Chia-hung Duan 70758b801d [scudo] Calling getStats requires holding lock
We didn't acquire the mutex while accessing those lock protected data,
this CL fixes it and now we don't need to disable the allocator while
reading its states.

Differential Revision: https://reviews.llvm.org/D142149
2023-02-13 23:09:47 +00:00

630 lines
21 KiB
C++

//===-- secondary.h ---------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef SCUDO_SECONDARY_H_
#define SCUDO_SECONDARY_H_
#include "chunk.h"
#include "common.h"
#include "list.h"
#include "memtag.h"
#include "mutex.h"
#include "options.h"
#include "stats.h"
#include "string_utils.h"
namespace scudo {
// This allocator wraps the platform allocation primitives, and as such is on
// the slower side and should preferably be used for larger sized allocations.
// Blocks allocated will be preceded and followed by a guard page, and hold
// their own header that is not checksummed: the guard pages and the Combined
// header should be enough for our purpose.
namespace LargeBlock {
struct alignas(Max<uptr>(archSupportsMemoryTagging()
? archMemoryTagGranuleSize()
: 1,
1U << SCUDO_MIN_ALIGNMENT_LOG)) Header {
LargeBlock::Header *Prev;
LargeBlock::Header *Next;
uptr CommitBase;
uptr CommitSize;
uptr MapBase;
uptr MapSize;
[[no_unique_address]] MapPlatformData Data;
};
static_assert(sizeof(Header) % (1U << SCUDO_MIN_ALIGNMENT_LOG) == 0, "");
static_assert(!archSupportsMemoryTagging() ||
sizeof(Header) % archMemoryTagGranuleSize() == 0,
"");
constexpr uptr getHeaderSize() { return sizeof(Header); }
template <typename Config> static uptr addHeaderTag(uptr Ptr) {
if (allocatorSupportsMemoryTagging<Config>())
return addFixedTag(Ptr, 1);
return Ptr;
}
template <typename Config> static Header *getHeader(uptr Ptr) {
return reinterpret_cast<Header *>(addHeaderTag<Config>(Ptr)) - 1;
}
template <typename Config> static Header *getHeader(const void *Ptr) {
return getHeader<Config>(reinterpret_cast<uptr>(Ptr));
}
} // namespace LargeBlock
static void unmap(LargeBlock::Header *H) {
MapPlatformData Data = H->Data;
unmap(reinterpret_cast<void *>(H->MapBase), H->MapSize, UNMAP_ALL, &Data);
}
class MapAllocatorNoCache {
public:
void init(UNUSED s32 ReleaseToOsInterval) {}
bool retrieve(UNUSED Options Options, UNUSED uptr Size, UNUSED uptr Alignment,
UNUSED LargeBlock::Header **H, UNUSED bool *Zeroed) {
return false;
}
void store(UNUSED Options Options, LargeBlock::Header *H) { unmap(H); }
bool canCache(UNUSED uptr Size) { return false; }
void disable() {}
void enable() {}
void releaseToOS() {}
void disableMemoryTagging() {}
void unmapTestOnly() {}
bool setOption(Option O, UNUSED sptr Value) {
if (O == Option::ReleaseInterval || O == Option::MaxCacheEntriesCount ||
O == Option::MaxCacheEntrySize)
return false;
// Not supported by the Secondary Cache, but not an error either.
