mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-27 03:56:08 +00:00

In most cases, SETCC lowering will be able to simplify/commute the comparison by adjusting the constant. TODO: We still need to adjust ExtraCost based on CostKind Fixes #80122
6688 lines
311 KiB
C++
6688 lines
311 KiB
C++
//===-- X86TargetTransformInfo.cpp - X86 specific TTI pass ----------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file implements a TargetTransformInfo analysis pass specific to the
|
|
/// X86 target machine. It uses the target's detailed information to provide
|
|
/// more precise answers to certain TTI queries, while letting the target
|
|
/// independent and default TTI implementations handle the rest.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
/// About Cost Model numbers used below it's necessary to say the following:
|
|
/// the numbers correspond to some "generic" X86 CPU instead of usage of a
|
|
/// specific CPU model. Usually the numbers correspond to the CPU where the
|
|
/// feature first appeared. For example, if we do Subtarget.hasSSE42() in
|
|
/// the lookups below the cost is based on Nehalem as that was the first CPU
|
|
/// to support that feature level and thus has most likely the worst case cost,
|
|
/// although we may discard an outlying worst cost from one CPU (e.g. Atom).
|
|
///
|
|
/// Some examples of other technologies/CPUs:
|
|
/// SSE 3 - Pentium4 / Athlon64
|
|
/// SSE 4.1 - Penryn
|
|
/// SSE 4.2 - Nehalem / Silvermont
|
|
/// AVX - Sandy Bridge / Jaguar / Bulldozer
|
|
/// AVX2 - Haswell / Ryzen
|
|
/// AVX-512 - Xeon Phi / Skylake
|
|
///
|
|
/// And some examples of instruction target dependent costs (latency)
|
|
/// divss sqrtss rsqrtss
|
|
/// AMD K7 11-16 19 3
|
|
/// Piledriver 9-24 13-15 5
|
|
/// Jaguar 14 16 2
|
|
/// Pentium II,III 18 30 2
|
|
/// Nehalem 7-14 7-18 3
|
|
/// Haswell 10-13 11 5
|
|
///
|
|
/// Interpreting the 4 TargetCostKind types:
|
|
/// TCK_RecipThroughput and TCK_Latency should try to match the worst case
|
|
/// values reported by the CPU scheduler models (and llvm-mca).
|
|
/// TCK_CodeSize should match the instruction count (e.g. divss = 1), NOT the
|
|
/// actual encoding size of the instruction.
|
|
/// TCK_SizeAndLatency should match the worst case micro-op counts reported by
|
|
/// by the CPU scheduler models (and llvm-mca), to ensure that they are
|
|
/// compatible with the MicroOpBufferSize and LoopMicroOpBufferSize values which are
|
|
/// often used as the cost thresholds where TCK_SizeAndLatency is requested.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86TargetTransformInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/CodeGen/BasicTTIImpl.h"
|
|
#include "llvm/CodeGen/CostTable.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include <optional>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "x86tti"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// X86 cost model.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Helper struct to store/access costs for each cost kind.
|
|
// TODO: Move this to allow other targets to use it?
|
|
struct CostKindCosts {
|
|
unsigned RecipThroughputCost = ~0U;
|
|
unsigned LatencyCost = ~0U;
|
|
unsigned CodeSizeCost = ~0U;
|
|
unsigned SizeAndLatencyCost = ~0U;
|
|
|
|
std::optional<unsigned>
|
|
operator[](TargetTransformInfo::TargetCostKind Kind) const {
|
|
unsigned Cost = ~0U;
|
|
switch (Kind) {
|
|
case TargetTransformInfo::TCK_RecipThroughput:
|
|
Cost = RecipThroughputCost;
|
|
break;
|
|
case TargetTransformInfo::TCK_Latency:
|
|
Cost = LatencyCost;
|
|
break;
|
|
case TargetTransformInfo::TCK_CodeSize:
|
|
Cost = CodeSizeCost;
|
|
break;
|
|
case TargetTransformInfo::TCK_SizeAndLatency:
|
|
Cost = SizeAndLatencyCost;
|
|
break;
|
|
}
|
|
if (Cost == ~0U)
|
|
return std::nullopt;
|
|
return Cost;
|
|
}
|
|
};
|
|
using CostKindTblEntry = CostTblEntryT<CostKindCosts>;
|
|
|
|
TargetTransformInfo::PopcntSupportKind
|
|
X86TTIImpl::getPopcntSupport(unsigned TyWidth) {
|
|
assert(isPowerOf2_32(TyWidth) && "Ty width must be power of 2");
|
|
// TODO: Currently the __builtin_popcount() implementation using SSE3
|
|
// instructions is inefficient. Once the problem is fixed, we should
|
|
// call ST->hasSSE3() instead of ST->hasPOPCNT().
