llvm-project/mlir/lib/Analysis/DataFlow/SparseAnalysis.cpp
Jakub Kuderski 8c258fda1f [ADT][mlir][NFCI] Do not use non-const lvalue-refs with enumerate
Replace references to enumerate results with either result_pairs
(reference wrapper type) or structured bindings. I did not use
structured bindings everywhere as it wasn't clear to me it would
improve readability.

This is in preparation to the switch to zip semantics which won't
support non-const lvalue reference to elements:
https://reviews.llvm.org/D144503.

I chose to use values instead of const lvalue-refs because MLIR is
biased towards avoiding `const` local variables. This won't degrade
performance because currently `result_pair` is cheap to copy (size_t
+ iterator), and in the future, the enumerator iterator dereference
will return temporaries anyway.

Reviewed By: dblaikie

Differential Revision: https://reviews.llvm.org/D146006
2023-03-15 10:43:56 -04:00

552 lines
21 KiB
C++

//===- SparseAnalysis.cpp - Sparse data-flow analysis ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Analysis/DataFlow/SparseAnalysis.h"
#include "mlir/Analysis/DataFlow/DeadCodeAnalysis.h"
#include "mlir/Interfaces/CallInterfaces.h"
using namespace mlir;
using namespace mlir::dataflow;
//===----------------------------------------------------------------------===//
// AbstractSparseLattice
//===----------------------------------------------------------------------===//
void AbstractSparseLattice::onUpdate(DataFlowSolver *solver) const {
// Push all users of the value to the queue.
for (Operation *user : point.get<Value>().getUsers())
for (DataFlowAnalysis *analysis : useDefSubscribers)
solver->enqueue({user, analysis});
}
//===----------------------------------------------------------------------===//
// AbstractSparseDataFlowAnalysis
//===----------------------------------------------------------------------===//
AbstractSparseDataFlowAnalysis::AbstractSparseDataFlowAnalysis(
DataFlowSolver &solver)
: DataFlowAnalysis(solver) {
registerPointKind<CFGEdge>();
}
LogicalResult AbstractSparseDataFlowAnalysis::initialize(Operation *top) {
// Mark the entry block arguments as having reached their pessimistic
// fixpoints.
for (Region &region : top->getRegions()) {
if (region.empty())
continue;
for (Value argument : region.front().getArguments())
setToEntryState(getLatticeElement(argument));
}
return initializeRecursively(top);
}
LogicalResult
AbstractSparseDataFlowAnalysis::initializeRecursively(Operation *op) {
// Initialize the analysis by visiting every owner of an SSA value (all
// operations and blocks).
visitOperation(op);
for (Region &region : op->getRegions()) {
for (Block &block : region) {
getOrCreate<Executable>(&block)->blockContentSubscribe(this);
visitBlock(&block);
for (Operation &op : block)
if (failed(initializeRecursively(&op)))
return failure();
}
}
return success();
}
LogicalResult AbstractSparseDataFlowAnalysis::visit(ProgramPoint point) {
if (Operation *op = point.dyn_cast<Operation *>())
visitOperation(op);
else if (Block *block = point.dyn_cast<Block *>())
visitBlock(block);
else
return failure();
return success();
}
void AbstractSparseDataFlowAnalysis::visitOperation(Operation *op) {
// Exit early on operations with no results.
if (op->getNumResults() == 0)
return;
// If the containing block is not executable, bail out.
if (!getOrCreate<Executable>(op->getBlock())->isLive())
return;
// Get the result lattices.
SmallVector<AbstractSparseLattice *> resultLattices;
resultLattices.reserve(op->getNumResults());
for (Value result : op->getResults()) {
AbstractSparseLattice *resultLattice = getLatticeElement(result);
resultLattices.push_back(resultLattice);
}
// The results of a region branch operation are determined by control-flow.
if (auto branch = dyn_cast<RegionBranchOpInterface>(op)) {
return visitRegionSuccessors({branch}, branch,
/*successorIndex=*/std::nullopt,
resultLattices);
}
// The results of a call operation are determined by the callgraph.
if (auto call = dyn_cast<CallOpInterface>(op)) {
const auto *predecessors = getOrCreateFor<PredecessorState>(op, call);
// If not all return sites are known, then conservatively assume we can't
// reason about the data-flow.
if (!predecessors->allPredecessorsKnown())
return setAllToEntryStates(resultLattices);
for (Operation *predecessor : predecessors->getKnownPredecessors())
for (auto it : llvm::zip(predecessor->getOperands(), resultLattices))
join(std::get<1>(it), *getLatticeElementFor(op, std::get<0>(it)));
return;
}
// Grab the lattice elements of the operands.
