Jakub Kuderski 8c258fda1f [ADT][mlir][NFCI] Do not use non-const lvalue-refs with enumerate
Replace references to enumerate results with either result_pairs
(reference wrapper type) or structured bindings. I did not use
structured bindings everywhere as it wasn't clear to me it would
improve readability.

This is in preparation to the switch to zip semantics which won't
support non-const lvalue reference to elements:
https://reviews.llvm.org/D144503.

I chose to use values instead of const lvalue-refs because MLIR is
biased towards avoiding `const` local variables. This won't degrade
performance because currently `result_pair` is cheap to copy (size_t
+ iterator), and in the future, the enumerator iterator dereference
will return temporaries anyway.

Reviewed By: dblaikie

Differential Revision: https://reviews.llvm.org/D146006
2023-03-15 10:43:56 -04:00

3736 lines
142 KiB
C++

//===- SCF.cpp - Structured Control Flow Operations -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/DeviceMappingInterface.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/FunctionInterfaces.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Support/MathExtras.h"
#include "mlir/Transforms/InliningUtils.h"
#include "llvm/ADT/TypeSwitch.h"
using namespace mlir;
using namespace mlir::scf;
#include "mlir/Dialect/SCF/IR/SCFOpsDialect.cpp.inc"
//===----------------------------------------------------------------------===//
// SCFDialect Dialect Interfaces
//===----------------------------------------------------------------------===//
namespace {
struct SCFInlinerInterface : public DialectInlinerInterface {
using DialectInlinerInterface::DialectInlinerInterface;
// We don't have any special restrictions on what can be inlined into
// destination regions (e.g. while/conditional bodies). Always allow it.
bool isLegalToInline(Region *dest, Region *src, bool wouldBeCloned,
IRMapping &valueMapping) const final {
return true;
}
// Operations in scf dialect are always legal to inline since they are
// pure.
bool isLegalToInline(Operation *, Region *, bool, IRMapping &) const final {
return true;
}
// Handle the given inlined terminator by replacing it with a new operation
// as necessary. Required when the region has only one block.
void handleTerminator(Operation *op,
ArrayRef<Value> valuesToRepl) const final {
auto retValOp = dyn_cast<scf::YieldOp>(op);
if (!retValOp)
return;
for (auto retValue : llvm::zip(valuesToRepl, retValOp.getOperands())) {
std::get<0>(retValue).replaceAllUsesWith(std::get<1>(retValue));
}
}
};
} // namespace
//===----------------------------------------------------------------------===//
// SCFDialect
//===----------------------------------------------------------------------===//
void SCFDialect::initialize() {
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/SCF/IR/SCFOps.cpp.inc"
>();
addInterfaces<SCFInlinerInterface>();
}
/// Default callback for IfOp builders. Inserts a yield without arguments.
void mlir::scf::buildTerminatedBody(OpBuilder &builder, Location loc) {
builder.create<scf::YieldOp>(loc);
}
/// Verifies that the first block of the given `region` is terminated by a
/// TerminatorTy. Reports errors on the given operation if it is not the case.
template <typename TerminatorTy>
static TerminatorTy verifyAndGetTerminator(Operation *op, Region &region,
StringRef errorMessage) {
Operation *terminatorOperation = nullptr;
if (!region.empty() && !region.front().empty()) {
terminatorOperation = &region.front().back();
if (auto yield = dyn_cast_or_null<TerminatorTy>(terminatorOperation))
return yield;
}
auto diag = op->emitOpError(errorMessage);
if (terminatorOperation)
diag.attachNote(terminatorOperation->getLoc()) << "terminator here";
return nullptr;
}
//===----------------------------------------------------------------------===//
// ExecuteRegionOp
//===----------------------------------------------------------------------===//
/// Replaces the given op with the contents of the given single-block region,
/// using the operands of the block terminator to replace operation results.
static void replaceOpWithRegion(PatternRewriter &rewriter, Operation *op,
Region &region, ValueRange blockArgs = {}) {
assert(llvm::hasSingleElement(region) && "expected single-region block");
Block *block = &region.front();
Operation *terminator = block->getTerminator();
ValueRange results = terminator->getOperands();
rewriter.inlineBlockBefore(block, op, blockArgs);
rewriter.replaceOp(op, results);
rewriter.eraseOp(terminator);
}
///
/// (ssa-id `=`)? `execute_region` `->` function-result-type `{`
/// block+
/// `}`
///
/// Example:
/// scf.execute_region -> i32 {
/// %idx = load %rI[%i] : memref<128xi32>
/// return %idx : i32
/// }
///
ParseResult ExecuteRegionOp::parse(OpAsmParser &parser,
OperationState &result) {
if (parser.parseOptionalArrowTypeList(result.types))
return failure();
// Introduce the body region and parse it.
Region *body = result.addRegion();
if (parser.parseRegion(*body, /*arguments=*/{}, /*argTypes=*/{}) ||
parser.parseOptionalAttrDict(result.attributes))
return failure();
return success();
}
void ExecuteRegionOp::print(OpAsmPrinter &p) {
p.printOptionalArrowTypeList(getResultTypes());
p << ' ';
p.printRegion(getRegion(),
/*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/true);
p.printOptionalAttrDict((*this)->getAttrs());
}
LogicalResult ExecuteRegionOp::verify() {
if (getRegion().empty())
return emitOpError("region needs to have at least one block");
if (getRegion().front().getNumArguments() > 0)
return emitOpError("region cannot have any arguments");
return success();
}
// Inline an ExecuteRegionOp if it only contains one block.
// "test.foo"() : () -> ()
// %v = scf.execute_region -> i64 {
// %x = "test.val"() : () -> i64
// scf.yield %x : i64
// }
// "test.bar"(%v) : (i64) -> ()
//
// becomes
//
// "test.foo"() : () -> ()
// %x = "test.val"() : () -> i64
// "test.bar"(%x) : (i64) -> ()
//
struct SingleBlockExecuteInliner : public OpRewritePattern<ExecuteRegionOp> {
using OpRewritePattern<ExecuteRegionOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ExecuteRegionOp op,
PatternRewriter &rewriter) const override {
if (!llvm::hasSingleElement(op.getRegion()))
return failure();
replaceOpWithRegion(rewriter, op, op.getRegion());
return success();
}
};
// Inline an ExecuteRegionOp if its parent can contain multiple blocks.
// TODO generalize the conditions for operations which can be inlined into.
// func @func_execute_region_elim() {
// "test.foo"() : () -> ()
// %v = scf.execute_region -> i64 {
// %c = "test.cmp"() : () -> i1
// cf.cond_br %c, ^bb2, ^bb3
// ^bb2:
// %x = "test.val1"() : () -> i64
// cf.br ^bb4(%x : i64)
// ^bb3:
// %y = "test.val2"() : () -> i64
// cf.br ^bb4(%y : i64)
// ^bb4(%z : i64):
// scf.yield %z : i64
// }
// "test.bar"(%v) : (i64) -> ()
// return
// }
//
// becomes
//
// func @func_execute_region_elim() {
// "test.foo"() : () -> ()
// %c = "test.cmp"() : () -> i1
// cf.cond_br %c, ^bb1, ^bb2
// ^bb1: // pred: ^bb0
// %x = "test.val1"() : () -> i64
// cf.br ^bb3(%x : i64)
// ^bb2: // pred: ^bb0
// %y = "test.val2"() : () -> i64
// cf.br ^bb3(%y : i64)
// ^bb3(%z: i64): // 2 preds: ^bb1, ^bb2
// "test.bar"(%z) : (i64) -> ()
// return
// }
//
struct MultiBlockExecuteInliner : public OpRewritePattern<ExecuteRegionOp> {
using OpRewritePattern<ExecuteRegionOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ExecuteRegionOp op,
PatternRewriter &rewriter) const override {
if (!isa<FunctionOpInterface, ExecuteRegionOp>(op->getParentOp()))
return failure();
Block *prevBlock = op->getBlock();
Block *postBlock = rewriter.splitBlock(prevBlock, op->getIterator());
rewriter.setInsertionPointToEnd(prevBlock);
rewriter.create<cf::BranchOp>(op.getLoc(), &op.getRegion().front());
for (Block &blk : op.getRegion()) {
if (YieldOp yieldOp = dyn_cast<YieldOp>(blk.getTerminator())) {
rewriter.setInsertionPoint(yieldOp);
rewriter.create<cf::BranchOp>(yieldOp.getLoc(), postBlock,
yieldOp.getResults());
rewriter.eraseOp(yieldOp);
}
}
rewriter.inlineRegionBefore(op.getRegion(), postBlock);
SmallVector<Value> blockArgs;
for (auto res : op.getResults())
blockArgs.push_back(postBlock->addArgument(res.getType(), res.getLoc()));
rewriter.replaceOp(op, blockArgs);
return success();
}
};
void ExecuteRegionOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<SingleBlockExecuteInliner, MultiBlockExecuteInliner>(context);
}
/// Given the region at `index`, or the parent operation if `index` is None,
/// return the successor regions. These are the regions that may be selected
/// during the flow of control. `operands` is a set of optional attributes that
/// correspond to a constant value for each operand, or null if that operand is
/// not a constant.
void ExecuteRegionOp::getSuccessorRegions(
std::optional<unsigned> index, ArrayRef<Attribute> operands,
SmallVectorImpl<RegionSuccessor> &regions) {
// If the predecessor is the ExecuteRegionOp, branch into the body.
if (!index) {
regions.push_back(RegionSuccessor(&getRegion()));
return;
}
// Otherwise, the region branches back to the parent operation.
regions.push_back(RegionSuccessor(getResults()));
}
//===----------------------------------------------------------------------===//
// ConditionOp
//===----------------------------------------------------------------------===//
MutableOperandRange
ConditionOp::getMutableSuccessorOperands(std::optional<unsigned> index) {
// Pass all operands except the condition to the successor region.
return getArgsMutable();
}
//===----------------------------------------------------------------------===//
// ForOp
//===----------------------------------------------------------------------===//
void ForOp::build(OpBuilder &builder, OperationState &result, Value lb,
Value ub, Value step, ValueRange iterArgs,
BodyBuilderFn bodyBuilder) {
result.addOperands({lb, ub, step});
result.addOperands(iterArgs);
for (Value v : iterArgs)
result.addTypes(v.getType());
Type t = lb.getType();
Region *bodyRegion = result.addRegion();
bodyRegion->push_back(new Block);
Block &bodyBlock = bodyRegion->front();
bodyBlock.addArgument(t, result.location);
for (Value v : iterArgs)
bodyBlock.addArgument(v.getType(), v.getLoc());
// Create the default terminator if the builder is not provided and if the
// iteration arguments are not provided. Otherwise, leave this to the caller
// because we don't know which values to return from the loop.
if (iterArgs.empty() && !bodyBuilder) {
ForOp::ensureTerminator(*bodyRegion, builder, result.location);
} else if (bodyBuilder) {
OpBuilder::InsertionGuard guard(builder);
builder.setInsertionPointToStart(&bodyBlock);
bodyBuilder(builder, result.location, bodyBlock.getArgument(0),
bodyBlock.getArguments().drop_front());
}
}
LogicalResult ForOp::verify() {
IntegerAttr step;
if (matchPattern(getStep(), m_Constant(&step)) && step.getInt() <= 0)
return emitOpError("constant step operand must be positive");
auto opNumResults = getNumResults();
if (opNumResults == 0)
return success();
// If ForOp defines values, check that the number and types of
// the defined values match ForOp initial iter operands and backedge
// basic block arguments.
if (getNumIterOperands() != opNumResults)
return emitOpError(
"mismatch in number of loop-carried values and defined values");
return success();
}
LogicalResult ForOp::verifyRegions() {
// Check that the body defines as single block argument for the induction
// variable.
if (getInductionVar().getType() != getLowerBound().getType())
return emitOpError(
"expected induction variable to be same type as bounds and step");
auto opNumResults = getNumResults();
if (opNumResults == 0)
return success();
if (getNumRegionIterArgs() != opNumResults)
return emitOpError(
"mismatch in number of basic block args and defined values");
auto iterOperands = getIterOperands();
auto iterArgs = getRegionIterArgs();
auto opResults = getResults();
unsigned i = 0;
for (auto e : llvm::zip(iterOperands, iterArgs, opResults)) {
if (std::get<0>(e).getType() != std::get<2>(e).getType())
return emitOpError() << "types mismatch between " << i
<< "th iter operand and defined value";
if (std::get<1>(e).getType() != std::get<2>(e).getType())
return emitOpError() << "types mismatch between " << i
<< "th iter region arg and defined value";
++i;
}
return success();
}
std::optional<Value> ForOp::getSingleInductionVar() {
return getInductionVar();
}
std::optional<OpFoldResult> ForOp::getSingleLowerBound() {
return OpFoldResult(getLowerBound());
}
std::optional<OpFoldResult> ForOp::getSingleStep() {
return OpFoldResult(getStep());
}
std::optional<OpFoldResult> ForOp::getSingleUpperBound() {
return OpFoldResult(getUpperBound());
}
/// Prints the initialization list in the form of
/// <prefix>(%inner = %outer, %inner2 = %outer2, <...>)
/// where 'inner' values are assumed to be region arguments and 'outer' values
/// are regular SSA values.
static void printInitializationList(OpAsmPrinter &p,
Block::BlockArgListType blocksArgs,
ValueRange initializers,
StringRef prefix = "") {
assert(blocksArgs.size() == initializers.size() &&
"expected same length of arguments and initializers");
if (initializers.empty())
return;
p << prefix << '(';
llvm::interleaveComma(llvm::zip(blocksArgs, initializers), p, [&](auto it) {
p << std::get<0>(it) << " = " << std::get<1>(it);
});
p << ")";
}
void ForOp::print(OpAsmPrinter &p) {
p << " " << getInductionVar() << " = " << getLowerBound() << " to "
<< getUpperBound() << " step " << getStep();
printInitializationList(p, getRegionIterArgs(), getIterOperands(),
" iter_args");
if (!getIterOperands().empty())
p << " -> (" << getIterOperands().getTypes() << ')';
p << ' ';
if (Type t = getInductionVar().getType(); !t.isIndex())
p << " : " << t << ' ';
p.printRegion(getRegion(),
/*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/hasIterOperands());
p.printOptionalAttrDict((*this)->getAttrs());
}
ParseResult ForOp::parse(OpAsmParser &parser, OperationState &result) {
auto &builder = parser.getBuilder();
Type type;
OpAsmParser::Argument inductionVariable;
OpAsmParser::UnresolvedOperand lb, ub, step;
// Parse the induction variable followed by '='.
if (parser.parseOperand(inductionVariable.ssaName) || parser.parseEqual() ||
// Parse loop bounds.
parser.parseOperand(lb) || parser.parseKeyword("to") ||
parser.parseOperand(ub) || parser.parseKeyword("step") ||
parser.parseOperand(step))
return failure();
// Parse optional type, else assume Index.
if (parser.parseOptionalColon())
type = builder.getIndexType();
else if (parser.parseType(type))
return failure();
inductionVariable.type = type;
if (parser.resolveOperand(lb, type, result.operands) ||
parser.resolveOperand(ub, type, result.operands) ||
parser.resolveOperand(step, type, result.operands))
return failure();
// Parse the optional initial iteration arguments.
SmallVector<OpAsmParser::Argument, 4> regionArgs;
SmallVector<OpAsmParser::UnresolvedOperand, 4> operands;
regionArgs.push_back(inductionVariable);
if (succeeded(parser.parseOptionalKeyword("iter_args"))) {
// Parse assignment list and results type list.
if (parser.parseAssignmentList(regionArgs, operands) ||
parser.parseArrowTypeList(result.types))
return failure();
// Resolve input operands.
for (auto argOperandType :
llvm::zip(llvm::drop_begin(regionArgs), operands, result.types)) {
Type type = std::get<2>(argOperandType);
std::get<0>(argOperandType).type = type;
if (parser.resolveOperand(std::get<1>(argOperandType), type,
result.operands))
return failure();
}
}
if (regionArgs.size() != result.types.size() + 1)
return parser.emitError(
parser.getNameLoc(),
"mismatch in number of loop-carried values and defined values");
// Parse the body region.
Region *body = result.addRegion();
if (parser.parseRegion(*body, regionArgs))
return failure();
ForOp::ensureTerminator(*body, builder, result.location);
// Parse the optional attribute list.
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
return success();
}
Region &ForOp::getLoopBody() { return getRegion(); }
ForOp mlir::scf::getForInductionVarOwner(Value val) {
auto ivArg = val.dyn_cast<BlockArgument>();
if (!ivArg)
return ForOp();
assert(ivArg.getOwner() && "unlinked block argument");
auto *containingOp = ivArg.getOwner()->getParentOp();
return dyn_cast_or_null<ForOp>(containingOp);
}
/// Return operands used when entering the region at 'index'. These operands
/// correspond to the loop iterator operands, i.e., those excluding the
/// induction variable. LoopOp only has one region, so 0 is the only valid value
/// for `index`.
