llvm-project/flang/runtime/transformational.cpp
peter klausler 8ba9ee46e4 [flang] Correct the subscripts used for arguments to character intrinsics
When chasing down another unrelated bug, I noticed that the
implementations of various character intrinsic functions assume
that the lower bounds of (some of) their arguments were 1.
This isn't necessarily the case, so I've cleaned them up, tweaked
the unit tests to exercise the fix, and regularized the allocation
pattern used for results to use SetBounds() before Allocate() rather
than the old original Descriptor::Allocate() wrapper around
CFI_allocate().

Since there were few other remaining uses of the old original
Descriptor::Allocate() wrapper, I also converted them to the
new one and deleted the old one.

Differential Revision: https://reviews.llvm.org/D104325
2021-06-16 10:26:25 -07:00

560 lines
20 KiB
C++

//===-- runtime/transformational.cpp --------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// Implements the transformational intrinsic functions of Fortran 2018 that
// rearrange or duplicate data without (much) regard to type. These are
// CSHIFT, EOSHIFT, PACK, RESHAPE, SPREAD, TRANSPOSE, and UNPACK.
//
// Many of these are defined in the 2018 standard with text that makes sense
// only if argument arrays have lower bounds of one. Rather than interpret
// these cases as implying a hidden constraint, these implementations
// work with arbitrary lower bounds. This may be technically an extension
// of the standard but it more likely to conform with its intent.
#include "transformational.h"
#include "copy.h"
#include "terminator.h"
#include "tools.h"
#include <algorithm>
namespace Fortran::runtime {
// Utility for CSHIFT & EOSHIFT rank > 1 cases that determines the shift count
// for each of the vector sections of the result.
class ShiftControl {
public:
ShiftControl(const Descriptor &s, Terminator &t, int dim)
: shift_{s}, terminator_{t}, shiftRank_{s.rank()}, dim_{dim} {}
void Init(const Descriptor &source) {
int rank{source.rank()};
RUNTIME_CHECK(terminator_, shiftRank_ == 0 || shiftRank_ == rank - 1);
auto catAndKind{shift_.type().GetCategoryAndKind()};
RUNTIME_CHECK(
terminator_, catAndKind && catAndKind->first == TypeCategory::Integer);
shiftElemLen_ = catAndKind->second;
if (shiftRank_ > 0) {
int k{0};
for (int j{0}; j < rank; ++j) {
if (j + 1 != dim_) {
const Dimension &shiftDim{shift_.GetDimension(k)};
lb_[k++] = shiftDim.LowerBound();
RUNTIME_CHECK(terminator_,
shiftDim.Extent() == source.GetDimension(j).Extent());
}
}
} else {
shiftCount_ =
GetInt64(shift_.OffsetElement<char>(), shiftElemLen_, terminator_);
}
}
SubscriptValue GetShift(const SubscriptValue resultAt[]) const {
if (shiftRank_ > 0) {
SubscriptValue shiftAt[maxRank];
int k{0};
for (int j{0}; j < shiftRank_ + 1; ++j) {
if (j + 1 != dim_) {
shiftAt[k] = lb_[k] + resultAt[j] - 1;
++k;
}
}
return GetInt64(
shift_.Element<char>(shiftAt), shiftElemLen_, terminator_);
} else {
return shiftCount_; // invariant count extracted in Init()
}
}
private:
const Descriptor &shift_;
Terminator &terminator_;
int shiftRank_;
int dim_;
SubscriptValue lb_[maxRank];
std::size_t shiftElemLen_;
SubscriptValue shiftCount_{};
};
// Fill an EOSHIFT result with default boundary values
