Jakub Kuderski 8c258fda1f [ADT][mlir][NFCI] Do not use non-const lvalue-refs with enumerate
Replace references to enumerate results with either result_pairs
(reference wrapper type) or structured bindings. I did not use
structured bindings everywhere as it wasn't clear to me it would
improve readability.

This is in preparation to the switch to zip semantics which won't
support non-const lvalue reference to elements:
https://reviews.llvm.org/D144503.

I chose to use values instead of const lvalue-refs because MLIR is
biased towards avoiding `const` local variables. This won't degrade
performance because currently `result_pair` is cheap to copy (size_t
+ iterator), and in the future, the enumerator iterator dereference
will return temporaries anyway.

Reviewed By: dblaikie

Differential Revision: https://reviews.llvm.org/D146006
2023-03-15 10:43:56 -04:00

338 lines
15 KiB
C++

//===- AVXTranspose.cpp - Lower Vector transpose to AVX -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements vector.transpose rewrites as AVX patterns for particular
// sizes of interest.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/X86Vector/Transforms.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/FormatVariadic.h"
using namespace mlir;
using namespace mlir::vector;
using namespace mlir::x86vector;
using namespace mlir::x86vector::avx2;
using namespace mlir::x86vector::avx2::inline_asm;
using namespace mlir::x86vector::avx2::intrin;
Value mlir::x86vector::avx2::inline_asm::mm256BlendPsAsm(
ImplicitLocOpBuilder &b, Value v1, Value v2, uint8_t mask) {
auto asmDialectAttr =
LLVM::AsmDialectAttr::get(b.getContext(), LLVM::AsmDialect::AD_Intel);
const auto *asmTp = "vblendps $0, $1, $2, {0}";
const auto *asmCstr =
"=x,x,x"; // Careful: constraint parser is very brittle: no ws!
SmallVector<Value> asmVals{v1, v2};
auto asmStr = llvm::formatv(asmTp, llvm::format_hex(mask, /*width=*/2)).str();
auto asmOp = b.create<LLVM::InlineAsmOp>(
v1.getType(), /*operands=*/asmVals, /*asm_string=*/asmStr,
/*constraints=*/asmCstr, /*has_side_effects=*/false,
/*is_align_stack=*/false, /*asm_dialect=*/asmDialectAttr,
/*operand_attrs=*/ArrayAttr());
return asmOp.getResult(0);
}
Value mlir::x86vector::avx2::intrin::mm256UnpackLoPs(ImplicitLocOpBuilder &b,
Value v1, Value v2) {
return b.create<vector::ShuffleOp>(
v1, v2, ArrayRef<int64_t>{0, 8, 1, 9, 4, 12, 5, 13});
}
Value mlir::x86vector::avx2::intrin::mm256UnpackHiPs(ImplicitLocOpBuilder &b,
Value v1, Value v2) {
return b.create<vector::ShuffleOp>(
v1, v2, ArrayRef<int64_t>{2, 10, 3, 11, 6, 14, 7, 15});
}
/// a a b b a a b b
/// Takes an 8 bit mask, 2 bit for each position of a[0, 3) **and** b[0, 4):
/// 0:127 | 128:255
/// b01 b23 C8 D8 | b01+4 b23+4 C8+4 D8+4
Value mlir::x86vector::avx2::intrin::mm256ShufflePs(ImplicitLocOpBuilder &b,
Value v1, Value v2,
uint8_t mask) {
uint8_t b01, b23, b45, b67;
MaskHelper::extractShuffle(mask, b01, b23, b45, b67);
SmallVector<int64_t> shuffleMask{b01, b23, b45 + 8, b67 + 8,
b01 + 4, b23 + 4, b45 + 8 + 4, b67 + 8 + 4};
return b.create<vector::ShuffleOp>(v1, v2, shuffleMask);
}
// imm[0:1] out of imm[0:3] is:
// 0 1 2 3
// a[0:127] or a[128:255] or b[0:127] or b[128:255] |
// a[0:127] or a[128:255] or b[0:127] or b[128:255]
// 0 1 2 3
// imm[0:1] out of imm[4:7].
