Jakub Kuderski 8c258fda1f [ADT][mlir][NFCI] Do not use non-const lvalue-refs with enumerate
Replace references to enumerate results with either result_pairs
(reference wrapper type) or structured bindings. I did not use
structured bindings everywhere as it wasn't clear to me it would
improve readability.

This is in preparation to the switch to zip semantics which won't
support non-const lvalue reference to elements:
https://reviews.llvm.org/D144503.

I chose to use values instead of const lvalue-refs because MLIR is
biased towards avoiding `const` local variables. This won't degrade
performance because currently `result_pair` is cheap to copy (size_t
+ iterator), and in the future, the enumerator iterator dereference
will return temporaries anyway.

Reviewed By: dblaikie

Differential Revision: https://reviews.llvm.org/D146006
2023-03-15 10:43:56 -04:00

756 lines
31 KiB
C++

//===- FuncToLLVM.cpp - Func to LLVM dialect conversion -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass to convert MLIR Func and builtin dialects
// into the LLVM IR dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/FuncToLLVM/ConvertFuncToLLVMPass.h"
#include "mlir/Analysis/DataLayoutAnalysis.h"
#include "mlir/Conversion/ArithToLLVM/ArithToLLVM.h"
#include "mlir/Conversion/ControlFlowToLLVM/ControlFlowToLLVM.h"
#include "mlir/Conversion/FuncToLLVM/ConvertFuncToLLVM.h"
#include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Conversion/LLVMCommon/VectorPattern.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMTypes.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinAttributeInterfaces.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Support/MathExtras.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FormatVariadic.h"
#include <algorithm>
#include <functional>
namespace mlir {
#define GEN_PASS_DEF_CONVERTFUNCTOLLVMPASS
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
#define PASS_NAME "convert-func-to-llvm"
static constexpr StringRef varargsAttrName = "func.varargs";
static constexpr StringRef linkageAttrName = "llvm.linkage";
/// Only retain those attributes that are not constructed by
/// `LLVMFuncOp::build`. If `filterArgAttrs` is set, also filter out argument
/// attributes.
static void filterFuncAttributes(func::FuncOp func, bool filterArgAndResAttrs,
SmallVectorImpl<NamedAttribute> &result) {
for (const NamedAttribute &attr : func->getAttrs()) {
if (attr.getName() == SymbolTable::getSymbolAttrName() ||
attr.getName() == func.getFunctionTypeAttrName() ||
attr.getName() == linkageAttrName ||
attr.getName() == varargsAttrName ||
attr.getName() == LLVM::LLVMDialect::getReadnoneAttrName() ||
(filterArgAndResAttrs &&
(attr.getName() == func.getArgAttrsAttrName() ||
attr.getName() == func.getResAttrsAttrName())))
continue;
result.push_back(attr);
}
}
/// Adds a an empty set of argument attributes for the newly added argument in
/// front of the existing ones.
static void prependEmptyArgAttr(OpBuilder &builder,
SmallVectorImpl<NamedAttribute> &newFuncAttrs,
func::FuncOp func) {
auto argAttrs = func.getArgAttrs();
// Nothing to do when there were no arg attrs beforehand.
if (!argAttrs)
return;
size_t numArguments = func.getNumArguments();
SmallVector<Attribute> newArgAttrs;
newArgAttrs.reserve(numArguments + 1);
// Insert empty dictionary for the new argument.
newArgAttrs.push_back(builder.getDictionaryAttr({}));
llvm::append_range(newArgAttrs, *argAttrs);
auto newNamedAttr = builder.getNamedAttr(func.getArgAttrsAttrName(),
builder.getArrayAttr(newArgAttrs));
newFuncAttrs.push_back(newNamedAttr);
}
/// Creates an auxiliary function with pointer-to-memref-descriptor-struct
/// arguments instead of unpacked arguments. This function can be called from C
/// by passing a pointer to a C struct corresponding to a memref descriptor.
/// Similarly, returned memrefs are passed via pointers to a C struct that is
/// passed as additional argument.
