mirror of
https://github.com/llvm/llvm-project.git
synced 2025-05-01 11:26:07 +00:00

I noticed recently that this code (that I wrote xD) uses the `getRuntimeDefinition()` which isn't quite necessary for the simple task this function was designed for. Why would it be better not using this API here? I'm experimenting with improving how virtual functions are inlined, where depending on our ability of deducing the dynamic type of the object we may end up with inaccurate type information. Such inaccuracy would mean that we may have multiple runtime definitions. After that, this code would become ambiguous. To resolve this, I decided to refactor this and use a simpler - but equivalent approach.
1510 lines
53 KiB
C++
1510 lines
53 KiB
C++
//===- CallEvent.cpp - Wrapper for all function and method calls ----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file This file defines CallEvent and its subclasses, which represent path-
|
|
/// sensitive instances of different kinds of function and method calls
|
|
/// (C, C++, and Objective-C).
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclBase.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/ExprObjC.h"
|
|
#include "clang/AST/ParentMap.h"
|
|
#include "clang/AST/Stmt.h"
|
|
#include "clang/AST/Type.h"
|
|
#include "clang/Analysis/AnalysisDeclContext.h"
|
|
#include "clang/Analysis/CFG.h"
|
|
#include "clang/Analysis/CFGStmtMap.h"
|
|
#include "clang/Analysis/PathDiagnostic.h"
|
|
#include "clang/Analysis/ProgramPoint.h"
|
|
#include "clang/Basic/IdentifierTable.h"
|
|
#include "clang/Basic/LLVM.h"
|
|
#include "clang/Basic/SourceLocation.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/Specifiers.h"
|
|
#include "clang/CrossTU/CrossTranslationUnit.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CallDescription.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerContext.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CheckerHelpers.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicType.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/DynamicTypeInfo.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/MemRegion.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/SValBuilder.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/SVals.h"
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/Store.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/ImmutableList.h"
|
|
#include "llvm/ADT/PointerIntPair.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <cassert>
|
|
#include <optional>
|
|
#include <utility>
|
|
|
|
#define DEBUG_TYPE "static-analyzer-call-event"
|
|
|
|
using namespace clang;
|
|
using namespace ento;
|
|
|
|
QualType CallEvent::getResultType() const {
|
|
ASTContext &Ctx = getState()->getStateManager().getContext();
|
|
const Expr *E = getOriginExpr();
|
|
if (!E)
|
|
return Ctx.VoidTy;
|
|
return Ctx.getReferenceQualifiedType(E);
|
|
}
|
|
|
|
static bool isCallback(QualType T) {
|
|
// If a parameter is a block or a callback, assume it can modify pointer.
|
|
if (T->isBlockPointerType() ||
|
|
T->isFunctionPointerType() ||
|
|
T->isObjCSelType())
|
|
return true;
|
|
|
|
// Check if a callback is passed inside a struct (for both, struct passed by
|
|
// reference and by value). Dig just one level into the struct for now.
|
|
|
|
if (T->isAnyPointerType() || T->isReferenceType())
|
|
T = T->getPointeeType();
|
|
|
|
if (const RecordType *RT = T->getAsStructureType()) {
|
|
const RecordDecl *RD = RT->getDecl();
|
|
for (const auto *I : RD->fields()) {
|
|
QualType FieldT = I->getType();
|
|
if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool isVoidPointerToNonConst(QualType T) {
|
|
if (const auto *PT = T->getAs<PointerType>()) {
|
|
QualType PointeeTy = PT->getPointeeType();
|
|
if (PointeeTy.isConstQualified())
|
|
return false;
|
|
return PointeeTy->isVoidType();
|
|
} else
|
|
return false;
|
|
}
|
|
|
|
bool CallEvent::hasNonNullArgumentsWithType(bool (*Condition)(QualType)) const {
|
|
unsigned NumOfArgs = getNumArgs();
|
|
|
|
// If calling using a function pointer, assume the function does not
|
|
// satisfy the callback.
|
|
// TODO: We could check the types of the arguments here.
|
|
if (!getDecl())
|
|
return false;
|
|
|
|
unsigned Idx = 0;
|
|
for (CallEvent::param_type_iterator I = param_type_begin(),
|
|
E = param_type_end();
|
|
I != E && Idx < NumOfArgs; ++I, ++Idx) {
|
|
// If the parameter is 0, it's harmless.
|
|
if (getArgSVal(Idx).isZeroConstant())
|
|
continue;
|
|
|
|
if (Condition(*I))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool CallEvent::hasNonZeroCallbackArg() const {
|
|
return hasNonNullArgumentsWithType(isCallback);
|
|
}
|
|
|
|
bool CallEvent::hasVoidPointerToNonConstArg() const {
|
|
return hasNonNullArgumentsWithType(isVoidPointerToNonConst);
|
|
}
|
|
|
|
bool CallEvent::isGlobalCFunction(StringRef FunctionName) const {
|
|
const auto *FD = dyn_cast_or_null<FunctionDecl>(getDecl());
|
|
if (!FD)
|
|
return false;
|
|
|
|
return CheckerContext::isCLibraryFunction(FD, FunctionName);
|
|
}
|
|
|
|
AnalysisDeclContext *CallEvent::getCalleeAnalysisDeclContext() const {
|
|
const Decl *D = getDecl();
|
|
if (!D)
|
|
return nullptr;
|
|
|
|
AnalysisDeclContext *ADC =
|
|
LCtx->getAnalysisDeclContext()->getManager()->getContext(D);
|
|
|
|
return ADC;
|
|
}
|
|
|
|
const StackFrameContext *
|
|
CallEvent::getCalleeStackFrame(unsigned BlockCount) const {
|
|
AnalysisDeclContext *ADC = getCalleeAnalysisDeclContext();
|
|
if (!ADC)
|
|
return nullptr;
|
|
|
|
const Expr *E = getOriginExpr();
|
|
if (!E)
|
|
return nullptr;
|
|
|
|
// Recover CFG block via reverse lookup.
|
|
// TODO: If we were to keep CFG element information as part of the CallEvent
|
|
// instead of doing this reverse lookup, we would be able to build the stack
|
|
// frame for non-expression-based calls, and also we wouldn't need the reverse
|
|
// lookup.
|
|
CFGStmtMap *Map = LCtx->getAnalysisDeclContext()->getCFGStmtMap();
|
|
const CFGBlock *B = Map->getBlock(E);
|
|
assert(B);
|
|
|
|
// Also recover CFG index by scanning the CFG block.
|
|
unsigned Idx = 0, Sz = B->size();
|
|
for (; Idx < Sz; ++Idx)
|
|
if (auto StmtElem = (*B)[Idx].getAs<CFGStmt>())
|
|
if (StmtElem->getStmt() == E)
|
|
break;
|
|
assert(Idx < Sz);
|
|
|
|
return ADC->getManager()->getStackFrame(ADC, LCtx, E, B, BlockCount, Idx);
|
|
}
|
|
|
|
const ParamVarRegion
|
|
*CallEvent::getParameterLocation(unsigned Index, unsigned BlockCount) const {
|
|
const StackFrameContext *SFC = getCalleeStackFrame(BlockCount);
|
|
// We cannot construct a VarRegion without a stack frame.
|
|
if (!SFC)
|
|
return nullptr;
|
|
|
|
const ParamVarRegion *PVR =
|
|
State->getStateManager().getRegionManager().getParamVarRegion(
|
|
getOriginExpr(), Index, SFC);
|
|
return PVR;
|
|
}
|
|
|
|
/// Returns true if a type is a pointer-to-const or reference-to-const
|
|
/// with no further indirection.
|
|
static bool isPointerToConst(QualType Ty) {
|
|
QualType PointeeTy = Ty->getPointeeType();
|
|
if (PointeeTy == QualType())
|
|
return false;
|
|
if (!PointeeTy.isConstQualified())
|
|
return false;
|
|
if (PointeeTy->isAnyPointerType())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
// Try to retrieve the function declaration and find the function parameter
|
|
// types which are pointers/references to a non-pointer const.
|
|
// We will not invalidate the corresponding argument regions.
