passed then connect to the executor.
if (auto REPC = connectToExecutor())
EPC = std::move(*REPC);
else
return REPC.takeError();
} else {
/// Otherwise use SelfExecutorProcessControl to target the current process.
auto PageSize = sys::Process::getPageSize();
if (!PageSize)
return PageSize.takeError();
EPC = std::make_unique<SelfExecutorProcessControl>(
std::make_shared<SymbolStringPool>(),
std::make_unique<InPlaceTaskDispatcher>(), std::move(TT), *PageSize,
createInProcessMemoryManager());
}
Error Err = Error::success();
std::unique_ptr<Session> S(new Session(std::move(EPC), Err));
if (Err)
return std::move(Err);
return std::move(S);
}
Session::~Session() {
if (auto Err = ES.endSession())
ES.reportError(std::move(Err));
}
Session::Session(std::unique_ptr<ExecutorProcessControl> EPC, Error &Err)
: ES(std::move(EPC)),
ObjLayer(ES, ES.getExecutorProcessControl().getMemMgr()) {
/// Local ObjectLinkingLayer::Plugin class to forward modifyPassConfig to the
/// Session.
class JITLinkSessionPlugin : public ObjectLinkingLayer::Plugin {
public:
JITLinkSessionPlugin(Session &S) : S(S) {}
void modifyPassConfig(MaterializationResponsibility &MR, LinkGraph &G,
PassConfiguration &PassConfig) override {
S.modifyPassConfig(G.getTargetTriple(), PassConfig);
}
Error notifyFailed(MaterializationResponsibility &MR) override {
return Error::success();
}
Error notifyRemovingResources(JITDylib &JD, ResourceKey K) override {
return Error::success();
}
void notifyTransferringResources(JITDylib &JD, ResourceKey DstKey,
ResourceKey SrcKey) override {}
private:
Session &S;
};
ErrorAsOutParameter _(&Err);
ES.setErrorReporter(reportLLVMJITLinkError);
if (auto MainJDOrErr = ES.createJITDylib("main"))
MainJD = &*MainJDOrErr;
else {
Err = MainJDOrErr.takeError();
return;
}
if (!NoProcessSymbols)
ExitOnErr(loadProcessSymbols(*this));
else {
// This symbol is used in testcases.
auto &TestResultJD = ES.createBareJITDylib("<TestResultJD>");
ExitOnErr(TestResultJD.define(absoluteSymbols(
{{ES.intern("llvm_jitlink_setTestResultOverride"),
{ExecutorAddr::fromPtr(llvm_jitlink_setTestResultOverride),
JITSymbolFlags::Exported}}})));
MainJD->addToLinkOrder(TestResultJD);
}
ExitOnErr(loadDylibs(*this));
auto &TT = ES.getTargetTriple();
if (DebuggerSupport && TT.isOSBinFormatMachO())
ObjLayer.addPlugin(ExitOnErr(
GDBJITDebugInfoRegistrationPlugin::Create(this->ES, *MainJD, TT)));
// Set up the platform.
if (TT.isOSBinFormatMachO() && !OrcRuntime.empty()) {
if (auto P =
MachOPlatform::Create(ES, ObjLayer, *MainJD, OrcRuntime.c_str()))
ES.setPlatform(std::move(*P));
else {
Err = P.takeError();
return;
}
} else if (TT.isOSBinFormatELF() && !OrcRuntime.empty()) {
if (auto P =
ELFNixPlatform::Create(ES, ObjLayer, *MainJD, OrcRuntime.c_str()))
ES.setPlatform(std::move(*P));
else {
Err = P.takeError();
return;
}
} else if (TT.isOSBinFormatCOFF() && !OrcRuntime.empty()) {
auto LoadDynLibrary = [&, this](JITDylib &JD, StringRef DLLName) -> Error {
if (!DLLName.endswith_insensitive(".dll"))
return make_error<StringError>("DLLName not ending with .dll",
inconvertibleErrorCode());
return loadAndLinkDynamicLibrary(JD, DLLName);
};
if (auto P = COFFPlatform::Create(ES, ObjLayer, *MainJD, OrcRuntime.c_str(),
std::move(LoadDynLibrary)))
ES.setPlatform(std::move(*P));
else {
Err = P.takeError();
return;
}
} else if (TT.isOSBinFormatELF()) {
if (!NoExec)
ObjLayer.addPlugin(std::make_unique<EHFrameRegistrationPlugin>(
ES, ExitOnErr(EPCEHFrameRegistrar::Create(this->ES))));
if (DebuggerSupport)
ObjLayer.addPlugin(std::make_unique<DebugObjectManagerPlugin>(
ES, ExitOnErr(createJITLoaderGDBRegistrar(this->ES))));
}
ObjLayer.addPlugin(std::make_unique<JITLinkSessionPlugin>(*this));
// Process any harness files.
for (auto &HarnessFile : TestHarnesses) {
HarnessFiles.insert(HarnessFile);
auto ObjBuffer = ExitOnErr(getFile(HarnessFile));
auto ObjInterface =
ExitOnErr(getObjectFileInterface(ES, ObjBuffer->getMemBufferRef()));
for (auto &KV : ObjInterface.SymbolFlags)
HarnessDefinitions.insert(*KV.first);
auto Obj = ExitOnErr(
object::ObjectFile::createObjectFile(ObjBuffer->getMemBufferRef()));
for (auto &Sym : Obj->symbols()) {
uint32_t SymFlags = ExitOnErr(Sym.getFlags());
auto Name = ExitOnErr(Sym.getName());
if (Name.empty())
continue;
if (SymFlags & object::BasicSymbolRef::SF_Undefined)
HarnessExternals.insert(Name);
}
}
// If a name is defined by some harness file then it's a definition, not an
// external.