return true;
}
};
static const uptr MaxUnusedCachePages = 4U;
template <typename Config>
void mapSecondary(Options Options, uptr CommitBase, uptr CommitSize,
uptr AllocPos, uptr Flags, MapPlatformData *Data) {
const uptr MaxUnusedCacheBytes = MaxUnusedCachePages * getPageSizeCached();
if (useMemoryTagging<Config>(Options) && CommitSize > MaxUnusedCacheBytes) {
const uptr UntaggedPos = Max(AllocPos, CommitBase + MaxUnusedCacheBytes);
map(reinterpret_cast<void *>(CommitBase), UntaggedPos - CommitBase,
"scudo:secondary", MAP_RESIZABLE | MAP_MEMTAG | Flags, Data);
map(reinterpret_cast<void *>(UntaggedPos),
CommitBase + CommitSize - UntaggedPos, "scudo:secondary",
MAP_RESIZABLE | Flags, Data);
} else {
map(reinterpret_cast<void *>(CommitBase), CommitSize, "scudo:secondary",
MAP_RESIZABLE | (useMemoryTagging<Config>(Options) ? MAP_MEMTAG : 0) |
Flags,
Data);
}
}
// Template specialization to avoid producing zero-length array
template <typename T, size_t Size> class NonZeroLengthArray {
public:
T &operator[](uptr Idx) { return values[Idx]; }
private:
T values[Size];
};
template <typename T> class NonZeroLengthArray<T, 0> {
public:
T &operator[](uptr UNUSED Idx) { UNREACHABLE("Unsupported!"); }
};
template <typename Config> class MapAllocatorCache {
public:
// Ensure the default maximum specified fits the array.
static_assert(Config::SecondaryCacheDefaultMaxEntriesCount <=
Config::SecondaryCacheEntriesArraySize,
"");
void init(s32 ReleaseToOsInterval) {
DCHECK_EQ(EntriesCount, 0U);
setOption(Option::MaxCacheEntriesCount,
static_cast<sptr>(Config::SecondaryCacheDefaultMaxEntriesCount));
setOption(Option::MaxCacheEntrySize,
static_cast<sptr>(Config::SecondaryCacheDefaultMaxEntrySize));
setOption(Option::ReleaseInterval, static_cast<sptr>(ReleaseToOsInterval));
}
void store(Options Options, LargeBlock::Header *H) {
if (!canCache(H->CommitSize))
return unmap(H);
bool EntryCached = false;
bool EmptyCache = false;
const s32 Interval = atomic_load_relaxed(&ReleaseToOsIntervalMs);
const u64 Time = getMonotonicTime();
const u32 MaxCount = atomic_load_relaxed(&MaxEntriesCount);
CachedBlock Entry;
Entry.CommitBase = H->CommitBase;
Entry.CommitSize = H->CommitSize;
Entry.MapBase = H->MapBase;
Entry.MapSize = H->MapSize;
Entry.BlockBegin = reinterpret_cast<uptr>(H + 1);
Entry.Data = H->Data;
Entry.Time = Time;
if (useMemoryTagging<Config>(Options)) {
if (Interval == 0 && !SCUDO_FUCHSIA) {
// Release the memory and make it inaccessible at the same time by
// creating a new MAP_NOACCESS mapping on top of the existing mapping.
// Fuchsia does not support replacing mappings by creating a new mapping
// on top so we just do the two syscalls there.
Entry.Time = 0;
mapSecondary<Config>(Options, Entry.CommitBase, Entry.CommitSize,
Entry.CommitBase, MAP_NOACCESS, &Entry.Data);
} else {
setMemoryPermission(Entry.CommitBase, Entry.CommitSize, MAP_NOACCESS,
&Entry.Data);
}
} else if (Interval == 0) {
releasePagesToOS(Entry.CommitBase, 0, Entry.CommitSize, &Entry.Data);
Entry.Time = 0;
}
do {
ScopedLock L(Mutex);
if (useMemoryTagging<Config>(Options) && QuarantinePos == -1U) {
// If we get here then memory tagging was disabled in between when we
// read Options and when we locked Mutex. We can't insert our entry into
// the quarantine or the cache because the permissions would be wrong so
// just unmap it.