|
|
static void findPtrToConstParams(llvm::SmallSet<unsigned, 4> &PreserveArgs,
|
|
const CallEvent &Call) {
|
|
unsigned Idx = 0;
|
|
for (CallEvent::param_type_iterator I = Call.param_type_begin(),
|
|
E = Call.param_type_end();
|
|
I != E; ++I, ++Idx) {
|
|
if (isPointerToConst(*I))
|
|
PreserveArgs.insert(Idx);
|
|
}
|
|
}
|
|
|
|
ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
|
|
ProgramStateRef Orig) const {
|
|
ProgramStateRef Result = (Orig ? Orig : getState());
|
|
|
|
// Don't invalidate anything if the callee is marked pure/const.
|
|
if (const Decl *callee = getDecl())
|
|
if (callee->hasAttr<PureAttr>() || callee->hasAttr<ConstAttr>())
|
|
return Result;
|
|
|
|
SmallVector<SVal, 8> ValuesToInvalidate;
|
|
RegionAndSymbolInvalidationTraits ETraits;
|
|
|
|
getExtraInvalidatedValues(ValuesToInvalidate, &ETraits);
|
|
|
|
// Indexes of arguments whose values will be preserved by the call.
|
|
llvm::SmallSet<unsigned, 4> PreserveArgs;
|
|
if (!argumentsMayEscape())
|
|
findPtrToConstParams(PreserveArgs, *this);
|
|
|
|
for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
|
|
// Mark this region for invalidation. We batch invalidate regions
|
|
// below for efficiency.
|
|
if (PreserveArgs.count(Idx))
|
|
if (const MemRegion *MR = getArgSVal(Idx).getAsRegion())
|
|
ETraits.setTrait(MR->getBaseRegion(),
|
|
RegionAndSymbolInvalidationTraits::TK_PreserveContents);
|
|
// TODO: Factor this out + handle the lower level const pointers.
|
|
|
|
ValuesToInvalidate.push_back(getArgSVal(Idx));
|
|
|
|
// If a function accepts an object by argument (which would of course be a
|
|
// temporary that isn't lifetime-extended), invalidate the object itself,
|
|
// not only other objects reachable from it. This is necessary because the
|
|
// destructor has access to the temporary object after the call.
|
|
// TODO: Support placement arguments once we start
|
|
// constructing them directly.
|
|
// TODO: This is unnecessary when there's no destructor, but that's
|
|
// currently hard to figure out.
|
|
if (getKind() != CE_CXXAllocator)
|
|
if (isArgumentConstructedDirectly(Idx))
|
|
if (auto AdjIdx = getAdjustedParameterIndex(Idx))
|
|
if (const TypedValueRegion *TVR =
|
|
getParameterLocation(*AdjIdx, BlockCount))
|
|
ValuesToInvalidate.push_back(loc::MemRegionVal(TVR));
|
|
}
|
|
|
|
// Invalidate designated regions using the batch invalidation API.
|
|
// NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
|
|
// global variables.
|
|
return Result->invalidateRegions(ValuesToInvalidate, getOriginExpr(),
|
|
BlockCount, getLocationContext(),
|
|
/*CausedByPointerEscape*/ true,
|
|
/*Symbols=*/nullptr, this, &ETraits);
|
|
}
|
|
|
|
ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
|
|
const ProgramPointTag *Tag) const {
|
|
|
|
if (const Expr *E = getOriginExpr()) {
|
|
if (IsPreVisit)
|
|
return PreStmt(E, getLocationContext(), Tag);
|
|
return PostStmt(E, getLocationContext(), Tag);
|
|
}
|
|
|
|
const Decl *D = getDecl();
|
|
assert(D && "Cannot get a program point without a statement or decl");
|
|
assert(ElemRef.getParent() &&
|
|
"Cannot get a program point without a CFGElementRef");
|
|
|
|
SourceLocation Loc = getSourceRange().getBegin();
|
|
if (IsPreVisit)
|
|
return PreImplicitCall(D, Loc, getLocationContext(), ElemRef, Tag);
|
|
return PostImplicitCall(D, Loc, getLocationContext(), ElemRef, Tag);
|
|
}
|
|
|
|
SVal CallEvent::getArgSVal(unsigned Index) const {
|
|
const Expr *ArgE = getArgExpr(Index);
|
|
if (!ArgE)
|
|
return UnknownVal();
|
|
return getSVal(ArgE);
|
|
}
|
|
|
|
SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
|
|
const Expr *ArgE = getArgExpr(Index);
|
|
if (!ArgE)
|
|
return {};
|
|
return ArgE->getSourceRange();
|
|
}
|
|
|
|
SVal CallEvent::getReturnValue() const {
|
|
const Expr *E = getOriginExpr();
|
|
if (!E)
|
|
return UndefinedVal();
|
|
return getSVal(E);
|
|
}
|
|
|
|
LLVM_DUMP_METHOD void CallEvent::dump() const { dump(llvm::errs()); }
|
|
|
|
void CallEvent::dump(raw_ostream &Out) const {
|
|
ASTContext &Ctx = getState()->getStateManager().getContext();
|
|
if (const Expr *E = getOriginExpr()) {
|
|
E->printPretty(Out, nullptr, Ctx.getPrintingPolicy());
|
|
return;
|
|
}
|
|
|
|
if (const Decl *D = getDecl()) {
|
|
Out << "Call to ";
|
|
D->print(Out, Ctx.getPrintingPolicy());
|
|
return;
|
|
}
|
|
|
|
Out << "Unknown call (type " << getKindAsString() << ")";
|
|
}
|
|
|
|
bool CallEvent::isCallStmt(const Stmt *S) {
|
|
return isa<CallExpr, ObjCMessageExpr, CXXConstructExpr, CXXNewExpr>(S);
|
|
}
|
|
|
|
QualType CallEvent::getDeclaredResultType(const Decl *D) {
|
|
assert(D);
|
|
if (const auto *FD = dyn_cast<FunctionDecl>(D))
|
|
return FD->getReturnType();
|
|
if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
|
|
return MD->getReturnType();
|
|
if (const auto *BD = dyn_cast<BlockDecl>(D)) {
|
|
// Blocks are difficult because the return type may not be stored in the
|
|
// BlockDecl itself. The AST should probably be enhanced, but for now we
|
|
// just do what we can.
|
|
// If the block is declared without an explicit argument list, the
|
|
// signature-as-written just includes the return type, not the entire
|
|
// function type.
|
|
// FIXME: All blocks should have signatures-as-written, even if the return
|
|
// type is inferred. (That's signified with a dependent result type.)
|
|
if (const TypeSourceInfo *TSI = BD->getSignatureAsWritten()) {
|
|
QualType Ty = TSI->getType();
|
|
if (const FunctionType *FT = Ty->getAs<FunctionType>())
|
|
Ty = FT->getReturnType();
|
|
if (!Ty->isDependentType())
|
|
return Ty;
|
|
}
|
|
|
|
return {};
|
|
}
|
|
|
|
llvm_unreachable("unknown callable kind");
|
|
}
|
|
|
|
bool CallEvent::isVariadic(const Decl *D) {
|
|
assert(D);
|
|
|
|
if (const auto *FD = dyn_cast<FunctionDecl>(D))
|
|
return FD->isVariadic();
|
|
if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
|
|
return MD->isVariadic();
|
|
if (const auto *BD = dyn_cast<BlockDecl>(D))
|
|
return BD->isVariadic();
|
|
|
|
llvm_unreachable("unknown callable kind");
|
|
}
|
|
|
|
static bool isTransparentUnion(QualType T) {
|
|
const RecordType *UT = T->getAsUnionType();
|
|
return UT && UT->getDecl()->hasAttr<TransparentUnionAttr>();
|
|
}
|
|
|
|
// In some cases, symbolic cases should be transformed before we associate
|
|
// them with parameters. This function incapsulates such cases.
|
|
static SVal processArgument(SVal Value, const Expr *ArgumentExpr,
|
|
const ParmVarDecl *Parameter, SValBuilder &SVB) {
|
|
QualType ParamType = Parameter->getType();
|
|
QualType ArgumentType = ArgumentExpr->getType();
|
|
|
|
// Transparent unions allow users to easily convert values of union field
|
|
// types into union-typed objects.
|
|
//
|
|
// Also, more importantly, they allow users to define functions with different
|
|
// different parameter types, substituting types matching transparent union
|
|
// field types with the union type itself.
