Erich Keane de6480a38c [NFC] Move storage of dispatch-version to GlobalDecl
As suggested by Richard Smith, and initially put up for review here:
https://reviews.llvm.org/D53341, this patch removes a hack that was used
to ensure that proper target-feature lists were used when emitting
cpu-dispatch (and eventually, target-clones) implementations. As a part
of this, the GlobalDecl object is proliferated to a bunch more
locations.

Originally, this was put up for review (see above) to get acceptance on
the approach, though discussion with Richard in San Diego showed he
approved of the approach taken here.  Thus, I believe this is acceptable
for Review-After-commit

Differential Revision: https://reviews.llvm.org/D53341

Change-Id: I0a0bd673340d334d93feac789d653e03d9f6b1d5
llvm-svn: 346757
2018-11-13 15:48:08 +00:00

389 lines
12 KiB
C++

//===----- CGCall.h - Encapsulate calling convention details ----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// These classes wrap the information about a call or function
// definition used to handle ABI compliancy.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_LIB_CODEGEN_CGCALL_H
#define LLVM_CLANG_LIB_CODEGEN_CGCALL_H
#include "CGValue.h"
#include "EHScopeStack.h"
#include "clang/AST/CanonicalType.h"
#include "clang/AST/GlobalDecl.h"
#include "clang/AST/Type.h"
#include "llvm/IR/Value.h"
// FIXME: Restructure so we don't have to expose so much stuff.
#include "ABIInfo.h"
namespace llvm {
class AttributeList;
class Function;
class Type;
class Value;
}
namespace clang {
class ASTContext;
class Decl;
class FunctionDecl;
class ObjCMethodDecl;
class VarDecl;
namespace CodeGen {
/// Abstract information about a function or function prototype.
class CGCalleeInfo {
/// The function prototype of the callee.
const FunctionProtoType *CalleeProtoTy;
/// The function declaration of the callee.
GlobalDecl CalleeDecl;
public:
explicit CGCalleeInfo() : CalleeProtoTy(nullptr), CalleeDecl() {}
CGCalleeInfo(const FunctionProtoType *calleeProtoTy, GlobalDecl calleeDecl)
: CalleeProtoTy(calleeProtoTy), CalleeDecl(calleeDecl) {}
CGCalleeInfo(const FunctionProtoType *calleeProtoTy)
: CalleeProtoTy(calleeProtoTy), CalleeDecl() {}
CGCalleeInfo(GlobalDecl calleeDecl)
: CalleeProtoTy(nullptr), CalleeDecl(calleeDecl) {}
const FunctionProtoType *getCalleeFunctionProtoType() const {
return CalleeProtoTy;
}
const GlobalDecl getCalleeDecl() const { return CalleeDecl; }
};
/// All available information about a concrete callee.
class CGCallee {
enum class SpecialKind : uintptr_t {
Invalid,
Builtin,
PseudoDestructor,
Virtual,
Last = Virtual
};
struct BuiltinInfoStorage {
const FunctionDecl *Decl;
unsigned ID;
};
struct PseudoDestructorInfoStorage {
const CXXPseudoDestructorExpr *Expr;
};
struct VirtualInfoStorage {
const CallExpr *CE;
GlobalDecl MD;
Address Addr;
llvm::FunctionType *FTy;
};
SpecialKind KindOrFunctionPointer;
union {
CGCalleeInfo AbstractInfo;
BuiltinInfoStorage BuiltinInfo;
PseudoDestructorInfoStorage PseudoDestructorInfo;
VirtualInfoStorage VirtualInfo;
};
explicit CGCallee(SpecialKind kind) : KindOrFunctionPointer(kind) {}
CGCallee(const FunctionDecl *builtinDecl, unsigned builtinID)
: KindOrFunctionPointer(SpecialKind::Builtin) {
BuiltinInfo.Decl = builtinDecl;
BuiltinInfo.ID = builtinID;
}
public:
CGCallee() : KindOrFunctionPointer(SpecialKind::Invalid) {}
/// Construct a callee. Call this constructor directly when this
/// isn't a direct call.
CGCallee(const CGCalleeInfo &abstractInfo, llvm::Value *functionPtr)
: KindOrFunctionPointer(SpecialKind(uintptr_t(functionPtr))) {
AbstractInfo = abstractInfo;
assert(functionPtr && "configuring callee without function pointer");
assert(functionPtr->getType()->isPointerTy());