|
|
return ST->hasPOPCNT() ? TTI::PSK_FastHardware : TTI::PSK_Software;
|
|
}
|
|
|
|
std::optional<unsigned> X86TTIImpl::getCacheSize(
|
|
TargetTransformInfo::CacheLevel Level) const {
|
|
switch (Level) {
|
|
case TargetTransformInfo::CacheLevel::L1D:
|
|
// - Penryn
|
|
// - Nehalem
|
|
// - Westmere
|
|
// - Sandy Bridge
|
|
// - Ivy Bridge
|
|
// - Haswell
|
|
// - Broadwell
|
|
// - Skylake
|
|
// - Kabylake
|
|
return 32 * 1024; // 32 KByte
|
|
case TargetTransformInfo::CacheLevel::L2D:
|
|
// - Penryn
|
|
// - Nehalem
|
|
// - Westmere
|
|
// - Sandy Bridge
|
|
// - Ivy Bridge
|
|
// - Haswell
|
|
// - Broadwell
|
|
// - Skylake
|
|
// - Kabylake
|
|
return 256 * 1024; // 256 KByte
|
|
}
|
|
|
|
llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
|
|
}
|
|
|
|
std::optional<unsigned> X86TTIImpl::getCacheAssociativity(
|
|
TargetTransformInfo::CacheLevel Level) const {
|
|
// - Penryn
|
|
// - Nehalem
|
|
// - Westmere
|
|
// - Sandy Bridge
|
|
// - Ivy Bridge
|
|
// - Haswell
|
|
// - Broadwell
|
|
// - Skylake
|
|
// - Kabylake
|
|
switch (Level) {
|
|
case TargetTransformInfo::CacheLevel::L1D:
|
|
[[fallthrough]];
|
|
case TargetTransformInfo::CacheLevel::L2D:
|
|
return 8;
|
|
}
|
|
|
|
llvm_unreachable("Unknown TargetTransformInfo::CacheLevel");
|
|
}
|
|
|
|
unsigned X86TTIImpl::getNumberOfRegisters(unsigned ClassID) const {
|
|
bool Vector = (ClassID == 1);
|
|
if (Vector && !ST->hasSSE1())
|
|
return 0;
|
|
|
|
if (ST->is64Bit()) {
|
|
if (Vector && ST->hasAVX512())
|
|
return 32;
|
|
return 16;
|
|
}
|
|
return 8;
|
|
}
|
|
|
|
TypeSize
|
|
X86TTIImpl::getRegisterBitWidth(TargetTransformInfo::RegisterKind K) const {
|
|
unsigned PreferVectorWidth = ST->getPreferVectorWidth();
|
|
switch (K) {
|
|
case TargetTransformInfo::RGK_Scalar:
|
|
return TypeSize::getFixed(ST->is64Bit() ? 64 : 32);
|
|
case TargetTransformInfo::RGK_FixedWidthVector:
|
|
if (ST->hasAVX512() && ST->hasEVEX512() && PreferVectorWidth >= 512)
|
|
return TypeSize::getFixed(512);
|
|
if (ST->hasAVX() && PreferVectorWidth >= 256)
|
|
return TypeSize::getFixed(256);
|
|
if (ST->hasSSE1() && PreferVectorWidth >= 128)
|
|
return TypeSize::getFixed(128);
|
|
return TypeSize::getFixed(0);
|
|
case TargetTransformInfo::RGK_ScalableVector:
|
|
return TypeSize::getScalable(0);
|
|
}
|
|
|
|
llvm_unreachable("Unsupported register kind");
|
|
}
|
|
|
|
unsigned X86TTIImpl::getLoadStoreVecRegBitWidth(unsigned) const {
|
|
return getRegisterBitWidth(TargetTransformInfo::RGK_FixedWidthVector)
|
|
.getFixedValue();
|
|
}
|
|
|
|
unsigned X86TTIImpl::getMaxInterleaveFactor(ElementCount VF) {
|
|
// If the loop will not be vectorized, don't interleave the loop.