|
|
//
|
|
// Here, we check specifically for latter cases and prevent binding
|
|
// field-typed values to union-typed regions.
|
|
if (isTransparentUnion(ParamType) &&
|
|
// Let's check that we indeed trying to bind different types.
|
|
!isTransparentUnion(ArgumentType)) {
|
|
BasicValueFactory &BVF = SVB.getBasicValueFactory();
|
|
|
|
llvm::ImmutableList<SVal> CompoundSVals = BVF.getEmptySValList();
|
|
CompoundSVals = BVF.prependSVal(Value, CompoundSVals);
|
|
|
|
// Wrap it with compound value.
|
|
return SVB.makeCompoundVal(ParamType, CompoundSVals);
|
|
}
|
|
|
|
return Value;
|
|
}
|
|
|
|
/// Cast the argument value to the type of the parameter at the function
|
|
/// declaration.
|
|
/// Returns the argument value if it didn't need a cast.
|
|
/// Or returns the cast argument if it needed a cast.
|
|
/// Or returns 'Unknown' if it would need a cast but the callsite and the
|
|
/// runtime definition don't match in terms of argument and parameter count.
|
|
static SVal castArgToParamTypeIfNeeded(const CallEvent &Call, unsigned ArgIdx,
|
|
SVal ArgVal, SValBuilder &SVB) {
|
|
const auto *CallExprDecl = dyn_cast_or_null<FunctionDecl>(Call.getDecl());
|
|
if (!CallExprDecl)
|
|
return ArgVal;
|
|
|
|
const FunctionDecl *Definition = CallExprDecl;
|
|
Definition->hasBody(Definition);
|
|
|
|
// The function decl of the Call (in the AST) will not have any parameter
|
|
// declarations, if it was 'only' declared without a prototype. However, the
|
|
// engine will find the appropriate runtime definition - basically a
|
|
// redeclaration, which has a function body (and a function prototype).
|
|
if (CallExprDecl->hasPrototype() || !Definition->hasPrototype())
|
|
return ArgVal;
|
|
|
|
// Only do this cast if the number arguments at the callsite matches with
|
|
// the parameters at the runtime definition.
|
|
if (Call.getNumArgs() != Definition->getNumParams())
|
|
return UnknownVal();
|
|
|
|
const Expr *ArgExpr = Call.getArgExpr(ArgIdx);
|
|
const ParmVarDecl *Param = Definition->getParamDecl(ArgIdx);
|
|
return SVB.evalCast(ArgVal, Param->getType(), ArgExpr->getType());
|
|
}
|
|
|
|
static void addParameterValuesToBindings(const StackFrameContext *CalleeCtx,
|
|
CallEvent::BindingsTy &Bindings,
|
|
SValBuilder &SVB,
|
|
const CallEvent &Call,
|
|
ArrayRef<ParmVarDecl*> parameters) {
|
|
MemRegionManager &MRMgr = SVB.getRegionManager();
|
|
|
|
// If the function has fewer parameters than the call has arguments, we simply
|
|
// do not bind any values to them.
|
|
unsigned NumArgs = Call.getNumArgs();
|
|
unsigned Idx = 0;
|
|
ArrayRef<ParmVarDecl*>::iterator I = parameters.begin(), E = parameters.end();
|
|
for (; I != E && Idx < NumArgs; ++I, ++Idx) {
|
|
assert(*I && "Formal parameter has no decl?");
|
|
|
|
// TODO: Support allocator calls.
|
|
if (Call.getKind() != CE_CXXAllocator)
|
|
if (Call.isArgumentConstructedDirectly(Call.getASTArgumentIndex(Idx)))
|
|
continue;
|
|
|
|
// TODO: Allocators should receive the correct size and possibly alignment,
|
|
// determined in compile-time but not represented as arg-expressions,
|
|
// which makes getArgSVal() fail and return UnknownVal.
|
|
SVal ArgVal = Call.getArgSVal(Idx);
|
|
const Expr *ArgExpr = Call.getArgExpr(Idx);
|
|
|
|
if (ArgVal.isUnknown())
|
|
continue;
|
|
|
|
// Cast the argument value to match the type of the parameter in some
|
|
// edge-cases.
|
|
ArgVal = castArgToParamTypeIfNeeded(Call, Idx, ArgVal, SVB);
|
|
|
|
Loc ParamLoc = SVB.makeLoc(
|
|
MRMgr.getParamVarRegion(Call.getOriginExpr(), Idx, CalleeCtx));
|
|
Bindings.push_back(
|
|
std::make_pair(ParamLoc, processArgument(ArgVal, ArgExpr, *I, SVB)));
|
|
}
|
|
|
|
// FIXME: Variadic arguments are not handled at all right now.
|
|
}
|
|
|
|
const ConstructionContext *CallEvent::getConstructionContext() const {
|
|
const StackFrameContext *StackFrame = getCalleeStackFrame(0);
|
|
if (!StackFrame)
|
|
return nullptr;
|
|
|
|
const CFGElement Element = StackFrame->getCallSiteCFGElement();
|
|
if (const auto Ctor = Element.getAs<CFGConstructor>()) {
|
|
return Ctor->getConstructionContext();
|
|
}
|
|
|
|
if (const auto RecCall = Element.getAs<CFGCXXRecordTypedCall>()) {
|
|
return RecCall->getConstructionContext();
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
const CallEventRef<> CallEvent::getCaller() const {
|
|
const auto *CallLocationContext = this->getLocationContext();
|
|
if (!CallLocationContext || CallLocationContext->inTopFrame())
|
|
return nullptr;
|
|
|
|
const auto *CallStackFrameContext = CallLocationContext->getStackFrame();
|
|
if (!CallStackFrameContext)
|
|
return nullptr;
|
|
|
|
CallEventManager &CEMgr = State->getStateManager().getCallEventManager();
|
|
return CEMgr.getCaller(CallStackFrameContext, State);
|
|
}
|
|
|
|
bool CallEvent::isCalledFromSystemHeader() const {
|
|
if (const CallEventRef<> Caller = getCaller())
|
|
return Caller->isInSystemHeader();
|
|
|
|
return false;
|
|
}
|
|
|
|
std::optional<SVal> CallEvent::getReturnValueUnderConstruction() const {
|
|
const auto *CC = getConstructionContext();
|
|
if (!CC)
|
|
return std::nullopt;
|
|
|
|
EvalCallOptions CallOpts;
|
|
ExprEngine &Engine = getState()->getStateManager().getOwningEngine();
|
|
SVal RetVal = Engine.computeObjectUnderConstruction(
|
|
getOriginExpr(), getState(), &Engine.getBuilderContext(),
|
|
getLocationContext(), CC, CallOpts);
|
|
return RetVal;
|
|
}
|
|
|
|
ArrayRef<ParmVarDecl*> AnyFunctionCall::parameters() const {
|
|
const FunctionDecl *D = getDecl();
|
|
if (!D)
|
|
return {};
|
|
return D->parameters();
|
|
}
|
|
|
|
RuntimeDefinition AnyFunctionCall::getRuntimeDefinition() const {
|
|
const FunctionDecl *FD = getDecl();
|
|
if (!FD)
|
|
return {};
|
|
|
|
// Note that the AnalysisDeclContext will have the FunctionDecl with
|
|
// the definition (if one exists).
|
|
AnalysisDeclContext *AD =
|
|
getLocationContext()->getAnalysisDeclContext()->
|
|
getManager()->getContext(FD);
|
|
bool IsAutosynthesized;
|
|
Stmt* Body = AD->getBody(IsAutosynthesized);
|
|
LLVM_DEBUG({
|
|
if (IsAutosynthesized)
|
|
llvm::dbgs() << "Using autosynthesized body for " << FD->getName()
|
|
<< "\n";
|
|
});
|
|
|
|
ExprEngine &Engine = getState()->getStateManager().getOwningEngine();
|
|
cross_tu::CrossTranslationUnitContext &CTUCtx =
|
|
*Engine.getCrossTranslationUnitContext();
|
|
|
|
AnalyzerOptions &Opts = Engine.getAnalysisManager().options;
|
|
|
|
if (Body) {
|
|
const Decl* Decl = AD->getDecl();
|
|
if (Opts.IsNaiveCTUEnabled && CTUCtx.isImportedAsNew(Decl)) {
|
|
// A newly created definition, but we had error(s) during the import.