SmallVector<const AbstractSparseLattice *> operandLattices;
operandLattices.reserve(op->getNumOperands());
for (Value operand : op->getOperands()) {
AbstractSparseLattice *operandLattice = getLatticeElement(operand);
operandLattice->useDefSubscribe(this);
operandLattices.push_back(operandLattice);
}
// Invoke the operation transfer function.
visitOperationImpl(op, operandLattices, resultLattices);
}
void AbstractSparseDataFlowAnalysis::visitBlock(Block *block) {
// Exit early on blocks with no arguments.
if (block->getNumArguments() == 0)
return;
// If the block is not executable, bail out.
if (!getOrCreate<Executable>(block)->isLive())
return;
// Get the argument lattices.
SmallVector<AbstractSparseLattice *> argLattices;
argLattices.reserve(block->getNumArguments());
for (BlockArgument argument : block->getArguments()) {
AbstractSparseLattice *argLattice = getLatticeElement(argument);
argLattices.push_back(argLattice);
}
// The argument lattices of entry blocks are set by region control-flow or the
// callgraph.
if (block->isEntryBlock()) {
// Check if this block is the entry block of a callable region.
auto callable = dyn_cast<CallableOpInterface>(block->getParentOp());
if (callable && callable.getCallableRegion() == block->getParent()) {
const auto *callsites = getOrCreateFor<PredecessorState>(block, callable);
// If not all callsites are known, conservatively mark all lattices as
// having reached their pessimistic fixpoints.
if (!callsites->allPredecessorsKnown())
return setAllToEntryStates(argLattices);
for (Operation *callsite : callsites->getKnownPredecessors()) {
auto call = cast<CallOpInterface>(callsite);
for (auto it : llvm::zip(call.getArgOperands(), argLattices))
join(std::get<1>(it), *getLatticeElementFor(block, std::get<0>(it)));
}
return;
}
// Check if the lattices can be determined from region control flow.
if (auto branch = dyn_cast<RegionBranchOpInterface>(block->getParentOp())) {
return visitRegionSuccessors(
block, branch, block->getParent()->getRegionNumber(), argLattices);
}
// Otherwise, we can't reason about the data-flow.
return visitNonControlFlowArgumentsImpl(block->getParentOp(),
RegionSuccessor(block->getParent()),
argLattices, /*firstIndex=*/0);
}
// Iterate over the predecessors of the non-entry block.
for (Block::pred_iterator it = block->pred_begin(), e = block->pred_end();
it != e; ++it) {
Block *predecessor = *it;
// If the edge from the predecessor block to the current block is not live,
// bail out.
auto *edgeExecutable =
getOrCreate<Executable>(getProgramPoint<CFGEdge>(predecessor, block));
edgeExecutable->blockContentSubscribe(this);
if (!edgeExecutable->isLive())
continue;
// Check if we can reason about the data-flow from the predecessor.
if (auto branch =
dyn_cast<BranchOpInterface>(predecessor->getTerminator())) {
SuccessorOperands operands =
branch.getSuccessorOperands(it.getSuccessorIndex());
for (auto [idx, lattice] : llvm::enumerate(argLattices)) {
if (Value operand = operands[idx]) {
join(lattice, *getLatticeElementFor(block, operand));
} else {
// Conservatively consider internally produced arguments as entry
// points.
setAllToEntryStates(lattice);
}
}
} else {
return setAllToEntryStates(argLattices);
}
}
}
void AbstractSparseDataFlowAnalysis::visitRegionSuccessors(
ProgramPoint point, RegionBranchOpInterface branch,
std::optional<unsigned> successorIndex,
ArrayRef<AbstractSparseLattice *> lattices) {
const auto *predecessors = getOrCreateFor<PredecessorState>(point, point);
assert(predecessors->allPredecessorsKnown() &&
"unexpected unresolved region successors");
for (Operation *op : predecessors->getKnownPredecessors()) {
// Get the incoming successor operands.
std::optional<OperandRange> operands;
// Check if the predecessor is the parent op.
if (op == branch) {
operands = branch.getSuccessorEntryOperands(successorIndex);
// Otherwise, try to deduce the operands from a region return-like op.