OperandRange ForOp::getSuccessorEntryOperands(std::optional<unsigned> index) {
assert(index && *index == 0 && "invalid region index");
// The initial operands map to the loop arguments after the induction
// variable.
return getInitArgs();
}
/// Given the region at `index`, or the parent operation if `index` is None,
/// return the successor regions. These are the regions that may be selected
/// during the flow of control. `operands` is a set of optional attributes that
/// correspond to a constant value for each operand, or null if that operand is
/// not a constant.
void ForOp::getSuccessorRegions(std::optional<unsigned> index,
ArrayRef<Attribute> operands,
SmallVectorImpl<RegionSuccessor> &regions) {
// If the predecessor is the ForOp, branch into the body using the iterator
// arguments.
if (!index) {
regions.push_back(RegionSuccessor(&getLoopBody(), getRegionIterArgs()));
return;
}
// Otherwise, the loop may branch back to itself or the parent operation.
assert(*index == 0 && "expected loop region");
regions.push_back(RegionSuccessor(&getLoopBody(), getRegionIterArgs()));
regions.push_back(RegionSuccessor(getResults()));
}
LoopNest mlir::scf::buildLoopNest(
OpBuilder &builder, Location loc, ValueRange lbs, ValueRange ubs,
ValueRange steps, ValueRange iterArgs,
function_ref<ValueVector(OpBuilder &, Location, ValueRange, ValueRange)>
bodyBuilder) {
assert(lbs.size() == ubs.size() &&
"expected the same number of lower and upper bounds");
assert(lbs.size() == steps.size() &&
"expected the same number of lower bounds and steps");
// If there are no bounds, call the body-building function and return early.
if (lbs.empty()) {
ValueVector results =
bodyBuilder ? bodyBuilder(builder, loc, ValueRange(), iterArgs)
: ValueVector();
assert(results.size() == iterArgs.size() &&
"loop nest body must return as many values as loop has iteration "
"arguments");
return LoopNest{{}, std::move(results)};
}
// First, create the loop structure iteratively using the body-builder
// callback of `ForOp::build`. Do not create `YieldOp`s yet.
OpBuilder::InsertionGuard guard(builder);
SmallVector<scf::ForOp, 4> loops;
SmallVector<Value, 4> ivs;
loops.reserve(lbs.size());
ivs.reserve(lbs.size());
ValueRange currentIterArgs = iterArgs;
Location currentLoc = loc;
for (unsigned i = 0, e = lbs.size(); i < e; ++i) {
auto loop = builder.create<scf::ForOp>(
currentLoc, lbs[i], ubs[i], steps[i], currentIterArgs,
[&](OpBuilder &nestedBuilder, Location nestedLoc, Value iv,
ValueRange args) {
ivs.push_back(iv);
// It is safe to store ValueRange args because it points to block
// arguments of a loop operation that we also own.
currentIterArgs = args;
currentLoc = nestedLoc;
});
// Set the builder to point to the body of the newly created loop. We don't
// do this in the callback because the builder is reset when the callback
// returns.
builder.setInsertionPointToStart(loop.getBody());
loops.push_back(loop);
}
// For all loops but the innermost, yield the results of the nested loop.
for (unsigned i = 0, e = loops.size() - 1; i < e; ++i) {
builder.setInsertionPointToEnd(loops[i].getBody());
builder.create<scf::YieldOp>(loc, loops[i + 1].getResults());
}
// In the body of the innermost loop, call the body building function if any
// and yield its results.
builder.setInsertionPointToStart(loops.back().getBody());
ValueVector results = bodyBuilder
? bodyBuilder(builder, currentLoc, ivs,
loops.back().getRegionIterArgs())
: ValueVector();
assert(results.size() == iterArgs.size() &&
"loop nest body must return as many values as loop has iteration "
"arguments");
builder.setInsertionPointToEnd(loops.back().getBody());
builder.create<scf::YieldOp>(loc, results);
// Return the loops.
ValueVector nestResults;
llvm::copy(loops.front().getResults(), std::back_inserter(nestResults));
return LoopNest{std::move(loops), std::move(nestResults)};
}
LoopNest mlir::scf::buildLoopNest(
OpBuilder &builder, Location loc, ValueRange lbs, ValueRange ubs,
ValueRange steps,
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilder) {
// Delegate to the main function by wrapping the body builder.
return buildLoopNest(builder, loc, lbs, ubs, steps, std::nullopt,
[&bodyBuilder](OpBuilder &nestedBuilder,
Location nestedLoc, ValueRange ivs,
ValueRange) -> ValueVector {
if (bodyBuilder)
bodyBuilder(nestedBuilder, nestedLoc, ivs);
return {};
});
}
namespace {
// Fold away ForOp iter arguments when:
// 1) The op yields the iter arguments.
// 2) The iter arguments have no use and the corresponding outer region
// iterators (inputs) are yielded.
// 3) The iter arguments have no use and the corresponding (operation) results
// have no use.
//
// These arguments must be defined outside of
// the ForOp region and can just be forwarded after simplifying the op inits,
// yields and returns.
//
// The implementation uses `inlineBlockBefore` to steal the content of the
// original ForOp and avoid cloning.
struct ForOpIterArgsFolder : public OpRewritePattern<scf::ForOp> {
using OpRewritePattern<scf::ForOp>::OpRewritePattern;
LogicalResult matchAndRewrite(scf::ForOp forOp,
PatternRewriter &rewriter) const final {
bool canonicalize = false;
Block &block = forOp.getRegion().front();
auto yieldOp = cast<scf::YieldOp>(block.getTerminator());
// An internal flat vector of block transfer
// arguments `newBlockTransferArgs` keeps the 1-1 mapping of original to
// transformed block argument mappings. This plays the role of a
// IRMapping for the particular use case of calling into
// `inlineBlockBefore`.
SmallVector<bool, 4> keepMask;
keepMask.reserve(yieldOp.getNumOperands());
SmallVector<Value, 4> newBlockTransferArgs, newIterArgs, newYieldValues,
newResultValues;
newBlockTransferArgs.reserve(1 + forOp.getNumIterOperands());
newBlockTransferArgs.push_back(Value()); // iv placeholder with null value
newIterArgs.reserve(forOp.getNumIterOperands());
newYieldValues.reserve(yieldOp.getNumOperands());
newResultValues.reserve(forOp.getNumResults());
for (auto it : llvm::zip(forOp.getIterOperands(), // iter from outside
forOp.getRegionIterArgs(), // iter inside region
forOp.getResults(), // op results
yieldOp.getOperands() // iter yield
)) {
// Forwarded is `true` when:
// 1) The region `iter` argument is yielded.
// 2) The region `iter` argument has no use, and the corresponding iter
// operand (input) is yielded.
// 3) The region `iter` argument has no use, and the corresponding op
// result has no use.
bool forwarded = ((std::get<1>(it) == std::get<3>(it)) ||
(std::get<1>(it).use_empty() &&
(std::get<0>(it) == std::get<3>(it) ||
std::get<2>(it).use_empty())));
keepMask.push_back(!forwarded);
canonicalize |= forwarded;
if (forwarded) {
newBlockTransferArgs.push_back(std::get<0>(it));
newResultValues.push_back(std::get<0>(it));
continue;
}
newIterArgs.push_back(std::get<0>(it));
newYieldValues.push_back(std::get<3>(it));
newBlockTransferArgs.push_back(Value()); // placeholder with null value
newResultValues.push_back(Value()); // placeholder with null value
}
if (!canonicalize)
return failure();
scf::ForOp newForOp = rewriter.create<scf::ForOp>(
forOp.getLoc(), forOp.getLowerBound(), forOp.getUpperBound(),
forOp.getStep(), newIterArgs);
newForOp->setAttrs(forOp->getAttrs());
Block &newBlock = newForOp.getRegion().front();
// Replace the null placeholders with newly constructed values.
newBlockTransferArgs[0] = newBlock.getArgument(0); // iv
for (unsigned idx = 0, collapsedIdx = 0, e = newResultValues.size();
idx != e; ++idx) {
Value &blockTransferArg = newBlockTransferArgs[1 + idx];
Value &newResultVal = newResultValues[idx];
assert((blockTransferArg && newResultVal) ||
(!blockTransferArg && !newResultVal));
if (!blockTransferArg) {
blockTransferArg = newForOp.getRegionIterArgs()[collapsedIdx];
newResultVal = newForOp.getResult(collapsedIdx++);
}
}
Block &oldBlock = forOp.getRegion().front();
assert(oldBlock.getNumArguments() == newBlockTransferArgs.size() &&
"unexpected argument size mismatch");
// No results case: the scf::ForOp builder already created a zero
// result terminator. Merge before this terminator and just get rid of the
// original terminator that has been merged in.
if (newIterArgs.empty()) {
auto newYieldOp = cast<scf::YieldOp>(newBlock.getTerminator());
rewriter.inlineBlockBefore(&oldBlock, newYieldOp, newBlockTransferArgs);
rewriter.eraseOp(newBlock.getTerminator()->getPrevNode());
rewriter.replaceOp(forOp, newResultValues);
return success();
}
// No terminator case: merge and rewrite the merged terminator.
auto cloneFilteredTerminator = [&](scf::YieldOp mergedTerminator) {
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(mergedTerminator);
SmallVector<Value, 4> filteredOperands;
filteredOperands.reserve(newResultValues.size());
for (unsigned idx = 0, e = keepMask.size(); idx < e; ++idx)
if (keepMask[idx])
filteredOperands.push_back(mergedTerminator.getOperand(idx));
rewriter.create<scf::YieldOp>(mergedTerminator.getLoc(),
filteredOperands);
};
rewriter.mergeBlocks(&oldBlock, &newBlock, newBlockTransferArgs);
auto mergedYieldOp = cast<scf::YieldOp>(newBlock.getTerminator());
cloneFilteredTerminator(mergedYieldOp);
rewriter.eraseOp(mergedYieldOp);
rewriter.replaceOp(forOp, newResultValues);
return success();
}
};
/// Util function that tries to compute a constant diff between u and l.
/// Returns std::nullopt when the difference between two AffineValueMap is
/// dynamic.
static std::optional<int64_t> computeConstDiff(Value l, Value u) {
IntegerAttr clb, cub;
if (matchPattern(l, m_Constant(&clb)) && matchPattern(u, m_Constant(&cub))) {
llvm::APInt lbValue = clb.getValue();
llvm::APInt ubValue = cub.getValue();
return (ubValue - lbValue).getSExtValue();
}
// Else a simple pattern match for x + c or c + x
llvm::APInt diff;
if (matchPattern(
u, m_Op<arith::AddIOp>(matchers::m_Val(l), m_ConstantInt(&diff))) ||
matchPattern(
u, m_Op<arith::AddIOp>(m_ConstantInt(&diff), matchers::m_Val(l))))
return diff.getSExtValue();
return std::nullopt;
}
/// Rewriting pattern that erases loops that are known not to iterate, replaces
/// single-iteration loops with their bodies, and removes empty loops that
/// iterate at least once and only return values defined outside of the loop.
struct SimplifyTrivialLoops : public OpRewritePattern<ForOp> {
using OpRewritePattern<ForOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ForOp op,
PatternRewriter &rewriter) const override {
// If the upper bound is the same as the lower bound, the loop does not
// iterate, just remove it.
if (op.getLowerBound() == op.getUpperBound()) {
rewriter.replaceOp(op, op.getIterOperands());
return success();
}
std::optional<int64_t> diff =
computeConstDiff(op.getLowerBound(), op.getUpperBound());
if (!diff)
return failure();
// If the loop is known to have 0 iterations, remove it.
if (*diff <= 0) {
rewriter.replaceOp(op, op.getIterOperands());
return success();
}
std::optional<llvm::APInt> maybeStepValue = op.getConstantStep();
if (!maybeStepValue)
return failure();
// If the loop is known to have 1 iteration, inline its body and remove the
// loop.
llvm::APInt stepValue = *maybeStepValue;
if (stepValue.sge(*diff)) {
SmallVector<Value, 4> blockArgs;
blockArgs.reserve(op.getNumIterOperands() + 1);
blockArgs.push_back(op.getLowerBound());
llvm::append_range(blockArgs, op.getIterOperands());
replaceOpWithRegion(rewriter, op, op.getLoopBody(), blockArgs);
return success();
}
// Now we are left with loops that have more than 1 iterations.
Block &block = op.getRegion().front();
if (!llvm::hasSingleElement(block))
return failure();
// If the loop is empty, iterates at least once, and only returns values
// defined outside of the loop, remove it and replace it with yield values.
auto yieldOp = cast<scf::YieldOp>(block.getTerminator());
auto yieldOperands = yieldOp.getOperands();
if (llvm::any_of(yieldOperands,
[&](Value v) { return !op.isDefinedOutsideOfLoop(v); }))
return failure();
rewriter.replaceOp(op, yieldOperands);
return success();
}
};
/// Perform a replacement of one iter OpOperand of an scf.for to the
/// `replacement` value which is expected to be the source of a tensor.cast.
/// tensor.cast ops are inserted inside the block to account for the type cast.
static ForOp replaceTensorCastForOpIterArg(PatternRewriter &rewriter,
OpOperand &operand,
Value replacement) {
Type oldType = operand.get().getType(), newType = replacement.getType();
assert(oldType.isa<RankedTensorType>() && newType.isa<RankedTensorType>() &&
"expected ranked tensor types");
// 1. Create new iter operands, exactly 1 is replaced.
ForOp forOp = cast<ForOp>(operand.getOwner());
assert(operand.getOperandNumber() >= forOp.getNumControlOperands() &&
"expected an iter OpOperand");
if (operand.get().getType() == replacement.getType())
return forOp;
SmallVector<Value> newIterOperands;
for (OpOperand &opOperand : forOp.getIterOpOperands()) {
if (opOperand.getOperandNumber() == operand.getOperandNumber()) {
newIterOperands.push_back(replacement);
continue;
}
newIterOperands.push_back(opOperand.get());
}
// 2. Create the new forOp shell.
scf::ForOp newForOp = rewriter.create<scf::ForOp>(
forOp.getLoc(), forOp.getLowerBound(), forOp.getUpperBound(),
forOp.getStep(), newIterOperands);
newForOp->setAttrs(forOp->getAttrs());
Block &newBlock = newForOp.getRegion().front();
SmallVector<Value, 4> newBlockTransferArgs(newBlock.getArguments().begin(),
newBlock.getArguments().end());
// 3. Inject an incoming cast op at the beginning of the block for the bbArg
// corresponding to the `replacement` value.
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(&newBlock, newBlock.begin());
BlockArgument newRegionIterArg = newForOp.getRegionIterArgForOpOperand(
newForOp->getOpOperand(operand.getOperandNumber()));
Value castIn = rewriter.create<tensor::CastOp>(newForOp.getLoc(), oldType,
newRegionIterArg);
newBlockTransferArgs[newRegionIterArg.getArgNumber()] = castIn;
// 4. Steal the old block ops, mapping to the newBlockTransferArgs.
Block &oldBlock = forOp.getRegion().front();
rewriter.mergeBlocks(&oldBlock, &newBlock, newBlockTransferArgs);
// 5. Inject an outgoing cast op at the end of the block and yield it instead.
auto clonedYieldOp = cast<scf::YieldOp>(newBlock.getTerminator());
rewriter.setInsertionPoint(clonedYieldOp);
unsigned yieldIdx =
newRegionIterArg.getArgNumber() - forOp.getNumInductionVars();
Value castOut = rewriter.create<tensor::CastOp>(
newForOp.getLoc(), newType, clonedYieldOp.getOperand(yieldIdx));
SmallVector<Value> newYieldOperands = clonedYieldOp.getOperands();
newYieldOperands[yieldIdx] = castOut;
rewriter.create<scf::YieldOp>(newForOp.getLoc(), newYieldOperands);
rewriter.eraseOp(clonedYieldOp);
// 6. Inject an outgoing cast op after the forOp.
rewriter.setInsertionPointAfter(newForOp);
SmallVector<Value> newResults = newForOp.getResults();
newResults[yieldIdx] = rewriter.create<tensor::CastOp>(
newForOp.getLoc(), oldType, newResults[yieldIdx]);
return newForOp;
}
/// Fold scf.for iter_arg/result pairs that go through incoming/ougoing
/// a tensor.cast op pair so as to pull the tensor.cast inside the scf.for:
///
/// ```
/// %0 = tensor.cast %t0 : tensor<32x1024xf32> to tensor<?x?xf32>
/// %1 = scf.for %i = %c0 to %c1024 step %c32 iter_args(%iter_t0 = %0)
/// -> (tensor<?x?xf32>) {
/// %2 = call @do(%iter_t0) : (tensor<?x?xf32>) -> tensor<?x?xf32>
/// scf.yield %2 : tensor<?x?xf32>
/// }
/// use_of(%1)
/// ```
///
/// folds into:
///
/// ```
/// %0 = scf.for %arg2 = %c0 to %c1024 step %c32 iter_args(%arg3 = %arg0)
/// -> (tensor<32x1024xf32>) {
/// %2 = tensor.cast %arg3 : tensor<32x1024xf32> to tensor<?x?xf32>
/// %3 = call @do(%2) : (tensor<?x?xf32>) -> tensor<?x?xf32>
/// %4 = tensor.cast %3 : tensor<?x?xf32> to tensor<32x1024xf32>
/// scf.yield %4 : tensor<32x1024xf32>
/// }
/// %1 = tensor.cast %0 : tensor<32x1024xf32> to tensor<?x?xf32>
/// use_of(%1)
/// ```
struct ForOpTensorCastFolder : public OpRewritePattern<ForOp> {
using OpRewritePattern<ForOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ForOp op,
PatternRewriter &rewriter) const override {
for (auto it : llvm::zip(op.getIterOpOperands(), op.getResults())) {
OpOperand &iterOpOperand = std::get<0>(it);
auto incomingCast = iterOpOperand.get().getDefiningOp<tensor::CastOp>();
if (!incomingCast)
continue;
// If the dest type of the cast does not preserve static information in
// the source type.
if (!tensor::preservesStaticInformation(
incomingCast.getDest().getType(),
incomingCast.getSource().getType()))
continue;
if (!std::get<1>(it).hasOneUse())
continue;
// Create a new ForOp with that iter operand replaced.
auto newForOp = replaceTensorCastForOpIterArg(rewriter, iterOpOperand,
incomingCast.getSource());
// Insert outgoing cast and use it to replace the corresponding result.
rewriter.setInsertionPointAfter(newForOp);
SmallVector<Value> replacements = newForOp.getResults();
unsigned returnIdx =
iterOpOperand.getOperandNumber() - op.getNumControlOperands();
replacements[returnIdx] = rewriter.create<tensor::CastOp>(
op.getLoc(), incomingCast.getDest().getType(),
replacements[returnIdx]);
rewriter.replaceOp(op, replacements);
return success();
}
return failure();
}
};
/// Canonicalize the iter_args of an scf::ForOp that involve a
/// `bufferization.to_tensor` and for which only the last loop iteration is
/// actually visible outside of the loop. The canonicalization looks for a
/// pattern such as:
/// ```
/// %t0 = ... : tensor_type
/// %0 = scf.for ... iter_args(%bb0 : %t0) -> (tensor_type) {
/// ...