Value mlir::x86vector::avx2::intrin::mm256Permute2f128Ps(
ImplicitLocOpBuilder &b, Value v1, Value v2, uint8_t mask) {
SmallVector<int64_t> shuffleMask;
auto appendToMask = [&](uint8_t control) {
if (control == 0)
llvm::append_range(shuffleMask, ArrayRef<int64_t>{0, 1, 2, 3});
else if (control == 1)
llvm::append_range(shuffleMask, ArrayRef<int64_t>{4, 5, 6, 7});
else if (control == 2)
llvm::append_range(shuffleMask, ArrayRef<int64_t>{8, 9, 10, 11});
else if (control == 3)
llvm::append_range(shuffleMask, ArrayRef<int64_t>{12, 13, 14, 15});
else
llvm_unreachable("control > 3 : overflow");
};
uint8_t b03, b47;
MaskHelper::extractPermute(mask, b03, b47);
appendToMask(b03);
appendToMask(b47);
return b.create<vector::ShuffleOp>(v1, v2, shuffleMask);
}
/// If bit i of `mask` is zero, take f32@i from v1 else take it from v2.
Value mlir::x86vector::avx2::intrin::mm256BlendPs(ImplicitLocOpBuilder &b,
Value v1, Value v2,
uint8_t mask) {
SmallVector<int64_t, 8> shuffleMask;
for (int i = 0; i < 8; ++i) {
bool isSet = mask & (1 << i);
shuffleMask.push_back(!isSet ? i : i + 8);
}
return b.create<vector::ShuffleOp>(v1, v2, shuffleMask);
}
/// AVX2 4x8xf32-specific transpose lowering using a "C intrinsics" model.
void mlir::x86vector::avx2::transpose4x8xf32(ImplicitLocOpBuilder &ib,
MutableArrayRef<Value> vs) {
#ifndef NDEBUG
auto vt = VectorType::get({8}, Float32Type::get(ib.getContext()));
assert(vs.size() == 4 && "expects 4 vectors");
assert(llvm::all_of(ValueRange{vs}.getTypes(),
[&](Type t) { return t == vt; }) &&
"expects all types to be vector<8xf32>");
#endif
Value t0 = mm256UnpackLoPs(ib, vs[0], vs[1]);
Value t1 = mm256UnpackHiPs(ib, vs[0], vs[1]);
Value t2 = mm256UnpackLoPs(ib, vs[2], vs[3]);
Value t3 = mm256UnpackHiPs(ib, vs[2], vs[3]);
Value s0 = mm256ShufflePs(ib, t0, t2, MaskHelper::shuffle<1, 0, 1, 0>());
Value s1 = mm256ShufflePs(ib, t0, t2, MaskHelper::shuffle<3, 2, 3, 2>());
Value s2 = mm256ShufflePs(ib, t1, t3, MaskHelper::shuffle<1, 0, 1, 0>());
Value s3 = mm256ShufflePs(ib, t1, t3, MaskHelper::shuffle<3, 2, 3, 2>());
vs[0] = mm256Permute2f128Ps(ib, s0, s1, MaskHelper::permute<2, 0>());
vs[1] = mm256Permute2f128Ps(ib, s2, s3, MaskHelper::permute<2, 0>());
vs[2] = mm256Permute2f128Ps(ib, s0, s1, MaskHelper::permute<3, 1>());
vs[3] = mm256Permute2f128Ps(ib, s2, s3, MaskHelper::permute<3, 1>());
}
/// AVX2 8x8xf32-specific transpose lowering using a "C intrinsics" model.
void mlir::x86vector::avx2::transpose8x8xf32(ImplicitLocOpBuilder &ib,
MutableArrayRef<Value> vs) {
auto vt = VectorType::get({8}, Float32Type::get(ib.getContext()));
(void)vt;
assert(vs.size() == 8 && "expects 8 vectors");
assert(llvm::all_of(ValueRange{vs}.getTypes(),
[&](Type t) { return t == vt; }) &&
"expects all types to be vector<8xf32>");
Value t0 = mm256UnpackLoPs(ib, vs[0], vs[1]);
Value t1 = mm256UnpackHiPs(ib, vs[0], vs[1]);
Value t2 = mm256UnpackLoPs(ib, vs[2], vs[3]);
Value t3 = mm256UnpackHiPs(ib, vs[2], vs[3]);
Value t4 = mm256UnpackLoPs(ib, vs[4], vs[5]);
Value t5 = mm256UnpackHiPs(ib, vs[4], vs[5]);
Value t6 = mm256UnpackLoPs(ib, vs[6], vs[7]);
Value t7 = mm256UnpackHiPs(ib, vs[6], vs[7]);
using inline_asm::mm256BlendPsAsm;
Value sh0 = mm256ShufflePs(ib, t0, t2, MaskHelper::shuffle<1, 0, 3, 2>());
Value sh2 = mm256ShufflePs(ib, t1, t3, MaskHelper::shuffle<1, 0, 3, 2>());
Value sh4 = mm256ShufflePs(ib, t4, t6, MaskHelper::shuffle<1, 0, 3, 2>());
Value sh6 = mm256ShufflePs(ib, t5, t7, MaskHelper::shuffle<1, 0, 3, 2>());