for (auto &DefName : HarnessDefinitions)
HarnessExternals.erase(DefName.getKey());
if (!ShowLinkGraphs.empty())
ShowGraphsRegex = Regex(ShowLinkGraphs);
}
void Session::dumpSessionInfo(raw_ostream &OS) {
OS << "Registered addresses:\n" << SymbolInfos << FileInfos;
}
void Session::modifyPassConfig(const Triple &TT,
PassConfiguration &PassConfig) {
if (!CheckFiles.empty())
PassConfig.PostFixupPasses.push_back([this](LinkGraph &G) {
if (ES.getTargetTriple().getObjectFormat() == Triple::ELF)
return registerELFGraphInfo(*this, G);
if (ES.getTargetTriple().getObjectFormat() == Triple::MachO)
return registerMachOGraphInfo(*this, G);
if (ES.getTargetTriple().getObjectFormat() == Triple::COFF)
return registerCOFFGraphInfo(*this, G);
return make_error<StringError>("Unsupported object format for GOT/stub "
"registration",
inconvertibleErrorCode());
});
if (ShowGraphsRegex)
PassConfig.PostFixupPasses.push_back([this](LinkGraph &G) -> Error {
// Print graph if ShowLinkGraphs is specified-but-empty, or if
// it contains the given graph.
if (ShowGraphsRegex->match(G.getName())) {
outs() << "Link graph \"" << G.getName() << "\" post-fixup:\n";
G.dump(outs());
}
return Error::success();
});
PassConfig.PrePrunePasses.push_back(
[this](LinkGraph &G) { return applyHarnessPromotions(*this, G); });
if (ShowSizes) {
PassConfig.PrePrunePasses.push_back([this](LinkGraph &G) -> Error {
SizeBeforePruning += computeTotalBlockSizes(G);
return Error::success();
});
PassConfig.PostFixupPasses.push_back([this](LinkGraph &G) -> Error {
SizeAfterFixups += computeTotalBlockSizes(G);
return Error::success();
});
}
if (ShowRelocatedSectionContents)
PassConfig.PostFixupPasses.push_back([](LinkGraph &G) -> Error {
outs() << "Relocated section contents for " << G.getName() << ":\n";
dumpSectionContents(outs(), G);
return Error::success();
});
if (AddSelfRelocations)
PassConfig.PostPrunePasses.push_back(addSelfRelocations);
}
Expected<JITDylib *> Session::getOrLoadDynamicLibrary(StringRef LibPath) {
auto It = DynLibJDs.find(LibPath.str());
if (It != DynLibJDs.end()) {
return It->second;
}
auto G = EPCDynamicLibrarySearchGenerator::Load(ES, LibPath.data());
if (!G)
return G.takeError();
auto JD = &ES.createBareJITDylib(LibPath.str());
JD->addGenerator(std::move(*G));
DynLibJDs.emplace(LibPath.str(), JD);
LLVM_DEBUG({
dbgs() << "Loaded dynamic library " << LibPath.data() << " for " << LibPath
<< "\n";
});
return JD;
}
Error Session::loadAndLinkDynamicLibrary(JITDylib &JD, StringRef LibPath) {
auto DL = getOrLoadDynamicLibrary(LibPath);
if (!DL)
return DL.takeError();
JD.addToLinkOrder(**DL);
LLVM_DEBUG({
dbgs() << "Linking dynamic library " << LibPath << " to " << JD.getName()
<< "\n";
});
return Error::success();
}
Expected<Session::FileInfo &> Session::findFileInfo(StringRef FileName) {
auto FileInfoItr = FileInfos.find(FileName);
if (FileInfoItr == FileInfos.end())
return make_error<StringError>("file \"" + FileName + "\" not recognized",
inconvertibleErrorCode());
return FileInfoItr->second;
}
Expected<Session::MemoryRegionInfo &>
Session::findSectionInfo(StringRef FileName, StringRef SectionName) {
auto FI = findFileInfo(FileName);
if (!FI)
return FI.takeError();
auto SecInfoItr = FI->SectionInfos.find(SectionName);
if (SecInfoItr == FI->SectionInfos.end())
return make_error<StringError>("no section \"" + SectionName +
"\" registered for file \"" + FileName +
"\"",
inconvertibleErrorCode());
return SecInfoItr->second;
}
Expected<Session::MemoryRegionInfo &>
Session::findStubInfo(StringRef FileName, StringRef TargetName) {
auto FI = findFileInfo(FileName);
if (!FI)
return FI.takeError();
auto StubInfoItr = FI->StubInfos.find(TargetName);
if (StubInfoItr == FI->StubInfos.end())
return make_error<StringError>("no stub for \"" + TargetName +
"\" registered for file \"" + FileName +
"\"",
inconvertibleErrorCode());
return StubInfoItr->second;
}
Expected<Session::MemoryRegionInfo &>
Session::findGOTEntryInfo(StringRef FileName, StringRef TargetName) {
auto FI = findFileInfo(FileName);
if (!FI)
return FI.takeError();
auto GOTInfoItr = FI->GOTEntryInfos.find(TargetName);
if (GOTInfoItr == FI->GOTEntryInfos.end())
return make_error<StringError>("no GOT entry for \"" + TargetName +
"\" registered for file \"" + FileName +
"\"",
inconvertibleErrorCode());
return GOTInfoItr->second;
}
bool Session::isSymbolRegistered(StringRef SymbolName) {
return SymbolInfos.count(SymbolName);
}
Expected<Session::MemoryRegionInfo &>
Session::findSymbolInfo(StringRef SymbolName, Twine ErrorMsgStem) {
auto SymInfoItr = SymbolInfos.find(SymbolName);
if (SymInfoItr == SymbolInfos.end())
return make_error<StringError>(ErrorMsgStem + ": symbol " + SymbolName +
" not found",
inconvertibleErrorCode());
return SymInfoItr->second;
}
} // end namespace llvm
static Triple getFirstFileTriple() {
static Triple FirstTT = []() {
assert(!InputFiles.empty() && "InputFiles can not be empty");
for (auto InputFile : InputFiles) {
auto ObjBuffer = ExitOnErr(getFile(InputFile));
file_magic Magic = identify_magic(ObjBuffer->getBuffer());
switch (Magic) {
case file_magic::coff_object:
case file_magic::elf_relocatable:
case file_magic::macho_object: {
auto Obj = ExitOnErr(
object::ObjectFile::createObjectFile(ObjBuffer->getMemBufferRef()));
Triple TT = Obj->makeTriple();
if (Magic == file_magic::coff_object) {
// TODO: Move this to makeTriple() if possible.