static void DefaultInitialize(
const Descriptor &result, Terminator &terminator) {
auto catAndKind{result.type().GetCategoryAndKind()};
RUNTIME_CHECK(
terminator, catAndKind && catAndKind->first != TypeCategory::Derived);
std::size_t elementLen{result.ElementBytes()};
std::size_t bytes{result.Elements() * elementLen};
if (catAndKind->first == TypeCategory::Character) {
switch (int kind{catAndKind->second}) {
case 1:
std::fill_n(result.OffsetElement<char>(), bytes, ' ');
break;
case 2:
std::fill_n(result.OffsetElement<char16_t>(), bytes / 2,
static_cast<char16_t>(' '));
break;
case 4:
std::fill_n(result.OffsetElement<char32_t>(), bytes / 4,
static_cast<char32_t>(' '));
break;
default:
terminator.Crash("EOSHIFT: bad CHARACTER kind %d", kind);
}
} else {
std::memset(result.raw().base_addr, 0, bytes);
}
}
static inline std::size_t AllocateResult(Descriptor &result,
const Descriptor &source, int rank, const SubscriptValue extent[],
Terminator &terminator, const char *function) {
std::size_t elementLen{source.ElementBytes()};
const DescriptorAddendum *sourceAddendum{source.Addendum()};
result.Establish(source.type(), elementLen, nullptr, rank, extent,
CFI_attribute_allocatable, sourceAddendum != nullptr);
if (sourceAddendum) {
*result.Addendum() = *sourceAddendum;
}
for (int j{0}; j < rank; ++j) {
result.GetDimension(j).SetBounds(1, extent[j]);
}
if (int stat{result.Allocate()}) {
terminator.Crash(
"%s: Could not allocate memory for result (stat=%d)", function, stat);
}
return elementLen;
}
extern "C" {
// CSHIFT of rank > 1
void RTNAME(Cshift)(Descriptor &result, const Descriptor &source,
const Descriptor &shift, int dim, const char *sourceFile, int line) {
Terminator terminator{sourceFile, line};
int rank{source.rank()};
RUNTIME_CHECK(terminator, rank > 1);
RUNTIME_CHECK(terminator, dim >= 1 && dim <= rank);
ShiftControl shiftControl{shift, terminator, dim};
shiftControl.Init(source);
SubscriptValue extent[maxRank];
source.GetShape(extent);
AllocateResult(result, source, rank, extent, terminator, "CSHIFT");
SubscriptValue resultAt[maxRank];
for (int j{0}; j < rank; ++j) {
resultAt[j] = 1;
}
SubscriptValue sourceLB[maxRank];
source.GetLowerBounds(sourceLB);
SubscriptValue dimExtent{extent[dim - 1]};
SubscriptValue dimLB{sourceLB[dim - 1]};
SubscriptValue &resDim{resultAt[dim - 1]};
for (std::size_t n{result.Elements()}; n > 0; n -= dimExtent) {
SubscriptValue shiftCount{shiftControl.GetShift(resultAt)};
SubscriptValue sourceAt[maxRank];
for (int j{0}; j < rank; ++j) {
sourceAt[j] = sourceLB[j] + resultAt[j] - 1;
}
SubscriptValue &sourceDim{sourceAt[dim - 1]};
sourceDim = dimLB + shiftCount % dimExtent;
if (shiftCount < 0) {
sourceDim += dimExtent;
}
for (resDim = 1; resDim <= dimExtent; ++resDim) {
CopyElement(result, resultAt, source, sourceAt, terminator);
if (++sourceDim == dimLB + dimExtent) {
sourceDim = dimLB;
}
}
result.IncrementSubscripts(resultAt);
}
}
// CSHIFT of vector
void RTNAME(CshiftVector)(Descriptor &result, const Descriptor &source,
std::int64_t shift, const char *sourceFile, int line) {
Terminator terminator{sourceFile, line};
RUNTIME_CHECK(terminator, source.rank() == 1);
const Dimension &sourceDim{source.GetDimension(0)};
SubscriptValue extent{sourceDim.Extent()};