|
|
if (CTUCtx.hasError(Decl))
|
|
return {};
|
|
return RuntimeDefinition(Decl, /*Foreign=*/true);
|
|
}
|
|
return RuntimeDefinition(Decl, /*Foreign=*/false);
|
|
}
|
|
|
|
// Try to get CTU definition only if CTUDir is provided.
|
|
if (!Opts.IsNaiveCTUEnabled)
|
|
return {};
|
|
|
|
llvm::Expected<const FunctionDecl *> CTUDeclOrError =
|
|
CTUCtx.getCrossTUDefinition(FD, Opts.CTUDir, Opts.CTUIndexName,
|
|
Opts.DisplayCTUProgress);
|
|
|
|
if (!CTUDeclOrError) {
|
|
handleAllErrors(CTUDeclOrError.takeError(),
|
|
[&](const cross_tu::IndexError &IE) {
|
|
CTUCtx.emitCrossTUDiagnostics(IE);
|
|
});
|
|
return {};
|
|
}
|
|
|
|
return RuntimeDefinition(*CTUDeclOrError, /*Foreign=*/true);
|
|
}
|
|
|
|
void AnyFunctionCall::getInitialStackFrameContents(
|
|
const StackFrameContext *CalleeCtx,
|
|
BindingsTy &Bindings) const {
|
|
const auto *D = cast<FunctionDecl>(CalleeCtx->getDecl());
|
|
SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
|
|
addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
|
|
D->parameters());
|
|
}
|
|
|
|
bool AnyFunctionCall::argumentsMayEscape() const {
|
|
if (CallEvent::argumentsMayEscape() || hasVoidPointerToNonConstArg())
|
|
return true;
|
|
|
|
const FunctionDecl *D = getDecl();
|
|
if (!D)
|
|
return true;
|
|
|
|
const IdentifierInfo *II = D->getIdentifier();
|
|
if (!II)
|
|
return false;
|
|
|
|
// This set of "escaping" APIs is
|
|
|
|
// - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
|
|
// value into thread local storage. The value can later be retrieved with
|
|
// 'void *ptheread_getspecific(pthread_key)'. So even thought the
|
|
// parameter is 'const void *', the region escapes through the call.
|
|
if (II->isStr("pthread_setspecific"))
|
|
return true;
|
|
|
|
// - xpc_connection_set_context stores a value which can be retrieved later
|
|
// with xpc_connection_get_context.
|
|
if (II->isStr("xpc_connection_set_context"))
|
|
return true;
|
|
|
|
// - funopen - sets a buffer for future IO calls.
|
|
if (II->isStr("funopen"))
|
|
return true;
|
|
|
|
// - __cxa_demangle - can reallocate memory and can return the pointer to
|
|
// the input buffer.
|
|
if (II->isStr("__cxa_demangle"))
|
|
return true;
|
|
|
|
StringRef FName = II->getName();
|
|
|
|
// - CoreFoundation functions that end with "NoCopy" can free a passed-in
|
|
// buffer even if it is const.
|
|
if (FName.ends_with("NoCopy"))
|
|
return true;
|
|
|
|
// - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
|
|
// be deallocated by NSMapRemove.
|
|
if (FName.starts_with("NS") && FName.contains("Insert"))
|
|
return true;
|
|
|
|
// - Many CF containers allow objects to escape through custom
|
|
// allocators/deallocators upon container construction. (PR12101)
|
|
if (FName.starts_with("CF") || FName.starts_with("CG")) {
|
|
return StrInStrNoCase(FName, "InsertValue") != StringRef::npos ||
|
|
StrInStrNoCase(FName, "AddValue") != StringRef::npos ||
|
|
StrInStrNoCase(FName, "SetValue") != StringRef::npos ||
|
|
StrInStrNoCase(FName, "WithData") != StringRef::npos ||
|
|
StrInStrNoCase(FName, "AppendValue") != StringRef::npos ||
|
|
StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
const FunctionDecl *SimpleFunctionCall::getDecl() const {
|
|
const FunctionDecl *D = getOriginExpr()->getDirectCallee();
|
|
if (D)
|
|
return D;
|
|
|
|
return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
|
|
}
|
|
|
|
const FunctionDecl *CXXInstanceCall::getDecl() const {
|
|
const auto *CE = cast_or_null<CallExpr>(getOriginExpr());
|
|
if (!CE)
|
|
return AnyFunctionCall::getDecl();
|
|
|
|
const FunctionDecl *D = CE->getDirectCallee();
|
|
if (D)
|
|
return D;
|
|
|
|
return getSVal(CE->getCallee()).getAsFunctionDecl();
|
|
}
|
|
|
|
void CXXInstanceCall::getExtraInvalidatedValues(
|
|
ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
|
|
SVal ThisVal = getCXXThisVal();
|
|
Values.push_back(ThisVal);
|
|
|
|
// Don't invalidate if the method is const and there are no mutable fields.
|
|
if (const auto *D = cast_or_null<CXXMethodDecl>(getDecl())) {
|
|
if (!D->isConst())
|
|
return;
|
|
|
|
// Get the record decl for the class of 'This'. D->getParent() may return
|
|
// a base class decl, rather than the class of the instance which needs to
|
|
// be checked for mutable fields.
|
|
const CXXRecordDecl *ParentRecord = getDeclForDynamicType().first;
|
|
if (!ParentRecord || !ParentRecord->hasDefinition())
|
|
return;
|
|
|
|
if (ParentRecord->hasMutableFields())
|
|
return;
|
|
|
|
// Preserve CXXThis.
|
|
const MemRegion *ThisRegion = ThisVal.getAsRegion();
|
|
if (!ThisRegion)
|
|
return;
|
|
|
|
ETraits->setTrait(ThisRegion->getBaseRegion(),
|
|
RegionAndSymbolInvalidationTraits::TK_PreserveContents);
|
|
}
|
|
}
|
|
|
|
SVal CXXInstanceCall::getCXXThisVal() const {
|
|
const Expr *Base = getCXXThisExpr();
|
|
// FIXME: This doesn't handle an overloaded ->* operator.
|
|
SVal ThisVal = Base ? getSVal(Base) : UnknownVal();
|
|
|
|
if (isa<NonLoc>(ThisVal)) {
|
|
SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
|
|
QualType OriginalTy = ThisVal.getType(SVB.getContext());
|
|
return SVB.evalCast(ThisVal, Base->getType(), OriginalTy);
|
|
}
|
|
|
|
assert(ThisVal.isUnknownOrUndef() || isa<Loc>(ThisVal));
|
|
return ThisVal;
|
|
}
|
|
|
|
std::pair<const CXXRecordDecl *, bool>
|
|
CXXInstanceCall::getDeclForDynamicType() const {
|
|
const MemRegion *R = getCXXThisVal().getAsRegion();
|
|
if (!R)
|
|
return {};
|
|
|
|
DynamicTypeInfo DynType = getDynamicTypeInfo(getState(), R);
|
|
if (!DynType.isValid())
|
|
return {};
|
|
|
|
assert(!DynType.getType()->getPointeeType().isNull());
|
|
return {DynType.getType()->getPointeeCXXRecordDecl(),
|
|
DynType.canBeASubClass()};
|
|
}
|
|
|
|
RuntimeDefinition CXXInstanceCall::getRuntimeDefinition() const {
|
|
// Do we have a decl at all?
|
|
const Decl *D = getDecl();
|
|
if (!D)
|
|
return {};
|
|
|
|
// If the method is non-virtual, we know we can inline it.
|
|
const auto *MD = cast<CXXMethodDecl>(D);
|
|
if (!MD->isVirtual())
|
|
return AnyFunctionCall::getRuntimeDefinition();
|
|
|
|
auto [RD, CanBeSubClass] = getDeclForDynamicType();
|
|
if (!RD || !RD->hasDefinition())
|
|
return {};
|
|
|
|
// Find the decl for this method in that class.
|
|
const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD, true);
|
|
if (!Result) {
|
|
// We might not even get the original statically-resolved method due to
|
|
// some particularly nasty casting (e.g. casts to sister classes).
|
|
// However, we should at least be able to search up and down our own class
|
|
// hierarchy, and some real bugs have been caught by checking this.