/// // %m is either buffer_cast(%bb00) or defined above the loop
/// %m... : memref_type
/// ... // uses of %m with potential inplace updates
/// %new_tensor = bufferization.to_tensor %m : memref_type
/// ...
/// scf.yield %new_tensor : tensor_type
/// }
/// ```
///
/// `%bb0` may have either 0 or 1 use. If it has 1 use it must be exactly a
/// `%m = buffer_cast %bb0` op that feeds into the yielded
/// `bufferization.to_tensor` op.
///
/// If no aliasing write to the memref `%m`, from which `%new_tensor`is loaded,
/// occurs between `bufferization.to_tensor and yield then the value %0
/// visible outside of the loop is the last `bufferization.to_tensor`
/// produced in the loop.
///
/// For now, we approximate the absence of aliasing by only supporting the case
/// when the bufferization.to_tensor is the operation immediately preceding
/// the yield.
//
/// The canonicalization rewrites the pattern as:
/// ```
/// // %m is either a buffer_cast or defined above
/// %m... : memref_type
/// scf.for ... iter_args(%bb0 : %t0) -> (tensor_type) {
/// ... // uses of %m with potential inplace updates
/// scf.yield %bb0: tensor_type
/// }
/// %0 = bufferization.to_tensor %m : memref_type
/// ```
///
/// A later bbArg canonicalization will further rewrite as:
/// ```
/// // %m is either a buffer_cast or defined above
/// %m... : memref_type
/// scf.for ... { // no iter_args
/// ... // uses of %m with potential inplace updates
/// }
/// %0 = bufferization.to_tensor %m : memref_type
/// ```
struct LastTensorLoadCanonicalization : public OpRewritePattern<ForOp> {
using OpRewritePattern<ForOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ForOp forOp,
PatternRewriter &rewriter) const override {
assert(std::next(forOp.getRegion().begin()) == forOp.getRegion().end() &&
"unexpected multiple blocks");
Location loc = forOp.getLoc();
DenseMap<Value, Value> replacements;
for (BlockArgument bbArg : forOp.getRegionIterArgs()) {
unsigned idx = bbArg.getArgNumber() - /*numIv=*/1;
auto yieldOp =
cast<scf::YieldOp>(forOp.getRegion().front().getTerminator());
Value yieldVal = yieldOp->getOperand(idx);
auto tensorLoadOp = yieldVal.getDefiningOp<bufferization::ToTensorOp>();
bool isTensor = bbArg.getType().isa<TensorType>();
bufferization::ToMemrefOp tensorToMemref;
// Either bbArg has no use or it has a single buffer_cast use.
if (bbArg.hasOneUse())
tensorToMemref =
dyn_cast<bufferization::ToMemrefOp>(*bbArg.getUsers().begin());
if (!isTensor || !tensorLoadOp || (!bbArg.use_empty() && !tensorToMemref))
continue;
// If tensorToMemref is present, it must feed into the `ToTensorOp`.
if (tensorToMemref && tensorLoadOp.getMemref() != tensorToMemref)
continue;
// TODO: Any aliasing write of tensorLoadOp.memref() nested under `forOp`
// must be before `ToTensorOp` in the block so that the lastWrite
// property is not subject to additional side-effects.
// For now, we only support the case when ToTensorOp appears
// immediately before the terminator.
if (tensorLoadOp->getNextNode() != yieldOp)
continue;
// Clone the optional tensorToMemref before forOp.
if (tensorToMemref) {
rewriter.setInsertionPoint(forOp);
rewriter.replaceOpWithNewOp<bufferization::ToMemrefOp>(
tensorToMemref, tensorToMemref.getMemref().getType(),
tensorToMemref.getTensor());
}
// Clone the tensorLoad after forOp.
rewriter.setInsertionPointAfter(forOp);
Value newTensorLoad = rewriter.create<bufferization::ToTensorOp>(
loc, tensorLoadOp.getMemref());
Value forOpResult = forOp.getResult(bbArg.getArgNumber() - /*iv=*/1);
replacements.insert(std::make_pair(forOpResult, newTensorLoad));
// Make the terminator just yield the bbArg, the old tensorLoadOp + the
// old bbArg (that is now directly yielded) will canonicalize away.
rewriter.startRootUpdate(yieldOp);
yieldOp.setOperand(idx, bbArg);
rewriter.finalizeRootUpdate(yieldOp);
}
if (replacements.empty())
return failure();
// We want to replace a subset of the results of `forOp`. rewriter.replaceOp
// replaces the whole op and erase it unconditionally. This is wrong for
// `forOp` as it generally contains ops with side effects.
// Instead, use `rewriter.replaceOpWithIf`.
SmallVector<Value> newResults;
newResults.reserve(forOp.getNumResults());
for (Value v : forOp.getResults()) {
auto it = replacements.find(v);
newResults.push_back((it != replacements.end()) ? it->second : v);
}
unsigned idx = 0;
rewriter.replaceOpWithIf(forOp, newResults, [&](OpOperand &op) {
return op.get() != newResults[idx++];
});
return success();
}
};
} // namespace
void ForOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<ForOpIterArgsFolder, SimplifyTrivialLoops,
LastTensorLoadCanonicalization, ForOpTensorCastFolder>(context);
}
std::optional<APInt> ForOp::getConstantStep() {
IntegerAttr step;
if (matchPattern(getStep(), m_Constant(&step)))
return step.getValue();
return {};
}
Speculation::Speculatability ForOp::getSpeculatability() {
// `scf.for (I = Start; I < End; I += 1)` terminates for all values of Start
// and End.
if (auto constantStep = getConstantStep())
if (*constantStep == 1)
return Speculation::RecursivelySpeculatable;
// For Step != 1, the loop may not terminate. We can add more smarts here if
// needed.
return Speculation::NotSpeculatable;
}
//===----------------------------------------------------------------------===//
// ForallOp
//===----------------------------------------------------------------------===//
LogicalResult ForallOp::verify() {
unsigned numLoops = getRank();
// Check number of outputs.
if (getNumResults() != getOutputs().size())
return emitOpError("produces ")
<< getNumResults() << " results, but has only "
<< getOutputs().size() << " outputs";
// Check that the body defines block arguments for thread indices and outputs.
auto *body = getBody();
if (body->getNumArguments() != numLoops + getOutputs().size())
return emitOpError("region expects ") << numLoops << " arguments";
for (int64_t i = 0; i < numLoops; ++i)
if (!body->getArgument(i).getType().isIndex())
return emitOpError("expects ")
<< i << "-th block argument to be an index";
for (unsigned i = 0; i < getOutputs().size(); ++i)
if (body->getArgument(i + numLoops).getType() != getOutputs()[i].getType())
return emitOpError("type mismatch between ")
<< i << "-th output and corresponding block argument";
if (getMapping().has_value() && !getMapping()->empty()) {
if (static_cast<int64_t>(getMapping()->size()) != numLoops)
return emitOpError() << "mapping attribute size must match op rank";
for (auto map : getMapping()->getValue()) {
if (!isa<DeviceMappingAttrInterface>(map))
return emitOpError()
<< getMappingAttrName() << " is not device mapping attribute";
}
}
// Verify mixed static/dynamic control variables.
Operation *op = getOperation();
if (failed(verifyListOfOperandsOrIntegers(op, "lower bound", numLoops,
getStaticLowerBound(),
getDynamicLowerBound())))
return failure();
if (failed(verifyListOfOperandsOrIntegers(op, "upper bound", numLoops,
getStaticUpperBound(),
getDynamicUpperBound())))
return failure();
if (failed(verifyListOfOperandsOrIntegers(op, "step", numLoops,
getStaticStep(), getDynamicStep())))
return failure();
return success();
}
void ForallOp::print(OpAsmPrinter &p) {
Operation *op = getOperation();
p << " (" << getInductionVars();
if (isNormalized()) {
p << ") in ";
printDynamicIndexList(p, op, getDynamicUpperBound(), getStaticUpperBound(),
OpAsmParser::Delimiter::Paren);
} else {
p << ") = ";
printDynamicIndexList(p, op, getDynamicLowerBound(), getStaticLowerBound(),
OpAsmParser::Delimiter::Paren);
p << " to ";
printDynamicIndexList(p, op, getDynamicUpperBound(), getStaticUpperBound(),
OpAsmParser::Delimiter::Paren);
p << " step ";
printDynamicIndexList(p, op, getDynamicStep(), getStaticStep(),
OpAsmParser::Delimiter::Paren);
}
printInitializationList(p, getRegionOutArgs(), getOutputs(), " shared_outs");
p << " ";
if (!getRegionOutArgs().empty())
p << "-> (" << getResultTypes() << ") ";
p.printRegion(getRegion(),
/*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/getNumResults() > 0);
p.printOptionalAttrDict(op->getAttrs(), {getOperandSegmentSizesAttrName(),
getStaticLowerBoundAttrName(),
getStaticUpperBoundAttrName(),
getStaticStepAttrName()});
}
ParseResult ForallOp::parse(OpAsmParser &parser, OperationState &result) {
OpBuilder b(parser.getContext());
auto indexType = b.getIndexType();
// Parse an opening `(` followed by thread index variables followed by `)`
// TODO: when we can refer to such "induction variable"-like handles from the
// declarative assembly format, we can implement the parser as a custom hook.
SmallVector<OpAsmParser::Argument, 4> ivs;
if (parser.parseArgumentList(ivs, OpAsmParser::Delimiter::Paren))
return failure();
DenseI64ArrayAttr staticLbs, staticUbs, staticSteps;
SmallVector<OpAsmParser::UnresolvedOperand> dynamicLbs, dynamicUbs,
dynamicSteps;
if (succeeded(parser.parseOptionalKeyword("in"))) {
// Parse upper bounds.
if (parseDynamicIndexList(parser, dynamicUbs, staticUbs,
OpAsmParser::Delimiter::Paren) ||
parser.resolveOperands(dynamicUbs, indexType, result.operands))
return failure();
unsigned numLoops = ivs.size();
staticLbs = b.getDenseI64ArrayAttr(SmallVector<int64_t>(numLoops, 0));
staticSteps = b.getDenseI64ArrayAttr(SmallVector<int64_t>(numLoops, 1));
} else {
// Parse lower bounds.
if (parser.parseEqual() ||
parseDynamicIndexList(parser, dynamicLbs, staticLbs,
OpAsmParser::Delimiter::Paren) ||
parser.resolveOperands(dynamicLbs, indexType, result.operands))
return failure();
// Parse upper bounds.
if (parser.parseKeyword("to") ||
parseDynamicIndexList(parser, dynamicUbs, staticUbs,
OpAsmParser::Delimiter::Paren) ||
parser.resolveOperands(dynamicUbs, indexType, result.operands))
return failure();
// Parse step values.
if (parser.parseKeyword("step") ||
parseDynamicIndexList(parser, dynamicSteps, staticSteps,
OpAsmParser::Delimiter::Paren) ||
parser.resolveOperands(dynamicSteps, indexType, result.operands))
return failure();
}
// Parse out operands and results.
SmallVector<OpAsmParser::Argument, 4> regionOutArgs;
SmallVector<OpAsmParser::UnresolvedOperand, 4> outOperands;
SMLoc outOperandsLoc = parser.getCurrentLocation();
if (succeeded(parser.parseOptionalKeyword("shared_outs"))) {
if (outOperands.size() != result.types.size())
return parser.emitError(outOperandsLoc,
"mismatch between out operands and types");
if (parser.parseAssignmentList(regionOutArgs, outOperands) ||
parser.parseOptionalArrowTypeList(result.types) ||
parser.resolveOperands(outOperands, result.types, outOperandsLoc,
result.operands))
return failure();
}
// Parse region.
SmallVector<OpAsmParser::Argument, 4> regionArgs;
std::unique_ptr<Region> region = std::make_unique<Region>();
for (auto &iv : ivs) {
iv.type = b.getIndexType();
regionArgs.push_back(iv);
}
for (const auto &it : llvm::enumerate(regionOutArgs)) {
auto &out = it.value();
out.type = result.types[it.index()];
regionArgs.push_back(out);
}
if (parser.parseRegion(*region, regionArgs))
return failure();
// Ensure terminator and move region.
ForallOp::ensureTerminator(*region, b, result.location);
result.addRegion(std::move(region));
// Parse the optional attribute list.
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
result.addAttribute("staticLowerBound", staticLbs);
result.addAttribute("staticUpperBound", staticUbs);
result.addAttribute("staticStep", staticSteps);
result.addAttribute("operand_segment_sizes",
parser.getBuilder().getDenseI32ArrayAttr(
{static_cast<int32_t>(dynamicLbs.size()),
static_cast<int32_t>(dynamicUbs.size()),
static_cast<int32_t>(dynamicSteps.size()),
static_cast<int32_t>(outOperands.size())}));
return success();
}
// Builder that takes loop bounds.
void ForallOp::build(
mlir::OpBuilder &b, mlir::OperationState &result,
ArrayRef<OpFoldResult> lbs, ArrayRef<OpFoldResult> ubs,
ArrayRef<OpFoldResult> steps, ValueRange outputs,
std::optional<ArrayAttr> mapping,
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilderFn) {
SmallVector<int64_t> staticLbs, staticUbs, staticSteps;
SmallVector<Value> dynamicLbs, dynamicUbs, dynamicSteps;
dispatchIndexOpFoldResults(lbs, dynamicLbs, staticLbs);
dispatchIndexOpFoldResults(ubs, dynamicUbs, staticUbs);
dispatchIndexOpFoldResults(steps, dynamicSteps, staticSteps);
result.addOperands(dynamicLbs);
result.addOperands(dynamicUbs);
result.addOperands(dynamicSteps);
result.addOperands(outputs);
result.addTypes(TypeRange(outputs));
result.addAttribute(getStaticLowerBoundAttrName(result.name),
b.getDenseI64ArrayAttr(staticLbs));
result.addAttribute(getStaticUpperBoundAttrName(result.name),
b.getDenseI64ArrayAttr(staticUbs));
result.addAttribute(getStaticStepAttrName(result.name),
b.getDenseI64ArrayAttr(staticSteps));
result.addAttribute(
"operand_segment_sizes",
b.getDenseI32ArrayAttr({static_cast<int32_t>(dynamicLbs.size()),
static_cast<int32_t>(dynamicUbs.size()),
static_cast<int32_t>(dynamicSteps.size()),
static_cast<int32_t>(outputs.size())}));
if (mapping.has_value()) {
result.addAttribute(ForallOp::getMappingAttrName(result.name),
mapping.value());
}
Region *bodyRegion = result.addRegion();
OpBuilder::InsertionGuard g(b);
b.createBlock(bodyRegion);
Block &bodyBlock = bodyRegion->front();
// Add block arguments for indices and outputs.
bodyBlock.addArguments(
SmallVector<Type>(lbs.size(), b.getIndexType()),
SmallVector<Location>(staticLbs.size(), result.location));
bodyBlock.addArguments(
TypeRange(outputs),
SmallVector<Location>(outputs.size(), result.location));
b.setInsertionPointToStart(&bodyBlock);
if (!bodyBuilderFn) {
ForallOp::ensureTerminator(*bodyRegion, b, result.location);
return;
}
bodyBuilderFn(b, result.location, bodyBlock.getArguments());
#ifndef NDEBUG
auto terminator = llvm::dyn_cast<InParallelOp>(bodyBlock.getTerminator());
assert(terminator &&
"expected bodyBuilderFn to create InParallelOp terminator");
#endif // NDEBUG
}
// Builder that takes loop bounds.