AllocateResult(result, source, 1, &extent, terminator, "CSHIFT");
SubscriptValue lb{sourceDim.LowerBound()};
for (SubscriptValue j{0}; j < extent; ++j) {
SubscriptValue resultAt{1 + j};
SubscriptValue sourceAt{lb + (j + shift) % extent};
CopyElement(result, &resultAt, source, &sourceAt, terminator);
}
}
// EOSHIFT of rank > 1
void RTNAME(Eoshift)(Descriptor &result, const Descriptor &source,
const Descriptor &shift, const Descriptor *boundary, int dim,
const char *sourceFile, int line) {
Terminator terminator{sourceFile, line};
SubscriptValue extent[maxRank];
int rank{source.GetShape(extent)};
RUNTIME_CHECK(terminator, rank > 1);
RUNTIME_CHECK(terminator, dim >= 1 && dim <= rank);
std::size_t elementLen{
AllocateResult(result, source, rank, extent, terminator, "EOSHIFT")};
int boundaryRank{-1};
if (boundary) {
boundaryRank = boundary->rank();
RUNTIME_CHECK(terminator, boundaryRank == 0 || boundaryRank == rank - 1);
RUNTIME_CHECK(terminator,
boundary->type() == source.type() &&
boundary->ElementBytes() == elementLen);
if (boundaryRank > 0) {
int k{0};
for (int j{0}; j < rank; ++j) {
if (j != dim - 1) {
RUNTIME_CHECK(
terminator, boundary->GetDimension(k).Extent() == extent[j]);
++k;
}
}
}
}
ShiftControl shiftControl{shift, terminator, dim};
shiftControl.Init(source);
SubscriptValue resultAt[maxRank];
for (int j{0}; j < rank; ++j) {
resultAt[j] = 1;
}
if (!boundary) {
DefaultInitialize(result, terminator);
}
SubscriptValue sourceLB[maxRank];
source.GetLowerBounds(sourceLB);
SubscriptValue boundaryAt[maxRank];
if (boundaryRank > 0) {
boundary->GetLowerBounds(boundaryAt);
}
SubscriptValue dimExtent{extent[dim - 1]};
SubscriptValue dimLB{sourceLB[dim - 1]};
SubscriptValue &resDim{resultAt[dim - 1]};
for (std::size_t n{result.Elements()}; n > 0; n -= dimExtent) {
SubscriptValue shiftCount{shiftControl.GetShift(resultAt)};
SubscriptValue sourceAt[maxRank];
for (int j{0}; j < rank; ++j) {
sourceAt[j] = sourceLB[j] + resultAt[j] - 1;
}
SubscriptValue &sourceDim{sourceAt[dim - 1]};
sourceDim = dimLB + shiftCount;
for (resDim = 1; resDim <= dimExtent; ++resDim) {
if (sourceDim >= dimLB && sourceDim < dimLB + dimExtent) {
CopyElement(result, resultAt, source, sourceAt, terminator);
} else if (boundary) {
CopyElement(result, resultAt, *boundary, boundaryAt, terminator);
}
++sourceDim;
}
result.IncrementSubscripts(resultAt);
if (boundaryRank > 0) {
boundary->IncrementSubscripts(boundaryAt);
}
}
}
// EOSHIFT of vector
void RTNAME(EoshiftVector)(Descriptor &result, const Descriptor &source,
std::int64_t shift, const Descriptor *boundary, const char *sourceFile,
int line) {
Terminator terminator{sourceFile, line};
RUNTIME_CHECK(terminator, source.rank() == 1);
SubscriptValue extent{source.GetDimension(0).Extent()};
std::size_t elementLen{
AllocateResult(result, source, 1, &extent, terminator, "EOSHIFT")};
if (boundary) {
RUNTIME_CHECK(terminator, boundary->rank() == 0);
RUNTIME_CHECK(terminator,
boundary->type() == source.type() &&
boundary->ElementBytes() == elementLen);
}
if (!boundary) {
DefaultInitialize(result, terminator);
}
SubscriptValue lb{source.GetDimension(0).LowerBound()};
for (SubscriptValue j{1}; j <= extent; ++j) {
SubscriptValue sourceAt{lb + j - 1 + shift};