|
|
assert(!RD->isDerivedFrom(MD->getParent()) && "Couldn't find known method");
|
|
|
|
// FIXME: This is checking that our DynamicTypeInfo is at least as good as
|
|
// the static type. However, because we currently don't update
|
|
// DynamicTypeInfo when an object is cast, we can't actually be sure the
|
|
// DynamicTypeInfo is up to date. This assert should be re-enabled once
|
|
// this is fixed.
|
|
//
|
|
// assert(!MD->getParent()->isDerivedFrom(RD) && "Bad DynamicTypeInfo");
|
|
|
|
return {};
|
|
}
|
|
|
|
// Does the decl that we found have an implementation?
|
|
const FunctionDecl *Definition;
|
|
if (!Result->hasBody(Definition)) {
|
|
if (!CanBeSubClass)
|
|
return AnyFunctionCall::getRuntimeDefinition();
|
|
return {};
|
|
}
|
|
|
|
// We found a definition. If we're not sure that this devirtualization is
|
|
// actually what will happen at runtime, make sure to provide the region so
|
|
// that ExprEngine can decide what to do with it.
|
|
if (CanBeSubClass)
|
|
return RuntimeDefinition(Definition,
|
|
getCXXThisVal().getAsRegion()->StripCasts());
|
|
return RuntimeDefinition(Definition, /*DispatchRegion=*/nullptr);
|
|
}
|
|
|
|
void CXXInstanceCall::getInitialStackFrameContents(
|
|
const StackFrameContext *CalleeCtx,
|
|
BindingsTy &Bindings) const {
|
|
AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
|
|
|
|
// Handle the binding of 'this' in the new stack frame.
|
|
SVal ThisVal = getCXXThisVal();
|
|
if (!ThisVal.isUnknown()) {
|
|
ProgramStateManager &StateMgr = getState()->getStateManager();
|
|
SValBuilder &SVB = StateMgr.getSValBuilder();
|
|
|
|
const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
|
|
Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
|
|
|
|
// If we devirtualized to a different member function, we need to make sure
|
|
// we have the proper layering of CXXBaseObjectRegions.
|
|
if (MD->getCanonicalDecl() != getDecl()->getCanonicalDecl()) {
|
|
ASTContext &Ctx = SVB.getContext();
|
|
const CXXRecordDecl *Class = MD->getParent();
|
|
QualType Ty = Ctx.getPointerType(Ctx.getRecordType(Class));
|
|
|
|
// FIXME: CallEvent maybe shouldn't be directly accessing StoreManager.
|
|
std::optional<SVal> V =
|
|
StateMgr.getStoreManager().evalBaseToDerived(ThisVal, Ty);
|
|
if (!V) {
|
|
// We might have suffered some sort of placement new earlier, so
|
|
// we're constructing in a completely unexpected storage.
|
|
// Fall back to a generic pointer cast for this-value.
|
|
const CXXMethodDecl *StaticMD = cast<CXXMethodDecl>(getDecl());
|
|
const CXXRecordDecl *StaticClass = StaticMD->getParent();
|
|
QualType StaticTy = Ctx.getPointerType(Ctx.getRecordType(StaticClass));
|
|
ThisVal = SVB.evalCast(ThisVal, Ty, StaticTy);
|
|
} else
|
|
ThisVal = *V;
|
|
}
|
|
|
|
if (!ThisVal.isUnknown())
|
|
Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
|
|
}
|
|
}
|
|
|
|
const Expr *CXXMemberCall::getCXXThisExpr() const {
|
|
return getOriginExpr()->getImplicitObjectArgument();
|
|
}
|
|
|
|
RuntimeDefinition CXXMemberCall::getRuntimeDefinition() const {
|
|
// C++11 [expr.call]p1: ...If the selected function is non-virtual, or if the
|
|
// id-expression in the class member access expression is a qualified-id,
|
|
// that function is called. Otherwise, its final overrider in the dynamic type
|
|
// of the object expression is called.
|
|
if (const auto *ME = dyn_cast<MemberExpr>(getOriginExpr()->getCallee()))
|
|
if (ME->hasQualifier())
|
|
return AnyFunctionCall::getRuntimeDefinition();
|
|
|
|
return CXXInstanceCall::getRuntimeDefinition();
|
|
}
|
|
|
|
const Expr *CXXMemberOperatorCall::getCXXThisExpr() const {
|
|
return getOriginExpr()->getArg(0);
|
|
}
|
|
|
|
const BlockDataRegion *BlockCall::getBlockRegion() const {
|
|
const Expr *Callee = getOriginExpr()->getCallee();
|
|
const MemRegion *DataReg = getSVal(Callee).getAsRegion();
|
|
|
|
return dyn_cast_or_null<BlockDataRegion>(DataReg);
|
|
}
|
|
|
|
ArrayRef<ParmVarDecl*> BlockCall::parameters() const {
|
|
const BlockDecl *D = getDecl();
|
|
if (!D)
|
|
return {};
|
|
return D->parameters();
|
|
}
|
|
|
|
void BlockCall::getExtraInvalidatedValues(ValueList &Values,
|
|
RegionAndSymbolInvalidationTraits *ETraits) const {
|
|
// FIXME: This also needs to invalidate captured globals.
|
|
if (const MemRegion *R = getBlockRegion())
|
|
Values.push_back(loc::MemRegionVal(R));
|
|
}
|
|
|
|
void BlockCall::getInitialStackFrameContents(const StackFrameContext *CalleeCtx,
|
|
BindingsTy &Bindings) const {
|
|
SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
|
|
ArrayRef<ParmVarDecl*> Params;
|
|
if (isConversionFromLambda()) {
|
|
auto *LambdaOperatorDecl = cast<CXXMethodDecl>(CalleeCtx->getDecl());
|
|
Params = LambdaOperatorDecl->parameters();
|
|
|
|
// For blocks converted from a C++ lambda, the callee declaration is the
|
|
// operator() method on the lambda so we bind "this" to
|
|
// the lambda captured by the block.
|
|
const VarRegion *CapturedLambdaRegion = getRegionStoringCapturedLambda();
|
|
SVal ThisVal = loc::MemRegionVal(CapturedLambdaRegion);
|
|
Loc ThisLoc = SVB.getCXXThis(LambdaOperatorDecl, CalleeCtx);
|
|
Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
|
|
} else {
|
|
Params = cast<BlockDecl>(CalleeCtx->getDecl())->parameters();
|
|
}
|
|
|
|
addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
|
|
Params);
|
|
}
|
|
|
|
SVal AnyCXXConstructorCall::getCXXThisVal() const {
|
|
if (Data)
|
|
return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
|
|
return UnknownVal();
|
|
}
|
|
|
|
void AnyCXXConstructorCall::getExtraInvalidatedValues(ValueList &Values,
|
|
RegionAndSymbolInvalidationTraits *ETraits) const {
|
|
SVal V = getCXXThisVal();
|
|
if (SymbolRef Sym = V.getAsSymbol(true))
|
|
ETraits->setTrait(Sym,
|
|
RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
|
|
|
|
// Standard classes don't reinterpret-cast and modify super regions.
|
|
const bool IsStdClassCtor = isWithinStdNamespace(getDecl());
|
|
if (const MemRegion *Obj = V.getAsRegion(); Obj && IsStdClassCtor) {
|
|
ETraits->setTrait(
|
|
Obj, RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
|
|
}
|
|
|
|
Values.push_back(V);
|
|
}
|
|
|
|
void AnyCXXConstructorCall::getInitialStackFrameContents(
|
|
const StackFrameContext *CalleeCtx,
|
|
BindingsTy &Bindings) const {
|
|
AnyFunctionCall::getInitialStackFrameContents(CalleeCtx, Bindings);
|
|
|
|
SVal ThisVal = getCXXThisVal();
|
|
if (!ThisVal.isUnknown()) {
|
|
SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
|
|
const auto *MD = cast<CXXMethodDecl>(CalleeCtx->getDecl());
|
|
Loc ThisLoc = SVB.getCXXThis(MD, CalleeCtx);
|
|
Bindings.push_back(std::make_pair(ThisLoc, ThisVal));
|
|
}
|
|
}
|
|
|
|
const StackFrameContext *
|
|
CXXInheritedConstructorCall::getInheritingStackFrame() const {
|
|
const StackFrameContext *SFC = getLocationContext()->getStackFrame();
|
|
while (isa<CXXInheritedCtorInitExpr>(SFC->getCallSite()))
|
|
SFC = SFC->getParent()->getStackFrame();
|
|
return SFC;
|
|
}
|
|
|
|
SVal CXXDestructorCall::getCXXThisVal() const {
|
|
if (Data)
|
|
return loc::MemRegionVal(DtorDataTy::getFromOpaqueValue(Data).getPointer());
|
|
return UnknownVal();
|
|
}
|
|
|
|
RuntimeDefinition CXXDestructorCall::getRuntimeDefinition() const {
|
|
// Base destructors are always called non-virtually.