TT.setObjectFormat(Triple::COFF);
TT.setOS(Triple::OSType::Win32);
}
return TT;
}
default:
break;
}
}
return Triple();
}();
return FirstTT;
}
static Error sanitizeArguments(const Triple &TT, const char *ArgV0) {
// -noexec and --args should not be used together.
if (NoExec && !InputArgv.empty())
errs() << "Warning: --args passed to -noexec run will be ignored.\n";
// Set the entry point name if not specified.
if (EntryPointName.empty())
EntryPointName = TT.getObjectFormat() == Triple::MachO ? "_main" : "main";
// Disable debugger support by default in noexec tests.
if (DebuggerSupport.getNumOccurrences() == 0 && NoExec)
DebuggerSupport = false;
// If -slab-allocate is passed, check that we're not trying to use it in
// -oop-executor or -oop-executor-connect mode.
//
// FIXME: Remove once we enable remote slab allocation.
if (SlabAllocateSizeString != "") {
if (OutOfProcessExecutor.getNumOccurrences() ||
OutOfProcessExecutorConnect.getNumOccurrences())
return make_error<StringError>(
"-slab-allocate cannot be used with -oop-executor or "
"-oop-executor-connect",
inconvertibleErrorCode());
}
// If -slab-address is passed, require -slab-allocate and -noexec
if (SlabAddress != ~0ULL) {
if (SlabAllocateSizeString == "" || !NoExec)
return make_error<StringError>(
"-slab-address requires -slab-allocate and -noexec",
inconvertibleErrorCode());
if (SlabPageSize == 0)
errs() << "Warning: -slab-address used without -slab-page-size.\n";
}
if (SlabPageSize != 0) {
// -slab-page-size requires slab alloc.
if (SlabAllocateSizeString == "")
return make_error<StringError>("-slab-page-size requires -slab-allocate",
inconvertibleErrorCode());
// Check -slab-page-size / -noexec interactions.
if (!NoExec) {
if (auto RealPageSize = sys::Process::getPageSize()) {
if (SlabPageSize % *RealPageSize)
return make_error<StringError>(
"-slab-page-size must be a multiple of real page size for exec "
"tests (did you mean to use -noexec ?)\n",
inconvertibleErrorCode());
} else {
errs() << "Could not retrieve process page size:\n";
logAllUnhandledErrors(RealPageSize.takeError(), errs(), "");
errs() << "Executing with slab page size = "
<< formatv("{0:x}", SlabPageSize) << ".\n"
<< "Tool may crash if " << formatv("{0:x}", SlabPageSize)
<< " is not a multiple of the real process page size.\n"
<< "(did you mean to use -noexec ?)";
}
}
}
// Only one of -oop-executor and -oop-executor-connect can be used.
if (!!OutOfProcessExecutor.getNumOccurrences() &&
!!OutOfProcessExecutorConnect.getNumOccurrences())
return make_error<StringError>(
"Only one of -" + OutOfProcessExecutor.ArgStr + " and -" +
OutOfProcessExecutorConnect.ArgStr + " can be specified",
inconvertibleErrorCode());
// If -oop-executor was used but no value was specified then use a sensible
// default.
if (!!OutOfProcessExecutor.getNumOccurrences() &&
OutOfProcessExecutor.empty()) {
SmallString<256> OOPExecutorPath(sys::fs::getMainExecutable(
ArgV0, reinterpret_cast<void *>(&sanitizeArguments)));
sys::path::remove_filename(OOPExecutorPath);
sys::path::append(OOPExecutorPath, "llvm-jitlink-executor");
OutOfProcessExecutor = OOPExecutorPath.str().str();
}
return Error::success();
}
static void addPhonyExternalsGenerator(Session &S) {
S.MainJD->addGenerator(std::make_unique<PhonyExternalsGenerator>());
}
static Error createJITDylibs(Session &S,
std::map<unsigned, JITDylib *> &IdxToJD) {
// First, set up JITDylibs.
LLVM_DEBUG(dbgs() << "Creating JITDylibs...\n");
{
// Create a "main" JITLinkDylib.