if (sourceAt >= lb && sourceAt < lb + extent) {
CopyElement(result, &j, source, &sourceAt, terminator);
}
}
}
// PACK
void RTNAME(Pack)(Descriptor &result, const Descriptor &source,
const Descriptor &mask, const Descriptor *vector, const char *sourceFile,
int line) {
Terminator terminator{sourceFile, line};
CheckConformability(source, mask, terminator, "PACK", "ARRAY=", "MASK=");
auto maskType{mask.type().GetCategoryAndKind()};
RUNTIME_CHECK(
terminator, maskType && maskType->first == TypeCategory::Logical);
SubscriptValue trues{0};
if (mask.rank() == 0) {
if (IsLogicalElementTrue(mask, nullptr)) {
trues = source.Elements();
}
} else {
SubscriptValue maskAt[maxRank];
mask.GetLowerBounds(maskAt);
for (std::size_t n{mask.Elements()}; n > 0; --n) {
if (IsLogicalElementTrue(mask, maskAt)) {
++trues;
}
mask.IncrementSubscripts(maskAt);
}
}
SubscriptValue extent{trues};
if (vector) {
RUNTIME_CHECK(terminator, vector->rank() == 1);
RUNTIME_CHECK(terminator,
source.type() == vector->type() &&
source.ElementBytes() == vector->ElementBytes());
extent = vector->GetDimension(0).Extent();
RUNTIME_CHECK(terminator, extent >= trues);
}
AllocateResult(result, source, 1, &extent, terminator, "PACK");
SubscriptValue sourceAt[maxRank], resultAt{1};
source.GetLowerBounds(sourceAt);
if (mask.rank() == 0) {
if (IsLogicalElementTrue(mask, nullptr)) {
for (SubscriptValue n{trues}; n > 0; --n) {
CopyElement(result, &resultAt, source, sourceAt, terminator);
++resultAt;
source.IncrementSubscripts(sourceAt);
}
}
} else {
SubscriptValue maskAt[maxRank];
mask.GetLowerBounds(maskAt);
for (std::size_t n{source.Elements()}; n > 0; --n) {
if (IsLogicalElementTrue(mask, maskAt)) {
CopyElement(result, &resultAt, source, sourceAt, terminator);
++resultAt;
}
source.IncrementSubscripts(sourceAt);
mask.IncrementSubscripts(maskAt);
}
}
if (vector) {
SubscriptValue vectorAt{
vector->GetDimension(0).LowerBound() + resultAt - 1};
for (; resultAt <= extent; ++resultAt, ++vectorAt) {
CopyElement(result, &resultAt, *vector, &vectorAt, terminator);
}
}
}
} // extern "C" - TODO put Reshape under extern "C"
// F2018 16.9.163
OwningPtr<Descriptor> RTNAME(Reshape)(const Descriptor &source,
const Descriptor &shape, const Descriptor *pad, const Descriptor *order,
const char *sourceFile, int line) {
// Compute and check the rank of the result.
Terminator terminator{sourceFile, line};
RUNTIME_CHECK(terminator, shape.rank() == 1);
RUNTIME_CHECK(terminator, shape.type().IsInteger());
SubscriptValue resultRank{shape.GetDimension(0).Extent()};
RUNTIME_CHECK(terminator,
resultRank >= 0 && resultRank <= static_cast<SubscriptValue>(maxRank));
// Extract and check the shape of the result; compute its element count.
SubscriptValue resultExtent[maxRank];
std::size_t shapeElementBytes{shape.ElementBytes()};
std::size_t resultElements{1};
SubscriptValue shapeSubscript{shape.GetDimension(0).LowerBound()};
for (SubscriptValue j{0}; j < resultRank; ++j, ++shapeSubscript) {
resultExtent[j] = GetInt64(
shape.Element<char>(&shapeSubscript), shapeElementBytes, terminator);
RUNTIME_CHECK(terminator, resultExtent[j] >= 0);
resultElements *= resultExtent[j];
}
// Check that there are sufficient elements in the SOURCE=, or that
// the optional PAD= argument is present and nonempty.