} else {
if (isRegionReturnLike(op))
operands = getRegionBranchSuccessorOperands(op, successorIndex);
}
if (!operands) {
// We can't reason about the data-flow.
return setAllToEntryStates(lattices);
}
ValueRange inputs = predecessors->getSuccessorInputs(op);
assert(inputs.size() == operands->size() &&
"expected the same number of successor inputs as operands");
unsigned firstIndex = 0;
if (inputs.size() != lattices.size()) {
if (point.dyn_cast<Operation *>()) {
if (!inputs.empty())
firstIndex = inputs.front().cast<OpResult>().getResultNumber();
visitNonControlFlowArgumentsImpl(
branch,
RegionSuccessor(
branch->getResults().slice(firstIndex, inputs.size())),
lattices, firstIndex);
} else {
if (!inputs.empty())
firstIndex = inputs.front().cast<BlockArgument>().getArgNumber();
Region *region = point.get<Block *>()->getParent();
visitNonControlFlowArgumentsImpl(
branch,
RegionSuccessor(region, region->getArguments().slice(
firstIndex, inputs.size())),
lattices, firstIndex);
}
}
for (auto it : llvm::zip(*operands, lattices.drop_front(firstIndex)))
join(std::get<1>(it), *getLatticeElementFor(point, std::get<0>(it)));
}
}
const AbstractSparseLattice *
AbstractSparseDataFlowAnalysis::getLatticeElementFor(ProgramPoint point,
Value value) {
AbstractSparseLattice *state = getLatticeElement(value);
addDependency(state, point);
return state;
}
void AbstractSparseDataFlowAnalysis::setAllToEntryStates(
ArrayRef<AbstractSparseLattice *> lattices) {
for (AbstractSparseLattice *lattice : lattices)
setToEntryState(lattice);
}
void AbstractSparseDataFlowAnalysis::join(AbstractSparseLattice *lhs,
const AbstractSparseLattice &rhs) {
propagateIfChanged(lhs, lhs->join(rhs));
}
//===----------------------------------------------------------------------===//
// AbstractSparseBackwardDataFlowAnalysis
//===----------------------------------------------------------------------===//
AbstractSparseBackwardDataFlowAnalysis::AbstractSparseBackwardDataFlowAnalysis(
DataFlowSolver &solver, SymbolTableCollection &symbolTable)
: DataFlowAnalysis(solver), symbolTable(symbolTable) {
registerPointKind<CFGEdge>();
}
LogicalResult
AbstractSparseBackwardDataFlowAnalysis::initialize(Operation *top) {
return initializeRecursively(top);
}
LogicalResult
AbstractSparseBackwardDataFlowAnalysis::initializeRecursively(Operation *op) {
visitOperation(op);
for (Region &region : op->getRegions()) {
for (Block &block : region) {
getOrCreate<Executable>(&block)->blockContentSubscribe(this);
// Initialize ops in reverse order, so we can do as much initial
// propagation as possible without having to go through the
// solver queue.
for (auto it = block.rbegin(); it != block.rend(); it++)
if (failed(initializeRecursively(&*it)))
return failure();
}
}
return success();
}
LogicalResult
AbstractSparseBackwardDataFlowAnalysis::visit(ProgramPoint point) {
if (Operation *op = point.dyn_cast<Operation *>())
visitOperation(op);
else if (point.dyn_cast<Block *>())
// For backward dataflow, we don't have to do any work for the blocks
// themselves. CFG edges between blocks are processed by the BranchOp
// logic in `visitOperation`, and entry blocks for functions are tied
// to the CallOp arguments by visitOperation.