void ForallOp::build(
mlir::OpBuilder &b, mlir::OperationState &result,
ArrayRef<OpFoldResult> ubs, ValueRange outputs,
std::optional<ArrayAttr> mapping,
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilderFn) {
unsigned numLoops = ubs.size();
SmallVector<OpFoldResult> lbs(numLoops, b.getIndexAttr(0));
SmallVector<OpFoldResult> steps(numLoops, b.getIndexAttr(1));
build(b, result, lbs, ubs, steps, outputs, mapping, bodyBuilderFn);
}
// Checks if the lbs are zeros and steps are ones.
bool ForallOp::isNormalized() {
auto allEqual = [](ArrayRef<OpFoldResult> results, int64_t val) {
return llvm::all_of(results, [&](OpFoldResult ofr) {
auto intValue = getConstantIntValue(ofr);
return intValue.has_value() && intValue == val;
});
};
return allEqual(getMixedLowerBound(), 0) && allEqual(getMixedStep(), 1);
}
// The ensureTerminator method generated by SingleBlockImplicitTerminator is
// unaware of the fact that our terminator also needs a region to be
// well-formed. We override it here to ensure that we do the right thing.
void ForallOp::ensureTerminator(Region &region, OpBuilder &builder,
Location loc) {
OpTrait::SingleBlockImplicitTerminator<InParallelOp>::Impl<
ForallOp>::ensureTerminator(region, builder, loc);
auto terminator =
llvm::dyn_cast<InParallelOp>(region.front().getTerminator());
if (terminator.getRegion().empty())
builder.createBlock(&terminator.getRegion());
}
InParallelOp ForallOp::getTerminator() {
return cast<InParallelOp>(getBody()->getTerminator());
}
ForallOp mlir::scf::getForallOpThreadIndexOwner(Value val) {
auto tidxArg = val.dyn_cast<BlockArgument>();
if (!tidxArg)
return ForallOp();
assert(tidxArg.getOwner() && "unlinked block argument");
auto *containingOp = tidxArg.getOwner()->getParentOp();
return dyn_cast<ForallOp>(containingOp);
}
namespace {
/// Fold tensor.dim(forall shared_outs(... = %t)) to tensor.dim(%t).
struct DimOfForallOp : public OpRewritePattern<tensor::DimOp> {
using OpRewritePattern<tensor::DimOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tensor::DimOp dimOp,
PatternRewriter &rewriter) const final {
auto forallOp = dimOp.getSource().getDefiningOp<ForallOp>();
if (!forallOp)
return failure();
Value sharedOut =
forallOp.getTiedOpOperand(dimOp.getSource().cast<OpResult>())->get();
rewriter.updateRootInPlace(
dimOp, [&]() { dimOp.getSourceMutable().assign(sharedOut); });
return success();
}
};
class ForallOpControlOperandsFolder : public OpRewritePattern<ForallOp> {
public:
using OpRewritePattern<ForallOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ForallOp op,
PatternRewriter &rewriter) const override {
SmallVector<OpFoldResult> mixedLowerBound(op.getMixedLowerBound());
SmallVector<OpFoldResult> mixedUpperBound(op.getMixedUpperBound());
SmallVector<OpFoldResult> mixedStep(op.getMixedStep());
if (failed(foldDynamicIndexList(rewriter, mixedLowerBound)) &&
failed(foldDynamicIndexList(rewriter, mixedUpperBound)) &&
failed(foldDynamicIndexList(rewriter, mixedStep)))
return failure();
rewriter.updateRootInPlace(op, [&]() {
SmallVector<Value> dynamicLowerBound, dynamicUpperBound, dynamicStep;
SmallVector<int64_t> staticLowerBound, staticUpperBound, staticStep;
dispatchIndexOpFoldResults(mixedLowerBound, dynamicLowerBound,
staticLowerBound);
op.getDynamicLowerBoundMutable().assign(dynamicLowerBound);
op.setStaticLowerBound(staticLowerBound);
dispatchIndexOpFoldResults(mixedUpperBound, dynamicUpperBound,
staticUpperBound);
op.getDynamicUpperBoundMutable().assign(dynamicUpperBound);
op.setStaticUpperBound(staticUpperBound);
dispatchIndexOpFoldResults(mixedStep, dynamicStep, staticStep);
op.getDynamicStepMutable().assign(dynamicStep);
op.setStaticStep(staticStep);
});
return success();
}
};
} // namespace
void ForallOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<DimOfForallOp, ForallOpControlOperandsFolder>(context);
}
//===----------------------------------------------------------------------===//
// InParallelOp
//===----------------------------------------------------------------------===//
// Build a InParallelOp with mixed static and dynamic entries.
void InParallelOp::build(OpBuilder &b, OperationState &result) {
OpBuilder::InsertionGuard g(b);
Region *bodyRegion = result.addRegion();
b.createBlock(bodyRegion);
}
LogicalResult InParallelOp::verify() {
scf::ForallOp forallOp =
dyn_cast<scf::ForallOp>(getOperation()->getParentOp());
if (!forallOp)
return this->emitOpError("expected forall op parent");
// TODO: InParallelOpInterface.
for (Operation &op : getRegion().front().getOperations()) {
if (!isa<tensor::ParallelInsertSliceOp>(op)) {
return this->emitOpError("expected only ")
<< tensor::ParallelInsertSliceOp::getOperationName() << " ops";
}
// Verify that inserts are into out block arguments.
Value dest = cast<tensor::ParallelInsertSliceOp>(op).getDest();
ArrayRef<BlockArgument> regionOutArgs = forallOp.getRegionOutArgs();
if (!llvm::is_contained(regionOutArgs, dest))
return op.emitOpError("may only insert into an output block argument");
}
return success();
}
void InParallelOp::print(OpAsmPrinter &p) {
p << " ";
p.printRegion(getRegion(),
/*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/false);
p.printOptionalAttrDict(getOperation()->getAttrs());
}
ParseResult InParallelOp::parse(OpAsmParser &parser, OperationState &result) {
auto &builder = parser.getBuilder();
SmallVector<OpAsmParser::Argument, 8> regionOperands;
std::unique_ptr<Region> region = std::make_unique<Region>();
if (parser.parseRegion(*region, regionOperands))
return failure();
if (region->empty())
OpBuilder(builder.getContext()).createBlock(region.get());
result.addRegion(std::move(region));
// Parse the optional attribute list.
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
return success();
}
OpResult InParallelOp::getParentResult(int64_t idx) {
return getOperation()->getParentOp()->getResult(idx);
}
SmallVector<BlockArgument> InParallelOp::getDests() {
return llvm::to_vector<4>(
llvm::map_range(getYieldingOps(), [](Operation &op) {
// Add new ops here as needed.
auto insertSliceOp = cast<tensor::ParallelInsertSliceOp>(&op);
return insertSliceOp.getDest().cast<BlockArgument>();
}));
}
llvm::iterator_range<Block::iterator> InParallelOp::getYieldingOps() {
return getRegion().front().getOperations();
}
//===----------------------------------------------------------------------===//
// IfOp
//===----------------------------------------------------------------------===//
bool mlir::scf::insideMutuallyExclusiveBranches(Operation *a, Operation *b) {
assert(a && "expected non-empty operation");
assert(b && "expected non-empty operation");
IfOp ifOp = a->getParentOfType<IfOp>();
while (ifOp) {
// Check if b is inside ifOp. (We already know that a is.)
if (ifOp->isProperAncestor(b))
// b is contained in ifOp. a and b are in mutually exclusive branches if
// they are in different blocks of ifOp.
return static_cast<bool>(ifOp.thenBlock()->findAncestorOpInBlock(*a)) !=
static_cast<bool>(ifOp.thenBlock()->findAncestorOpInBlock(*b));
// Check next enclosing IfOp.
ifOp = ifOp->getParentOfType<IfOp>();
}
// Could not find a common IfOp among a's and b's ancestors.
return false;
}
LogicalResult
IfOp::inferReturnTypes(MLIRContext *ctx, std::optional<Location> loc,
ValueRange operands, DictionaryAttr attrs,
RegionRange regions,
SmallVectorImpl<Type> &inferredReturnTypes) {
if (regions.empty())
return failure();
Region *r = regions.front();
if (r->empty())
return failure();
Block &b = r->front();
if (b.empty())
return failure();
auto yieldOp = llvm::dyn_cast<YieldOp>(b.back());
if (!yieldOp)
return failure();
TypeRange types = yieldOp.getOperandTypes();
inferredReturnTypes.insert(inferredReturnTypes.end(), types.begin(),
types.end());
return success();
}
void IfOp::build(OpBuilder &builder, OperationState &result,
TypeRange resultTypes, Value cond) {
return build(builder, result, resultTypes, cond, /*addThenBlock=*/false,
/*addElseBlock=*/false);
}
void IfOp::build(OpBuilder &builder, OperationState &result,
TypeRange resultTypes, Value cond, bool addThenBlock,
bool addElseBlock) {
assert((!addElseBlock || addThenBlock) &&
"must not create else block w/o then block");
result.addTypes(resultTypes);
result.addOperands(cond);
// Add regions and blocks.
OpBuilder::InsertionGuard guard(builder);
Region *thenRegion = result.addRegion();
if (addThenBlock)
builder.createBlock(thenRegion);
Region *elseRegion = result.addRegion();
if (addElseBlock)
builder.createBlock(elseRegion);
}
void IfOp::build(OpBuilder &builder, OperationState &result, Value cond,
bool withElseRegion) {
build(builder, result, TypeRange{}, cond, withElseRegion);
}
void IfOp::build(OpBuilder &builder, OperationState &result,
TypeRange resultTypes, Value cond, bool withElseRegion) {
result.addTypes(resultTypes);
result.addOperands(cond);
// Build then region.
OpBuilder::InsertionGuard guard(builder);
Region *thenRegion = result.addRegion();
builder.createBlock(thenRegion);
if (resultTypes.empty())
IfOp::ensureTerminator(*thenRegion, builder, result.location);
// Build else region.
Region *elseRegion = result.addRegion();
if (withElseRegion) {
builder.createBlock(elseRegion);
if (resultTypes.empty())
IfOp::ensureTerminator(*elseRegion, builder, result.location);
}
}
void IfOp::build(OpBuilder &builder, OperationState &result, Value cond,
function_ref<void(OpBuilder &, Location)> thenBuilder,
function_ref<void(OpBuilder &, Location)> elseBuilder) {
assert(thenBuilder && "the builder callback for 'then' must be present");
result.addOperands(cond);
// Build then region.
OpBuilder::InsertionGuard guard(builder);
Region *thenRegion = result.addRegion();
builder.createBlock(thenRegion);
thenBuilder(builder, result.location);
// Build else region.
Region *elseRegion = result.addRegion();
if (elseBuilder) {
builder.createBlock(elseRegion);
elseBuilder(builder, result.location);
}
// Infer result types.
SmallVector<Type> inferredReturnTypes;
MLIRContext *ctx = builder.getContext();
auto attrDict = DictionaryAttr::get(ctx, result.attributes);
if (succeeded(inferReturnTypes(ctx, std::nullopt, result.operands, attrDict,
result.regions, inferredReturnTypes))) {
result.addTypes(inferredReturnTypes);
}
}
LogicalResult IfOp::verify() {
if (getNumResults() != 0 && getElseRegion().empty())
return emitOpError("must have an else block if defining values");
return success();
}
ParseResult IfOp::parse(OpAsmParser &parser, OperationState &result) {
// Create the regions for 'then'.
result.regions.reserve(2);
Region *thenRegion = result.addRegion();
Region *elseRegion = result.addRegion();
auto &builder = parser.getBuilder();
OpAsmParser::UnresolvedOperand cond;
Type i1Type = builder.getIntegerType(1);
if (parser.parseOperand(cond) ||
parser.resolveOperand(cond, i1Type, result.operands))
return failure();
// Parse optional results type list.
if (parser.parseOptionalArrowTypeList(result.types))
return failure();
// Parse the 'then' region.
if (parser.parseRegion(*thenRegion, /*arguments=*/{}, /*argTypes=*/{}))
return failure();
IfOp::ensureTerminator(*thenRegion, parser.getBuilder(), result.location);
// If we find an 'else' keyword then parse the 'else' region.
if (!parser.parseOptionalKeyword("else")) {
if (parser.parseRegion(*elseRegion, /*arguments=*/{}, /*argTypes=*/{}))
return failure();
IfOp::ensureTerminator(*elseRegion, parser.getBuilder(), result.location);
}
// Parse the optional attribute list.
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
return success();
}
void IfOp::print(OpAsmPrinter &p) {
bool printBlockTerminators = false;
p << " " << getCondition();
if (!getResults().empty()) {
p << " -> (" << getResultTypes() << ")";
// Print yield explicitly if the op defines values.
printBlockTerminators = true;
}
p << ' ';
p.printRegion(getThenRegion(),
/*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/printBlockTerminators);
// Print the 'else' regions if it exists and has a block.
auto &elseRegion = getElseRegion();
if (!elseRegion.empty()) {
p << " else ";
p.printRegion(elseRegion,
/*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/printBlockTerminators);
}
p.printOptionalAttrDict((*this)->getAttrs());
}
/// Given the region at `index`, or the parent operation if `index` is None,
/// return the successor regions. These are the regions that may be selected
/// during the flow of control. `operands` is a set of optional attributes that
/// correspond to a constant value for each operand, or null if that operand is
/// not a constant.
void IfOp::getSuccessorRegions(std::optional<unsigned> index,
ArrayRef<Attribute> operands,
SmallVectorImpl<RegionSuccessor> &regions) {
// The `then` and the `else` region branch back to the parent operation.
if (index) {
regions.push_back(RegionSuccessor(getResults()));
return;
}
// Don't consider the else region if it is empty.
Region *elseRegion = &this->getElseRegion();
if (elseRegion->empty())
elseRegion = nullptr;
// Otherwise, the successor is dependent on the condition.
bool condition;
if (auto condAttr = operands.front().dyn_cast_or_null<IntegerAttr>()) {
condition = condAttr.getValue().isOne();
} else {
// If the condition isn't constant, both regions may be executed.
regions.push_back(RegionSuccessor(&getThenRegion()));
// If the else region does not exist, it is not a viable successor.
if (elseRegion)
regions.push_back(RegionSuccessor(elseRegion));
return;
}
// Add the successor regions using the condition.
regions.push_back(RegionSuccessor(condition ? &getThenRegion() : elseRegion));
}
LogicalResult IfOp::fold(FoldAdaptor adaptor,
SmallVectorImpl<OpFoldResult> &results) {
// if (!c) then A() else B() -> if c then B() else A()
if (getElseRegion().empty())
return failure();
arith::XOrIOp xorStmt = getCondition().getDefiningOp<arith::XOrIOp>();
if (!xorStmt)
return failure();
if (!matchPattern(xorStmt.getRhs(), m_One()))
return failure();
getConditionMutable().assign(xorStmt.getLhs());
Block *thenBlock = &getThenRegion().front();
// It would be nicer to use iplist::swap, but that has no implemented
// callbacks See: https://llvm.org/doxygen/ilist_8h_source.html#l00224
getThenRegion().getBlocks().splice(getThenRegion().getBlocks().begin(),
getElseRegion().getBlocks());
getElseRegion().getBlocks().splice(getElseRegion().getBlocks().begin(),
getThenRegion().getBlocks(), thenBlock);
return success();
}
void IfOp::getRegionInvocationBounds(
ArrayRef<Attribute> operands,
SmallVectorImpl<InvocationBounds> &invocationBounds) {
if (auto cond = operands[0].dyn_cast_or_null<BoolAttr>()) {
// If the condition is known, then one region is known to be executed once
// and the other zero times.
invocationBounds.emplace_back(0, cond.getValue() ? 1 : 0);
invocationBounds.emplace_back(0, cond.getValue() ? 0 : 1);
} else {
// Non-constant condition. Each region may be executed 0 or 1 times.
invocationBounds.assign(2, {0, 1});
}
}
namespace {
// Pattern to remove unused IfOp results.
struct RemoveUnusedResults : public OpRewritePattern<IfOp> {
using OpRewritePattern<IfOp>::OpRewritePattern;
void transferBody(Block *source, Block *dest, ArrayRef<OpResult> usedResults,
PatternRewriter &rewriter) const {
// Move all operations to the destination block.
rewriter.mergeBlocks(source, dest);
// Replace the yield op by one that returns only the used values.
auto yieldOp = cast<scf::YieldOp>(dest->getTerminator());
SmallVector<Value, 4> usedOperands;
llvm::transform(usedResults, std::back_inserter(usedOperands),
[&](OpResult result) {
return yieldOp.getOperand(result.getResultNumber());
});
rewriter.updateRootInPlace(yieldOp,
[&]() { yieldOp->setOperands(usedOperands); });
}
LogicalResult matchAndRewrite(IfOp op,
PatternRewriter &rewriter) const override {
// Compute the list of used results.
SmallVector<OpResult, 4> usedResults;
llvm::copy_if(op.getResults(), std::back_inserter(usedResults),
[](OpResult result) { return !result.use_empty(); });
// Replace the operation if only a subset of its results have uses.
if (usedResults.size() == op.getNumResults())
return failure();
// Compute the result types of the replacement operation.