|
|
// Let regular unroll to unroll the loop, which saves the overflow
|
|
// check and memory check cost.
|
|
if (VF.isScalar())
|
|
return 1;
|
|
|
|
if (ST->isAtom())
|
|
return 1;
|
|
|
|
// Sandybridge and Haswell have multiple execution ports and pipelined
|
|
// vector units.
|
|
if (ST->hasAVX())
|
|
return 4;
|
|
|
|
return 2;
|
|
}
|
|
|
|
InstructionCost X86TTIImpl::getArithmeticInstrCost(
|
|
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
|
|
TTI::OperandValueInfo Op1Info, TTI::OperandValueInfo Op2Info,
|
|
ArrayRef<const Value *> Args,
|
|
const Instruction *CxtI) {
|
|
|
|
// vXi8 multiplications are always promoted to vXi16.
|
|
// Sub-128-bit types can be extended/packed more efficiently.
|
|
if (Opcode == Instruction::Mul && Ty->isVectorTy() &&
|
|
Ty->getPrimitiveSizeInBits() <= 64 && Ty->getScalarSizeInBits() == 8) {
|
|
Type *WideVecTy =
|
|
VectorType::getExtendedElementVectorType(cast<VectorType>(Ty));
|
|
return getCastInstrCost(Instruction::ZExt, WideVecTy, Ty,
|
|
TargetTransformInfo::CastContextHint::None,
|
|
CostKind) +
|
|
getCastInstrCost(Instruction::Trunc, Ty, WideVecTy,
|
|
TargetTransformInfo::CastContextHint::None,
|
|
CostKind) +
|
|
getArithmeticInstrCost(Opcode, WideVecTy, CostKind, Op1Info, Op2Info);
|
|
}
|
|
|
|
// Legalize the type.
|
|
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
|
|
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
if (ISD == ISD::MUL && Args.size() == 2 && LT.second.isVector() &&
|
|
(LT.second.getScalarType() == MVT::i32 ||
|
|
LT.second.getScalarType() == MVT::i64)) {
|
|
// Check if the operands can be represented as a smaller datatype.
|
|
bool Op1Signed = false, Op2Signed = false;
|
|
unsigned Op1MinSize = BaseT::minRequiredElementSize(Args[0], Op1Signed);
|
|
unsigned Op2MinSize = BaseT::minRequiredElementSize(Args[1], Op2Signed);
|
|
unsigned OpMinSize = std::max(Op1MinSize, Op2MinSize);
|
|
bool SignedMode = Op1Signed || Op2Signed;
|
|
|
|
// If both vXi32 are representable as i15 and at least one is constant,
|
|
// zero-extended, or sign-extended from vXi16 (or less pre-SSE41) then we
|
|
// can treat this as PMADDWD which has the same costs as a vXi16 multiply.