|
|
// Skip CXXInstanceCall's devirtualization logic in this case.
|
|
if (isBaseDestructor())
|
|
return AnyFunctionCall::getRuntimeDefinition();
|
|
|
|
return CXXInstanceCall::getRuntimeDefinition();
|
|
}
|
|
|
|
ArrayRef<ParmVarDecl*> ObjCMethodCall::parameters() const {
|
|
const ObjCMethodDecl *D = getDecl();
|
|
if (!D)
|
|
return {};
|
|
return D->parameters();
|
|
}
|
|
|
|
void ObjCMethodCall::getExtraInvalidatedValues(
|
|
ValueList &Values, RegionAndSymbolInvalidationTraits *ETraits) const {
|
|
|
|
// If the method call is a setter for property known to be backed by
|
|
// an instance variable, don't invalidate the entire receiver, just
|
|
// the storage for that instance variable.
|
|
if (const ObjCPropertyDecl *PropDecl = getAccessedProperty()) {
|
|
if (const ObjCIvarDecl *PropIvar = PropDecl->getPropertyIvarDecl()) {
|
|
SVal IvarLVal = getState()->getLValue(PropIvar, getReceiverSVal());
|
|
if (const MemRegion *IvarRegion = IvarLVal.getAsRegion()) {
|
|
ETraits->setTrait(
|
|
IvarRegion,
|
|
RegionAndSymbolInvalidationTraits::TK_DoNotInvalidateSuperRegion);
|
|
ETraits->setTrait(
|
|
IvarRegion,
|
|
RegionAndSymbolInvalidationTraits::TK_SuppressEscape);
|
|
Values.push_back(IvarLVal);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
Values.push_back(getReceiverSVal());
|
|
}
|
|
|
|
SVal ObjCMethodCall::getReceiverSVal() const {
|
|
// FIXME: Is this the best way to handle class receivers?
|
|
if (!isInstanceMessage())
|
|
return UnknownVal();
|
|
|
|
if (const Expr *RecE = getOriginExpr()->getInstanceReceiver())
|
|
return getSVal(RecE);
|
|
|
|
// An instance message with no expression means we are sending to super.
|
|
// In this case the object reference is the same as 'self'.
|
|
assert(getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance);
|
|
SVal SelfVal = getState()->getSelfSVal(getLocationContext());
|
|
assert(SelfVal.isValid() && "Calling super but not in ObjC method");
|
|
return SelfVal;
|
|
}
|
|
|
|
bool ObjCMethodCall::isReceiverSelfOrSuper() const {
|
|
if (getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperInstance ||
|
|
getOriginExpr()->getReceiverKind() == ObjCMessageExpr::SuperClass)
|
|
return true;
|
|
|
|
if (!isInstanceMessage())
|
|
return false;
|
|
|
|
SVal RecVal = getSVal(getOriginExpr()->getInstanceReceiver());
|
|
SVal SelfVal = getState()->getSelfSVal(getLocationContext());
|
|
|
|
return (RecVal == SelfVal);
|
|
}
|
|
|
|
SourceRange ObjCMethodCall::getSourceRange() const {
|
|
switch (getMessageKind()) {
|
|
case OCM_Message:
|
|
return getOriginExpr()->getSourceRange();
|
|
case OCM_PropertyAccess:
|
|
case OCM_Subscript:
|
|
return getContainingPseudoObjectExpr()->getSourceRange();
|
|
}
|
|
llvm_unreachable("unknown message kind");
|
|
}
|
|
|
|
using ObjCMessageDataTy = llvm::PointerIntPair<const PseudoObjectExpr *, 2>;
|
|
|
|
const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
|
|
assert(Data && "Lazy lookup not yet performed.");
|
|
assert(getMessageKind() != OCM_Message && "Explicit message send.");
|
|
return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
|
|
}
|
|
|
|
static const Expr *
|
|
getSyntacticFromForPseudoObjectExpr(const PseudoObjectExpr *POE) {
|
|
const Expr *Syntactic = POE->getSyntacticForm()->IgnoreParens();
|
|
|
|
// This handles the funny case of assigning to the result of a getter.
|
|
// This can happen if the getter returns a non-const reference.
|
|
if (const auto *BO = dyn_cast<BinaryOperator>(Syntactic))
|
|
Syntactic = BO->getLHS()->IgnoreParens();
|
|
|
|
return Syntactic;
|
|
}
|
|
|
|
ObjCMessageKind ObjCMethodCall::getMessageKind() const {
|
|
if (!Data) {
|
|
// Find the parent, ignoring implicit casts.
|
|
const ParentMap &PM = getLocationContext()->getParentMap();
|
|
const Stmt *S = PM.getParentIgnoreParenCasts(getOriginExpr());
|
|
|
|
// Check if parent is a PseudoObjectExpr.
|
|
if (const auto *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
|
|
const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
|
|
|
|
ObjCMessageKind K;
|
|
switch (Syntactic->getStmtClass()) {
|
|
case Stmt::ObjCPropertyRefExprClass:
|
|
K = OCM_PropertyAccess;
|
|
break;
|
|
case Stmt::ObjCSubscriptRefExprClass:
|
|
K = OCM_Subscript;
|
|
break;
|
|
default:
|
|
// FIXME: Can this ever happen?
|
|
K = OCM_Message;
|
|
break;
|
|
}
|
|
|
|
if (K != OCM_Message) {
|
|
const_cast<ObjCMethodCall *>(this)->Data
|
|
= ObjCMessageDataTy(POE, K).getOpaqueValue();
|
|
assert(getMessageKind() == K);
|
|
return K;
|
|
}
|
|
}
|
|
|
|
const_cast<ObjCMethodCall *>(this)->Data
|
|
= ObjCMessageDataTy(nullptr, 1).getOpaqueValue();
|
|
assert(getMessageKind() == OCM_Message);
|
|
return OCM_Message;
|
|
}
|
|
|
|
ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
|
|
if (!Info.getPointer())
|
|
return OCM_Message;
|
|
return static_cast<ObjCMessageKind>(Info.getInt());
|
|
}
|
|
|
|
const ObjCPropertyDecl *ObjCMethodCall::getAccessedProperty() const {
|
|
// Look for properties accessed with property syntax (foo.bar = ...)
|
|
if (getMessageKind() == OCM_PropertyAccess) {
|
|
const PseudoObjectExpr *POE = getContainingPseudoObjectExpr();
|
|
assert(POE && "Property access without PseudoObjectExpr?");
|
|
|
|
const Expr *Syntactic = getSyntacticFromForPseudoObjectExpr(POE);
|
|
auto *RefExpr = cast<ObjCPropertyRefExpr>(Syntactic);
|
|
|
|
if (RefExpr->isExplicitProperty())
|
|
return RefExpr->getExplicitProperty();
|
|
}
|
|
|
|
// Look for properties accessed with method syntax ([foo setBar:...]).
|
|
const ObjCMethodDecl *MD = getDecl();
|
|
if (!MD || !MD->isPropertyAccessor())
|
|
return nullptr;
|
|
|
|
// Note: This is potentially quite slow.
|
|
return MD->findPropertyDecl();
|
|
}
|
|
|
|
bool ObjCMethodCall::canBeOverridenInSubclass(ObjCInterfaceDecl *IDecl,
|
|
Selector Sel) const {
|
|
assert(IDecl);
|
|
AnalysisManager &AMgr =
|
|
getState()->getStateManager().getOwningEngine().getAnalysisManager();
|
|
// If the class interface is declared inside the main file, assume it is not
|
|
// subcassed.