SmallVector<Type, 4> newTypes;
llvm::transform(usedResults, std::back_inserter(newTypes),
[](OpResult result) { return result.getType(); });
// Create a replacement operation with empty then and else regions.
auto newOp =
rewriter.create<IfOp>(op.getLoc(), newTypes, op.getCondition());
rewriter.createBlock(&newOp.getThenRegion());
rewriter.createBlock(&newOp.getElseRegion());
// Move the bodies and replace the terminators (note there is a then and
// an else region since the operation returns results).
transferBody(op.getBody(0), newOp.getBody(0), usedResults, rewriter);
transferBody(op.getBody(1), newOp.getBody(1), usedResults, rewriter);
// Replace the operation by the new one.
SmallVector<Value, 4> repResults(op.getNumResults());
for (const auto &en : llvm::enumerate(usedResults))
repResults[en.value().getResultNumber()] = newOp.getResult(en.index());
rewriter.replaceOp(op, repResults);
return success();
}
};
struct RemoveStaticCondition : public OpRewritePattern<IfOp> {
using OpRewritePattern<IfOp>::OpRewritePattern;
LogicalResult matchAndRewrite(IfOp op,
PatternRewriter &rewriter) const override {
BoolAttr condition;
if (!matchPattern(op.getCondition(), m_Constant(&condition)))
return failure();
if (condition.getValue())
replaceOpWithRegion(rewriter, op, op.getThenRegion());
else if (!op.getElseRegion().empty())
replaceOpWithRegion(rewriter, op, op.getElseRegion());
else
rewriter.eraseOp(op);
return success();
}
};
/// Hoist any yielded results whose operands are defined outside
/// the if, to a select instruction.
struct ConvertTrivialIfToSelect : public OpRewritePattern<IfOp> {
using OpRewritePattern<IfOp>::OpRewritePattern;
LogicalResult matchAndRewrite(IfOp op,
PatternRewriter &rewriter) const override {
if (op->getNumResults() == 0)
return failure();
auto cond = op.getCondition();
auto thenYieldArgs = op.thenYield().getOperands();
auto elseYieldArgs = op.elseYield().getOperands();
SmallVector<Type> nonHoistable;
for (const auto &it :
llvm::enumerate(llvm::zip(thenYieldArgs, elseYieldArgs))) {
Value trueVal = std::get<0>(it.value());
Value falseVal = std::get<1>(it.value());
if (&op.getThenRegion() == trueVal.getParentRegion() ||
&op.getElseRegion() == falseVal.getParentRegion())
nonHoistable.push_back(trueVal.getType());
}
// Early exit if there aren't any yielded values we can
// hoist outside the if.
if (nonHoistable.size() == op->getNumResults())
return failure();
IfOp replacement = rewriter.create<IfOp>(op.getLoc(), nonHoistable, cond,
/*withElseRegion=*/false);
if (replacement.thenBlock())
rewriter.eraseBlock(replacement.thenBlock());
replacement.getThenRegion().takeBody(op.getThenRegion());
replacement.getElseRegion().takeBody(op.getElseRegion());
SmallVector<Value> results(op->getNumResults());
assert(thenYieldArgs.size() == results.size());
assert(elseYieldArgs.size() == results.size());
SmallVector<Value> trueYields;
SmallVector<Value> falseYields;
rewriter.setInsertionPoint(replacement);
for (const auto &it :
llvm::enumerate(llvm::zip(thenYieldArgs, elseYieldArgs))) {
Value trueVal = std::get<0>(it.value());
Value falseVal = std::get<1>(it.value());
if (&replacement.getThenRegion() == trueVal.getParentRegion() ||
&replacement.getElseRegion() == falseVal.getParentRegion()) {
results[it.index()] = replacement.getResult(trueYields.size());
trueYields.push_back(trueVal);
falseYields.push_back(falseVal);
} else if (trueVal == falseVal)
results[it.index()] = trueVal;
else
results[it.index()] = rewriter.create<arith::SelectOp>(
op.getLoc(), cond, trueVal, falseVal);
}
rewriter.setInsertionPointToEnd(replacement.thenBlock());
rewriter.replaceOpWithNewOp<YieldOp>(replacement.thenYield(), trueYields);
rewriter.setInsertionPointToEnd(replacement.elseBlock());
rewriter.replaceOpWithNewOp<YieldOp>(replacement.elseYield(), falseYields);
rewriter.replaceOp(op, results);
return success();
}
};
/// Allow the true region of an if to assume the condition is true
/// and vice versa. For example:
///
/// scf.if %cmp {
/// print(%cmp)
/// }
///
/// becomes
///
/// scf.if %cmp {
/// print(true)
/// }
///
struct ConditionPropagation : public OpRewritePattern<IfOp> {
using OpRewritePattern<IfOp>::OpRewritePattern;
LogicalResult matchAndRewrite(IfOp op,
PatternRewriter &rewriter) const override {
// Early exit if the condition is constant since replacing a constant
// in the body with another constant isn't a simplification.
if (matchPattern(op.getCondition(), m_Constant()))
return failure();
bool changed = false;
mlir::Type i1Ty = rewriter.getI1Type();
// These variables serve to prevent creating duplicate constants
// and hold constant true or false values.
Value constantTrue = nullptr;
Value constantFalse = nullptr;
for (OpOperand &use :
llvm::make_early_inc_range(op.getCondition().getUses())) {
if (op.getThenRegion().isAncestor(use.getOwner()->getParentRegion())) {
changed = true;
if (!constantTrue)
constantTrue = rewriter.create<arith::ConstantOp>(
op.getLoc(), i1Ty, rewriter.getIntegerAttr(i1Ty, 1));
rewriter.updateRootInPlace(use.getOwner(),
[&]() { use.set(constantTrue); });
} else if (op.getElseRegion().isAncestor(
use.getOwner()->getParentRegion())) {
changed = true;
if (!constantFalse)
constantFalse = rewriter.create<arith::ConstantOp>(
op.getLoc(), i1Ty, rewriter.getIntegerAttr(i1Ty, 0));
rewriter.updateRootInPlace(use.getOwner(),
[&]() { use.set(constantFalse); });
}
}
return success(changed);
}
};
/// Remove any statements from an if that are equivalent to the condition
/// or its negation. For example:
///
/// %res:2 = scf.if %cmp {
/// yield something(), true
/// } else {
/// yield something2(), false
/// }
/// print(%res#1)
///
/// becomes
/// %res = scf.if %cmp {
/// yield something()
/// } else {
/// yield something2()
/// }
/// print(%cmp)
///
/// Additionally if both branches yield the same value, replace all uses
/// of the result with the yielded value.
///
/// %res:2 = scf.if %cmp {
/// yield something(), %arg1
/// } else {
/// yield something2(), %arg1
/// }
/// print(%res#1)
///
/// becomes
/// %res = scf.if %cmp {
/// yield something()
/// } else {
/// yield something2()
/// }
/// print(%arg1)
///
struct ReplaceIfYieldWithConditionOrValue : public OpRewritePattern<IfOp> {
using OpRewritePattern<IfOp>::OpRewritePattern;
LogicalResult matchAndRewrite(IfOp op,
PatternRewriter &rewriter) const override {
// Early exit if there are no results that could be replaced.
if (op.getNumResults() == 0)
return failure();
auto trueYield =
cast<scf::YieldOp>(op.getThenRegion().back().getTerminator());
auto falseYield =
cast<scf::YieldOp>(op.getElseRegion().back().getTerminator());
rewriter.setInsertionPoint(op->getBlock(),
op.getOperation()->getIterator());
bool changed = false;
Type i1Ty = rewriter.getI1Type();
for (auto [trueResult, falseResult, opResult] :
llvm::zip(trueYield.getResults(), falseYield.getResults(),
op.getResults())) {
if (trueResult == falseResult) {
if (!opResult.use_empty()) {
opResult.replaceAllUsesWith(trueResult);
changed = true;
}
continue;
}
BoolAttr trueYield, falseYield;
if (!matchPattern(trueResult, m_Constant(&trueYield)) ||
!matchPattern(falseResult, m_Constant(&falseYield)))
continue;
bool trueVal = trueYield.getValue();
bool falseVal = falseYield.getValue();
if (!trueVal && falseVal) {
if (!opResult.use_empty()) {
Dialect *constDialect = trueResult.getDefiningOp()->getDialect();
Value notCond = rewriter.create<arith::XOrIOp>(
op.getLoc(), op.getCondition(),
constDialect
->materializeConstant(rewriter,
rewriter.getIntegerAttr(i1Ty, 1), i1Ty,
op.getLoc())
->getResult(0));
opResult.replaceAllUsesWith(notCond);
changed = true;
}
}
if (trueVal && !falseVal) {
if (!opResult.use_empty()) {
opResult.replaceAllUsesWith(op.getCondition());
changed = true;
}
}
}
return success(changed);
}
};
/// Merge any consecutive scf.if's with the same condition.
///
/// scf.if %cond {
/// firstCodeTrue();...
/// } else {
/// firstCodeFalse();...
/// }
/// %res = scf.if %cond {
/// secondCodeTrue();...
/// } else {
/// secondCodeFalse();...
/// }
///
/// becomes
/// %res = scf.if %cmp {
/// firstCodeTrue();...
/// secondCodeTrue();...
/// } else {
/// firstCodeFalse();...
/// secondCodeFalse();...
/// }
struct CombineIfs : public OpRewritePattern<IfOp> {
using OpRewritePattern<IfOp>::OpRewritePattern;
LogicalResult matchAndRewrite(IfOp nextIf,
PatternRewriter &rewriter) const override {
Block *parent = nextIf->getBlock();
if (nextIf == &parent->front())
return failure();
auto prevIf = dyn_cast<IfOp>(nextIf->getPrevNode());
if (!prevIf)
return failure();
// Determine the logical then/else blocks when prevIf's
// condition is used. Null means the block does not exist
// in that case (e.g. empty else). If neither of these
// are set, the two conditions cannot be compared.
Block *nextThen = nullptr;
Block *nextElse = nullptr;
if (nextIf.getCondition() == prevIf.getCondition()) {
nextThen = nextIf.thenBlock();
if (!nextIf.getElseRegion().empty())
nextElse = nextIf.elseBlock();
}
if (arith::XOrIOp notv =
nextIf.getCondition().getDefiningOp<arith::XOrIOp>()) {
if (notv.getLhs() == prevIf.getCondition() &&
matchPattern(notv.getRhs(), m_One())) {
nextElse = nextIf.thenBlock();
if (!nextIf.getElseRegion().empty())
nextThen = nextIf.elseBlock();
}
}
if (arith::XOrIOp notv =
prevIf.getCondition().getDefiningOp<arith::XOrIOp>()) {
if (notv.getLhs() == nextIf.getCondition() &&
matchPattern(notv.getRhs(), m_One())) {
nextElse = nextIf.thenBlock();
if (!nextIf.getElseRegion().empty())
nextThen = nextIf.elseBlock();
}
}
if (!nextThen && !nextElse)
return failure();
SmallVector<Value> prevElseYielded;
if (!prevIf.getElseRegion().empty())
prevElseYielded = prevIf.elseYield().getOperands();
// Replace all uses of return values of op within nextIf with the
// corresponding yields
for (auto it : llvm::zip(prevIf.getResults(),
prevIf.thenYield().getOperands(), prevElseYielded))
for (OpOperand &use :
llvm::make_early_inc_range(std::get<0>(it).getUses())) {
if (nextThen && nextThen->getParent()->isAncestor(
use.getOwner()->getParentRegion())) {
rewriter.startRootUpdate(use.getOwner());
use.set(std::get<1>(it));
rewriter.finalizeRootUpdate(use.getOwner());
} else if (nextElse && nextElse->getParent()->isAncestor(
use.getOwner()->getParentRegion())) {
rewriter.startRootUpdate(use.getOwner());
use.set(std::get<2>(it));
rewriter.finalizeRootUpdate(use.getOwner());
}
}
SmallVector<Type> mergedTypes(prevIf.getResultTypes());
llvm::append_range(mergedTypes, nextIf.getResultTypes());
IfOp combinedIf = rewriter.create<IfOp>(
nextIf.getLoc(), mergedTypes, prevIf.getCondition(), /*hasElse=*/false);
rewriter.eraseBlock(&combinedIf.getThenRegion().back());
rewriter.inlineRegionBefore(prevIf.getThenRegion(),
combinedIf.getThenRegion(),
combinedIf.getThenRegion().begin());
if (nextThen) {
YieldOp thenYield = combinedIf.thenYield();
YieldOp thenYield2 = cast<YieldOp>(nextThen->getTerminator());
rewriter.mergeBlocks(nextThen, combinedIf.thenBlock());
rewriter.setInsertionPointToEnd(combinedIf.thenBlock());
SmallVector<Value> mergedYields(thenYield.getOperands());
llvm::append_range(mergedYields, thenYield2.getOperands());
rewriter.create<YieldOp>(thenYield2.getLoc(), mergedYields);
rewriter.eraseOp(thenYield);
rewriter.eraseOp(thenYield2);
}
rewriter.inlineRegionBefore(prevIf.getElseRegion(),
combinedIf.getElseRegion(),
combinedIf.getElseRegion().begin());
if (nextElse) {
if (combinedIf.getElseRegion().empty()) {
rewriter.inlineRegionBefore(*nextElse->getParent(),
combinedIf.getElseRegion(),
combinedIf.getElseRegion().begin());
} else {
YieldOp elseYield = combinedIf.elseYield();
YieldOp elseYield2 = cast<YieldOp>(nextElse->getTerminator());
rewriter.mergeBlocks(nextElse, combinedIf.elseBlock());
rewriter.setInsertionPointToEnd(combinedIf.elseBlock());
SmallVector<Value> mergedElseYields(elseYield.getOperands());
llvm::append_range(mergedElseYields, elseYield2.getOperands());
rewriter.create<YieldOp>(elseYield2.getLoc(), mergedElseYields);
rewriter.eraseOp(elseYield);
rewriter.eraseOp(elseYield2);
}
}
SmallVector<Value> prevValues;
SmallVector<Value> nextValues;
for (const auto &pair : llvm::enumerate(combinedIf.getResults())) {
if (pair.index() < prevIf.getNumResults())
prevValues.push_back(pair.value());
else
nextValues.push_back(pair.value());
}
rewriter.replaceOp(prevIf, prevValues);
rewriter.replaceOp(nextIf, nextValues);
return success();
}
};
/// Pattern to remove an empty else branch.
struct RemoveEmptyElseBranch : public OpRewritePattern<IfOp> {
using OpRewritePattern<IfOp>::OpRewritePattern;
LogicalResult matchAndRewrite(IfOp ifOp,
PatternRewriter &rewriter) const override {
// Cannot remove else region when there are operation results.
if (ifOp.getNumResults())
return failure();
Block *elseBlock = ifOp.elseBlock();
if (!elseBlock || !llvm::hasSingleElement(*elseBlock))
return failure();
auto newIfOp = rewriter.cloneWithoutRegions(ifOp);
rewriter.inlineRegionBefore(ifOp.getThenRegion(), newIfOp.getThenRegion(),
newIfOp.getThenRegion().begin());
rewriter.eraseOp(ifOp);
return success();
}
};
/// Convert nested `if`s into `arith.andi` + single `if`.
///
/// scf.if %arg0 {
/// scf.if %arg1 {
/// ...
/// scf.yield
/// }
/// scf.yield
/// }
/// becomes
///
/// %0 = arith.andi %arg0, %arg1
/// scf.if %0 {
/// ...
/// scf.yield
/// }
struct CombineNestedIfs : public OpRewritePattern<IfOp> {
using OpRewritePattern<IfOp>::OpRewritePattern;
LogicalResult matchAndRewrite(IfOp op,
PatternRewriter &rewriter) const override {
auto nestedOps = op.thenBlock()->without_terminator();
// Nested `if` must be the only op in block.
if (!llvm::hasSingleElement(nestedOps))
return failure();
// If there is an else block, it can only yield
if (op.elseBlock() && !llvm::hasSingleElement(*op.elseBlock()))
return failure();
auto nestedIf = dyn_cast<IfOp>(*nestedOps.begin());
if (!nestedIf)
return failure();
if (nestedIf.elseBlock() && !llvm::hasSingleElement(*nestedIf.elseBlock()))
return failure();
SmallVector<Value> thenYield(op.thenYield().getOperands());
SmallVector<Value> elseYield;
if (op.elseBlock())
llvm::append_range(elseYield, op.elseYield().getOperands());
// A list of indices for which we should upgrade the value yielded
// in the else to a select.
SmallVector<unsigned> elseYieldsToUpgradeToSelect;
// If the outer scf.if yields a value produced by the inner scf.if,
// only permit combining if the value yielded when the condition
// is false in the outer scf.if is the same value yielded when the
// inner scf.if condition is false.
// Note that the array access to elseYield will not go out of bounds
// since it must have the same length as thenYield, since they both
// come from the same scf.if.
for (const auto &tup : llvm::enumerate(thenYield)) {
if (tup.value().getDefiningOp() == nestedIf) {
auto nestedIdx = tup.value().cast<OpResult>().getResultNumber();
if (nestedIf.elseYield().getOperand(nestedIdx) !=
elseYield[tup.index()]) {
return failure();
}
// If the correctness test passes, we will yield
// corresponding value from the inner scf.if
thenYield[tup.index()] = nestedIf.thenYield().getOperand(nestedIdx);
continue;
}
// Otherwise, we need to ensure the else block of the combined
// condition still returns the same value when the outer condition is
// true and the inner condition is false. This can be accomplished if
// the then value is defined outside the outer scf.if and we replace the
// value with a select that considers just the outer condition. Since
// the else region contains just the yield, its yielded value is
// defined outside the scf.if, by definition.