break;
}
if (Config::SecondaryCacheQuarantineSize &&
useMemoryTagging<Config>(Options)) {
QuarantinePos =
(QuarantinePos + 1) % Max(Config::SecondaryCacheQuarantineSize, 1u);
if (!Quarantine[QuarantinePos].CommitBase) {
Quarantine[QuarantinePos] = Entry;
return;
}
CachedBlock PrevEntry = Quarantine[QuarantinePos];
Quarantine[QuarantinePos] = Entry;
if (OldestTime == 0)
OldestTime = Entry.Time;
Entry = PrevEntry;
}
if (EntriesCount >= MaxCount) {
if (IsFullEvents++ == 4U)
EmptyCache = true;
} else {
for (u32 I = 0; I < MaxCount; I++) {
if (Entries[I].CommitBase)
continue;
if (I != 0)
Entries[I] = Entries[0];
Entries[0] = Entry;
EntriesCount++;
if (OldestTime == 0)
OldestTime = Entry.Time;
EntryCached = true;
break;
}
}
} while (0);
if (EmptyCache)
empty();
else if (Interval >= 0)
releaseOlderThan(Time - static_cast<u64>(Interval) * 1000000);
if (!EntryCached)
unmap(reinterpret_cast<void *>(Entry.MapBase), Entry.MapSize, UNMAP_ALL,
&Entry.Data);
}
bool retrieve(Options Options, uptr Size, uptr Alignment,
LargeBlock::Header **H, bool *Zeroed) {
const uptr PageSize = getPageSizeCached();
const u32 MaxCount = atomic_load_relaxed(&MaxEntriesCount);
bool Found = false;
CachedBlock Entry;
uptr HeaderPos = 0;
{
ScopedLock L(Mutex);
if (EntriesCount == 0)
return false;
for (u32 I = 0; I < MaxCount; I++) {
const uptr CommitBase = Entries[I].CommitBase;
if (!CommitBase)
continue;
const uptr CommitSize = Entries[I].CommitSize;
const uptr AllocPos =
roundDownTo(CommitBase + CommitSize - Size, Alignment);
HeaderPos =
AllocPos - Chunk::getHeaderSize() - LargeBlock::getHeaderSize();
if (HeaderPos > CommitBase + CommitSize)
continue;
if (HeaderPos < CommitBase ||
AllocPos > CommitBase + PageSize * MaxUnusedCachePages)
continue;
Found = true;
Entry = Entries[I];
Entries[I].CommitBase = 0;
break;
}
}
if (Found) {
*H = reinterpret_cast<LargeBlock::Header *>(
LargeBlock::addHeaderTag<Config>(HeaderPos));
*Zeroed = Entry.Time == 0;
if (useMemoryTagging<Config>(Options))
setMemoryPermission(Entry.CommitBase, Entry.CommitSize, 0, &Entry.Data);
uptr NewBlockBegin = reinterpret_cast<uptr>(*H + 1);
if (useMemoryTagging<Config>(Options)) {
if (*Zeroed)
storeTags(LargeBlock::addHeaderTag<Config>(Entry.CommitBase),
NewBlockBegin);
else if (Entry.BlockBegin < NewBlockBegin)
storeTags(Entry.BlockBegin, NewBlockBegin);
else
storeTags(untagPointer(NewBlockBegin),
untagPointer(Entry.BlockBegin));
}
(*H)->CommitBase = Entry.CommitBase;
(*H)->CommitSize = Entry.CommitSize;
(*H)->MapBase = Entry.MapBase;
(*H)->MapSize = Entry.MapSize;
(*H)->Data = Entry.Data;
EntriesCount--;
}
return Found;
}
bool canCache(uptr Size) {
return atomic_load_relaxed(&MaxEntriesCount) != 0U &&
Size <= atomic_load_relaxed(&MaxEntrySize);
}
bool setOption(Option O, sptr Value) {
if (O == Option::ReleaseInterval) {
const s32 Interval =
Max(Min(static_cast<s32>(Value),
Config::SecondaryCacheMaxReleaseToOsIntervalMs),
Config::SecondaryCacheMinReleaseToOsIntervalMs);
atomic_store_relaxed(&ReleaseToOsIntervalMs, Interval);
return true;
}
if (O == Option::MaxCacheEntriesCount) {
const u32 MaxCount = static_cast<u32>(Value);
if (MaxCount > Config::SecondaryCacheEntriesArraySize)
return false;
atomic_store_relaxed(&MaxEntriesCount, MaxCount);
return true;
}
if (O == Option::MaxCacheEntrySize) {
atomic_store_relaxed(&MaxEntrySize, static_cast<uptr>(Value));
return true;
}
// Not supported by the Secondary Cache, but not an error either.