IdxToJD[0] = S.MainJD;
S.JDSearchOrder.push_back({S.MainJD, JITDylibLookupFlags::MatchAllSymbols});
LLVM_DEBUG(dbgs() << " 0: " << S.MainJD->getName() << "\n");
// Add any extra JITDylibs from the command line.
for (auto JDItr = JITDylibs.begin(), JDEnd = JITDylibs.end();
JDItr != JDEnd; ++JDItr) {
auto JD = S.ES.createJITDylib(*JDItr);
if (!JD)
return JD.takeError();
unsigned JDIdx = JITDylibs.getPosition(JDItr - JITDylibs.begin());
IdxToJD[JDIdx] = &*JD;
S.JDSearchOrder.push_back({&*JD, JITDylibLookupFlags::MatchAllSymbols});
LLVM_DEBUG(dbgs() << " " << JDIdx << ": " << JD->getName() << "\n");
}
}
LLVM_DEBUG({
dbgs() << "Dylib search order is [ ";
for (auto &KV : S.JDSearchOrder)
dbgs() << KV.first->getName() << " ";
dbgs() << "]\n";
});
return Error::success();
}
static Error addAbsoluteSymbols(Session &S,
const std::map<unsigned, JITDylib *> &IdxToJD) {
// Define absolute symbols.
LLVM_DEBUG(dbgs() << "Defining absolute symbols...\n");
for (auto AbsDefItr = AbsoluteDefs.begin(), AbsDefEnd = AbsoluteDefs.end();
AbsDefItr != AbsDefEnd; ++AbsDefItr) {
unsigned AbsDefArgIdx =
AbsoluteDefs.getPosition(AbsDefItr - AbsoluteDefs.begin());
auto &JD = *std::prev(IdxToJD.lower_bound(AbsDefArgIdx))->second;
StringRef AbsDefStmt = *AbsDefItr;
size_t EqIdx = AbsDefStmt.find_first_of('=');
if (EqIdx == StringRef::npos)
return make_error<StringError>("Invalid absolute define \"" + AbsDefStmt +
"\". Syntax: <name>=<addr>",
inconvertibleErrorCode());
StringRef Name = AbsDefStmt.substr(0, EqIdx).trim();
StringRef AddrStr = AbsDefStmt.substr(EqIdx + 1).trim();
uint64_t Addr;
if (AddrStr.getAsInteger(0, Addr))
return make_error<StringError>("Invalid address expression \"" + AddrStr +
"\" in absolute symbol definition \"" +
AbsDefStmt + "\"",
inconvertibleErrorCode());
ExecutorSymbolDef AbsDef(ExecutorAddr(Addr), JITSymbolFlags::Exported);
if (auto Err = JD.define(absoluteSymbols({{S.ES.intern(Name), AbsDef}})))
return Err;
// Register the absolute symbol with the session symbol infos.
S.SymbolInfos[Name] = {ArrayRef<char>(), Addr};
}
return Error::success();
}
static Error addAliases(Session &S,
const std::map<unsigned, JITDylib *> &IdxToJD) {
// Define absolute symbols.
LLVM_DEBUG(dbgs() << "Defining aliases...\n");
for (auto AliasItr = Aliases.begin(), AliasEnd = Aliases.end();
AliasItr != AliasEnd; ++AliasItr) {
unsigned AliasArgIdx = Aliases.getPosition(AliasItr - Aliases.begin());
auto &JD = *std::prev(IdxToJD.lower_bound(AliasArgIdx))->second;
StringRef AliasStmt = *AliasItr;
size_t EqIdx = AliasStmt.find_first_of('=');
if (EqIdx == StringRef::npos)
return make_error<StringError>("Invalid alias definition \"" + AliasStmt +
"\". Syntax: <name>=<addr>",
inconvertibleErrorCode());
StringRef Alias = AliasStmt.substr(0, EqIdx).trim();
StringRef Aliasee = AliasStmt.substr(EqIdx + 1).trim();
SymbolAliasMap SAM;
SAM[S.ES.intern(Alias)] = {S.ES.intern(Aliasee), JITSymbolFlags::Exported};
if (auto Err = JD.define(symbolAliases(std::move(SAM))))
return Err;
}
return Error::success();
}
static Error addTestHarnesses(Session &S) {
LLVM_DEBUG(dbgs() << "Adding test harness objects...\n");
for (auto HarnessFile : TestHarnesses) {
LLVM_DEBUG(dbgs() << " " << HarnessFile << "\n");
auto ObjBuffer = getFile(HarnessFile);
if (!ObjBuffer)
return ObjBuffer.takeError();
if (auto Err = S.ObjLayer.add(*S.MainJD, std::move(*ObjBuffer)))
return Err;
}
return Error::success();
}
static Error addObjects(Session &S,
const std::map<unsigned, JITDylib *> &IdxToJD) {
// Load each object into the corresponding JITDylib..
LLVM_DEBUG(dbgs() << "Adding objects...\n");
for (auto InputFileItr = InputFiles.begin(), InputFileEnd = InputFiles.end();
InputFileItr != InputFileEnd; ++InputFileItr) {
unsigned InputFileArgIdx =
InputFiles.getPosition(InputFileItr - InputFiles.begin());
const std::string &InputFile = *InputFileItr;
if (StringRef(InputFile).endswith(".a") ||
StringRef(InputFile).endswith(".lib"))
continue;
auto &JD = *std::prev(IdxToJD.lower_bound(InputFileArgIdx))->second;
LLVM_DEBUG(dbgs() << " " << InputFileArgIdx << ": \"" << InputFile
<< "\" to " << JD.getName() << "\n";);
auto ObjBuffer = getFile(InputFile);
if (!ObjBuffer)
return ObjBuffer.takeError();
if (S.HarnessFiles.empty()) {
if (auto Err = S.ObjLayer.add(JD, std::move(*ObjBuffer)))
return Err;
} else {
// We're in -harness mode. Use a custom interface for this
// test object.
auto ObjInterface =
getTestObjectFileInterface(S, (*ObjBuffer)->getMemBufferRef());
if (!ObjInterface)
return ObjInterface.takeError();
if (auto Err = S.ObjLayer.add(JD, std::move(*ObjBuffer),
std::move(*ObjInterface)))
return Err;
}
}
return Error::success();
}
static Expected<MaterializationUnit::Interface>
getObjectFileInterfaceHidden(ExecutionSession &ES, MemoryBufferRef ObjBuffer) {
auto I = getObjectFileInterface(ES, ObjBuffer);
if (I) {
for (auto &KV : I->SymbolFlags)
KV.second &= ~JITSymbolFlags::Exported;
}
return I;
}
static SmallVector<StringRef, 5> getSearchPathsFromEnvVar(Session &S) {
// FIXME: Handle EPC environment.