return success();
else
return failure();
return success();
}
SmallVector<AbstractSparseLattice *>
AbstractSparseBackwardDataFlowAnalysis::getLatticeElements(ValueRange values) {
SmallVector<AbstractSparseLattice *> resultLattices;
resultLattices.reserve(values.size());
for (Value result : values) {
AbstractSparseLattice *resultLattice = getLatticeElement(result);
resultLattices.push_back(resultLattice);
}
return resultLattices;
}
SmallVector<const AbstractSparseLattice *>
AbstractSparseBackwardDataFlowAnalysis::getLatticeElementsFor(
ProgramPoint point, ValueRange values) {
SmallVector<const AbstractSparseLattice *> resultLattices;
resultLattices.reserve(values.size());
for (Value result : values) {
const AbstractSparseLattice *resultLattice =
getLatticeElementFor(point, result);
resultLattices.push_back(resultLattice);
}
return resultLattices;
}
static MutableArrayRef<OpOperand> operandsToOpOperands(OperandRange &operands) {
return MutableArrayRef<OpOperand>(operands.getBase(), operands.size());
}
void AbstractSparseBackwardDataFlowAnalysis::visitOperation(Operation *op) {
// If we're in a dead block, bail out.
if (!getOrCreate<Executable>(op->getBlock())->isLive())
return;
SmallVector<AbstractSparseLattice *> operandLattices =
getLatticeElements(op->getOperands());
SmallVector<const AbstractSparseLattice *> resultLattices =
getLatticeElementsFor(op, op->getResults());
// Block arguments of region branch operations flow back into the operands
// of the parent op
if (auto branch = dyn_cast<RegionBranchOpInterface>(op)) {
visitRegionSuccessors(branch, operandLattices);
return;
}
if (auto branch = dyn_cast<BranchOpInterface>(op)) {
// Block arguments of successor blocks flow back into our operands.
// We remember all operands not forwarded to any block in a BitVector.
// We can't just cut out a range here, since the non-forwarded ops might
// be non-contiguous (if there's more than one successor).
BitVector unaccounted(op->getNumOperands(), true);
for (auto [index, block] : llvm::enumerate(op->getSuccessors())) {
SuccessorOperands successorOperands = branch.getSuccessorOperands(index);
OperandRange forwarded = successorOperands.getForwardedOperands();
if (!forwarded.empty()) {
MutableArrayRef<OpOperand> operands = op->getOpOperands().slice(
forwarded.getBeginOperandIndex(), forwarded.size());
for (OpOperand &operand : operands) {
unaccounted.reset(operand.getOperandNumber());
if (std::optional<BlockArgument> blockArg =
detail::getBranchSuccessorArgument(
successorOperands, operand.getOperandNumber(), block)) {
meet(getLatticeElement(operand.get()),
*getLatticeElementFor(op, *blockArg));
}
}
}
}
// Operands not forwarded to successor blocks are typically parameters
// of the branch operation itself (for example the boolean for if/else).
for (int index : unaccounted.set_bits()) {
OpOperand &operand = op->getOpOperand(index);
visitBranchOperand(operand);
}
return;
}
// For function calls, connect the arguments of the entry blocks
// to the operands of the call op.
if (auto call = dyn_cast<CallOpInterface>(op)) {
Operation *callableOp = call.resolveCallable(&symbolTable);
if (auto callable = dyn_cast_or_null<CallableOpInterface>(callableOp)) {
Region *region = callable.getCallableRegion();
if (region && !region->empty()) {
Block &block = region->front();
for (auto [blockArg, operand] :
llvm::zip(block.getArguments(), operandLattices)) {
meet(operand, *getLatticeElementFor(op, blockArg));
}
}
return;
}
}
// The block arguments of the branched to region flow back into the
// operands of the yield operation.
if (auto terminator = dyn_cast<RegionBranchTerminatorOpInterface>(op)) {
if (auto branch = dyn_cast<RegionBranchOpInterface>(op->getParentOp())) {
SmallVector<RegionSuccessor> successors;
SmallVector<Attribute> operands(op->getNumOperands(), nullptr);
branch.getSuccessorRegions(op->getParentRegion()->getRegionNumber(),
operands, successors);
// All operands not forwarded to any successor. This set can be
// non-contiguous in the presence of multiple successors.
