llvm-project/llvm/lib/Target/X86/X86IndirectThunks.cpp
David Green 3770b4aa3c [ARM] Don't emit Arm speculation hardening thunks under Thumb and vice-versa
Given a patch like D129506, using instructions not valid for the current
target feature set becomes an error. This means that emitting Arm
instructions in a Thumb target (or vice versa) becomes an error. When
running in Thumb mode only thumb thunks will be needed, and in Arm mode
only arm thunks are needed. This patch limits the emitted thunks to just
the ones valid for the current architecture.

Differential Revision: https://reviews.llvm.org/D129693
2023-01-23 11:22:11 +00:00

278 lines
10 KiB
C++

//==- X86IndirectThunks.cpp - Construct indirect call/jump thunks for x86 --=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
///
/// Pass that injects an MI thunk that is used to lower indirect calls in a way
/// that prevents speculation on some x86 processors and can be used to mitigate
/// security vulnerabilities due to targeted speculative execution and side
/// channels such as CVE-2017-5715.
///
/// Currently supported thunks include:
/// - Retpoline -- A RET-implemented trampoline that lowers indirect calls
/// - LVI Thunk -- A CALL/JMP-implemented thunk that forces load serialization
/// before making an indirect call/jump
///
/// Note that the reason that this is implemented as a MachineFunctionPass and
/// not a ModulePass is that ModulePasses at this point in the LLVM X86 pipeline
/// serialize all transformations, which can consume lots of memory.
///
/// TODO(chandlerc): All of this code could use better comments and
/// documentation.
///
//===----------------------------------------------------------------------===//
#include "X86.h"
#include "X86InstrBuilder.h"
#include "X86Subtarget.h"
#include "llvm/CodeGen/IndirectThunks.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
#define DEBUG_TYPE "x86-retpoline-thunks"
static const char RetpolineNamePrefix[] = "__llvm_retpoline_";
static const char R11RetpolineName[] = "__llvm_retpoline_r11";
static const char EAXRetpolineName[] = "__llvm_retpoline_eax";
static const char ECXRetpolineName[] = "__llvm_retpoline_ecx";
static const char EDXRetpolineName[] = "__llvm_retpoline_edx";
static const char EDIRetpolineName[] = "__llvm_retpoline_edi";
static const char LVIThunkNamePrefix[] = "__llvm_lvi_thunk_";
static const char R11LVIThunkName[] = "__llvm_lvi_thunk_r11";
namespace {
struct RetpolineThunkInserter : ThunkInserter<RetpolineThunkInserter> {
const char *getThunkPrefix() { return RetpolineNamePrefix; }
bool mayUseThunk(const MachineFunction &MF, bool InsertedThunks) {
if (InsertedThunks)
return false;
const auto &STI = MF.getSubtarget<X86Subtarget>();
return (STI.useRetpolineIndirectCalls() ||
STI.useRetpolineIndirectBranches()) &&
!STI.useRetpolineExternalThunk();
}
bool insertThunks(MachineModuleInfo &MMI, MachineFunction &MF);
void populateThunk(MachineFunction &MF);
};
struct LVIThunkInserter : ThunkInserter<LVIThunkInserter> {
const char *getThunkPrefix() { return LVIThunkNamePrefix; }
bool mayUseThunk(const MachineFunction &MF, bool InsertedThunks) {
if (InsertedThunks)
return false;
return MF.getSubtarget<X86Subtarget>().useLVIControlFlowIntegrity();
}
bool insertThunks(MachineModuleInfo &MMI, MachineFunction &MF) {
createThunkFunction(MMI, R11LVIThunkName);
return true;
}
void populateThunk(MachineFunction &MF) {
assert (MF.size() == 1);
MachineBasicBlock *Entry = &MF.front();
Entry->clear();
// This code mitigates LVI by replacing each indirect call/jump with a
// direct call/jump to a thunk that looks like:
// ```
// lfence
// jmpq *%r11
// ```
// This ensures that if the value in register %r11 was loaded from memory,
// then the value in %r11 is (architecturally) correct prior to the jump.
const TargetInstrInfo *TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
BuildMI(&MF.front(), DebugLoc(), TII->get(X86::LFENCE));
BuildMI(&MF.front(), DebugLoc(), TII->get(X86::JMP64r)).addReg(X86::R11);
MF.front().addLiveIn(X86::R11);
}
};
class X86IndirectThunks : public MachineFunctionPass {
public:
static char ID;
X86IndirectThunks() : MachineFunctionPass(ID) {}
StringRef getPassName() const override { return "X86 Indirect Thunks"; }
bool doInitialization(Module &M) override;
bool runOnMachineFunction(MachineFunction &MF) override;
private:
std::tuple<RetpolineThunkInserter, LVIThunkInserter> TIs;
// FIXME: When LLVM moves to C++17, these can become folds
template <typename... ThunkInserterT>
static void initTIs(Module &M,
std::tuple<ThunkInserterT...> &ThunkInserters) {
(void)std::initializer_list<int>{
(std::get<ThunkInserterT>(ThunkInserters).init(M), 0)...};
}
template <typename... ThunkInserterT>