|
|
// TODO: It could actually be subclassed if the subclass is private as well.
|
|
// This is probably very rare.
|
|
SourceLocation InterfLoc = IDecl->getEndOfDefinitionLoc();
|
|
if (InterfLoc.isValid() && AMgr.isInCodeFile(InterfLoc))
|
|
return false;
|
|
|
|
// Assume that property accessors are not overridden.
|
|
if (getMessageKind() == OCM_PropertyAccess)
|
|
return false;
|
|
|
|
// We assume that if the method is public (declared outside of main file) or
|
|
// has a parent which publicly declares the method, the method could be
|
|
// overridden in a subclass.
|
|
|
|
// Find the first declaration in the class hierarchy that declares
|
|
// the selector.
|
|
ObjCMethodDecl *D = nullptr;
|
|
while (true) {
|
|
D = IDecl->lookupMethod(Sel, true);
|
|
|
|
// Cannot find a public definition.
|
|
if (!D)
|
|
return false;
|
|
|
|
// If outside the main file,
|
|
if (D->getLocation().isValid() && !AMgr.isInCodeFile(D->getLocation()))
|
|
return true;
|
|
|
|
if (D->isOverriding()) {
|
|
// Search in the superclass on the next iteration.
|
|
IDecl = D->getClassInterface();
|
|
if (!IDecl)
|
|
return false;
|
|
|
|
IDecl = IDecl->getSuperClass();
|
|
if (!IDecl)
|
|
return false;
|
|
|
|
continue;
|
|
}
|
|
|
|
return false;
|
|
};
|
|
|
|
llvm_unreachable("The while loop should always terminate.");
|
|
}
|
|
|
|
static const ObjCMethodDecl *findDefiningRedecl(const ObjCMethodDecl *MD) {
|
|
if (!MD)
|
|
return MD;
|
|
|
|
// Find the redeclaration that defines the method.
|
|
if (!MD->hasBody()) {
|
|
for (auto *I : MD->redecls())
|
|
if (I->hasBody())
|
|
MD = cast<ObjCMethodDecl>(I);
|
|
}
|
|
return MD;
|
|
}
|
|
|
|
struct PrivateMethodKey {
|
|
const ObjCInterfaceDecl *Interface;
|
|
Selector LookupSelector;
|
|
bool IsClassMethod;
|
|
};
|
|
|
|
namespace llvm {
|
|
template <> struct DenseMapInfo<PrivateMethodKey> {
|
|
using InterfaceInfo = DenseMapInfo<const ObjCInterfaceDecl *>;
|
|
using SelectorInfo = DenseMapInfo<Selector>;
|
|
|
|
static inline PrivateMethodKey getEmptyKey() {
|
|
return {InterfaceInfo::getEmptyKey(), SelectorInfo::getEmptyKey(), false};
|
|
}
|
|
|
|
static inline PrivateMethodKey getTombstoneKey() {
|
|
return {InterfaceInfo::getTombstoneKey(), SelectorInfo::getTombstoneKey(),
|
|
true};
|
|
}
|
|
|
|
static unsigned getHashValue(const PrivateMethodKey &Key) {
|
|
return llvm::hash_combine(
|
|
llvm::hash_code(InterfaceInfo::getHashValue(Key.Interface)),
|
|
llvm::hash_code(SelectorInfo::getHashValue(Key.LookupSelector)),
|
|
Key.IsClassMethod);
|
|
}
|
|
|
|
static bool isEqual(const PrivateMethodKey &LHS,
|
|
const PrivateMethodKey &RHS) {
|
|
return InterfaceInfo::isEqual(LHS.Interface, RHS.Interface) &&
|
|
SelectorInfo::isEqual(LHS.LookupSelector, RHS.LookupSelector) &&
|
|
LHS.IsClassMethod == RHS.IsClassMethod;
|
|
}
|
|
};
|
|
} // end namespace llvm
|
|
|
|
static const ObjCMethodDecl *
|
|
lookupRuntimeDefinition(const ObjCInterfaceDecl *Interface,
|
|
Selector LookupSelector, bool InstanceMethod) {
|
|
// Repeatedly calling lookupPrivateMethod() is expensive, especially
|
|
// when in many cases it returns null. We cache the results so
|
|
// that repeated queries on the same ObjCIntefaceDecl and Selector
|
|
// don't incur the same cost. On some test cases, we can see the
|
|
// same query being issued thousands of times.
|
|
//
|
|
// NOTE: This cache is essentially a "global" variable, but it
|
|
// only gets lazily created when we get here. The value of the
|
|
// cache probably comes from it being global across ExprEngines,
|
|
// where the same queries may get issued. If we are worried about
|
|
// concurrency, or possibly loading/unloading ASTs, etc., we may
|
|
// need to revisit this someday. In terms of memory, this table
|
|
// stays around until clang quits, which also may be bad if we
|
|
// need to release memory.
|
|
using PrivateMethodCache =
|
|
llvm::DenseMap<PrivateMethodKey, std::optional<const ObjCMethodDecl *>>;
|
|
|
|
static PrivateMethodCache PMC;
|
|
std::optional<const ObjCMethodDecl *> &Val =
|
|
PMC[{Interface, LookupSelector, InstanceMethod}];
|
|
|
|
// Query lookupPrivateMethod() if the cache does not hit.
|
|
if (!Val) {
|
|
Val = Interface->lookupPrivateMethod(LookupSelector, InstanceMethod);
|
|
|
|
if (!*Val) {
|
|
// Query 'lookupMethod' as a backup.
|
|
Val = Interface->lookupMethod(LookupSelector, InstanceMethod);
|
|
}
|
|
}
|
|
|
|
return *Val;
|
|
}
|
|
|
|
RuntimeDefinition ObjCMethodCall::getRuntimeDefinition() const {
|
|
const ObjCMessageExpr *E = getOriginExpr();
|
|
assert(E);
|
|
Selector Sel = E->getSelector();
|
|
|
|
if (E->isInstanceMessage()) {
|
|
// Find the receiver type.
|
|
const ObjCObjectType *ReceiverT = nullptr;
|
|
bool CanBeSubClassed = false;
|
|
bool LookingForInstanceMethod = true;
|
|
QualType SupersType = E->getSuperType();
|
|
const MemRegion *Receiver = nullptr;
|
|
|
|
if (!SupersType.isNull()) {
|
|
// The receiver is guaranteed to be 'super' in this case.
|
|
// Super always means the type of immediate predecessor to the method
|
|
// where the call occurs.
|
|
ReceiverT = cast<ObjCObjectPointerType>(SupersType)->getObjectType();
|
|
} else {
|
|
Receiver = getReceiverSVal().getAsRegion();
|
|
if (!Receiver)
|
|
return {};
|
|
|
|
DynamicTypeInfo DTI = getDynamicTypeInfo(getState(), Receiver);
|
|
if (!DTI.isValid()) {
|
|
assert(isa<AllocaRegion>(Receiver) &&
|
|
"Unhandled untyped region class!");
|
|
return {};
|
|
}
|
|
|
|
QualType DynType = DTI.getType();
|
|
CanBeSubClassed = DTI.canBeASubClass();
|
|
|
|
const auto *ReceiverDynT =
|
|
dyn_cast<ObjCObjectPointerType>(DynType.getCanonicalType());
|
|
|
|
if (ReceiverDynT) {
|
|
ReceiverT = ReceiverDynT->getObjectType();
|
|
|
|
// It can be actually class methods called with Class object as a
|
|
// receiver. This type of messages is treated by the compiler as
|
|
// instance (not class).
|
|
if (ReceiverT->isObjCClass()) {
|
|
|
|
SVal SelfVal = getState()->getSelfSVal(getLocationContext());
|
|
// For [self classMethod], return compiler visible declaration.
|
|
if (Receiver == SelfVal.getAsRegion()) {
|
|
return RuntimeDefinition(findDefiningRedecl(E->getMethodDecl()));
|
|
}
|
|
|
|
// Otherwise, let's check if we know something about the type
|
|
// inside of this class object.
|
|
if (SymbolRef ReceiverSym = getReceiverSVal().getAsSymbol()) {
|
|
DynamicTypeInfo DTI =
|
|
getClassObjectDynamicTypeInfo(getState(), ReceiverSym);
|
|
if (DTI.isValid()) {
|
|
// Let's use this type for lookup.