BitVector unaccounted(op->getNumOperands(), true);
for (const RegionSuccessor &successor : successors) {
ValueRange inputs = successor.getSuccessorInputs();
Region *region = successor.getSuccessor();
OperandRange operands =
region ? terminator.getSuccessorOperands(region->getRegionNumber())
: terminator.getSuccessorOperands({});
MutableArrayRef<OpOperand> opoperands = operandsToOpOperands(operands);
for (auto [opoperand, input] : llvm::zip(opoperands, inputs)) {
meet(getLatticeElement(opoperand.get()),
*getLatticeElementFor(op, input));
unaccounted.reset(
const_cast<OpOperand &>(opoperand).getOperandNumber());
}
}
// Visit operands of the branch op not forwarded to the next region.
// (Like e.g. the boolean of `scf.conditional`)
for (int index : unaccounted.set_bits()) {
visitBranchOperand(op->getOpOperand(index));
}
return;
}
}
// yield-like ops usually don't implement `RegionBranchTerminatorOpInterface`,
// since they behave like a return in the sense that they forward to the
// results of some other (here: the parent) op.
if (op->hasTrait<OpTrait::ReturnLike>()) {
if (auto branch = dyn_cast<RegionBranchOpInterface>(op->getParentOp())) {
OperandRange operands = op->getOperands();
ResultRange results = op->getParentOp()->getResults();
assert(results.size() == operands.size() &&
"Can't derive arg mapping for yield-like op.");
for (auto [operand, result] : llvm::zip(operands, results))
meet(getLatticeElement(operand), *getLatticeElementFor(op, result));
return;
}
// Going backwards, the operands of the return are derived from the
// results of all CallOps calling this CallableOp.
if (auto callable = dyn_cast<CallableOpInterface>(op->getParentOp())) {
const PredecessorState *callsites =
getOrCreateFor<PredecessorState>(op, callable);
if (callsites->allPredecessorsKnown()) {
for (Operation *call : callsites->getKnownPredecessors()) {
SmallVector<const AbstractSparseLattice *> callResultLattices =
getLatticeElementsFor(op, call->getResults());
for (auto [op, result] :
llvm::zip(operandLattices, callResultLattices))
meet(op, *result);
}
} else {
// If we don't know all the callers, we can't know where the
// returned values go. Note that, in particular, this will trigger
// for the return ops of any public functions.
setAllToExitStates(operandLattices);
}
return;
}
}
visitOperationImpl(op, operandLattices, resultLattices);
}
void AbstractSparseBackwardDataFlowAnalysis::visitRegionSuccessors(
RegionBranchOpInterface branch,
ArrayRef<AbstractSparseLattice *> operandLattices) {
Operation *op = branch.getOperation();
SmallVector<RegionSuccessor> successors;
SmallVector<Attribute> operands(op->getNumOperands(), nullptr);
branch.getSuccessorRegions(/*index=*/{}, operands, successors);
// All operands not forwarded to any successor. This set can be non-contiguous
// in the presence of multiple successors.
BitVector unaccounted(op->getNumOperands(), true);
for (RegionSuccessor &successor : successors) {
Region *region = successor.getSuccessor();
OperandRange operands =
region ? branch.getSuccessorEntryOperands(region->getRegionNumber())
: branch.getSuccessorEntryOperands({});
MutableArrayRef<OpOperand> opoperands = operandsToOpOperands(operands);
ValueRange inputs = successor.getSuccessorInputs();
for (auto [operand, input] : llvm::zip(opoperands, inputs)) {
meet(getLatticeElement(operand.get()), *getLatticeElementFor(op, input));
unaccounted.reset(operand.getOperandNumber());
}
}
// All operands not forwarded to regions are typically parameters of the
// branch operation itself (for example the boolean for if/else).
for (int index : unaccounted.set_bits()) {
visitBranchOperand(op->getOpOperand(index));
}
}
const AbstractSparseLattice *
AbstractSparseBackwardDataFlowAnalysis::getLatticeElementFor(ProgramPoint point,
Value value) {
AbstractSparseLattice *state = getLatticeElement(value);
addDependency(state, point);
return state;
}
void AbstractSparseBackwardDataFlowAnalysis::setAllToExitStates(
ArrayRef<AbstractSparseLattice *> lattices) {
for (AbstractSparseLattice *lattice : lattices)
setToExitState(lattice);
}
void AbstractSparseBackwardDataFlowAnalysis::meet(
AbstractSparseLattice *lhs, const AbstractSparseLattice &rhs) {
propagateIfChanged(lhs, lhs->meet(rhs));
}