SmallVector<StringRef, 5> PathVec;
auto TT = S.ES.getTargetTriple();
if (TT.isOSBinFormatCOFF())
StringRef(getenv("PATH")).split(PathVec, ";");
else if (TT.isOSBinFormatELF())
StringRef(getenv("LD_LIBRARY_PATH")).split(PathVec, ":");
return PathVec;
}
static Error addLibraries(Session &S,
const std::map<unsigned, JITDylib *> &IdxToJD) {
// 1. Collect search paths for each JITDylib.
DenseMap<const JITDylib *, SmallVector<StringRef, 2>> JDSearchPaths;
for (auto LSPItr = LibrarySearchPaths.begin(),
LSPEnd = LibrarySearchPaths.end();
LSPItr != LSPEnd; ++LSPItr) {
unsigned LibrarySearchPathIdx =
LibrarySearchPaths.getPosition(LSPItr - LibrarySearchPaths.begin());
auto &JD = *std::prev(IdxToJD.lower_bound(LibrarySearchPathIdx))->second;
StringRef LibrarySearchPath = *LSPItr;
if (sys::fs::get_file_type(LibrarySearchPath) !=
sys::fs::file_type::directory_file)
return make_error<StringError>("While linking " + JD.getName() + ", -L" +
LibrarySearchPath +
" does not point to a directory",
inconvertibleErrorCode());
JDSearchPaths[&JD].push_back(*LSPItr);
}
LLVM_DEBUG({
if (!JDSearchPaths.empty())
dbgs() << "Search paths:\n";
for (auto &KV : JDSearchPaths) {
dbgs() << " " << KV.first->getName() << ": [";
for (auto &LibSearchPath : KV.second)
dbgs() << " \"" << LibSearchPath << "\"";
dbgs() << " ]\n";
}
});
// 2. Collect library loads
struct LibraryLoad {
std::string LibName;
bool IsPath = false;
unsigned Position;
StringRef *CandidateExtensions;
enum { Standard, Hidden } Modifier;
};
// Queue to load library as in the order as it appears in the argument list.
std::deque<LibraryLoad> LibraryLoadQueue;
// Add archive files from the inputs to LibraryLoads.
for (auto InputFileItr = InputFiles.begin(), InputFileEnd = InputFiles.end();
InputFileItr != InputFileEnd; ++InputFileItr) {
StringRef InputFile = *InputFileItr;
if (!InputFile.endswith(".a") && !InputFile.endswith(".lib"))
continue;
LibraryLoad LL;
LL.LibName = InputFile.str();
LL.IsPath = true;
LL.Position = InputFiles.getPosition(InputFileItr - InputFiles.begin());
LL.CandidateExtensions = nullptr;
LL.Modifier = LibraryLoad::Standard;
LibraryLoadQueue.push_back(std::move(LL));
}
// Add -load_hidden arguments to LibraryLoads.
for (auto LibItr = LoadHidden.begin(), LibEnd = LoadHidden.end();
LibItr != LibEnd; ++LibItr) {
LibraryLoad LL;
LL.LibName = *LibItr;
LL.IsPath = true;
LL.Position = LoadHidden.getPosition(LibItr - LoadHidden.begin());
LL.CandidateExtensions = nullptr;
LL.Modifier = LibraryLoad::Hidden;
LibraryLoadQueue.push_back(std::move(LL));
}
StringRef StandardExtensions[] = {".so", ".dylib", ".dll", ".a", ".lib"};
StringRef DynLibExtensionsOnly[] = {".so", ".dylib", ".dll"};
StringRef ArchiveExtensionsOnly[] = {".a", ".lib"};
// Add -lx arguments to LibraryLoads.
for (auto LibItr = Libraries.begin(), LibEnd = Libraries.end();
LibItr != LibEnd; ++LibItr) {
LibraryLoad LL;
LL.LibName = *LibItr;
LL.Position = Libraries.getPosition(LibItr - Libraries.begin());
LL.CandidateExtensions = StandardExtensions;
LL.Modifier = LibraryLoad::Standard;
LibraryLoadQueue.push_back(std::move(LL));
}
// Add -hidden-lx arguments to LibraryLoads.
for (auto LibHiddenItr = LibrariesHidden.begin(),
LibHiddenEnd = LibrariesHidden.end();
LibHiddenItr != LibHiddenEnd; ++LibHiddenItr) {
LibraryLoad LL;
LL.LibName = *LibHiddenItr;
LL.Position =
LibrariesHidden.getPosition(LibHiddenItr - LibrariesHidden.begin());
LL.CandidateExtensions = ArchiveExtensionsOnly;
LL.Modifier = LibraryLoad::Hidden;
LibraryLoadQueue.push_back(std::move(LL));
}
// If there are any load-<modified> options then turn on flag overrides
// to avoid flag mismatch errors.
if (!LibrariesHidden.empty() || !LoadHidden.empty())
S.ObjLayer.setOverrideObjectFlagsWithResponsibilityFlags(true);
// Sort library loads by position in the argument list.
llvm::sort(LibraryLoadQueue,
[](const LibraryLoad &LHS, const LibraryLoad &RHS) {
return LHS.Position < RHS.Position;
});
// 3. Process library loads.
auto AddArchive = [&](const char *Path, const LibraryLoad &LL)
-> Expected<std::unique_ptr<StaticLibraryDefinitionGenerator>> {
unique_function<Expected<MaterializationUnit::Interface>(
ExecutionSession & ES, MemoryBufferRef ObjBuffer)>
GetObjFileInterface;
switch (LL.Modifier) {
case LibraryLoad::Standard:
GetObjFileInterface = getObjectFileInterface;
break;
case LibraryLoad::Hidden:
GetObjFileInterface = getObjectFileInterfaceHidden;
break;
}
auto G = StaticLibraryDefinitionGenerator::Load(
S.ObjLayer, Path, std::move(GetObjFileInterface));
if (!G)
return G.takeError();
// Push additional dynamic libraries to search.