return true;
}
void releaseToOS() { releaseOlderThan(UINT64_MAX); }
void disableMemoryTagging() {
ScopedLock L(Mutex);
for (u32 I = 0; I != Config::SecondaryCacheQuarantineSize; ++I) {
if (Quarantine[I].CommitBase) {
unmap(reinterpret_cast<void *>(Quarantine[I].MapBase),
Quarantine[I].MapSize, UNMAP_ALL, &Quarantine[I].Data);
Quarantine[I].CommitBase = 0;
}
}
const u32 MaxCount = atomic_load_relaxed(&MaxEntriesCount);
for (u32 I = 0; I < MaxCount; I++)
if (Entries[I].CommitBase)
setMemoryPermission(Entries[I].CommitBase, Entries[I].CommitSize, 0,
&Entries[I].Data);
QuarantinePos = -1U;
}
void disable() { Mutex.lock(); }
void enable() { Mutex.unlock(); }
void unmapTestOnly() { empty(); }
private:
void empty() {
struct {
void *MapBase;
uptr MapSize;
MapPlatformData Data;
} MapInfo[Config::SecondaryCacheEntriesArraySize];
uptr N = 0;
{
ScopedLock L(Mutex);
for (uptr I = 0; I < Config::SecondaryCacheEntriesArraySize; I++) {
if (!Entries[I].CommitBase)
continue;
MapInfo[N].MapBase = reinterpret_cast<void *>(Entries[I].MapBase);
MapInfo[N].MapSize = Entries[I].MapSize;
MapInfo[N].Data = Entries[I].Data;
Entries[I].CommitBase = 0;
N++;
}
EntriesCount = 0;
IsFullEvents = 0;
}
for (uptr I = 0; I < N; I++)
unmap(MapInfo[I].MapBase, MapInfo[I].MapSize, UNMAP_ALL,
&MapInfo[I].Data);
}
struct CachedBlock {
uptr CommitBase;
uptr CommitSize;
uptr MapBase;
uptr MapSize;
uptr BlockBegin;
[[no_unique_address]] MapPlatformData Data;
u64 Time;
};
void releaseIfOlderThan(CachedBlock &Entry, u64 Time) {
if (!Entry.CommitBase || !Entry.Time)
return;
if (Entry.Time > Time) {
if (OldestTime == 0 || Entry.Time < OldestTime)
OldestTime = Entry.Time;
return;
}
releasePagesToOS(Entry.CommitBase, 0, Entry.CommitSize, &Entry.Data);
Entry.Time = 0;
}
void releaseOlderThan(u64 Time) {
ScopedLock L(Mutex);
if (!EntriesCount || OldestTime == 0 || OldestTime > Time)
return;
OldestTime = 0;
for (uptr I = 0; I < Config::SecondaryCacheQuarantineSize; I++)
releaseIfOlderThan(Quarantine[I], Time);
for (uptr I = 0; I < Config::SecondaryCacheEntriesArraySize; I++)
releaseIfOlderThan(Entries[I], Time);
}
HybridMutex Mutex;
u32 EntriesCount = 0;
u32 QuarantinePos = 0;
atomic_u32 MaxEntriesCount = {};
atomic_uptr MaxEntrySize = {};
u64 OldestTime = 0;
u32 IsFullEvents = 0;
atomic_s32 ReleaseToOsIntervalMs = {};
CachedBlock Entries[Config::SecondaryCacheEntriesArraySize] = {};
NonZeroLengthArray<CachedBlock, Config::SecondaryCacheQuarantineSize>
Quarantine = {};
};
template <typename Config> class MapAllocator {
public:
void init(GlobalStats *S, s32 ReleaseToOsInterval = -1) {
DCHECK_EQ(AllocatedBytes, 0U);
DCHECK_EQ(FreedBytes, 0U);
Cache.init(ReleaseToOsInterval);
Stats.init();
if (LIKELY(S))
S->link(&Stats);
}
void *allocate(Options Options, uptr Size, uptr AlignmentHint = 0,
uptr *BlockEnd = nullptr,
FillContentsMode FillContents = NoFill);
void deallocate(Options Options, void *Ptr);
static uptr getBlockEnd(void *Ptr) {
auto *B = LargeBlock::getHeader<Config>(Ptr);
return B->CommitBase + B->CommitSize;
}
static uptr getBlockSize(void *Ptr) {
return getBlockEnd(Ptr) - reinterpret_cast<uptr>(Ptr);
}
void getStats(ScopedString *Str);
void disable() {
Mutex.lock();
Cache.disable();
}
void enable() {
Cache.enable();
Mutex.unlock();
}
template <typename F> void iterateOverBlocks(F Callback) const {
for (const auto &H : InUseBlocks) {
uptr Ptr = reinterpret_cast<uptr>(&H) + LargeBlock::getHeaderSize();