std::size_t elementBytes{source.ElementBytes()};
std::size_t sourceElements{source.Elements()};
std::size_t padElements{pad ? pad->Elements() : 0};
if (resultElements < sourceElements) {
RUNTIME_CHECK(terminator, padElements > 0);
RUNTIME_CHECK(terminator, pad->ElementBytes() == elementBytes);
}
// Extract and check the optional ORDER= argument, which must be a
// permutation of [1..resultRank].
int dimOrder[maxRank];
if (order) {
RUNTIME_CHECK(terminator, order->rank() == 1);
RUNTIME_CHECK(terminator, order->type().IsInteger());
RUNTIME_CHECK(terminator, order->GetDimension(0).Extent() == resultRank);
std::uint64_t values{0};
SubscriptValue orderSubscript{order->GetDimension(0).LowerBound()};
for (SubscriptValue j{0}; j < resultRank; ++j, ++orderSubscript) {
auto k{GetInt64(order->OffsetElement<char>(orderSubscript),
shapeElementBytes, terminator)};
RUNTIME_CHECK(
terminator, k >= 1 && k <= resultRank && !((values >> k) & 1));
values |= std::uint64_t{1} << k;
dimOrder[k - 1] = j;
}
} else {
for (int j{0}; j < resultRank; ++j) {
dimOrder[j] = j;
}
}
// Create and populate the result's descriptor.
const DescriptorAddendum *sourceAddendum{source.Addendum()};
const typeInfo::DerivedType *sourceDerivedType{
sourceAddendum ? sourceAddendum->derivedType() : nullptr};
OwningPtr<Descriptor> result;
if (sourceDerivedType) {
result = Descriptor::Create(*sourceDerivedType, nullptr, resultRank,
resultExtent, CFI_attribute_allocatable);
} else {
result = Descriptor::Create(source.type(), elementBytes, nullptr,
resultRank, resultExtent,
CFI_attribute_allocatable); // TODO rearrange these arguments
}
DescriptorAddendum *resultAddendum{result->Addendum()};
RUNTIME_CHECK(terminator, resultAddendum);
resultAddendum->flags() |= DescriptorAddendum::DoNotFinalize;
if (sourceDerivedType) {
std::size_t lenParameters{sourceAddendum->LenParameters()};
for (std::size_t j{0}; j < lenParameters; ++j) {
resultAddendum->SetLenParameterValue(
j, sourceAddendum->LenParameterValue(j));
}
}
// Allocate storage for the result's data.
for (int j{0}; j < resultRank; ++j) {
result->GetDimension(j).SetBounds(1, resultExtent[j]);
}
int status{result->Allocate()};
if (status != CFI_SUCCESS) {
terminator.Crash("RESHAPE: Allocate failed (error %d)", status);
}
// Populate the result's elements.
SubscriptValue resultSubscript[maxRank];
result->GetLowerBounds(resultSubscript);
SubscriptValue sourceSubscript[maxRank];
source.GetLowerBounds(sourceSubscript);
std::size_t resultElement{0};
std::size_t elementsFromSource{std::min(resultElements, sourceElements)};
for (; resultElement < elementsFromSource; ++resultElement) {
CopyElement(*result, resultSubscript, source, sourceSubscript, terminator);
source.IncrementSubscripts(sourceSubscript);
result->IncrementSubscripts(resultSubscript, dimOrder);
}
if (resultElement < resultElements) {
// Remaining elements come from the optional PAD= argument.