/// Internally, the auxiliary function unpacks the descriptor into individual
/// components and forwards them to `newFuncOp` and forwards the results to
/// the extra arguments.
static void wrapForExternalCallers(OpBuilder &rewriter, Location loc,
LLVMTypeConverter &typeConverter,
func::FuncOp funcOp,
LLVM::LLVMFuncOp newFuncOp) {
auto type = funcOp.getFunctionType();
auto [wrapperFuncType, resultStructType] =
typeConverter.convertFunctionTypeCWrapper(type);
SmallVector<NamedAttribute, 4> attributes;
// Only modify the argument and result attributes when the result is now an
// argument.
if (resultStructType)
prependEmptyArgAttr(rewriter, attributes, funcOp);
filterFuncAttributes(
funcOp, /*filterArgAndResAttrs=*/static_cast<bool>(resultStructType),
attributes);
auto wrapperFuncOp = rewriter.create<LLVM::LLVMFuncOp>(
loc, llvm::formatv("_mlir_ciface_{0}", funcOp.getName()).str(),
wrapperFuncType, LLVM::Linkage::External, /*dsoLocal*/ false,
/*cconv*/ LLVM::CConv::C, attributes);
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(wrapperFuncOp.addEntryBlock());
SmallVector<Value, 8> args;
size_t argOffset = resultStructType ? 1 : 0;
for (auto [index, argType] : llvm::enumerate(type.getInputs())) {
Value arg = wrapperFuncOp.getArgument(index + argOffset);
if (auto memrefType = argType.dyn_cast<MemRefType>()) {
Value loaded = rewriter.create<LLVM::LoadOp>(
loc, typeConverter.convertType(memrefType), arg);
MemRefDescriptor::unpack(rewriter, loc, loaded, memrefType, args);
continue;
}
if (argType.isa<UnrankedMemRefType>()) {
Value loaded = rewriter.create<LLVM::LoadOp>(
loc, typeConverter.convertType(argType), arg);
UnrankedMemRefDescriptor::unpack(rewriter, loc, loaded, args);
continue;
}
args.push_back(arg);
}
auto call = rewriter.create<LLVM::CallOp>(loc, newFuncOp, args);
if (resultStructType) {
rewriter.create<LLVM::StoreOp>(loc, call.getResult(),
wrapperFuncOp.getArgument(0));
rewriter.create<LLVM::ReturnOp>(loc, ValueRange{});
} else {
rewriter.create<LLVM::ReturnOp>(loc, call.getResults());
}
}
/// Creates an auxiliary function with pointer-to-memref-descriptor-struct
/// arguments instead of unpacked arguments. Creates a body for the (external)
/// `newFuncOp` that allocates a memref descriptor on stack, packs the
/// individual arguments into this descriptor and passes a pointer to it into
/// the auxiliary function. If the result of the function cannot be directly
/// returned, we write it to a special first argument that provides a pointer
/// to a corresponding struct. This auxiliary external function is now
/// compatible with functions defined in C using pointers to C structs
/// corresponding to a memref descriptor.
static void wrapExternalFunction(OpBuilder &builder, Location loc,
LLVMTypeConverter &typeConverter,
func::FuncOp funcOp,
LLVM::LLVMFuncOp newFuncOp) {
OpBuilder::InsertionGuard guard(builder);
auto [wrapperType, resultStructType] =
typeConverter.convertFunctionTypeCWrapper(funcOp.getFunctionType());
// This conversion can only fail if it could not convert one of the argument
// types. But since it has been applied to a non-wrapper function before, it
// should have failed earlier and not reach this point at all.
assert(wrapperType && "unexpected type conversion failure");
SmallVector<NamedAttribute, 4> attributes;
// Only modify the argument and result attributes when the result is now an
// argument.
if (resultStructType)
prependEmptyArgAttr(builder, attributes, funcOp);
filterFuncAttributes(
funcOp, /*filterArgAndResAttrs=*/static_cast<bool>(resultStructType),
attributes);
// Create the auxiliary function.
auto wrapperFunc = builder.create<LLVM::LLVMFuncOp>(
loc, llvm::formatv("_mlir_ciface_{0}", funcOp.getName()).str(),
wrapperType, LLVM::Linkage::External, /*dsoLocal*/ false,
/*cconv*/ LLVM::CConv::C, attributes);
builder.setInsertionPointToStart(newFuncOp.addEntryBlock());
// Get a ValueRange containing arguments.
FunctionType type = funcOp.getFunctionType();
SmallVector<Value, 8> args;
args.reserve(type.getNumInputs());
ValueRange wrapperArgsRange(newFuncOp.getArguments());
if (resultStructType) {
// Allocate the struct on the stack and pass the pointer.