if (allocatorSupportsMemoryTagging<Config>())
Ptr = untagPointer(Ptr);
Callback(Ptr);
}
}
bool canCache(uptr Size) { return Cache.canCache(Size); }
bool setOption(Option O, sptr Value) { return Cache.setOption(O, Value); }
void releaseToOS() { Cache.releaseToOS(); }
void disableMemoryTagging() { Cache.disableMemoryTagging(); }
void unmapTestOnly() { Cache.unmapTestOnly(); }
private:
typename Config::SecondaryCache Cache;
HybridMutex Mutex;
DoublyLinkedList<LargeBlock::Header> InUseBlocks;
uptr AllocatedBytes = 0;
uptr FreedBytes = 0;
uptr LargestSize = 0;
u32 NumberOfAllocs = 0;
u32 NumberOfFrees = 0;
LocalStats Stats;
};
// As with the Primary, the size passed to this function includes any desired
// alignment, so that the frontend can align the user allocation. The hint
// parameter allows us to unmap spurious memory when dealing with larger
// (greater than a page) alignments on 32-bit platforms.
// Due to the sparsity of address space available on those platforms, requesting
// an allocation from the Secondary with a large alignment would end up wasting
// VA space (even though we are not committing the whole thing), hence the need
// to trim off some of the reserved space.
// For allocations requested with an alignment greater than or equal to a page,
// the committed memory will amount to something close to Size - AlignmentHint
// (pending rounding and headers).
template <typename Config>
void *MapAllocator<Config>::allocate(Options Options, uptr Size, uptr Alignment,
uptr *BlockEndPtr,
FillContentsMode FillContents) {
if (Options.get(OptionBit::AddLargeAllocationSlack))
Size += 1UL << SCUDO_MIN_ALIGNMENT_LOG;
Alignment = Max(Alignment, uptr(1U) << SCUDO_MIN_ALIGNMENT_LOG);
const uptr PageSize = getPageSizeCached();
uptr RoundedSize =
roundUpTo(roundUpTo(Size, Alignment) + LargeBlock::getHeaderSize() +
Chunk::getHeaderSize(),
PageSize);
if (Alignment > PageSize)
RoundedSize += Alignment - PageSize;
if (Alignment < PageSize && Cache.canCache(RoundedSize)) {
LargeBlock::Header *H;
bool Zeroed;
if (Cache.retrieve(Options, Size, Alignment, &H, &Zeroed)) {
const uptr BlockEnd = H->CommitBase + H->CommitSize;
if (BlockEndPtr)
*BlockEndPtr = BlockEnd;
uptr HInt = reinterpret_cast<uptr>(H);
if (allocatorSupportsMemoryTagging<Config>())
HInt = untagPointer(HInt);
const uptr PtrInt = HInt + LargeBlock::getHeaderSize();
void *Ptr = reinterpret_cast<void *>(PtrInt);
if (FillContents && !Zeroed)
memset(Ptr, FillContents == ZeroFill ? 0 : PatternFillByte,
BlockEnd - PtrInt);
const uptr BlockSize = BlockEnd - HInt;
{
ScopedLock L(Mutex);
InUseBlocks.push_back(H);
AllocatedBytes += BlockSize;
NumberOfAllocs++;
Stats.add(StatAllocated, BlockSize);
Stats.add(StatMapped, H->MapSize);
}
return Ptr;
}
}
MapPlatformData Data = {};
const uptr MapSize = RoundedSize + 2 * PageSize;
uptr MapBase = reinterpret_cast<uptr>(
map(nullptr, MapSize, nullptr, MAP_NOACCESS | MAP_ALLOWNOMEM, &Data));
if (UNLIKELY(!MapBase))
return nullptr;
uptr CommitBase = MapBase + PageSize;
uptr MapEnd = MapBase + MapSize;
// In the unlikely event of alignments larger than a page, adjust the amount
// of memory we want to commit, and trim the extra memory.
if (UNLIKELY(Alignment >= PageSize)) {
// For alignments greater than or equal to a page, the user pointer (eg: the
// pointer that is returned by the C or C++ allocation APIs) ends up on a
// page boundary , and our headers will live in the preceding page.