// Note that this mechanism only happens in COFF.
for (auto FileName : (*G)->getImportedDynamicLibraries()) {
LibraryLoad NewLL;
auto FileNameRef = StringRef(FileName);
if (!FileNameRef.endswith_insensitive(".dll"))
return make_error<StringError>(
"COFF Imported library not ending with dll extension?",
inconvertibleErrorCode());
NewLL.LibName = FileNameRef.drop_back(strlen(".dll")).str();
NewLL.Position = LL.Position;
NewLL.CandidateExtensions = DynLibExtensionsOnly;
NewLL.Modifier = LibraryLoad::Standard;
LibraryLoadQueue.push_front(std::move(NewLL));
}
return G;
};
SmallVector<StringRef, 5> SystemSearchPaths;
if (SearchSystemLibrary.getValue())
SystemSearchPaths = getSearchPathsFromEnvVar(S);
while (!LibraryLoadQueue.empty()) {
bool LibFound = false;
auto LL = LibraryLoadQueue.front();
LibraryLoadQueue.pop_front();
auto &JD = *std::prev(IdxToJD.lower_bound(LL.Position))->second;
// If this is the name of a JITDylib then link against that.
if (auto *LJD = S.ES.getJITDylibByName(LL.LibName)) {
JD.addToLinkOrder(*LJD);
continue;
}
if (LL.IsPath) {
auto G = AddArchive(LL.LibName.c_str(), LL);
if (!G)
return createFileError(LL.LibName, G.takeError());
JD.addGenerator(std::move(*G));
LLVM_DEBUG({
dbgs() << "Adding generator for static library " << LL.LibName << " to "
<< JD.getName() << "\n";
});
continue;
}
// Otherwise look through the search paths.
auto CurJDSearchPaths = JDSearchPaths[&JD];
for (StringRef SearchPath :
concat<StringRef>(CurJDSearchPaths, SystemSearchPaths)) {
for (const char *LibExt : {".dylib", ".so", ".dll", ".a", ".lib"}) {
SmallVector<char, 256> LibPath;
LibPath.reserve(SearchPath.size() + strlen("lib") + LL.LibName.size() +
strlen(LibExt) + 2); // +2 for pathsep, null term.
llvm::copy(SearchPath, std::back_inserter(LibPath));
if (StringRef(LibExt) != ".lib" && StringRef(LibExt) != ".dll")
sys::path::append(LibPath, "lib" + LL.LibName + LibExt);
else
sys::path::append(LibPath, LL.LibName + LibExt);
LibPath.push_back('\0');
// Skip missing or non-regular paths.
if (sys::fs::get_file_type(LibPath.data()) !=
sys::fs::file_type::regular_file) {
continue;
}
file_magic Magic;
if (auto EC = identify_magic(LibPath, Magic)) {
// If there was an error loading the file then skip it.
LLVM_DEBUG({
dbgs() << "Library search found \"" << LibPath
<< "\", but could not identify file type (" << EC.message()
<< "). Skipping.\n";
});
continue;
}
// We identified the magic. Assume that we can load it -- we'll reset
// in the default case.
LibFound = true;
switch (Magic) {
case file_magic::pecoff_executable:
case file_magic::elf_shared_object:
case file_magic::macho_dynamically_linked_shared_lib: {
if (auto Err = S.loadAndLinkDynamicLibrary(JD, LibPath.data()))
return Err;
break;
}
case file_magic::archive:
case file_magic::macho_universal_binary: {
auto G = AddArchive(LibPath.data(), LL);
if (!G)
return G.takeError();
JD.addGenerator(std::move(*G));
LLVM_DEBUG({
dbgs() << "Adding generator for static library " << LibPath.data()
<< " to " << JD.getName() << "\n";
});
break;
}
default:
// This file isn't a recognized library kind.