Type resultType =
wrapperType.cast<LLVM::LLVMFunctionType>().getParamType(0);
Value one = builder.create<LLVM::ConstantOp>(
loc, typeConverter.convertType(builder.getIndexType()),
builder.getIntegerAttr(builder.getIndexType(), 1));
Value result =
builder.create<LLVM::AllocaOp>(loc, resultType, resultStructType, one);
args.push_back(result);
}
// Iterate over the inputs of the original function and pack values into
// memref descriptors if the original type is a memref.
for (Type input : type.getInputs()) {
Value arg;
int numToDrop = 1;
auto memRefType = input.dyn_cast<MemRefType>();
auto unrankedMemRefType = input.dyn_cast<UnrankedMemRefType>();
if (memRefType || unrankedMemRefType) {
numToDrop = memRefType
? MemRefDescriptor::getNumUnpackedValues(memRefType)
: UnrankedMemRefDescriptor::getNumUnpackedValues();
Value packed =
memRefType
? MemRefDescriptor::pack(builder, loc, typeConverter, memRefType,
wrapperArgsRange.take_front(numToDrop))
: UnrankedMemRefDescriptor::pack(
builder, loc, typeConverter, unrankedMemRefType,
wrapperArgsRange.take_front(numToDrop));
auto ptrTy = typeConverter.getPointerType(packed.getType());
Value one = builder.create<LLVM::ConstantOp>(
loc, typeConverter.convertType(builder.getIndexType()),
builder.getIntegerAttr(builder.getIndexType(), 1));
Value allocated = builder.create<LLVM::AllocaOp>(
loc, ptrTy, packed.getType(), one, /*alignment=*/0);
builder.create<LLVM::StoreOp>(loc, packed, allocated);
arg = allocated;
} else {
arg = wrapperArgsRange[0];
}
args.push_back(arg);
wrapperArgsRange = wrapperArgsRange.drop_front(numToDrop);
}
assert(wrapperArgsRange.empty() && "did not map some of the arguments");
auto call = builder.create<LLVM::CallOp>(loc, wrapperFunc, args);
if (resultStructType) {
Value result =
builder.create<LLVM::LoadOp>(loc, resultStructType, args.front());
builder.create<LLVM::ReturnOp>(loc, result);
} else {
builder.create<LLVM::ReturnOp>(loc, call.getResults());
}
}
namespace {
struct FuncOpConversionBase : public ConvertOpToLLVMPattern<func::FuncOp> {
protected:
using ConvertOpToLLVMPattern<func::FuncOp>::ConvertOpToLLVMPattern;
// Convert input FuncOp to LLVMFuncOp by using the LLVMTypeConverter provided
// to this legalization pattern.
LLVM::LLVMFuncOp
convertFuncOpToLLVMFuncOp(func::FuncOp funcOp,
ConversionPatternRewriter &rewriter) const {
// Convert the original function arguments. They are converted using the
// LLVMTypeConverter provided to this legalization pattern.
auto varargsAttr = funcOp->getAttrOfType<BoolAttr>(varargsAttrName);
TypeConverter::SignatureConversion result(funcOp.getNumArguments());
auto llvmType = getTypeConverter()->convertFunctionSignature(
funcOp.getFunctionType(), varargsAttr && varargsAttr.getValue(),
result);
if (!llvmType)
return nullptr;
// Propagate argument/result attributes to all converted arguments/result
// obtained after converting a given original argument/result.
SmallVector<NamedAttribute, 4> attributes;
filterFuncAttributes(funcOp, /*filterArgAndResAttrs=*/true, attributes);
if (ArrayAttr resAttrDicts = funcOp.getAllResultAttrs()) {
assert(!resAttrDicts.empty() && "expected array to be non-empty");
auto newResAttrDicts =
(funcOp.getNumResults() == 1)
? resAttrDicts
: rewriter.getArrayAttr(rewriter.getDictionaryAttr({}));
attributes.push_back(
rewriter.getNamedAttr(funcOp.getResAttrsAttrName(), newResAttrDicts));
}
if (ArrayAttr argAttrDicts = funcOp.getAllArgAttrs()) {
SmallVector<Attribute, 4> newArgAttrs(
llvmType.cast<LLVM::LLVMFunctionType>().getNumParams());
for (unsigned i = 0, e = funcOp.getNumArguments(); i < e; ++i) {
// Some LLVM IR attribute have a type attached to them. During FuncOp ->
// LLVMFuncOp conversion these types may have changed. Account for that
// change by converting attributes' types as well.