|
|
if (OpMinSize <= 15 && !ST->isPMADDWDSlow() &&
|
|
LT.second.getScalarType() == MVT::i32) {
|
|
bool Op1Constant =
|
|
isa<ConstantDataVector>(Args[0]) || isa<ConstantVector>(Args[0]);
|
|
bool Op2Constant =
|
|
isa<ConstantDataVector>(Args[1]) || isa<ConstantVector>(Args[1]);
|
|
bool Op1Sext = isa<SExtInst>(Args[0]) &&
|
|
(Op1MinSize == 15 || (Op1MinSize < 15 && !ST->hasSSE41()));
|
|
bool Op2Sext = isa<SExtInst>(Args[1]) &&
|
|
(Op2MinSize == 15 || (Op2MinSize < 15 && !ST->hasSSE41()));
|
|
|
|
bool IsZeroExtended = !Op1Signed || !Op2Signed;
|
|
bool IsConstant = Op1Constant || Op2Constant;
|
|
bool IsSext = Op1Sext || Op2Sext;
|
|
if (IsConstant || IsZeroExtended || IsSext)
|
|
LT.second =
|
|
MVT::getVectorVT(MVT::i16, 2 * LT.second.getVectorNumElements());
|
|
}
|
|
|
|
// Check if the vXi32 operands can be shrunk into a smaller datatype.
|
|
// This should match the codegen from reduceVMULWidth.
|
|
// TODO: Make this generic (!ST->SSE41 || ST->isPMULLDSlow()).
|
|
if (ST->useSLMArithCosts() && LT.second == MVT::v4i32) {
|
|
if (OpMinSize <= 7)
|
|
return LT.first * 3; // pmullw/sext
|
|
if (!SignedMode && OpMinSize <= 8)
|
|
return LT.first * 3; // pmullw/zext
|
|
if (OpMinSize <= 15)
|
|
return LT.first * 5; // pmullw/pmulhw/pshuf
|
|
if (!SignedMode && OpMinSize <= 16)
|
|
return LT.first * 5; // pmullw/pmulhw/pshuf
|
|
}
|
|
|
|
// If both vXi64 are representable as (unsigned) i32, then we can perform
|
|
// the multiple with a single PMULUDQ instruction.
|
|
// TODO: Add (SSE41+) PMULDQ handling for signed extensions.
|
|
if (!SignedMode && OpMinSize <= 32 && LT.second.getScalarType() == MVT::i64)
|
|
ISD = X86ISD::PMULUDQ;
|
|
}
|
|
|
|
// Vector multiply by pow2 will be simplified to shifts.
|
|
// Vector multiply by -pow2 will be simplified to shifts/negates.
|
|
if (ISD == ISD::MUL && Op2Info.isConstant() &&
|
|
(Op2Info.isPowerOf2() || Op2Info.isNegatedPowerOf2())) {
|
|
InstructionCost Cost =
|
|
getArithmeticInstrCost(Instruction::Shl, Ty, CostKind,
|
|
Op1Info.getNoProps(), Op2Info.getNoProps());
|
|
if (Op2Info.isNegatedPowerOf2())
|
|
Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind);
|
|
return Cost;
|
|
}
|
|
|
|
// On X86, vector signed division by constants power-of-two are
|
|
// normally expanded to the sequence SRA + SRL + ADD + SRA.
|
|
// The OperandValue properties may not be the same as that of the previous
|
|
// operation; conservatively assume OP_None.
|
|
if ((ISD == ISD::SDIV || ISD == ISD::SREM) &&
|
|
Op2Info.isConstant() && Op2Info.isPowerOf2()) {
|
|
InstructionCost Cost =
|
|
2 * getArithmeticInstrCost(Instruction::AShr, Ty, CostKind,
|
|
Op1Info.getNoProps(), Op2Info.getNoProps());
|
|
Cost += getArithmeticInstrCost(Instruction::LShr, Ty, CostKind,
|
|
Op1Info.getNoProps(), Op2Info.getNoProps());
|
|
Cost += getArithmeticInstrCost(Instruction::Add, Ty, CostKind,
|
|
Op1Info.getNoProps(), Op2Info.getNoProps());
|
|
|
|
if (ISD == ISD::SREM) {
|
|
// For SREM: (X % C) is the equivalent of (X - (X/C)*C)
|
|
Cost += getArithmeticInstrCost(Instruction::Mul, Ty, CostKind, Op1Info.getNoProps(),
|
|
Op2Info.getNoProps());
|
|
Cost += getArithmeticInstrCost(Instruction::Sub, Ty, CostKind, Op1Info.getNoProps(),
|
|
Op2Info.getNoProps());
|
|
}
|
|
|
|
return Cost;
|
|
}
|
|
|
|
// Vector unsigned division/remainder will be simplified to shifts/masks.