// If the then value is defined within the scf.if, bail.
if (tup.value().getParentRegion() == &op.getThenRegion()) {
return failure();
}
elseYieldsToUpgradeToSelect.push_back(tup.index());
}
Location loc = op.getLoc();
Value newCondition = rewriter.create<arith::AndIOp>(
loc, op.getCondition(), nestedIf.getCondition());
auto newIf = rewriter.create<IfOp>(loc, op.getResultTypes(), newCondition);
Block *newIfBlock = rewriter.createBlock(&newIf.getThenRegion());
SmallVector<Value> results;
llvm::append_range(results, newIf.getResults());
rewriter.setInsertionPoint(newIf);
for (auto idx : elseYieldsToUpgradeToSelect)
results[idx] = rewriter.create<arith::SelectOp>(
op.getLoc(), op.getCondition(), thenYield[idx], elseYield[idx]);
rewriter.mergeBlocks(nestedIf.thenBlock(), newIfBlock);
rewriter.setInsertionPointToEnd(newIf.thenBlock());
rewriter.replaceOpWithNewOp<YieldOp>(newIf.thenYield(), thenYield);
if (!elseYield.empty()) {
rewriter.createBlock(&newIf.getElseRegion());
rewriter.setInsertionPointToEnd(newIf.elseBlock());
rewriter.create<YieldOp>(loc, elseYield);
}
rewriter.replaceOp(op, results);
return success();
}
};
} // namespace
void IfOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<CombineIfs, CombineNestedIfs, ConditionPropagation,
ConvertTrivialIfToSelect, RemoveEmptyElseBranch,
RemoveStaticCondition, RemoveUnusedResults,
ReplaceIfYieldWithConditionOrValue>(context);
}
Block *IfOp::thenBlock() { return &getThenRegion().back(); }
YieldOp IfOp::thenYield() { return cast<YieldOp>(&thenBlock()->back()); }
Block *IfOp::elseBlock() {
Region &r = getElseRegion();
if (r.empty())
return nullptr;
return &r.back();
}
YieldOp IfOp::elseYield() { return cast<YieldOp>(&elseBlock()->back()); }
//===----------------------------------------------------------------------===//
// ParallelOp
//===----------------------------------------------------------------------===//
void ParallelOp::build(
OpBuilder &builder, OperationState &result, ValueRange lowerBounds,
ValueRange upperBounds, ValueRange steps, ValueRange initVals,
function_ref<void(OpBuilder &, Location, ValueRange, ValueRange)>
bodyBuilderFn) {
result.addOperands(lowerBounds);
result.addOperands(upperBounds);
result.addOperands(steps);
result.addOperands(initVals);
result.addAttribute(
ParallelOp::getOperandSegmentSizeAttr(),
builder.getDenseI32ArrayAttr({static_cast<int32_t>(lowerBounds.size()),
static_cast<int32_t>(upperBounds.size()),
static_cast<int32_t>(steps.size()),
static_cast<int32_t>(initVals.size())}));
result.addTypes(initVals.getTypes());
OpBuilder::InsertionGuard guard(builder);
unsigned numIVs = steps.size();
SmallVector<Type, 8> argTypes(numIVs, builder.getIndexType());
SmallVector<Location, 8> argLocs(numIVs, result.location);
Region *bodyRegion = result.addRegion();
Block *bodyBlock = builder.createBlock(bodyRegion, {}, argTypes, argLocs);
if (bodyBuilderFn) {
builder.setInsertionPointToStart(bodyBlock);
bodyBuilderFn(builder, result.location,
bodyBlock->getArguments().take_front(numIVs),
bodyBlock->getArguments().drop_front(numIVs));
}
ParallelOp::ensureTerminator(*bodyRegion, builder, result.location);
}
void ParallelOp::build(
OpBuilder &builder, OperationState &result, ValueRange lowerBounds,
ValueRange upperBounds, ValueRange steps,
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuilderFn) {
// Only pass a non-null wrapper if bodyBuilderFn is non-null itself. Make sure
// we don't capture a reference to a temporary by constructing the lambda at
// function level.
auto wrappedBuilderFn = [&bodyBuilderFn](OpBuilder &nestedBuilder,
Location nestedLoc, ValueRange ivs,
ValueRange) {
bodyBuilderFn(nestedBuilder, nestedLoc, ivs);
};
function_ref<void(OpBuilder &, Location, ValueRange, ValueRange)> wrapper;
if (bodyBuilderFn)
wrapper = wrappedBuilderFn;
build(builder, result, lowerBounds, upperBounds, steps, ValueRange(),
wrapper);
}
LogicalResult ParallelOp::verify() {
// Check that there is at least one value in lowerBound, upperBound and step.
// It is sufficient to test only step, because it is ensured already that the
// number of elements in lowerBound, upperBound and step are the same.
Operation::operand_range stepValues = getStep();
if (stepValues.empty())
return emitOpError(
"needs at least one tuple element for lowerBound, upperBound and step");
// Check whether all constant step values are positive.
for (Value stepValue : stepValues)
if (auto cst = stepValue.getDefiningOp<arith::ConstantIndexOp>())
if (cst.value() <= 0)
return emitOpError("constant step operand must be positive");
// Check that the body defines the same number of block arguments as the
// number of tuple elements in step.
Block *body = getBody();
if (body->getNumArguments() != stepValues.size())
return emitOpError() << "expects the same number of induction variables: "
<< body->getNumArguments()
<< " as bound and step values: " << stepValues.size();
for (auto arg : body->getArguments())
if (!arg.getType().isIndex())
return emitOpError(
"expects arguments for the induction variable to be of index type");
// Check that the yield has no results
auto yield = verifyAndGetTerminator<scf::YieldOp>(
*this, getRegion(), "expects body to terminate with 'scf.yield'");
if (!yield)
return failure();
if (yield->getNumOperands() != 0)
return yield.emitOpError() << "not allowed to have operands inside '"
<< ParallelOp::getOperationName() << "'";
// Check that the number of results is the same as the number of ReduceOps.
SmallVector<ReduceOp, 4> reductions(body->getOps<ReduceOp>());
auto resultsSize = getResults().size();
auto reductionsSize = reductions.size();
auto initValsSize = getInitVals().size();
if (resultsSize != reductionsSize)
return emitOpError() << "expects number of results: " << resultsSize
<< " to be the same as number of reductions: "
<< reductionsSize;
if (resultsSize != initValsSize)
return emitOpError() << "expects number of results: " << resultsSize
<< " to be the same as number of initial values: "
<< initValsSize;
// Check that the types of the results and reductions are the same.
for (auto resultAndReduce : llvm::zip(getResults(), reductions)) {
auto resultType = std::get<0>(resultAndReduce).getType();
auto reduceOp = std::get<1>(resultAndReduce);
auto reduceType = reduceOp.getOperand().getType();
if (resultType != reduceType)
return reduceOp.emitOpError()
<< "expects type of reduce: " << reduceType
<< " to be the same as result type: " << resultType;
}
return success();
}
ParseResult ParallelOp::parse(OpAsmParser &parser, OperationState &result) {
auto &builder = parser.getBuilder();
// Parse an opening `(` followed by induction variables followed by `)`
SmallVector<OpAsmParser::Argument, 4> ivs;
if (parser.parseArgumentList(ivs, OpAsmParser::Delimiter::Paren))
return failure();
// Parse loop bounds.
SmallVector<OpAsmParser::UnresolvedOperand, 4> lower;
if (parser.parseEqual() ||
parser.parseOperandList(lower, ivs.size(),
OpAsmParser::Delimiter::Paren) ||
parser.resolveOperands(lower, builder.getIndexType(), result.operands))
return failure();
SmallVector<OpAsmParser::UnresolvedOperand, 4> upper;
if (parser.parseKeyword("to") ||
parser.parseOperandList(upper, ivs.size(),
OpAsmParser::Delimiter::Paren) ||
parser.resolveOperands(upper, builder.getIndexType(), result.operands))
return failure();
// Parse step values.
SmallVector<OpAsmParser::UnresolvedOperand, 4> steps;
if (parser.parseKeyword("step") ||
parser.parseOperandList(steps, ivs.size(),
OpAsmParser::Delimiter::Paren) ||
parser.resolveOperands(steps, builder.getIndexType(), result.operands))
return failure();
// Parse init values.
SmallVector<OpAsmParser::UnresolvedOperand, 4> initVals;
if (succeeded(parser.parseOptionalKeyword("init"))) {
if (parser.parseOperandList(initVals, OpAsmParser::Delimiter::Paren))
return failure();
}
// Parse optional results in case there is a reduce.
if (parser.parseOptionalArrowTypeList(result.types))
return failure();
// Now parse the body.
Region *body = result.addRegion();
for (auto &iv : ivs)
iv.type = builder.getIndexType();
if (parser.parseRegion(*body, ivs))
return failure();
// Set `operand_segment_sizes` attribute.
result.addAttribute(
ParallelOp::getOperandSegmentSizeAttr(),
builder.getDenseI32ArrayAttr({static_cast<int32_t>(lower.size()),
static_cast<int32_t>(upper.size()),
static_cast<int32_t>(steps.size()),
static_cast<int32_t>(initVals.size())}));
// Parse attributes.
if (parser.parseOptionalAttrDict(result.attributes) ||
parser.resolveOperands(initVals, result.types, parser.getNameLoc(),
result.operands))
return failure();
// Add a terminator if none was parsed.
ForOp::ensureTerminator(*body, builder, result.location);
return success();
}
void ParallelOp::print(OpAsmPrinter &p) {
p << " (" << getBody()->getArguments() << ") = (" << getLowerBound()
<< ") to (" << getUpperBound() << ") step (" << getStep() << ")";
if (!getInitVals().empty())
p << " init (" << getInitVals() << ")";
p.printOptionalArrowTypeList(getResultTypes());
p << ' ';
p.printRegion(getRegion(), /*printEntryBlockArgs=*/false);
p.printOptionalAttrDict(
(*this)->getAttrs(),
/*elidedAttrs=*/ParallelOp::getOperandSegmentSizeAttr());
}
Region &ParallelOp::getLoopBody() { return getRegion(); }
ParallelOp mlir::scf::getParallelForInductionVarOwner(Value val) {
auto ivArg = val.dyn_cast<BlockArgument>();
if (!ivArg)
return ParallelOp();
assert(ivArg.getOwner() && "unlinked block argument");
auto *containingOp = ivArg.getOwner()->getParentOp();
return dyn_cast<ParallelOp>(containingOp);
}
namespace {
// Collapse loop dimensions that perform a single iteration.
struct CollapseSingleIterationLoops : public OpRewritePattern<ParallelOp> {
using OpRewritePattern<ParallelOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ParallelOp op,
PatternRewriter &rewriter) const override {
IRMapping mapping;
// Compute new loop bounds that omit all single-iteration loop dimensions.
SmallVector<Value, 2> newLowerBounds;
SmallVector<Value, 2> newUpperBounds;
SmallVector<Value, 2> newSteps;
newLowerBounds.reserve(op.getLowerBound().size());
newUpperBounds.reserve(op.getUpperBound().size());
newSteps.reserve(op.getStep().size());
for (auto [lowerBound, upperBound, step, iv] :
llvm::zip(op.getLowerBound(), op.getUpperBound(), op.getStep(),
op.getInductionVars())) {
// Collect the statically known loop bounds.
auto lowerBoundConstant =
dyn_cast_or_null<arith::ConstantIndexOp>(lowerBound.getDefiningOp());
auto upperBoundConstant =
dyn_cast_or_null<arith::ConstantIndexOp>(upperBound.getDefiningOp());
auto stepConstant =
dyn_cast_or_null<arith::ConstantIndexOp>(step.getDefiningOp());
// Replace the loop induction variable by the lower bound if the loop
// performs a single iteration. Otherwise, copy the loop bounds.
if (lowerBoundConstant && upperBoundConstant && stepConstant &&
(upperBoundConstant.value() - lowerBoundConstant.value()) > 0 &&
(upperBoundConstant.value() - lowerBoundConstant.value()) <=
stepConstant.value()) {
mapping.map(iv, lowerBound);
} else {
newLowerBounds.push_back(lowerBound);
newUpperBounds.push_back(upperBound);
newSteps.push_back(step);
}
}
// Exit if none of the loop dimensions perform a single iteration.
if (newLowerBounds.size() == op.getLowerBound().size())
return failure();
if (newLowerBounds.empty()) {
// All of the loop dimensions perform a single iteration. Inline
// loop body and nested ReduceOp's
SmallVector<Value> results;
results.reserve(op.getInitVals().size());
for (auto &bodyOp : op.getLoopBody().front().without_terminator()) {
auto reduce = dyn_cast<ReduceOp>(bodyOp);
if (!reduce) {
rewriter.clone(bodyOp, mapping);
continue;
}
Block &reduceBlock = reduce.getReductionOperator().front();
auto initValIndex = results.size();
mapping.map(reduceBlock.getArgument(0), op.getInitVals()[initValIndex]);
mapping.map(reduceBlock.getArgument(1),
mapping.lookupOrDefault(reduce.getOperand()));
for (auto &reduceBodyOp : reduceBlock.without_terminator())
rewriter.clone(reduceBodyOp, mapping);
auto result = mapping.lookupOrDefault(
cast<ReduceReturnOp>(reduceBlock.getTerminator()).getResult());
results.push_back(result);
}
rewriter.replaceOp(op, results);
return success();
}
// Replace the parallel loop by lower-dimensional parallel loop.
auto newOp =
rewriter.create<ParallelOp>(op.getLoc(), newLowerBounds, newUpperBounds,
newSteps, op.getInitVals(), nullptr);
// Clone the loop body and remap the block arguments of the collapsed loops
// (inlining does not support a cancellable block argument mapping).
rewriter.cloneRegionBefore(op.getRegion(), newOp.getRegion(),
newOp.getRegion().begin(), mapping);
rewriter.replaceOp(op, newOp.getResults());
return success();
}
};
/// Removes parallel loops in which at least one lower/upper bound pair consists
/// of the same values - such loops have an empty iteration domain.
struct RemoveEmptyParallelLoops : public OpRewritePattern<ParallelOp> {
using OpRewritePattern<ParallelOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ParallelOp op,
PatternRewriter &rewriter) const override {
for (auto dim : llvm::zip(op.getLowerBound(), op.getUpperBound())) {
if (std::get<0>(dim) == std::get<1>(dim)) {
rewriter.replaceOp(op, op.getInitVals());
return success();
}
}
return failure();
}
};
struct MergeNestedParallelLoops : public OpRewritePattern<ParallelOp> {
using OpRewritePattern<ParallelOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ParallelOp op,
PatternRewriter &rewriter) const override {
Block &outerBody = op.getLoopBody().front();
if (!llvm::hasSingleElement(outerBody.without_terminator()))
return failure();
auto innerOp = dyn_cast<ParallelOp>(outerBody.front());
if (!innerOp)
return failure();
for (auto val : outerBody.getArguments())
if (llvm::is_contained(innerOp.getLowerBound(), val) ||
llvm::is_contained(innerOp.getUpperBound(), val) ||
llvm::is_contained(innerOp.getStep(), val))
return failure();
// Reductions are not supported yet.
if (!op.getInitVals().empty() || !innerOp.getInitVals().empty())
return failure();
auto bodyBuilder = [&](OpBuilder &builder, Location /*loc*/,
ValueRange iterVals, ValueRange) {
Block &innerBody = innerOp.getLoopBody().front();
assert(iterVals.size() ==
(outerBody.getNumArguments() + innerBody.getNumArguments()));
IRMapping mapping;
mapping.map(outerBody.getArguments(),
iterVals.take_front(outerBody.getNumArguments()));
mapping.map(innerBody.getArguments(),
iterVals.take_back(innerBody.getNumArguments()));
for (Operation &op : innerBody.without_terminator())
builder.clone(op, mapping);
};
auto concatValues = [](const auto &first, const auto &second) {
SmallVector<Value> ret;
ret.reserve(first.size() + second.size());
ret.assign(first.begin(), first.end());
ret.append(second.begin(), second.end());
return ret;
};
auto newLowerBounds =
concatValues(op.getLowerBound(), innerOp.getLowerBound());
auto newUpperBounds =
concatValues(op.getUpperBound(), innerOp.getUpperBound());
auto newSteps = concatValues(op.getStep(), innerOp.getStep());
rewriter.replaceOpWithNewOp<ParallelOp>(op, newLowerBounds, newUpperBounds,
newSteps, std::nullopt,
bodyBuilder);
return success();
}
};
} // namespace
void ParallelOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<CollapseSingleIterationLoops, RemoveEmptyParallelLoops,
MergeNestedParallelLoops>(context);
}
//===----------------------------------------------------------------------===//
// ReduceOp
//===----------------------------------------------------------------------===//
void ReduceOp::build(
OpBuilder &builder, OperationState &result, Value operand,
function_ref<void(OpBuilder &, Location, Value, Value)> bodyBuilderFn) {
auto type = operand.getType();
result.addOperands(operand);
OpBuilder::InsertionGuard guard(builder);
Region *bodyRegion = result.addRegion();
Block *body = builder.createBlock(bodyRegion, {}, ArrayRef<Type>{type, type},
{result.location, result.location});
if (bodyBuilderFn)
bodyBuilderFn(builder, result.location, body->getArgument(0),
body->getArgument(1));
}
LogicalResult ReduceOp::verifyRegions() {
// The region of a ReduceOp has two arguments of the same type as its operand.
auto type = getOperand().getType();
Block &block = getReductionOperator().front();
if (block.empty())
return emitOpError("the block inside reduce should not be empty");
if (block.getNumArguments() != 2 ||
llvm::any_of(block.getArguments(), [&](const BlockArgument &arg) {
return arg.getType() != type;
}))
return emitOpError() << "expects two arguments to reduce block of type "
<< type;
// Check that the block is terminated by a ReduceReturnOp.
if (!isa<ReduceReturnOp>(block.getTerminator()))
return emitOpError("the block inside reduce should be terminated with a "
"'scf.reduce.return' op");
return success();
}
ParseResult ReduceOp::parse(OpAsmParser &parser, OperationState &result) {
// Parse an opening `(` followed by the reduced value followed by `)`
OpAsmParser::UnresolvedOperand operand;
if (parser.parseLParen() || parser.parseOperand(operand) ||
parser.parseRParen())
return failure();
Type resultType;
// Parse the type of the operand (and also what reduce computes on).
if (parser.parseColonType(resultType) ||
parser.resolveOperand(operand, resultType, result.operands))
return failure();
// Now parse the body.