SmallVector<NamedAttribute, 4> convertedAttrs;
auto attrsDict = argAttrDicts[i].cast<DictionaryAttr>();
convertedAttrs.reserve(attrsDict.size());
for (const NamedAttribute &attr : attrsDict) {
const auto convert = [&](const NamedAttribute &attr) {
return TypeAttr::get(getTypeConverter()->convertType(
attr.getValue().cast<TypeAttr>().getValue()));
};
if (attr.getName().getValue() ==
LLVM::LLVMDialect::getByValAttrName()) {
convertedAttrs.push_back(rewriter.getNamedAttr(
LLVM::LLVMDialect::getByValAttrName(), convert(attr)));
} else if (attr.getName().getValue() ==
LLVM::LLVMDialect::getByRefAttrName()) {
convertedAttrs.push_back(rewriter.getNamedAttr(
LLVM::LLVMDialect::getByRefAttrName(), convert(attr)));
} else if (attr.getName().getValue() ==
LLVM::LLVMDialect::getStructRetAttrName()) {
convertedAttrs.push_back(rewriter.getNamedAttr(
LLVM::LLVMDialect::getStructRetAttrName(), convert(attr)));
} else if (attr.getName().getValue() ==
LLVM::LLVMDialect::getInAllocaAttrName()) {
convertedAttrs.push_back(rewriter.getNamedAttr(
LLVM::LLVMDialect::getInAllocaAttrName(), convert(attr)));
} else {
convertedAttrs.push_back(attr);
}
}
auto mapping = result.getInputMapping(i);
assert(mapping && "unexpected deletion of function argument");
// Only attach the new argument attributes if there is a one-to-one
// mapping from old to new types. Otherwise, attributes might be
// attached to types that they do not support.
if (mapping->size == 1) {
newArgAttrs[mapping->inputNo] =
DictionaryAttr::get(rewriter.getContext(), convertedAttrs);
continue;
}
// TODO: Implement custom handling for types that expand to multiple
// function arguments.
for (size_t j = 0; j < mapping->size; ++j)
newArgAttrs[mapping->inputNo + j] =
DictionaryAttr::get(rewriter.getContext(), {});
}
attributes.push_back(rewriter.getNamedAttr(
funcOp.getArgAttrsAttrName(), rewriter.getArrayAttr(newArgAttrs)));
}
// Create an LLVM function, use external linkage by default until MLIR
// functions have linkage.
LLVM::Linkage linkage = LLVM::Linkage::External;
if (funcOp->hasAttr(linkageAttrName)) {
auto attr =
funcOp->getAttr(linkageAttrName).dyn_cast<mlir::LLVM::LinkageAttr>();
if (!attr) {
funcOp->emitError() << "Contains " << linkageAttrName
<< " attribute not of type LLVM::LinkageAttr";
return nullptr;
}
linkage = attr.getLinkage();
}
// Create a memory effect attribute corresponding to readnone.
StringRef readnoneAttrName = LLVM::LLVMDialect::getReadnoneAttrName();
LLVM::MemoryEffectsAttr memoryAttr = {};
if (funcOp->hasAttr(readnoneAttrName)) {
auto attr = funcOp->getAttrOfType<UnitAttr>(readnoneAttrName);
if (!attr) {
funcOp->emitError() << "Contains " << readnoneAttrName
<< " attribute not of type UnitAttr";
return nullptr;
}
memoryAttr = LLVM::MemoryEffectsAttr::get(rewriter.getContext(),
{LLVM::ModRefInfo::NoModRef,
LLVM::ModRefInfo::NoModRef,
LLVM::ModRefInfo::NoModRef});
}
auto newFuncOp = rewriter.create<LLVM::LLVMFuncOp>(
funcOp.getLoc(), funcOp.getName(), llvmType, linkage,
/*dsoLocal*/ false, /*cconv*/ LLVM::CConv::C, attributes);
// If the memory attribute was created, add it to the function.
if (memoryAttr)
newFuncOp.setMemoryAttr(memoryAttr);
rewriter.inlineRegionBefore(funcOp.getBody(), newFuncOp.getBody(),
newFuncOp.end());
if (failed(rewriter.convertRegionTypes(&newFuncOp.getBody(), *typeConverter,
&result)))
return nullptr;
return newFuncOp;
}
};
/// FuncOp legalization pattern that converts MemRef arguments to pointers to
/// MemRef descriptors (LLVM struct data types) containing all the MemRef type
/// information.