assert(functionPtr->getType()->getPointerElementType()->isFunctionTy());
}
static CGCallee forBuiltin(unsigned builtinID,
const FunctionDecl *builtinDecl) {
CGCallee result(SpecialKind::Builtin);
result.BuiltinInfo.Decl = builtinDecl;
result.BuiltinInfo.ID = builtinID;
return result;
}
static CGCallee forPseudoDestructor(const CXXPseudoDestructorExpr *E) {
CGCallee result(SpecialKind::PseudoDestructor);
result.PseudoDestructorInfo.Expr = E;
return result;
}
static CGCallee forDirect(llvm::Constant *functionPtr,
const CGCalleeInfo &abstractInfo = CGCalleeInfo()) {
return CGCallee(abstractInfo, functionPtr);
}
static CGCallee forVirtual(const CallExpr *CE, GlobalDecl MD, Address Addr,
llvm::FunctionType *FTy) {
CGCallee result(SpecialKind::Virtual);
result.VirtualInfo.CE = CE;
result.VirtualInfo.MD = MD;
result.VirtualInfo.Addr = Addr;
result.VirtualInfo.FTy = FTy;
return result;
}
bool isBuiltin() const {
return KindOrFunctionPointer == SpecialKind::Builtin;
}
const FunctionDecl *getBuiltinDecl() const {
assert(isBuiltin());
return BuiltinInfo.Decl;
}
unsigned getBuiltinID() const {
assert(isBuiltin());
return BuiltinInfo.ID;
}
bool isPseudoDestructor() const {
return KindOrFunctionPointer == SpecialKind::PseudoDestructor;
}
const CXXPseudoDestructorExpr *getPseudoDestructorExpr() const {
assert(isPseudoDestructor());
return PseudoDestructorInfo.Expr;
}
bool isOrdinary() const {
return uintptr_t(KindOrFunctionPointer) > uintptr_t(SpecialKind::Last);
}
CGCalleeInfo getAbstractInfo() const {
if (isVirtual())
return VirtualInfo.MD;
assert(isOrdinary());
return AbstractInfo;
}
llvm::Value *getFunctionPointer() const {
assert(isOrdinary());
return reinterpret_cast<llvm::Value*>(uintptr_t(KindOrFunctionPointer));
}
void setFunctionPointer(llvm::Value *functionPtr) {
assert(isOrdinary());
KindOrFunctionPointer = SpecialKind(uintptr_t(functionPtr));
}
bool isVirtual() const {
return KindOrFunctionPointer == SpecialKind::Virtual;
}
const CallExpr *getVirtualCallExpr() const {
assert(isVirtual());
return VirtualInfo.CE;
}
GlobalDecl getVirtualMethodDecl() const {
assert(isVirtual());
return VirtualInfo.MD;
}
Address getThisAddress() const {
assert(isVirtual());
return VirtualInfo.Addr;
}
llvm::FunctionType *getFunctionType() const {
if (isVirtual())
return VirtualInfo.FTy;
return cast<llvm::FunctionType>(
getFunctionPointer()->getType()->getPointerElementType());
}
/// If this is a delayed callee computation of some sort, prepare
/// a concrete callee.
CGCallee prepareConcreteCallee(CodeGenFunction &CGF) const;
};
struct CallArg {
private:
union {
RValue RV;
LValue LV; /// The argument is semantically a load from this l-value.
};
bool HasLV;
/// A data-flow flag to make sure getRValue and/or copyInto are not
/// called twice for duplicated IR emission.
mutable bool IsUsed;
public:
QualType Ty;
CallArg(RValue rv, QualType ty)
: RV(rv), HasLV(false), IsUsed(false), Ty(ty) {}
CallArg(LValue lv, QualType ty)
: LV(lv), HasLV(true), IsUsed(false), Ty(ty) {}
bool hasLValue() const { return HasLV; }
QualType getType() const { return Ty; }
/// \returns an independent RValue. If the CallArg contains an LValue,
/// a temporary copy is returned.
RValue getRValue(CodeGenFunction &CGF) const;
LValue getKnownLValue() const {
assert(HasLV && !IsUsed);
return LV;
}
RValue getKnownRValue() const {
assert(!HasLV && !IsUsed);
return RV;
}
void setRValue(RValue _RV) {
assert(!HasLV);
RV = _RV;
}
bool isAggregate() const { return HasLV || RV.isAggregate(); }
void copyInto(CodeGenFunction &CGF, Address A) const;
};
/// CallArgList - Type for representing both the value and type of
/// arguments in a call.
class CallArgList :
public SmallVector<CallArg, 8> {
public:
CallArgList() : StackBase(nullptr) {}
struct Writeback {