|
|
if ((ISD == ISD::UDIV || ISD == ISD::UREM) &&
|
|
Op2Info.isConstant() && Op2Info.isPowerOf2()) {
|
|
if (ISD == ISD::UDIV)
|
|
return getArithmeticInstrCost(Instruction::LShr, Ty, CostKind,
|
|
Op1Info.getNoProps(), Op2Info.getNoProps());
|
|
// UREM
|
|
return getArithmeticInstrCost(Instruction::And, Ty, CostKind,
|
|
Op1Info.getNoProps(), Op2Info.getNoProps());
|
|
}
|
|
|
|
static const CostKindTblEntry AVX512BWUniformConstCostTable[] = {
|
|
{ ISD::SHL, MVT::v16i8, { 1, 7, 2, 3 } }, // psllw + pand.
|
|
{ ISD::SRL, MVT::v16i8, { 1, 7, 2, 3 } }, // psrlw + pand.
|
|
{ ISD::SRA, MVT::v16i8, { 1, 8, 4, 5 } }, // psrlw, pand, pxor, psubb.
|
|
{ ISD::SHL, MVT::v32i8, { 1, 8, 2, 3 } }, // psllw + pand.
|
|
{ ISD::SRL, MVT::v32i8, { 1, 8, 2, 3 } }, // psrlw + pand.
|
|
{ ISD::SRA, MVT::v32i8, { 1, 9, 4, 5 } }, // psrlw, pand, pxor, psubb.
|
|
{ ISD::SHL, MVT::v64i8, { 1, 8, 2, 3 } }, // psllw + pand.
|
|
{ ISD::SRL, MVT::v64i8, { 1, 8, 2, 3 } }, // psrlw + pand.
|
|
{ ISD::SRA, MVT::v64i8, { 1, 9, 4, 6 } }, // psrlw, pand, pxor, psubb.
|
|
|
|
{ ISD::SHL, MVT::v16i16, { 1, 1, 1, 1 } }, // psllw
|
|
{ ISD::SRL, MVT::v16i16, { 1, 1, 1, 1 } }, // psrlw
|
|
{ ISD::SRA, MVT::v16i16, { 1, 1, 1, 1 } }, // psrlw
|
|
{ ISD::SHL, MVT::v32i16, { 1, 1, 1, 1 } }, // psllw
|
|
{ ISD::SRL, MVT::v32i16, { 1, 1, 1, 1 } }, // psrlw
|
|
{ ISD::SRA, MVT::v32i16, { 1, 1, 1, 1 } }, // psrlw
|
|
};
|
|
|
|
if (Op2Info.isUniform() && Op2Info.isConstant() && ST->hasBWI())
|
|
if (const auto *Entry =
|
|
CostTableLookup(AVX512BWUniformConstCostTable, ISD, LT.second))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * *KindCost;
|
|
|
|
static const CostKindTblEntry AVX512UniformConstCostTable[] = {
|
|
{ ISD::SHL, MVT::v64i8, { 2, 12, 5, 6 } }, // psllw + pand.
|
|
{ ISD::SRL, MVT::v64i8, { 2, 12, 5, 6 } }, // psrlw + pand.
|
|
{ ISD::SRA, MVT::v64i8, { 3, 10, 12, 12 } }, // psrlw, pand, pxor, psubb.
|
|
|
|
{ ISD::SHL, MVT::v16i16, { 2, 7, 4, 4 } }, // psllw + split.