Region *body = result.addRegion();
if (parser.parseRegion(*body, /*arguments=*/{}, /*argTypes=*/{}))
return failure();
return success();
}
void ReduceOp::print(OpAsmPrinter &p) {
p << "(" << getOperand() << ") ";
p << " : " << getOperand().getType() << ' ';
p.printRegion(getReductionOperator());
}
//===----------------------------------------------------------------------===//
// ReduceReturnOp
//===----------------------------------------------------------------------===//
LogicalResult ReduceReturnOp::verify() {
// The type of the return value should be the same type as the type of the
// operand of the enclosing ReduceOp.
auto reduceOp = cast<ReduceOp>((*this)->getParentOp());
Type reduceType = reduceOp.getOperand().getType();
if (reduceType != getResult().getType())
return emitOpError() << "needs to have type " << reduceType
<< " (the type of the enclosing ReduceOp)";
return success();
}
//===----------------------------------------------------------------------===//
// WhileOp
//===----------------------------------------------------------------------===//
void WhileOp::build(::mlir::OpBuilder &odsBuilder,
::mlir::OperationState &odsState, TypeRange resultTypes,
ValueRange operands, BodyBuilderFn beforeBuilder,
BodyBuilderFn afterBuilder) {
assert(beforeBuilder && "the builder callback for 'before' must be present");
assert(afterBuilder && "the builder callback for 'after' must be present");
odsState.addOperands(operands);
odsState.addTypes(resultTypes);
OpBuilder::InsertionGuard guard(odsBuilder);
// Build before region.
SmallVector<Location, 4> beforeArgLocs;
beforeArgLocs.reserve(operands.size());
for (Value operand : operands) {
beforeArgLocs.push_back(operand.getLoc());
}
Region *beforeRegion = odsState.addRegion();
Block *beforeBlock = odsBuilder.createBlock(
beforeRegion, /*insertPt=*/{}, operands.getTypes(), beforeArgLocs);
beforeBuilder(odsBuilder, odsState.location, beforeBlock->getArguments());
// Build after region.
SmallVector<Location, 4> afterArgLocs(resultTypes.size(), odsState.location);
Region *afterRegion = odsState.addRegion();
Block *afterBlock = odsBuilder.createBlock(afterRegion, /*insertPt=*/{},
resultTypes, afterArgLocs);
afterBuilder(odsBuilder, odsState.location, afterBlock->getArguments());
}
OperandRange WhileOp::getSuccessorEntryOperands(std::optional<unsigned> index) {
assert(index && *index == 0 &&
"WhileOp is expected to branch only to the first region");
return getInits();
}
ConditionOp WhileOp::getConditionOp() {
return cast<ConditionOp>(getBefore().front().getTerminator());
}
YieldOp WhileOp::getYieldOp() {
return cast<YieldOp>(getAfter().front().getTerminator());
}
Block::BlockArgListType WhileOp::getBeforeArguments() {
return getBefore().front().getArguments();
}
Block::BlockArgListType WhileOp::getAfterArguments() {
return getAfter().front().getArguments();
}
void WhileOp::getSuccessorRegions(std::optional<unsigned> index,
ArrayRef<Attribute> operands,
SmallVectorImpl<RegionSuccessor> &regions) {
// The parent op always branches to the condition region.
if (!index) {
regions.emplace_back(&getBefore(), getBefore().getArguments());
return;
}
assert(*index < 2 && "there are only two regions in a WhileOp");
// The body region always branches back to the condition region.
if (*index == 1) {
regions.emplace_back(&getBefore(), getBefore().getArguments());
return;
}
// Try to narrow the successor to the condition region.
assert(!operands.empty() && "expected at least one operand");
auto cond = operands[0].dyn_cast_or_null<BoolAttr>();
if (!cond || !cond.getValue())
regions.emplace_back(getResults());
if (!cond || cond.getValue())
regions.emplace_back(&getAfter(), getAfter().getArguments());
}
/// Parses a `while` op.
///
/// op ::= `scf.while` assignments `:` function-type region `do` region
/// `attributes` attribute-dict
/// initializer ::= /* empty */ | `(` assignment-list `)`
/// assignment-list ::= assignment | assignment `,` assignment-list
/// assignment ::= ssa-value `=` ssa-value
ParseResult scf::WhileOp::parse(OpAsmParser &parser, OperationState &result) {
SmallVector<OpAsmParser::Argument, 4> regionArgs;
SmallVector<OpAsmParser::UnresolvedOperand, 4> operands;
Region *before = result.addRegion();
Region *after = result.addRegion();
OptionalParseResult listResult =
parser.parseOptionalAssignmentList(regionArgs, operands);
if (listResult.has_value() && failed(listResult.value()))
return failure();
FunctionType functionType;
SMLoc typeLoc = parser.getCurrentLocation();
if (failed(parser.parseColonType(functionType)))
return failure();
result.addTypes(functionType.getResults());
if (functionType.getNumInputs() != operands.size()) {
return parser.emitError(typeLoc)
<< "expected as many input types as operands "
<< "(expected " << operands.size() << " got "
<< functionType.getNumInputs() << ")";
}
// Resolve input operands.
if (failed(parser.resolveOperands(operands, functionType.getInputs(),
parser.getCurrentLocation(),
result.operands)))
return failure();
// Propagate the types into the region arguments.
for (size_t i = 0, e = regionArgs.size(); i != e; ++i)
regionArgs[i].type = functionType.getInput(i);
return failure(parser.parseRegion(*before, regionArgs) ||
parser.parseKeyword("do") || parser.parseRegion(*after) ||
parser.parseOptionalAttrDictWithKeyword(result.attributes));
}
/// Prints a `while` op.
void scf::WhileOp::print(OpAsmPrinter &p) {
printInitializationList(p, getBefore().front().getArguments(), getInits(),
" ");
p << " : ";
p.printFunctionalType(getInits().getTypes(), getResults().getTypes());
p << ' ';
p.printRegion(getBefore(), /*printEntryBlockArgs=*/false);
p << " do ";
p.printRegion(getAfter());
p.printOptionalAttrDictWithKeyword((*this)->getAttrs());
}
/// Verifies that two ranges of types match, i.e. have the same number of
/// entries and that types are pairwise equals. Reports errors on the given
/// operation in case of mismatch.
template <typename OpTy>
static LogicalResult verifyTypeRangesMatch(OpTy op, TypeRange left,
TypeRange right, StringRef message) {
if (left.size() != right.size())
return op.emitOpError("expects the same number of ") << message;
for (unsigned i = 0, e = left.size(); i < e; ++i) {
if (left[i] != right[i]) {
InFlightDiagnostic diag = op.emitOpError("expects the same types for ")
<< message;
diag.attachNote() << "for argument " << i << ", found " << left[i]
<< " and " << right[i];
return diag;
}
}
return success();
}
LogicalResult scf::WhileOp::verify() {
auto beforeTerminator = verifyAndGetTerminator<scf::ConditionOp>(
*this, getBefore(),
"expects the 'before' region to terminate with 'scf.condition'");
if (!beforeTerminator)
return failure();
auto afterTerminator = verifyAndGetTerminator<scf::YieldOp>(
*this, getAfter(),
"expects the 'after' region to terminate with 'scf.yield'");
return success(afterTerminator != nullptr);
}
namespace {
/// Replace uses of the condition within the do block with true, since otherwise
/// the block would not be evaluated.
///
/// scf.while (..) : (i1, ...) -> ... {
/// %condition = call @evaluate_condition() : () -> i1
/// scf.condition(%condition) %condition : i1, ...
/// } do {
/// ^bb0(%arg0: i1, ...):
/// use(%arg0)
/// ...
///
/// becomes
/// scf.while (..) : (i1, ...) -> ... {
/// %condition = call @evaluate_condition() : () -> i1
/// scf.condition(%condition) %condition : i1, ...
/// } do {
/// ^bb0(%arg0: i1, ...):
/// use(%true)
/// ...
struct WhileConditionTruth : public OpRewritePattern<WhileOp> {
using OpRewritePattern<WhileOp>::OpRewritePattern;
LogicalResult matchAndRewrite(WhileOp op,
PatternRewriter &rewriter) const override {
auto term = op.getConditionOp();
// These variables serve to prevent creating duplicate constants
// and hold constant true or false values.
Value constantTrue = nullptr;
bool replaced = false;
for (auto yieldedAndBlockArgs :
llvm::zip(term.getArgs(), op.getAfterArguments())) {
if (std::get<0>(yieldedAndBlockArgs) == term.getCondition()) {
if (!std::get<1>(yieldedAndBlockArgs).use_empty()) {
if (!constantTrue)
constantTrue = rewriter.create<arith::ConstantOp>(
op.getLoc(), term.getCondition().getType(),
rewriter.getBoolAttr(true));
rewriter.replaceAllUsesWith(std::get<1>(yieldedAndBlockArgs),
constantTrue);
replaced = true;
}
}
}
return success(replaced);
}
};
/// Remove loop invariant arguments from `before` block of scf.while.
/// A before block argument is considered loop invariant if :-
/// 1. i-th yield operand is equal to the i-th while operand.
/// 2. i-th yield operand is k-th after block argument which is (k+1)-th
/// condition operand AND this (k+1)-th condition operand is equal to i-th
/// iter argument/while operand.
/// For the arguments which are removed, their uses inside scf.while
/// are replaced with their corresponding initial value.
///
/// Eg:
/// INPUT :-
/// %res = scf.while <...> iter_args(%arg0_before = %a, %arg1_before = %b,
/// ..., %argN_before = %N)
/// {
/// ...
/// scf.condition(%cond) %arg1_before, %arg0_before,
/// %arg2_before, %arg0_before, ...
/// } do {
/// ^bb0(%arg1_after, %arg0_after_1, %arg2_after, %arg0_after_2,
/// ..., %argK_after):
/// ...
/// scf.yield %arg0_after_2, %b, %arg1_after, ..., %argN
/// }
///
/// OUTPUT :-
/// %res = scf.while <...> iter_args(%arg2_before = %c, ..., %argN_before =
/// %N)
/// {
/// ...
/// scf.condition(%cond) %b, %a, %arg2_before, %a, ...
/// } do {
/// ^bb0(%arg1_after, %arg0_after_1, %arg2_after, %arg0_after_2,
/// ..., %argK_after):
/// ...
/// scf.yield %arg1_after, ..., %argN
/// }
///
/// EXPLANATION:
/// We iterate over each yield operand.
/// 1. 0-th yield operand %arg0_after_2 is 4-th condition operand
/// %arg0_before, which in turn is the 0-th iter argument. So we
/// remove 0-th before block argument and yield operand, and replace
/// all uses of the 0-th before block argument with its initial value
/// %a.
/// 2. 1-th yield operand %b is equal to the 1-th iter arg's initial
/// value. So we remove this operand and the corresponding before
/// block argument and replace all uses of 1-th before block argument
/// with %b.
struct RemoveLoopInvariantArgsFromBeforeBlock
: public OpRewritePattern<WhileOp> {
using OpRewritePattern<WhileOp>::OpRewritePattern;
LogicalResult matchAndRewrite(WhileOp op,
PatternRewriter &rewriter) const override {
Block &afterBlock = op.getAfter().front();
Block::BlockArgListType beforeBlockArgs = op.getBeforeArguments();
ConditionOp condOp = op.getConditionOp();
OperandRange condOpArgs = condOp.getArgs();
Operation *yieldOp = afterBlock.getTerminator();
ValueRange yieldOpArgs = yieldOp->getOperands();
bool canSimplify = false;
for (const auto &it :
llvm::enumerate(llvm::zip(op.getOperands(), yieldOpArgs))) {
auto index = static_cast<unsigned>(it.index());
auto [initVal, yieldOpArg] = it.value();
// If i-th yield operand is equal to the i-th operand of the scf.while,
// the i-th before block argument is a loop invariant.
if (yieldOpArg == initVal) {
canSimplify = true;
break;
}
// If the i-th yield operand is k-th after block argument, then we check
// if the (k+1)-th condition op operand is equal to either the i-th before
// block argument or the initial value of i-th before block argument. If
// the comparison results `true`, i-th before block argument is a loop
// invariant.
auto yieldOpBlockArg = yieldOpArg.dyn_cast<BlockArgument>();
if (yieldOpBlockArg && yieldOpBlockArg.getOwner() == &afterBlock) {
Value condOpArg = condOpArgs[yieldOpBlockArg.getArgNumber()];
if (condOpArg == beforeBlockArgs[index] || condOpArg == initVal) {
canSimplify = true;
break;
}
}
}
if (!canSimplify)
return failure();
SmallVector<Value> newInitArgs, newYieldOpArgs;
DenseMap<unsigned, Value> beforeBlockInitValMap;
SmallVector<Location> newBeforeBlockArgLocs;
for (const auto &it :
llvm::enumerate(llvm::zip(op.getOperands(), yieldOpArgs))) {
auto index = static_cast<unsigned>(it.index());
auto [initVal, yieldOpArg] = it.value();
// If i-th yield operand is equal to the i-th operand of the scf.while,
// the i-th before block argument is a loop invariant.
if (yieldOpArg == initVal) {
beforeBlockInitValMap.insert({index, initVal});
continue;
} else {
// If the i-th yield operand is k-th after block argument, then we check
// if the (k+1)-th condition op operand is equal to either the i-th
// before block argument or the initial value of i-th before block
// argument. If the comparison results `true`, i-th before block
// argument is a loop invariant.
auto yieldOpBlockArg = yieldOpArg.dyn_cast<BlockArgument>();
if (yieldOpBlockArg && yieldOpBlockArg.getOwner() == &afterBlock) {
Value condOpArg = condOpArgs[yieldOpBlockArg.getArgNumber()];
if (condOpArg == beforeBlockArgs[index] || condOpArg == initVal) {
beforeBlockInitValMap.insert({index, initVal});
continue;
}
}
}
newInitArgs.emplace_back(initVal);
newYieldOpArgs.emplace_back(yieldOpArg);
newBeforeBlockArgLocs.emplace_back(beforeBlockArgs[index].getLoc());
}
{
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(yieldOp);
rewriter.replaceOpWithNewOp<YieldOp>(yieldOp, newYieldOpArgs);
}
auto newWhile =
rewriter.create<WhileOp>(op.getLoc(), op.getResultTypes(), newInitArgs);
Block &newBeforeBlock = *rewriter.createBlock(
&newWhile.getBefore(), /*insertPt*/ {},
ValueRange(newYieldOpArgs).getTypes(), newBeforeBlockArgLocs);
Block &beforeBlock = op.getBefore().front();
SmallVector<Value> newBeforeBlockArgs(beforeBlock.getNumArguments());
// For each i-th before block argument we find it's replacement value as :-
// 1. If i-th before block argument is a loop invariant, we fetch it's
// initial value from `beforeBlockInitValMap` by querying for key `i`.
// 2. Else we fetch j-th new before block argument as the replacement
// value of i-th before block argument.
for (unsigned i = 0, j = 0, n = beforeBlock.getNumArguments(); i < n; i++) {
// If the index 'i' argument was a loop invariant we fetch it's initial
// value from `beforeBlockInitValMap`.
if (beforeBlockInitValMap.count(i) != 0)
newBeforeBlockArgs[i] = beforeBlockInitValMap[i];
else
newBeforeBlockArgs[i] = newBeforeBlock.getArgument(j++);
}
rewriter.mergeBlocks(&beforeBlock, &newBeforeBlock, newBeforeBlockArgs);
rewriter.inlineRegionBefore(op.getAfter(), newWhile.getAfter(),
newWhile.getAfter().begin());
rewriter.replaceOp(op, newWhile.getResults());
return success();
}
};
/// Remove loop invariant value from result (condition op) of scf.while.