CommitBase = roundUpTo(MapBase + PageSize + 1, Alignment) - PageSize;
const uptr NewMapBase = CommitBase - PageSize;
DCHECK_GE(NewMapBase, MapBase);
// We only trim the extra memory on 32-bit platforms: 64-bit platforms
// are less constrained memory wise, and that saves us two syscalls.
if (SCUDO_WORDSIZE == 32U && NewMapBase != MapBase) {
unmap(reinterpret_cast<void *>(MapBase), NewMapBase - MapBase, 0, &Data);
MapBase = NewMapBase;
}
const uptr NewMapEnd =
CommitBase + PageSize + roundUpTo(Size, PageSize) + PageSize;
DCHECK_LE(NewMapEnd, MapEnd);
if (SCUDO_WORDSIZE == 32U && NewMapEnd != MapEnd) {
unmap(reinterpret_cast<void *>(NewMapEnd), MapEnd - NewMapEnd, 0, &Data);
MapEnd = NewMapEnd;
}
}
const uptr CommitSize = MapEnd - PageSize - CommitBase;
const uptr AllocPos = roundDownTo(CommitBase + CommitSize - Size, Alignment);
mapSecondary<Config>(Options, CommitBase, CommitSize, AllocPos, 0, &Data);
const uptr HeaderPos =
AllocPos - Chunk::getHeaderSize() - LargeBlock::getHeaderSize();
LargeBlock::Header *H = reinterpret_cast<LargeBlock::Header *>(
LargeBlock::addHeaderTag<Config>(HeaderPos));
if (useMemoryTagging<Config>(Options))
storeTags(LargeBlock::addHeaderTag<Config>(CommitBase),
reinterpret_cast<uptr>(H + 1));
H->MapBase = MapBase;
H->MapSize = MapEnd - MapBase;
H->CommitBase = CommitBase;
H->CommitSize = CommitSize;
H->Data = Data;
if (BlockEndPtr)
*BlockEndPtr = CommitBase + CommitSize;
{
ScopedLock L(Mutex);
InUseBlocks.push_back(H);
AllocatedBytes += CommitSize;
if (LargestSize < CommitSize)
LargestSize = CommitSize;
NumberOfAllocs++;
Stats.add(StatAllocated, CommitSize);
Stats.add(StatMapped, H->MapSize);
}
return reinterpret_cast<void *>(HeaderPos + LargeBlock::getHeaderSize());
}
template <typename Config>
void MapAllocator<Config>::deallocate(Options Options, void *Ptr) {
LargeBlock::Header *H = LargeBlock::getHeader<Config>(Ptr);
const uptr CommitSize = H->CommitSize;
{
ScopedLock L(Mutex);
InUseBlocks.remove(H);
FreedBytes += CommitSize;
NumberOfFrees++;
Stats.sub(StatAllocated, CommitSize);
Stats.sub(StatMapped, H->MapSize);
}
Cache.store(Options, H);
}
template <typename Config>
void MapAllocator<Config>::getStats(ScopedString *Str) {
ScopedLock L(Mutex);
Str->append("Stats: MapAllocator: allocated %u times (%zuK), freed %u times "
"(%zuK), remains %u (%zuK) max %zuM\n",
NumberOfAllocs, AllocatedBytes >> 10, NumberOfFrees,
FreedBytes >> 10, NumberOfAllocs - NumberOfFrees,
(AllocatedBytes - FreedBytes) >> 10, LargestSize >> 20);
}
} // namespace scudo
#endif // SCUDO_SECONDARY_H_