Value s0 =
mm256BlendPsAsm(ib, t0, sh0, MaskHelper::blend<0, 0, 1, 1, 0, 0, 1, 1>());
Value s1 =
mm256BlendPsAsm(ib, t2, sh0, MaskHelper::blend<1, 1, 0, 0, 1, 1, 0, 0>());
Value s2 =
mm256BlendPsAsm(ib, t1, sh2, MaskHelper::blend<0, 0, 1, 1, 0, 0, 1, 1>());
Value s3 =
mm256BlendPsAsm(ib, t3, sh2, MaskHelper::blend<1, 1, 0, 0, 1, 1, 0, 0>());
Value s4 =
mm256BlendPsAsm(ib, t4, sh4, MaskHelper::blend<0, 0, 1, 1, 0, 0, 1, 1>());
Value s5 =
mm256BlendPsAsm(ib, t6, sh4, MaskHelper::blend<1, 1, 0, 0, 1, 1, 0, 0>());
Value s6 =
mm256BlendPsAsm(ib, t5, sh6, MaskHelper::blend<0, 0, 1, 1, 0, 0, 1, 1>());
Value s7 =
mm256BlendPsAsm(ib, t7, sh6, MaskHelper::blend<1, 1, 0, 0, 1, 1, 0, 0>());
vs[0] = mm256Permute2f128Ps(ib, s0, s4, MaskHelper::permute<2, 0>());
vs[1] = mm256Permute2f128Ps(ib, s1, s5, MaskHelper::permute<2, 0>());
vs[2] = mm256Permute2f128Ps(ib, s2, s6, MaskHelper::permute<2, 0>());
vs[3] = mm256Permute2f128Ps(ib, s3, s7, MaskHelper::permute<2, 0>());
vs[4] = mm256Permute2f128Ps(ib, s0, s4, MaskHelper::permute<3, 1>());
vs[5] = mm256Permute2f128Ps(ib, s1, s5, MaskHelper::permute<3, 1>());
vs[6] = mm256Permute2f128Ps(ib, s2, s6, MaskHelper::permute<3, 1>());
vs[7] = mm256Permute2f128Ps(ib, s3, s7, MaskHelper::permute<3, 1>());
}
/// Given the n-D transpose pattern 'transp', return true if 'dim0' and 'dim1'
/// should be transposed with each other within the context of their 2D
/// transposition slice.
///
/// Example 1: dim0 = 0, dim1 = 2, transp = [2, 1, 0]
/// Return true: dim0 and dim1 are transposed within the context of their 2D
/// transposition slice ([1, 0]).
///
/// Example 2: dim0 = 0, dim1 = 1, transp = [2, 1, 0]
/// Return true: dim0 and dim1 are transposed within the context of their 2D
/// transposition slice ([1, 0]). Paradoxically, note how dim1 (1) is *not*
/// transposed within the full context of the transposition.
///
/// Example 3: dim0 = 0, dim1 = 1, transp = [2, 0, 1]
/// Return false: dim0 and dim1 are *not* transposed within the context of
/// their 2D transposition slice ([0, 1]). Paradoxically, note how dim0 (0)
/// and dim1 (1) are transposed within the full context of the of the
/// transposition.
static bool areDimsTransposedIn2DSlice(int64_t dim0, int64_t dim1,
ArrayRef<int64_t> transp) {
// Perform a linear scan along the dimensions of the transposed pattern. If
// dim0 is found first, dim0 and dim1 are not transposed within the context of
// their 2D slice. Otherwise, 'dim1' is found first and they are transposed.
for (int64_t permDim : transp) {
if (permDim == dim0)
return false;
if (permDim == dim1)
return true;
}
llvm_unreachable("Ill-formed transpose pattern");
}
/// Rewrite AVX2-specific vector.transpose, for the supported cases and
/// depending on the `TransposeLoweringOptions`. The lowering supports 2-D
/// transpose cases and n-D cases that have been decomposed into 2-D
/// transposition slices. For example, a 3-D transpose:
///
/// %0 = vector.transpose %arg0, [2, 0, 1]
/// : vector<1024x2048x4096xf32> to vector<4096x1024x2048xf32>
///
/// could be sliced into 2-D transposes by tiling two of its dimensions to one
/// of the vector lengths supported by the AVX2 patterns (e.g., 4x8):
///
/// %0 = vector.transpose %arg0, [2, 0, 1]
/// : vector<1x4x8xf32> to vector<8x1x4xf32>
///
/// This lowering will analyze the n-D vector.transpose and determine if it's a
/// supported 2-D transposition slice where any of the AVX2 patterns can be
/// applied.