LLVM_DEBUG({
dbgs() << "Library search found \"" << LibPath
<< "\", but file type is not supported. Skipping.\n";
});
LibFound = false;
break;
}
if (LibFound)
break;
}
if (LibFound)
break;
}
if (!LibFound)
return make_error<StringError>("While linking " + JD.getName() +
", could not find library for -l" +
LL.LibName,
inconvertibleErrorCode());
}
return Error::success();
}
static Error addSessionInputs(Session &S) {
std::map<unsigned, JITDylib *> IdxToJD;
if (auto Err = createJITDylibs(S, IdxToJD))
return Err;
if (auto Err = addAbsoluteSymbols(S, IdxToJD))
return Err;
if (auto Err = addAliases(S, IdxToJD))
return Err;
if (!TestHarnesses.empty())
if (auto Err = addTestHarnesses(S))
return Err;
if (auto Err = addObjects(S, IdxToJD))
return Err;
if (auto Err = addLibraries(S, IdxToJD))
return Err;
return Error::success();
}
namespace {
struct TargetInfo {
const Target *TheTarget;
std::unique_ptr<MCSubtargetInfo> STI;
std::unique_ptr<MCRegisterInfo> MRI;
std::unique_ptr<MCAsmInfo> MAI;
std::unique_ptr<MCContext> Ctx;
std::unique_ptr<MCDisassembler> Disassembler;
std::unique_ptr<MCInstrInfo> MII;
std::unique_ptr<MCInstrAnalysis> MIA;
std::unique_ptr<MCInstPrinter> InstPrinter;
};
} // anonymous namespace
static TargetInfo getTargetInfo(const Triple &TT) {
auto TripleName = TT.str();
std::string ErrorStr;
const Target *TheTarget = TargetRegistry::lookupTarget(TripleName, ErrorStr);
if (!TheTarget)
ExitOnErr(make_error<StringError>("Error accessing target '" + TripleName +
"': " + ErrorStr,
inconvertibleErrorCode()));
std::unique_ptr<MCSubtargetInfo> STI(
TheTarget->createMCSubtargetInfo(TripleName, "", ""));
if (!STI)
ExitOnErr(
make_error<StringError>("Unable to create subtarget for " + TripleName,
inconvertibleErrorCode()));
std::unique_ptr<MCRegisterInfo> MRI(TheTarget->createMCRegInfo(TripleName));
if (!MRI)
ExitOnErr(make_error<StringError>("Unable to create target register info "
"for " +
TripleName,
inconvertibleErrorCode()));
MCTargetOptions MCOptions;
std::unique_ptr<MCAsmInfo> MAI(
TheTarget->createMCAsmInfo(*MRI, TripleName, MCOptions));
if (!MAI)
ExitOnErr(make_error<StringError>("Unable to create target asm info " +
TripleName,
inconvertibleErrorCode()));
auto Ctx = std::make_unique<MCContext>(Triple(TripleName), MAI.get(),
MRI.get(), STI.get());
std::unique_ptr<MCDisassembler> Disassembler(
TheTarget->createMCDisassembler(*STI, *Ctx));
if (!Disassembler)
ExitOnErr(make_error<StringError>("Unable to create disassembler for " +
TripleName,
inconvertibleErrorCode()));
std::unique_ptr<MCInstrInfo> MII(TheTarget->createMCInstrInfo());
if (!MII)
ExitOnErr(make_error<StringError>("Unable to create instruction info for" +
TripleName,
inconvertibleErrorCode()));
std::unique_ptr<MCInstrAnalysis> MIA(
TheTarget->createMCInstrAnalysis(MII.get()));
if (!MIA)
ExitOnErr(make_error<StringError>(
"Unable to create instruction analysis for" + TripleName,
inconvertibleErrorCode()));
std::unique_ptr<MCInstPrinter> InstPrinter(
TheTarget->createMCInstPrinter(Triple(TripleName), 0, *MAI, *MII, *MRI));
if (!InstPrinter)
ExitOnErr(make_error<StringError>(
"Unable to create instruction printer for" + TripleName,
inconvertibleErrorCode()));
return {TheTarget, std::move(STI), std::move(MRI),
std::move(MAI), std::move(Ctx), std::move(Disassembler),
std::move(MII), std::move(MIA), std::move(InstPrinter)};
}
static Error runChecks(Session &S) {
if (CheckFiles.empty())
return Error::success();
LLVM_DEBUG(dbgs() << "Running checks...\n");
auto TI = getTargetInfo(S.ES.getTargetTriple());
auto IsSymbolValid = [&S](StringRef Symbol) {
return S.isSymbolRegistered(Symbol);
};
auto GetSymbolInfo = [&S](StringRef Symbol) {
return S.findSymbolInfo(Symbol, "Can not get symbol info");
};
auto GetSectionInfo = [&S](StringRef FileName, StringRef SectionName) {
return S.findSectionInfo(FileName, SectionName);
};
auto GetStubInfo = [&S](StringRef FileName, StringRef SectionName) {
return S.findStubInfo(FileName, SectionName);
};
auto GetGOTInfo = [&S](StringRef FileName, StringRef SectionName) {
return S.findGOTEntryInfo(FileName, SectionName);
};
RuntimeDyldChecker Checker(
IsSymbolValid, GetSymbolInfo, GetSectionInfo, GetStubInfo, GetGOTInfo,
S.ES.getTargetTriple().isLittleEndian() ? support::little : support::big,
TI.Disassembler.get(), TI.InstPrinter.get(), dbgs());
std::string CheckLineStart = "# " + CheckName + ":";
for (auto &CheckFile : CheckFiles) {
auto CheckerFileBuf = ExitOnErr(getFile(CheckFile));
if (!Checker.checkAllRulesInBuffer(CheckLineStart, &*CheckerFileBuf))
ExitOnErr(make_error<StringError>(
"Some checks in " + CheckFile + " failed", inconvertibleErrorCode()));
}
return Error::success();
}
static Error addSelfRelocations(LinkGraph &G) {
auto TI = getTargetInfo(G.getTargetTriple());
for (auto *Sym : G.defined_symbols())
if (Sym->isCallable())
if (auto Err = addFunctionPointerRelocationsToCurrentSymbol(
*Sym, G, *TI.Disassembler, *TI.MIA))
return Err;
return Error::success();
}
static void dumpSessionStats(Session &S) {
if (!ShowSizes)
return;
if (!OrcRuntime.empty())
outs() << "Note: Session stats include runtime and entry point lookup, but "
"not JITDylib initialization/deinitialization.\n";
if (ShowSizes)
outs() << " Total size of all blocks before pruning: "
<< S.SizeBeforePruning
<< "\n Total size of all blocks after fixups: " << S.SizeAfterFixups
<< "\n";
}
static Expected<ExecutorSymbolDef> getMainEntryPoint(Session &S) {
return S.ES.lookup(S.JDSearchOrder, S.ES.intern(EntryPointName));
}
static Expected<ExecutorSymbolDef> getOrcRuntimeEntryPoint(Session &S) {
std::string RuntimeEntryPoint = "__orc_rt_run_program_wrapper";
if (S.ES.getTargetTriple().getObjectFormat() == Triple::MachO)
RuntimeEntryPoint = '_' + RuntimeEntryPoint;
return S.ES.lookup(S.JDSearchOrder, S.ES.intern(RuntimeEntryPoint));
}
static Expected<ExecutorSymbolDef> getEntryPoint(Session &S) {
ExecutorSymbolDef EntryPoint;
// Find the entry-point function unconditionally, since we want to force
// it to be materialized to collect stats.