static bool runTIs(MachineModuleInfo &MMI, MachineFunction &MF,
std::tuple<ThunkInserterT...> &ThunkInserters) {
bool Modified = false;
(void)std::initializer_list<int>{
Modified |= std::get<ThunkInserterT>(ThunkInserters).run(MMI, MF)...};
return Modified;
}
};
} // end anonymous namespace
bool RetpolineThunkInserter::insertThunks(MachineModuleInfo &MMI,
MachineFunction &MF) {
if (MMI.getTarget().getTargetTriple().getArch() == Triple::x86_64)
createThunkFunction(MMI, R11RetpolineName);
else
for (StringRef Name : {EAXRetpolineName, ECXRetpolineName, EDXRetpolineName,
EDIRetpolineName})
createThunkFunction(MMI, Name);
return true;
}
void RetpolineThunkInserter::populateThunk(MachineFunction &MF) {
bool Is64Bit = MF.getTarget().getTargetTriple().getArch() == Triple::x86_64;
Register ThunkReg;
if (Is64Bit) {
assert(MF.getName() == "__llvm_retpoline_r11" &&
"Should only have an r11 thunk on 64-bit targets");
// __llvm_retpoline_r11:
// callq .Lr11_call_target
// .Lr11_capture_spec:
// pause
// lfence
// jmp .Lr11_capture_spec
// .align 16
// .Lr11_call_target:
// movq %r11, (%rsp)
// retq
ThunkReg = X86::R11;
} else {
// For 32-bit targets we need to emit a collection of thunks for various
// possible scratch registers as well as a fallback that uses EDI, which is
// normally callee saved.
// __llvm_retpoline_eax:
// calll .Leax_call_target
// .Leax_capture_spec:
// pause
// jmp .Leax_capture_spec
// .align 16
// .Leax_call_target:
// movl %eax, (%esp) # Clobber return addr
// retl
//
// __llvm_retpoline_ecx:
// ... # Same setup
// movl %ecx, (%esp)
// retl
//
// __llvm_retpoline_edx:
// ... # Same setup
// movl %edx, (%esp)
// retl
//
// __llvm_retpoline_edi:
// ... # Same setup
// movl %edi, (%esp)
// retl
if (MF.getName() == EAXRetpolineName)
ThunkReg = X86::EAX;
else if (MF.getName() == ECXRetpolineName)
ThunkReg = X86::ECX;
else if (MF.getName() == EDXRetpolineName)
ThunkReg = X86::EDX;
else if (MF.getName() == EDIRetpolineName)
ThunkReg = X86::EDI;
else
llvm_unreachable("Invalid thunk name on x86-32!");
}
const TargetInstrInfo *TII = MF.getSubtarget<X86Subtarget>().getInstrInfo();
assert (MF.size() == 1);
MachineBasicBlock *Entry = &MF.front();
Entry->clear();
MachineBasicBlock *CaptureSpec =
MF.CreateMachineBasicBlock(Entry->getBasicBlock());
MachineBasicBlock *CallTarget =
MF.CreateMachineBasicBlock(Entry->getBasicBlock());
MCSymbol *TargetSym = MF.getContext().createTempSymbol();
MF.push_back(CaptureSpec);
MF.push_back(CallTarget);
const unsigned CallOpc = Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32;
const unsigned RetOpc = Is64Bit ? X86::RET64 : X86::RET32;
Entry->addLiveIn(ThunkReg);
BuildMI(Entry, DebugLoc(), TII->get(CallOpc)).addSym(TargetSym);
// The MIR verifier thinks that the CALL in the entry block will fall through
// to CaptureSpec, so mark it as the successor. Technically, CaptureTarget is
// the successor, but the MIR verifier doesn't know how to cope with that.
Entry->addSuccessor(CaptureSpec);
// In the capture loop for speculation, we want to stop the processor from
// speculating as fast as possible. On Intel processors, the PAUSE instruction
// will block speculation without consuming any execution resources. On AMD
// processors, the PAUSE instruction is (essentially) a nop, so we also use an
// LFENCE instruction which they have advised will stop speculation as well
// with minimal resource utilization. We still end the capture with a jump to
// form an infinite loop to fully guarantee that no matter what implementation
// of the x86 ISA, speculating this code path never escapes.
BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::PAUSE));
BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::LFENCE));
BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::JMP_1)).addMBB(CaptureSpec);
CaptureSpec->setMachineBlockAddressTaken();
CaptureSpec->addSuccessor(CaptureSpec);
CallTarget->addLiveIn(ThunkReg);
CallTarget->setMachineBlockAddressTaken();
CallTarget->setAlignment(Align(16));
// Insert return address clobber
const unsigned MovOpc = Is64Bit ? X86::MOV64mr : X86::MOV32mr;
const Register SPReg = Is64Bit ? X86::RSP : X86::ESP;
addRegOffset(BuildMI(CallTarget, DebugLoc(), TII->get(MovOpc)), SPReg, false,
0)
.addReg(ThunkReg);
CallTarget->back().setPreInstrSymbol(MF, TargetSym);
BuildMI(CallTarget, DebugLoc(), TII->get(RetOpc));
}
FunctionPass *llvm::createX86IndirectThunksPass() {
return new X86IndirectThunks();
}
char X86IndirectThunks::ID = 0;
bool X86IndirectThunks::doInitialization(Module &M) {
initTIs(M, TIs);
return false;
}
bool X86IndirectThunks::runOnMachineFunction(MachineFunction &MF) {
LLVM_DEBUG(dbgs() << getPassName() << '\n');
auto &MMI = getAnalysis<MachineModuleInfoWrapperPass>().getMMI();
return runTIs(MMI, MF, TIs);
}