class TransposeOpLowering : public OpRewritePattern<vector::TransposeOp> {
public:
using OpRewritePattern<vector::TransposeOp>::OpRewritePattern;
TransposeOpLowering(LoweringOptions loweringOptions, MLIRContext *context,
int benefit)
: OpRewritePattern<vector::TransposeOp>(context, benefit),
loweringOptions(loweringOptions) {}
LogicalResult matchAndRewrite(vector::TransposeOp op,
PatternRewriter &rewriter) const override {
auto loc = op.getLoc();
// Check if the source vector type is supported. AVX2 patterns can only be
// applied to f32 vector types with two dimensions greater than one.
VectorType srcType = op.getSourceVectorType();
if (!srcType.getElementType().isF32())
return rewriter.notifyMatchFailure(op, "Unsupported vector element type");
SmallVector<int64_t> srcGtOneDims;
for (auto [index, size] : llvm::enumerate(srcType.getShape()))
if (size > 1)
srcGtOneDims.push_back(index);
if (srcGtOneDims.size() != 2)
return rewriter.notifyMatchFailure(op, "Unsupported vector type");
SmallVector<int64_t, 4> transp;
for (auto attr : op.getTransp())
transp.push_back(attr.cast<IntegerAttr>().getInt());
// Check whether the two source vector dimensions that are greater than one
// must be transposed with each other so that we can apply one of the 2-D
// AVX2 transpose pattens. Otherwise, these patterns are not applicable.
if (!areDimsTransposedIn2DSlice(srcGtOneDims[0], srcGtOneDims[1], transp))
return rewriter.notifyMatchFailure(
op, "Not applicable to this transpose permutation");
// Retrieve the sizes of the two dimensions greater than one to be
// transposed.
auto srcShape = srcType.getShape();
int64_t m = srcShape[srcGtOneDims[0]], n = srcShape[srcGtOneDims[1]];
auto applyRewrite = [&]() {
ImplicitLocOpBuilder ib(loc, rewriter);
SmallVector<Value> vs;
// Reshape the n-D input vector with only two dimensions greater than one
// to a 2-D vector.
auto flattenedType =
VectorType::get({n * m}, op.getSourceVectorType().getElementType());
auto reshInputType = VectorType::get({m, n}, srcType.getElementType());
auto reshInput =
ib.create<vector::ShapeCastOp>(flattenedType, op.getVector());
reshInput = ib.create<vector::ShapeCastOp>(reshInputType, reshInput);
// Extract 1-D vectors from the higher-order dimension of the input
// vector.
for (int64_t i = 0; i < m; ++i)
vs.push_back(ib.create<vector::ExtractOp>(reshInput, i));
// Transpose set of 1-D vectors.
if (m == 4)
transpose4x8xf32(ib, vs);
if (m == 8)
transpose8x8xf32(ib, vs);
// Insert transposed 1-D vectors into the higher-order dimension of the
// output vector.
Value res = ib.create<arith::ConstantOp>(reshInputType,
ib.getZeroAttr(reshInputType));
for (int64_t i = 0; i < m; ++i)
res = ib.create<vector::InsertOp>(vs[i], res, i);
// The output vector still has the shape of the input vector (e.g., 4x8).
// We have to transpose their dimensions and retrieve its original rank
// (e.g., 1x8x1x4x1).
res = ib.create<vector::ShapeCastOp>(flattenedType, res);
res = ib.create<vector::ShapeCastOp>(op.getResultVectorType(), res);
rewriter.replaceOp(op, res);
return success();
};
if (loweringOptions.transposeOptions.lower4x8xf32_ && m == 4 && n == 8)
return applyRewrite();
if (loweringOptions.transposeOptions.lower8x8xf32_ && m == 8 && n == 8)
return applyRewrite();
return failure();
}
private:
LoweringOptions loweringOptions;
};
void mlir::x86vector::avx2::populateSpecializedTransposeLoweringPatterns(
RewritePatternSet &patterns, LoweringOptions options, int benefit) {
patterns.add<TransposeOpLowering>(options, patterns.getContext(), benefit);
}