if (auto EP = getMainEntryPoint(S))
EntryPoint = *EP;
else
return EP.takeError();
LLVM_DEBUG({
dbgs() << "Using entry point \"" << EntryPointName
<< "\": " << formatv("{0:x16}", EntryPoint.getAddress()) << "\n";
});
// If we're running with the ORC runtime then replace the entry-point
// with the __orc_rt_run_program symbol.
if (!OrcRuntime.empty()) {
if (auto EP = getOrcRuntimeEntryPoint(S))
EntryPoint = *EP;
else
return EP.takeError();
LLVM_DEBUG({
dbgs() << "(called via __orc_rt_run_program_wrapper at "
<< formatv("{0:x16}", EntryPoint.getAddress()) << ")\n";
});
}
return EntryPoint;
}
static Expected<int> runWithRuntime(Session &S, ExecutorAddr EntryPointAddr) {
StringRef DemangledEntryPoint = EntryPointName;
if (S.ES.getTargetTriple().getObjectFormat() == Triple::MachO &&
DemangledEntryPoint.front() == '_')
DemangledEntryPoint = DemangledEntryPoint.drop_front();
using llvm::orc::shared::SPSString;
using SPSRunProgramSig =
int64_t(SPSString, SPSString, shared::SPSSequence<SPSString>);
int64_t Result;
if (auto Err = S.ES.callSPSWrapper<SPSRunProgramSig>(
EntryPointAddr, Result, S.MainJD->getName(), DemangledEntryPoint,
static_cast<std::vector<std::string> &>(InputArgv)))
return std::move(Err);
return Result;
}
static Expected<int> runWithoutRuntime(Session &S,
ExecutorAddr EntryPointAddr) {
return S.ES.getExecutorProcessControl().runAsMain(EntryPointAddr, InputArgv);
}
namespace {
struct JITLinkTimers {
TimerGroup JITLinkTG{"llvm-jitlink timers", "timers for llvm-jitlink phases"};
Timer LoadObjectsTimer{"load", "time to load/add object files", JITLinkTG};
Timer LinkTimer{"link", "time to link object files", JITLinkTG};
Timer RunTimer{"run", "time to execute jitlink'd code", JITLinkTG};
};
} // namespace
int main(int argc, char *argv[]) {
InitLLVM X(argc, argv);
InitializeAllTargetInfos();
InitializeAllTargetMCs();
InitializeAllDisassemblers();
cl::HideUnrelatedOptions({&JITLinkCategory, &getColorCategory()});
cl::ParseCommandLineOptions(argc, argv, "llvm jitlink tool");
ExitOnErr.setBanner(std::string(argv[0]) + ": ");
/// If timers are enabled, create a JITLinkTimers instance.
std::unique_ptr<JITLinkTimers> Timers =
ShowTimes ? std::make_unique<JITLinkTimers>() : nullptr;
ExitOnErr(sanitizeArguments(getFirstFileTriple(), argv[0]));
auto S = ExitOnErr(Session::Create(getFirstFileTriple()));
{
TimeRegion TR(Timers ? &Timers->LoadObjectsTimer : nullptr);
ExitOnErr(addSessionInputs(*S));
}
if (PhonyExternals)
addPhonyExternalsGenerator(*S);
if (ShowInitialExecutionSessionState)
S->ES.dump(outs());
Expected<ExecutorSymbolDef> EntryPoint((ExecutorSymbolDef()));
{
ExpectedAsOutParameter<ExecutorSymbolDef> _(&EntryPoint);
TimeRegion TR(Timers ? &Timers->LinkTimer : nullptr);
EntryPoint = getEntryPoint(*S);
}
// Print any reports regardless of whether we succeeded or failed.
if (ShowEntryExecutionSessionState)
S->ES.dump(outs());
if (ShowAddrs)
S->dumpSessionInfo(outs());
dumpSessionStats(*S);
if (!EntryPoint) {
if (Timers)
Timers->JITLinkTG.printAll(errs());
reportLLVMJITLinkError(EntryPoint.takeError());
exit(1);
}
ExitOnErr(runChecks(*S));
if (NoExec)
return 0;
int Result = 0;
{
LLVM_DEBUG(dbgs() << "Running \"" << EntryPointName << "\"...\n");
TimeRegion TR(Timers ? &Timers->RunTimer : nullptr);
if (!OrcRuntime.empty())
Result =
ExitOnErr(runWithRuntime(*S, ExecutorAddr(EntryPoint->getAddress())));
else
Result = ExitOnErr(
runWithoutRuntime(*S, ExecutorAddr(EntryPoint->getAddress())));
}
// Destroy the session.
ExitOnErr(S->ES.endSession());
S.reset();
if (Timers)
Timers->JITLinkTG.printAll(errs());
// If the executing code set a test result override then use that.
if (UseTestResultOverride)
Result = TestResultOverride;
return Result;
}