SubscriptValue padSubscript[maxRank];
pad->GetLowerBounds(padSubscript);
for (; resultElement < resultElements; ++resultElement) {
CopyElement(*result, resultSubscript, *pad, padSubscript, terminator);
pad->IncrementSubscripts(padSubscript);
result->IncrementSubscripts(resultSubscript, dimOrder);
}
}
return result;
}
extern "C" { // TODO - remove when Reshape is under extern "C"
// SPREAD
void RTNAME(Spread)(Descriptor &result, const Descriptor &source, int dim,
std::int64_t ncopies, const char *sourceFile, int line) {
Terminator terminator{sourceFile, line};
int rank{source.rank() + 1};
RUNTIME_CHECK(terminator, rank <= maxRank);
ncopies = std::max<std::int64_t>(ncopies, 0);
SubscriptValue extent[maxRank];
int k{0};
for (int j{0}; j < rank; ++j) {
extent[j] = j == dim - 1 ? ncopies : source.GetDimension(k++).Extent();
}
AllocateResult(result, source, rank, extent, terminator, "SPREAD");
SubscriptValue resultAt[maxRank];
for (int j{0}; j < rank; ++j) {
resultAt[j] = 1;
}
SubscriptValue &resultDim{resultAt[dim - 1]};
SubscriptValue sourceAt[maxRank];
source.GetLowerBounds(sourceAt);
for (std::size_t n{result.Elements()}; n > 0; n -= ncopies) {
for (resultDim = 1; resultDim <= ncopies; ++resultDim) {
CopyElement(result, resultAt, source, sourceAt, terminator);
}
result.IncrementSubscripts(resultAt);
source.IncrementSubscripts(sourceAt);
}
}
// TRANSPOSE
void RTNAME(Transpose)(Descriptor &result, const Descriptor &matrix,
const char *sourceFile, int line) {
Terminator terminator{sourceFile, line};
RUNTIME_CHECK(terminator, matrix.rank() == 2);
SubscriptValue extent[2]{
matrix.GetDimension(1).Extent(), matrix.GetDimension(0).Extent()};
AllocateResult(result, matrix, 2, extent, terminator, "TRANSPOSE");
SubscriptValue resultAt[2]{1, 1};
SubscriptValue matrixLB[2];
matrix.GetLowerBounds(matrixLB);
for (std::size_t n{result.Elements()}; n-- > 0;
result.IncrementSubscripts(resultAt)) {
SubscriptValue matrixAt[2]{
matrixLB[0] + resultAt[1] - 1, matrixLB[1] + resultAt[0] - 1};
CopyElement(result, resultAt, matrix, matrixAt, terminator);
}
}
// UNPACK
void RTNAME(Unpack)(Descriptor &result, const Descriptor &vector,
const Descriptor &mask, const Descriptor &field, const char *sourceFile,
int line) {
Terminator terminator{sourceFile, line};
RUNTIME_CHECK(terminator, vector.rank() == 1);
int rank{mask.rank()};
RUNTIME_CHECK(terminator, rank > 0);
SubscriptValue extent[maxRank];
mask.GetShape(extent);
CheckConformability(mask, field, terminator, "UNPACK", "MASK=", "FIELD=");
std::size_t elementLen{
AllocateResult(result, field, rank, extent, terminator, "UNPACK")};
RUNTIME_CHECK(terminator,
vector.type() == field.type() && vector.ElementBytes() == elementLen);
SubscriptValue resultAt[maxRank], maskAt[maxRank], fieldAt[maxRank],
vectorAt{vector.GetDimension(0).LowerBound()};
for (int j{0}; j < rank; ++j) {
resultAt[j] = 1;
}
mask.GetLowerBounds(maskAt);
field.GetLowerBounds(fieldAt);
SubscriptValue vectorLeft{vector.GetDimension(0).Extent()};
for (std::size_t n{result.Elements()}; n-- > 0;) {
if (IsLogicalElementTrue(mask, maskAt)) {
if (vectorLeft-- == 0) {
terminator.Crash("UNPACK: VECTOR= argument has fewer elements than "
"MASK= has .TRUE. entries");
}
CopyElement(result, resultAt, vector, &vectorAt, terminator);
++vectorAt;
} else {
CopyElement(result, resultAt, field, fieldAt, terminator);
}
result.IncrementSubscripts(resultAt);
mask.IncrementSubscripts(maskAt);
field.IncrementSubscripts(fieldAt);
}
}
} // extern "C"
} // namespace Fortran::runtime