struct FuncOpConversion : public FuncOpConversionBase {
FuncOpConversion(LLVMTypeConverter &converter)
: FuncOpConversionBase(converter) {}
LogicalResult
matchAndRewrite(func::FuncOp funcOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto newFuncOp = convertFuncOpToLLVMFuncOp(funcOp, rewriter);
if (!newFuncOp)
return failure();
if (funcOp->getAttrOfType<UnitAttr>(
LLVM::LLVMDialect::getEmitCWrapperAttrName())) {
if (newFuncOp.isVarArg())
return funcOp->emitError("C interface for variadic functions is not "
"supported yet.");
if (newFuncOp.isExternal())
wrapExternalFunction(rewriter, funcOp.getLoc(), *getTypeConverter(),
funcOp, newFuncOp);
else
wrapForExternalCallers(rewriter, funcOp.getLoc(), *getTypeConverter(),
funcOp, newFuncOp);
}
rewriter.eraseOp(funcOp);
return success();
}
};
/// FuncOp legalization pattern that converts MemRef arguments to bare pointers
/// to the MemRef element type. This will impact the calling convention and ABI.
struct BarePtrFuncOpConversion : public FuncOpConversionBase {
using FuncOpConversionBase::FuncOpConversionBase;
LogicalResult
matchAndRewrite(func::FuncOp funcOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// TODO: bare ptr conversion could be handled by argument materialization
// and most of the code below would go away. But to do this, we would need a
// way to distinguish between FuncOp and other regions in the
// addArgumentMaterialization hook.
// Store the type of memref-typed arguments before the conversion so that we
// can promote them to MemRef descriptor at the beginning of the function.
SmallVector<Type, 8> oldArgTypes =
llvm::to_vector<8>(funcOp.getFunctionType().getInputs());
auto newFuncOp = convertFuncOpToLLVMFuncOp(funcOp, rewriter);
if (!newFuncOp)
return failure();
if (newFuncOp.getBody().empty()) {
rewriter.eraseOp(funcOp);
return success();
}
// Promote bare pointers from memref arguments to memref descriptors at the
// beginning of the function so that all the memrefs in the function have a
// uniform representation.
Block *entryBlock = &newFuncOp.getBody().front();
auto blockArgs = entryBlock->getArguments();
assert(blockArgs.size() == oldArgTypes.size() &&
"The number of arguments and types doesn't match");
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(entryBlock);
for (auto it : llvm::zip(blockArgs, oldArgTypes)) {
BlockArgument arg = std::get<0>(it);
Type argTy = std::get<1>(it);
// Unranked memrefs are not supported in the bare pointer calling
// convention. We should have bailed out before in the presence of
// unranked memrefs.
assert(!argTy.isa<UnrankedMemRefType>() &&
"Unranked memref is not supported");
auto memrefTy = argTy.dyn_cast<MemRefType>();
if (!memrefTy)
continue;
// Replace barePtr with a placeholder (undef), promote barePtr to a ranked
// or unranked memref descriptor and replace placeholder with the last
// instruction of the memref descriptor.
// TODO: The placeholder is needed to avoid replacing barePtr uses in the
// MemRef descriptor instructions. We may want to have a utility in the
// rewriter to properly handle this use case.
Location loc = funcOp.getLoc();
auto placeholder = rewriter.create<LLVM::UndefOp>(
loc, getTypeConverter()->convertType(memrefTy));
rewriter.replaceUsesOfBlockArgument(arg, placeholder);
Value desc = MemRefDescriptor::fromStaticShape(
rewriter, loc, *getTypeConverter(), memrefTy, arg);
rewriter.replaceOp(placeholder, {desc});
}
rewriter.eraseOp(funcOp);
return success();
}
};
struct ConstantOpLowering : public ConvertOpToLLVMPattern<func::ConstantOp> {
using ConvertOpToLLVMPattern<func::ConstantOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(func::ConstantOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto type = typeConverter->convertType(op.getResult().getType());
if (!type || !LLVM::isCompatibleType(type))
return rewriter.notifyMatchFailure(op, "failed to convert result type");
auto newOp =
rewriter.create<LLVM::AddressOfOp>(op.getLoc(), type, op.getValue());
for (const NamedAttribute &attr : op->getAttrs()) {
if (attr.getName().strref() == "value")
continue;
newOp->setAttr(attr.getName(), attr.getValue());
}
rewriter.replaceOp(op, newOp->getResults());
return success();
}
};
// A CallOp automatically promotes MemRefType to a sequence of alloca/store and
// passes the pointer to the MemRef across function boundaries.