/// A value is considered loop invariant if the final value yielded by
/// scf.condition is defined outside of the `before` block. We remove the
/// corresponding argument in `after` block and replace the use with the value.
/// We also replace the use of the corresponding result of scf.while with the
/// value.
///
/// Eg:
/// INPUT :-
/// %res_input:K = scf.while <...> iter_args(%arg0_before = , ...,
/// %argN_before = %N) {
/// ...
/// scf.condition(%cond) %arg0_before, %a, %b, %arg1_before, ...
/// } do {
/// ^bb0(%arg0_after, %arg1_after, %arg2_after, ..., %argK_after):
/// ...
/// some_func(%arg1_after)
/// ...
/// scf.yield %arg0_after, %arg2_after, ..., %argN_after
/// }
///
/// OUTPUT :-
/// %res_output:M = scf.while <...> iter_args(%arg0 = , ..., %argN = %N) {
/// ...
/// scf.condition(%cond) %arg0, %arg1, ..., %argM
/// } do {
/// ^bb0(%arg0, %arg3, ..., %argM):
/// ...
/// some_func(%a)
/// ...
/// scf.yield %arg0, %b, ..., %argN
/// }
///
/// EXPLANATION:
/// 1. The 1-th and 2-th operand of scf.condition are defined outside the
/// before block of scf.while, so they get removed.
/// 2. %res_input#1's uses are replaced by %a and %res_input#2's uses are
/// replaced by %b.
/// 3. The corresponding after block argument %arg1_after's uses are
/// replaced by %a and %arg2_after's uses are replaced by %b.
struct RemoveLoopInvariantValueYielded : public OpRewritePattern<WhileOp> {
using OpRewritePattern<WhileOp>::OpRewritePattern;
LogicalResult matchAndRewrite(WhileOp op,
PatternRewriter &rewriter) const override {
Block &beforeBlock = op.getBefore().front();
ConditionOp condOp = op.getConditionOp();
OperandRange condOpArgs = condOp.getArgs();
bool canSimplify = false;
for (Value condOpArg : condOpArgs) {
// Those values not defined within `before` block will be considered as
// loop invariant values. We map the corresponding `index` with their
// value.
if (condOpArg.getParentBlock() != &beforeBlock) {
canSimplify = true;
break;
}
}
if (!canSimplify)
return failure();
Block::BlockArgListType afterBlockArgs = op.getAfterArguments();
SmallVector<Value> newCondOpArgs;
SmallVector<Type> newAfterBlockType;
DenseMap<unsigned, Value> condOpInitValMap;
SmallVector<Location> newAfterBlockArgLocs;
for (const auto &it : llvm::enumerate(condOpArgs)) {
auto index = static_cast<unsigned>(it.index());
Value condOpArg = it.value();
// Those values not defined within `before` block will be considered as
// loop invariant values. We map the corresponding `index` with their
// value.
if (condOpArg.getParentBlock() != &beforeBlock) {
condOpInitValMap.insert({index, condOpArg});
} else {
newCondOpArgs.emplace_back(condOpArg);
newAfterBlockType.emplace_back(condOpArg.getType());
newAfterBlockArgLocs.emplace_back(afterBlockArgs[index].getLoc());
}
}
{
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(condOp);
rewriter.replaceOpWithNewOp<ConditionOp>(condOp, condOp.getCondition(),
newCondOpArgs);
}
auto newWhile = rewriter.create<WhileOp>(op.getLoc(), newAfterBlockType,
op.getOperands());
Block &newAfterBlock =
*rewriter.createBlock(&newWhile.getAfter(), /*insertPt*/ {},
newAfterBlockType, newAfterBlockArgLocs);
Block &afterBlock = op.getAfter().front();
// Since a new scf.condition op was created, we need to fetch the new
// `after` block arguments which will be used while replacing operations of
// previous scf.while's `after` blocks. We'd also be fetching new result
// values too.
SmallVector<Value> newAfterBlockArgs(afterBlock.getNumArguments());
SmallVector<Value> newWhileResults(afterBlock.getNumArguments());
for (unsigned i = 0, j = 0, n = afterBlock.getNumArguments(); i < n; i++) {
Value afterBlockArg, result;
// If index 'i' argument was loop invariant we fetch it's value from the
// `condOpInitMap` map.
if (condOpInitValMap.count(i) != 0) {
afterBlockArg = condOpInitValMap[i];
result = afterBlockArg;
} else {
afterBlockArg = newAfterBlock.getArgument(j);
result = newWhile.getResult(j);
j++;
}
newAfterBlockArgs[i] = afterBlockArg;
newWhileResults[i] = result;
}
rewriter.mergeBlocks(&afterBlock, &newAfterBlock, newAfterBlockArgs);
rewriter.inlineRegionBefore(op.getBefore(), newWhile.getBefore(),
newWhile.getBefore().begin());
rewriter.replaceOp(op, newWhileResults);
return success();
}
};
/// Remove WhileOp results that are also unused in 'after' block.
///
/// %0:2 = scf.while () : () -> (i32, i64) {
/// %condition = "test.condition"() : () -> i1
/// %v1 = "test.get_some_value"() : () -> i32
/// %v2 = "test.get_some_value"() : () -> i64
/// scf.condition(%condition) %v1, %v2 : i32, i64
/// } do {
/// ^bb0(%arg0: i32, %arg1: i64):
/// "test.use"(%arg0) : (i32) -> ()
/// scf.yield
/// }
/// return %0#0 : i32
///
/// becomes
/// %0 = scf.while () : () -> (i32) {
/// %condition = "test.condition"() : () -> i1
/// %v1 = "test.get_some_value"() : () -> i32
/// %v2 = "test.get_some_value"() : () -> i64
/// scf.condition(%condition) %v1 : i32
/// } do {
/// ^bb0(%arg0: i32):
/// "test.use"(%arg0) : (i32) -> ()
/// scf.yield
/// }
/// return %0 : i32
struct WhileUnusedResult : public OpRewritePattern<WhileOp> {
using OpRewritePattern<WhileOp>::OpRewritePattern;
LogicalResult matchAndRewrite(WhileOp op,
PatternRewriter &rewriter) const override {
auto term = op.getConditionOp();
auto afterArgs = op.getAfterArguments();
auto termArgs = term.getArgs();
// Collect results mapping, new terminator args and new result types.
SmallVector<unsigned> newResultsIndices;
SmallVector<Type> newResultTypes;
SmallVector<Value> newTermArgs;
SmallVector<Location> newArgLocs;
bool needUpdate = false;
for (const auto &it :
llvm::enumerate(llvm::zip(op.getResults(), afterArgs, termArgs))) {
auto i = static_cast<unsigned>(it.index());
Value result = std::get<0>(it.value());
Value afterArg = std::get<1>(it.value());
Value termArg = std::get<2>(it.value());
if (result.use_empty() && afterArg.use_empty()) {
needUpdate = true;
} else {
newResultsIndices.emplace_back(i);
newTermArgs.emplace_back(termArg);
newResultTypes.emplace_back(result.getType());
newArgLocs.emplace_back(result.getLoc());
}
}
if (!needUpdate)
return failure();
{
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(term);
rewriter.replaceOpWithNewOp<ConditionOp>(term, term.getCondition(),
newTermArgs);
}
auto newWhile =
rewriter.create<WhileOp>(op.getLoc(), newResultTypes, op.getInits());
Block &newAfterBlock = *rewriter.createBlock(
&newWhile.getAfter(), /*insertPt*/ {}, newResultTypes, newArgLocs);
// Build new results list and new after block args (unused entries will be
// null).
SmallVector<Value> newResults(op.getNumResults());
SmallVector<Value> newAfterBlockArgs(op.getNumResults());
for (const auto &it : llvm::enumerate(newResultsIndices)) {
newResults[it.value()] = newWhile.getResult(it.index());
newAfterBlockArgs[it.value()] = newAfterBlock.getArgument(it.index());
}
rewriter.inlineRegionBefore(op.getBefore(), newWhile.getBefore(),
newWhile.getBefore().begin());
Block &afterBlock = op.getAfter().front();
rewriter.mergeBlocks(&afterBlock, &newAfterBlock, newAfterBlockArgs);
rewriter.replaceOp(op, newResults);
return success();
}
};
/// Replace operations equivalent to the condition in the do block with true,
/// since otherwise the block would not be evaluated.
///
/// scf.while (..) : (i32, ...) -> ... {
/// %z = ... : i32
/// %condition = cmpi pred %z, %a
/// scf.condition(%condition) %z : i32, ...
/// } do {
/// ^bb0(%arg0: i32, ...):
/// %condition2 = cmpi pred %arg0, %a
/// use(%condition2)
/// ...
///
/// becomes
/// scf.while (..) : (i32, ...) -> ... {
/// %z = ... : i32
/// %condition = cmpi pred %z, %a
/// scf.condition(%condition) %z : i32, ...
/// } do {
/// ^bb0(%arg0: i32, ...):
/// use(%true)
/// ...
struct WhileCmpCond : public OpRewritePattern<scf::WhileOp> {
using OpRewritePattern<scf::WhileOp>::OpRewritePattern;
LogicalResult matchAndRewrite(scf::WhileOp op,
PatternRewriter &rewriter) const override {
using namespace scf;
auto cond = op.getConditionOp();
auto cmp = cond.getCondition().getDefiningOp<arith::CmpIOp>();
if (!cmp)
return failure();
bool changed = false;
for (auto tup :
llvm::zip(cond.getArgs(), op.getAfter().front().getArguments())) {
for (size_t opIdx = 0; opIdx < 2; opIdx++) {
if (std::get<0>(tup) != cmp.getOperand(opIdx))
continue;
for (OpOperand &u :
llvm::make_early_inc_range(std::get<1>(tup).getUses())) {
auto cmp2 = dyn_cast<arith::CmpIOp>(u.getOwner());
if (!cmp2)
continue;
// For a binary operator 1-opIdx gets the other side.
if (cmp2.getOperand(1 - opIdx) != cmp.getOperand(1 - opIdx))
continue;
bool samePredicate;
if (cmp2.getPredicate() == cmp.getPredicate())
samePredicate = true;
else if (cmp2.getPredicate() ==
arith::invertPredicate(cmp.getPredicate()))
samePredicate = false;
else
continue;
rewriter.replaceOpWithNewOp<arith::ConstantIntOp>(cmp2, samePredicate,
1);
changed = true;
}
}
}
return success(changed);
}
};
struct WhileUnusedArg : public OpRewritePattern<WhileOp> {
using OpRewritePattern<WhileOp>::OpRewritePattern;
LogicalResult matchAndRewrite(WhileOp op,
PatternRewriter &rewriter) const override {
if (!llvm::any_of(op.getBeforeArguments(),
[](Value arg) { return arg.use_empty(); }))
return failure();
YieldOp yield = op.getYieldOp();
// Collect results mapping, new terminator args and new result types.
SmallVector<Value> newYields;
SmallVector<Value> newInits;
llvm::BitVector argsToErase(op.getBeforeArguments().size());
for (const auto &it : llvm::enumerate(llvm::zip(
op.getBeforeArguments(), yield.getOperands(), op.getInits()))) {
Value beforeArg = std::get<0>(it.value());
Value yieldValue = std::get<1>(it.value());
Value initValue = std::get<2>(it.value());
if (beforeArg.use_empty()) {
argsToErase.set(it.index());
} else {
newYields.emplace_back(yieldValue);
newInits.emplace_back(initValue);
}
}
if (argsToErase.none())
return failure();
rewriter.startRootUpdate(op);
op.getBefore().front().eraseArguments(argsToErase);
rewriter.finalizeRootUpdate(op);
WhileOp replacement =
rewriter.create<WhileOp>(op.getLoc(), op.getResultTypes(), newInits);
replacement.getBefore().takeBody(op.getBefore());
replacement.getAfter().takeBody(op.getAfter());
rewriter.replaceOp(op, replacement.getResults());
rewriter.setInsertionPoint(yield);
rewriter.replaceOpWithNewOp<YieldOp>(yield, newYields);
return success();
}
};
} // namespace
void WhileOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<RemoveLoopInvariantArgsFromBeforeBlock,
RemoveLoopInvariantValueYielded, WhileConditionTruth,
WhileCmpCond, WhileUnusedResult>(context);
}
//===----------------------------------------------------------------------===//
// IndexSwitchOp
//===----------------------------------------------------------------------===//
/// Parse the case regions and values.
static ParseResult
parseSwitchCases(OpAsmParser &p, DenseI64ArrayAttr &cases,
SmallVectorImpl<std::unique_ptr<Region>> &caseRegions) {
SmallVector<int64_t> caseValues;
while (succeeded(p.parseOptionalKeyword("case"))) {
int64_t value;
Region &region = *caseRegions.emplace_back(std::make_unique<Region>());
if (p.parseInteger(value) || p.parseRegion(region, /*arguments=*/{}))
return failure();
caseValues.push_back(value);
}
cases = p.getBuilder().getDenseI64ArrayAttr(caseValues);
return success();
}
/// Print the case regions and values.
static void printSwitchCases(OpAsmPrinter &p, Operation *op,
DenseI64ArrayAttr cases, RegionRange caseRegions) {
for (auto [value, region] : llvm::zip(cases.asArrayRef(), caseRegions)) {
p.printNewline();
p << "case " << value << ' ';
p.printRegion(*region, /*printEntryBlockArgs=*/false);
}
}
LogicalResult scf::IndexSwitchOp::verify() {
if (getCases().size() != getCaseRegions().size()) {
return emitOpError("has ")
<< getCaseRegions().size() << " case regions but "
<< getCases().size() << " case values";
}
DenseSet<int64_t> valueSet;
for (int64_t value : getCases())
if (!valueSet.insert(value).second)
return emitOpError("has duplicate case value: ") << value;
auto verifyRegion = [&](Region &region, const Twine &name) -> LogicalResult {
auto yield = dyn_cast<YieldOp>(region.front().back());
if (!yield)
return emitOpError("expected region to end with scf.yield, but got ")
<< region.front().back().getName();
if (yield.getNumOperands() != getNumResults()) {
return (emitOpError("expected each region to return ")
<< getNumResults() << " values, but " << name << " returns "
<< yield.getNumOperands())
.attachNote(yield.getLoc())
<< "see yield operation here";
}
for (auto [idx, result, operand] :
llvm::zip(llvm::seq<unsigned>(0, getNumResults()), getResultTypes(),
yield.getOperandTypes())) {
if (result == operand)
continue;
return (emitOpError("expected result #")
<< idx << " of each region to be " << result)
.attachNote(yield.getLoc())
<< name << " returns " << operand << " here";
}
return success();
};
if (failed(verifyRegion(getDefaultRegion(), "default region")))
return failure();
for (auto [idx, caseRegion] : llvm::enumerate(getCaseRegions()))
if (failed(verifyRegion(caseRegion, "case region #" + Twine(idx))))
return failure();
return success();
}
unsigned scf::IndexSwitchOp::getNumCases() { return getCases().size(); }
Block &scf::IndexSwitchOp::getDefaultBlock() {
return getDefaultRegion().front();
}
Block &scf::IndexSwitchOp::getCaseBlock(unsigned idx) {
assert(idx < getNumCases() && "case index out-of-bounds");
return getCaseRegions()[idx].front();
}
void IndexSwitchOp::getSuccessorRegions(
std::optional<unsigned> index, ArrayRef<Attribute> operands,
SmallVectorImpl<RegionSuccessor> &successors) {
// All regions branch back to the parent op.
if (index) {
successors.emplace_back(getResults());
return;
}
// If a constant was not provided, all regions are possible successors.
auto operandValue = operands.front().dyn_cast_or_null<IntegerAttr>();
if (!operandValue) {
for (Region &caseRegion : getCaseRegions())
successors.emplace_back(&caseRegion);
successors.emplace_back(&getDefaultRegion());
return;
}
// Otherwise, try to find a case with a matching value. If not, the default
// region is the only successor.
for (auto [caseValue, caseRegion] : llvm::zip(getCases(), getCaseRegions())) {
if (caseValue == operandValue.getInt()) {
successors.emplace_back(&caseRegion);
return;
}
}
successors.emplace_back(&getDefaultRegion());
}
void IndexSwitchOp::getRegionInvocationBounds(
ArrayRef<Attribute> operands, SmallVectorImpl<InvocationBounds> &bounds) {
auto operandValue = operands.front().dyn_cast_or_null<IntegerAttr>();
if (!operandValue) {
// All regions are invoked at most once.
bounds.append(getNumRegions(), InvocationBounds(/*lb=*/0, /*ub=*/1));
return;
}
unsigned liveIndex = getNumRegions() - 1;
const auto *it = llvm::find(getCases(), operandValue.getInt());
if (it != getCases().end())
liveIndex = std::distance(getCases().begin(), it);
for (unsigned i = 0, e = getNumRegions(); i < e; ++i)
bounds.emplace_back(/*lb=*/0, /*ub=*/i == liveIndex);
}
//===----------------------------------------------------------------------===//
// TableGen'd op method definitions
//===----------------------------------------------------------------------===//
#define GET_OP_CLASSES
#include "mlir/Dialect/SCF/IR/SCFOps.cpp.inc"