|
|
ReceiverT =
|
|
cast<ObjCObjectType>(DTI.getType().getCanonicalType());
|
|
|
|
CanBeSubClassed = DTI.canBeASubClass();
|
|
// And it should be a class method instead.
|
|
LookingForInstanceMethod = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (CanBeSubClassed)
|
|
if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterface())
|
|
// Even if `DynamicTypeInfo` told us that it can be
|
|
// not necessarily this type, but its descendants, we still want
|
|
// to check again if this selector can be actually overridden.
|
|
CanBeSubClassed = canBeOverridenInSubclass(IDecl, Sel);
|
|
}
|
|
}
|
|
|
|
// Lookup the instance method implementation.
|
|
if (ReceiverT)
|
|
if (ObjCInterfaceDecl *IDecl = ReceiverT->getInterface()) {
|
|
const ObjCMethodDecl *MD =
|
|
lookupRuntimeDefinition(IDecl, Sel, LookingForInstanceMethod);
|
|
|
|
if (MD && !MD->hasBody())
|
|
MD = MD->getCanonicalDecl();
|
|
|
|
if (CanBeSubClassed)
|
|
return RuntimeDefinition(MD, Receiver);
|
|
else
|
|
return RuntimeDefinition(MD, nullptr);
|
|
}
|
|
} else {
|
|
// This is a class method.
|
|
// If we have type info for the receiver class, we are calling via
|
|
// class name.
|
|
if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
|
|
// Find/Return the method implementation.
|
|
return RuntimeDefinition(IDecl->lookupPrivateClassMethod(Sel));
|
|
}
|
|
}
|
|
|
|
return {};
|
|
}
|
|
|
|
bool ObjCMethodCall::argumentsMayEscape() const {
|
|
if (isInSystemHeader() && !isInstanceMessage()) {
|
|
Selector Sel = getSelector();
|
|
if (Sel.getNumArgs() == 1 &&
|
|
Sel.getIdentifierInfoForSlot(0)->isStr("valueWithPointer"))
|
|
return true;
|
|
}
|
|
|
|
return CallEvent::argumentsMayEscape();
|
|
}
|
|
|
|
void ObjCMethodCall::getInitialStackFrameContents(
|
|
const StackFrameContext *CalleeCtx,
|
|
BindingsTy &Bindings) const {
|
|
const auto *D = cast<ObjCMethodDecl>(CalleeCtx->getDecl());
|
|
SValBuilder &SVB = getState()->getStateManager().getSValBuilder();
|
|
addParameterValuesToBindings(CalleeCtx, Bindings, SVB, *this,
|
|
D->parameters());
|
|
|
|
SVal SelfVal = getReceiverSVal();
|
|
if (!SelfVal.isUnknown()) {
|
|
const VarDecl *SelfD = CalleeCtx->getAnalysisDeclContext()->getSelfDecl();
|
|
MemRegionManager &MRMgr = SVB.getRegionManager();
|
|
Loc SelfLoc = SVB.makeLoc(MRMgr.getVarRegion(SelfD, CalleeCtx));
|
|
Bindings.push_back(std::make_pair(SelfLoc, SelfVal));
|
|
}
|
|
}
|
|
|
|
CallEventRef<>
|
|
CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
|
|
const LocationContext *LCtx,
|
|
CFGBlock::ConstCFGElementRef ElemRef) {
|
|
if (const auto *MCE = dyn_cast<CXXMemberCallExpr>(CE))
|
|
return create<CXXMemberCall>(MCE, State, LCtx, ElemRef);
|
|
|
|
if (const auto *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
|
|
const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
|
|
if (const auto *MD = dyn_cast<CXXMethodDecl>(DirectCallee)) {
|
|
if (MD->isImplicitObjectMemberFunction())
|
|
return create<CXXMemberOperatorCall>(OpCE, State, LCtx, ElemRef);
|
|
if (MD->isStatic())
|
|
return create<CXXStaticOperatorCall>(OpCE, State, LCtx, ElemRef);
|
|
}
|
|
|
|
} else if (CE->getCallee()->getType()->isBlockPointerType()) {
|
|
return create<BlockCall>(CE, State, LCtx, ElemRef);
|
|
}
|
|
|
|
// Otherwise, it's a normal function call, static member function call, or
|
|
// something we can't reason about.
|
|
return create<SimpleFunctionCall>(CE, State, LCtx, ElemRef);
|
|
}
|
|
|
|
CallEventRef<>
|
|
CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
|
|
ProgramStateRef State) {
|
|
const LocationContext *ParentCtx = CalleeCtx->getParent();
|
|
const LocationContext *CallerCtx = ParentCtx->getStackFrame();
|
|
CFGBlock::ConstCFGElementRef ElemRef = {CalleeCtx->getCallSiteBlock(),
|
|
CalleeCtx->getIndex()};
|
|
assert(CallerCtx && "This should not be used for top-level stack frames");
|
|
|
|
const Stmt *CallSite = CalleeCtx->getCallSite();
|
|
|
|
if (CallSite) {
|
|
if (CallEventRef<> Out = getCall(CallSite, State, CallerCtx, ElemRef))
|
|
return Out;
|
|
|
|
SValBuilder &SVB = State->getStateManager().getSValBuilder();
|
|
const auto *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
|
|
Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
|
|
SVal ThisVal = State->getSVal(ThisPtr);
|
|
|
|
if (const auto *CE = dyn_cast<CXXConstructExpr>(CallSite))
|
|
return getCXXConstructorCall(CE, ThisVal.getAsRegion(), State, CallerCtx,
|
|
ElemRef);
|
|
else if (const auto *CIE = dyn_cast<CXXInheritedCtorInitExpr>(CallSite))
|
|
return getCXXInheritedConstructorCall(CIE, ThisVal.getAsRegion(), State,
|
|
CallerCtx, ElemRef);
|
|
else {
|
|
// All other cases are handled by getCall.
|
|
llvm_unreachable("This is not an inlineable statement");
|
|
}
|
|
}
|
|
|
|
// Fall back to the CFG. The only thing we haven't handled yet is
|
|
// destructors, though this could change in the future.
|
|
const CFGBlock *B = CalleeCtx->getCallSiteBlock();
|
|
CFGElement E = (*B)[CalleeCtx->getIndex()];
|
|
assert((E.getAs<CFGImplicitDtor>() || E.getAs<CFGTemporaryDtor>()) &&
|
|
"All other CFG elements should have exprs");
|
|
|
|
SValBuilder &SVB = State->getStateManager().getSValBuilder();
|
|
const auto *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
|
|
Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
|
|
SVal ThisVal = State->getSVal(ThisPtr);
|
|
|
|
const Stmt *Trigger;
|
|
if (std::optional<CFGAutomaticObjDtor> AutoDtor =
|
|
E.getAs<CFGAutomaticObjDtor>())
|
|
Trigger = AutoDtor->getTriggerStmt();
|
|
else if (std::optional<CFGDeleteDtor> DeleteDtor = E.getAs<CFGDeleteDtor>())
|
|
Trigger = DeleteDtor->getDeleteExpr();
|
|
else
|
|
Trigger = Dtor->getBody();
|
|
|
|
return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
|
|
E.getAs<CFGBaseDtor>().has_value(), State,
|
|
CallerCtx, ElemRef);
|
|
}
|
|
|
|
CallEventRef<> CallEventManager::getCall(const Stmt *S, ProgramStateRef State,
|
|
const LocationContext *LC,
|
|
CFGBlock::ConstCFGElementRef ElemRef) {
|
|
if (const auto *CE = dyn_cast<CallExpr>(S)) {
|
|
return getSimpleCall(CE, State, LC, ElemRef);
|
|
} else if (const auto *NE = dyn_cast<CXXNewExpr>(S)) {
|
|
return getCXXAllocatorCall(NE, State, LC, ElemRef);
|
|
} else if (const auto *DE = dyn_cast<CXXDeleteExpr>(S)) {
|
|
return getCXXDeallocatorCall(DE, State, LC, ElemRef);
|
|
} else if (const auto *ME = dyn_cast<ObjCMessageExpr>(S)) {
|
|
return getObjCMethodCall(ME, State, LC, ElemRef);
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
}
|