template <typename CallOpType>
struct CallOpInterfaceLowering : public ConvertOpToLLVMPattern<CallOpType> {
using ConvertOpToLLVMPattern<CallOpType>::ConvertOpToLLVMPattern;
using Super = CallOpInterfaceLowering<CallOpType>;
using Base = ConvertOpToLLVMPattern<CallOpType>;
LogicalResult
matchAndRewrite(CallOpType callOp, typename CallOpType::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Pack the result types into a struct.
Type packedResult = nullptr;
unsigned numResults = callOp.getNumResults();
auto resultTypes = llvm::to_vector<4>(callOp.getResultTypes());
if (numResults != 0) {
if (!(packedResult =
this->getTypeConverter()->packFunctionResults(resultTypes)))
return failure();
}
auto promoted = this->getTypeConverter()->promoteOperands(
callOp.getLoc(), /*opOperands=*/callOp->getOperands(),
adaptor.getOperands(), rewriter);
auto newOp = rewriter.create<LLVM::CallOp>(
callOp.getLoc(), packedResult ? TypeRange(packedResult) : TypeRange(),
promoted, callOp->getAttrs());
SmallVector<Value, 4> results;
if (numResults < 2) {
// If < 2 results, packing did not do anything and we can just return.
results.append(newOp.result_begin(), newOp.result_end());
} else {
// Otherwise, it had been converted to an operation producing a structure.
// Extract individual results from the structure and return them as list.
results.reserve(numResults);
for (unsigned i = 0; i < numResults; ++i) {
results.push_back(rewriter.create<LLVM::ExtractValueOp>(
callOp.getLoc(), newOp->getResult(0), i));
}
}
if (this->getTypeConverter()->getOptions().useBarePtrCallConv) {
// For the bare-ptr calling convention, promote memref results to
// descriptors.
assert(results.size() == resultTypes.size() &&
"The number of arguments and types doesn't match");
this->getTypeConverter()->promoteBarePtrsToDescriptors(
rewriter, callOp.getLoc(), resultTypes, results);
} else if (failed(this->copyUnrankedDescriptors(rewriter, callOp.getLoc(),
resultTypes, results,
/*toDynamic=*/false))) {
return failure();
}
rewriter.replaceOp(callOp, results);
return success();
}
};
struct CallOpLowering : public CallOpInterfaceLowering<func::CallOp> {
using Super::Super;
};
struct CallIndirectOpLowering
: public CallOpInterfaceLowering<func::CallIndirectOp> {
using Super::Super;
};
struct UnrealizedConversionCastOpLowering
: public ConvertOpToLLVMPattern<UnrealizedConversionCastOp> {
using ConvertOpToLLVMPattern<
UnrealizedConversionCastOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(UnrealizedConversionCastOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
SmallVector<Type> convertedTypes;
if (succeeded(typeConverter->convertTypes(op.getOutputs().getTypes(),
convertedTypes)) &&
convertedTypes == adaptor.getInputs().getTypes()) {
rewriter.replaceOp(op, adaptor.getInputs());
return success();
}
convertedTypes.clear();
if (succeeded(typeConverter->convertTypes(adaptor.getInputs().getTypes(),
convertedTypes)) &&
convertedTypes == op.getOutputs().getType()) {
rewriter.replaceOp(op, adaptor.getInputs());
return success();
}
return failure();
}
};
// Special lowering pattern for `ReturnOps`. Unlike all other operations,
// `ReturnOp` interacts with the function signature and must have as many
// operands as the function has return values. Because in LLVM IR, functions
// can only return 0 or 1 value, we pack multiple values into a structure type.