/// The original argument. Note that the argument l-value
/// is potentially null.
LValue Source;
/// The temporary alloca.
Address Temporary;
/// A value to "use" after the writeback, or null.
llvm::Value *ToUse;
};
struct CallArgCleanup {
EHScopeStack::stable_iterator Cleanup;
/// The "is active" insertion point. This instruction is temporary and
/// will be removed after insertion.
llvm::Instruction *IsActiveIP;
};
void add(RValue rvalue, QualType type) { push_back(CallArg(rvalue, type)); }
void addUncopiedAggregate(LValue LV, QualType type) {
push_back(CallArg(LV, type));
}
/// Add all the arguments from another CallArgList to this one. After doing
/// this, the old CallArgList retains its list of arguments, but must not
/// be used to emit a call.
void addFrom(const CallArgList &other) {
insert(end(), other.begin(), other.end());
Writebacks.insert(Writebacks.end(),
other.Writebacks.begin(), other.Writebacks.end());
CleanupsToDeactivate.insert(CleanupsToDeactivate.end(),
other.CleanupsToDeactivate.begin(),
other.CleanupsToDeactivate.end());
assert(!(StackBase && other.StackBase) && "can't merge stackbases");
if (!StackBase)
StackBase = other.StackBase;
}
void addWriteback(LValue srcLV, Address temporary,
llvm::Value *toUse) {
Writeback writeback = { srcLV, temporary, toUse };
Writebacks.push_back(writeback);
}
bool hasWritebacks() const { return !Writebacks.empty(); }
typedef llvm::iterator_range<SmallVectorImpl<Writeback>::const_iterator>
writeback_const_range;
writeback_const_range writebacks() const {
return writeback_const_range(Writebacks.begin(), Writebacks.end());
}
void addArgCleanupDeactivation(EHScopeStack::stable_iterator Cleanup,
llvm::Instruction *IsActiveIP) {
CallArgCleanup ArgCleanup;
ArgCleanup.Cleanup = Cleanup;
ArgCleanup.IsActiveIP = IsActiveIP;
CleanupsToDeactivate.push_back(ArgCleanup);
}
ArrayRef<CallArgCleanup> getCleanupsToDeactivate() const {
return CleanupsToDeactivate;
}
void allocateArgumentMemory(CodeGenFunction &CGF);
llvm::Instruction *getStackBase() const { return StackBase; }
void freeArgumentMemory(CodeGenFunction &CGF) const;
/// Returns if we're using an inalloca struct to pass arguments in
/// memory.
bool isUsingInAlloca() const { return StackBase; }
private:
SmallVector<Writeback, 1> Writebacks;
/// Deactivate these cleanups immediately before making the call. This
/// is used to cleanup objects that are owned by the callee once the call
/// occurs.
SmallVector<CallArgCleanup, 1> CleanupsToDeactivate;
/// The stacksave call. It dominates all of the argument evaluation.
llvm::CallInst *StackBase;
};
/// FunctionArgList - Type for representing both the decl and type
/// of parameters to a function. The decl must be either a
/// ParmVarDecl or ImplicitParamDecl.
class FunctionArgList : public SmallVector<const VarDecl*, 16> {
};
/// ReturnValueSlot - Contains the address where the return value of a
/// function can be stored, and whether the address is volatile or not.
class ReturnValueSlot {
llvm::PointerIntPair<llvm::Value *, 2, unsigned int> Value;
CharUnits Alignment;
// Return value slot flags
enum Flags {
IS_VOLATILE = 0x1,
IS_UNUSED = 0x2,
};
public:
ReturnValueSlot() {}
ReturnValueSlot(Address Addr, bool IsVolatile, bool IsUnused = false)
: Value(Addr.isValid() ? Addr.getPointer() : nullptr,
(IsVolatile ? IS_VOLATILE : 0) | (IsUnused ? IS_UNUSED : 0)),
Alignment(Addr.isValid() ? Addr.getAlignment() : CharUnits::Zero()) {}
bool isNull() const { return !getValue().isValid(); }
bool isVolatile() const { return Value.getInt() & IS_VOLATILE; }
Address getValue() const { return Address(Value.getPointer(), Alignment); }
bool isUnused() const { return Value.getInt() & IS_UNUSED; }
};
} // end namespace CodeGen
} // end namespace clang
#endif