// Emit `UndefOp` followed by `InsertValueOp`s to create such structure if
// necessary before returning it
struct ReturnOpLowering : public ConvertOpToLLVMPattern<func::ReturnOp> {
using ConvertOpToLLVMPattern<func::ReturnOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
unsigned numArguments = op.getNumOperands();
SmallVector<Value, 4> updatedOperands;
if (getTypeConverter()->getOptions().useBarePtrCallConv) {
// For the bare-ptr calling convention, extract the aligned pointer to
// be returned from the memref descriptor.
for (auto it : llvm::zip(op->getOperands(), adaptor.getOperands())) {
Type oldTy = std::get<0>(it).getType();
Value newOperand = std::get<1>(it);
if (oldTy.isa<MemRefType>() && getTypeConverter()->canConvertToBarePtr(
oldTy.cast<BaseMemRefType>())) {
MemRefDescriptor memrefDesc(newOperand);
newOperand = memrefDesc.alignedPtr(rewriter, loc);
} else if (oldTy.isa<UnrankedMemRefType>()) {
// Unranked memref is not supported in the bare pointer calling
// convention.
return failure();
}
updatedOperands.push_back(newOperand);
}
} else {
updatedOperands = llvm::to_vector<4>(adaptor.getOperands());
(void)copyUnrankedDescriptors(rewriter, loc, op.getOperands().getTypes(),
updatedOperands,
/*toDynamic=*/true);
}
// If ReturnOp has 0 or 1 operand, create it and return immediately.
if (numArguments <= 1) {
rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(
op, TypeRange(), updatedOperands, op->getAttrs());
return success();
}
// Otherwise, we need to pack the arguments into an LLVM struct type before
// returning.
auto packedType =
getTypeConverter()->packFunctionResults(op.getOperandTypes());
Value packed = rewriter.create<LLVM::UndefOp>(loc, packedType);
for (auto [idx, operand] : llvm::enumerate(updatedOperands)) {
packed = rewriter.create<LLVM::InsertValueOp>(loc, packed, operand, idx);
}
rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(op, TypeRange(), packed,
op->getAttrs());
return success();
}
};
} // namespace
void mlir::populateFuncToLLVMFuncOpConversionPattern(
LLVMTypeConverter &converter, RewritePatternSet &patterns) {
if (converter.getOptions().useBarePtrCallConv)
patterns.add<BarePtrFuncOpConversion>(converter);
else
patterns.add<FuncOpConversion>(converter);
}
void mlir::populateFuncToLLVMConversionPatterns(LLVMTypeConverter &converter,
RewritePatternSet &patterns) {
populateFuncToLLVMFuncOpConversionPattern(converter, patterns);
// clang-format off
patterns.add<
CallIndirectOpLowering,
CallOpLowering,
ConstantOpLowering,
ReturnOpLowering>(converter);
// clang-format on
}
namespace {
/// A pass converting Func operations into the LLVM IR dialect.
struct ConvertFuncToLLVMPass
: public impl::ConvertFuncToLLVMPassBase<ConvertFuncToLLVMPass> {
using Base::Base;
/// Run the dialect converter on the module.
void runOnOperation() override {
if (failed(LLVM::LLVMDialect::verifyDataLayoutString(
this->dataLayout, [this](const Twine &message) {
getOperation().emitError() << message.str();
}))) {
signalPassFailure();
return;
}
ModuleOp m = getOperation();
const auto &dataLayoutAnalysis = getAnalysis<DataLayoutAnalysis>();
LowerToLLVMOptions options(&getContext(),
dataLayoutAnalysis.getAtOrAbove(m));
options.useBarePtrCallConv = useBarePtrCallConv;
if (indexBitwidth != kDeriveIndexBitwidthFromDataLayout)
options.overrideIndexBitwidth(indexBitwidth);
options.dataLayout = llvm::DataLayout(this->dataLayout);
options.useOpaquePointers = useOpaquePointers;
LLVMTypeConverter typeConverter(&getContext(), options,
&dataLayoutAnalysis);
RewritePatternSet patterns(&getContext());
populateFuncToLLVMConversionPatterns(typeConverter, patterns);
// TODO: Remove these in favor of their dedicated conversion passes.
arith::populateArithToLLVMConversionPatterns(typeConverter, patterns);
cf::populateControlFlowToLLVMConversionPatterns(typeConverter, patterns);
LLVMConversionTarget target(getContext());
if (failed(applyPartialConversion(m, target, std::move(patterns))))
signalPassFailure();
m->setAttr(LLVM::LLVMDialect::getDataLayoutAttrName(),
StringAttr::get(m.getContext(), this->dataLayout));
}
};
} // namespace