|
|
{ ISD::SRL, MVT::v16i16, { 2, 7, 4, 4 } }, // psrlw + split.
|
|
{ ISD::SRA, MVT::v16i16, { 2, 7, 4, 4 } }, // psraw + split.
|
|
|
|
{ ISD::SHL, MVT::v8i32, { 1, 1, 1, 1 } }, // pslld
|
|
{ ISD::SRL, MVT::v8i32, { 1, 1, 1, 1 } }, // psrld
|
|
{ ISD::SRA, MVT::v8i32, { 1, 1, 1, 1 } }, // psrad
|
|
{ ISD::SHL, MVT::v16i32, { 1, 1, 1, 1 } }, // pslld
|
|
{ ISD::SRL, MVT::v16i32, { 1, 1, 1, 1 } }, // psrld
|
|
{ ISD::SRA, MVT::v16i32, { 1, 1, 1, 1 } }, // psrad
|
|
|
|
{ ISD::SRA, MVT::v2i64, { 1, 1, 1, 1 } }, // psraq
|
|
{ ISD::SHL, MVT::v4i64, { 1, 1, 1, 1 } }, // psllq
|
|
{ ISD::SRL, MVT::v4i64, { 1, 1, 1, 1 } }, // psrlq
|
|
{ ISD::SRA, MVT::v4i64, { 1, 1, 1, 1 } }, // psraq
|
|
{ ISD::SHL, MVT::v8i64, { 1, 1, 1, 1 } }, // psllq
|
|
{ ISD::SRL, MVT::v8i64, { 1, 1, 1, 1 } }, // psrlq
|
|
{ ISD::SRA, MVT::v8i64, { 1, 1, 1, 1 } }, // psraq
|
|
|
|
{ ISD::SDIV, MVT::v16i32, { 6 } }, // pmuludq sequence
|
|
{ ISD::SREM, MVT::v16i32, { 8 } }, // pmuludq+mul+sub sequence
|
|
{ ISD::UDIV, MVT::v16i32, { 5 } }, // pmuludq sequence
|
|
{ ISD::UREM, MVT::v16i32, { 7 } }, // pmuludq+mul+sub sequence
|
|
};
|
|
|
|
if (Op2Info.isUniform() && Op2Info.isConstant() && ST->hasAVX512())
|
|
if (const auto *Entry =
|
|
CostTableLookup(AVX512UniformConstCostTable, ISD, LT.second))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * *KindCost;
|
|
|
|
static const CostKindTblEntry AVX2UniformConstCostTable[] = {
|
|
{ ISD::SHL, MVT::v16i8, { 1, 8, 2, 3 } }, // psllw + pand.
|
|
{ ISD::SRL, MVT::v16i8, { 1, 8, 2, 3 } }, // psrlw + pand.
|
|
{ ISD::SRA, MVT::v16i8, { 2, 10, 5, 6 } }, // psrlw, pand, pxor, psubb.
|
|
{ ISD::SHL, MVT::v32i8, { 2, 8, 2, 4 } }, // psllw + pand.
|
|
{ ISD::SRL, MVT::v32i8, { 2, 8, 2, 4 } }, // psrlw + pand.
|
|
{ ISD::SRA, MVT::v32i8, { 3, 10, 5, 9 } }, // psrlw, pand, pxor, psubb.
|
|
|
|
{ ISD::SHL, MVT::v8i16, { 1, 1, 1, 1 } }, // psllw
|
|
{ ISD::SRL, MVT::v8i16, { 1, 1, 1, 1 } }, // psrlw
|
|
{ ISD::SRA, MVT::v8i16, { 1, 1, 1, 1 } }, // psraw
|
|
{ ISD::SHL, MVT::v16i16,{ 2, 2, 1, 2 } }, // psllw
|
|
{ ISD::SRL, MVT::v16i16,{ 2, 2, 1, 2 } }, // psrlw
|
|
{ ISD::SRA, MVT::v16i16,{ 2, 2, 1, 2 } }, // psraw
|
|
|
|
{ ISD::SHL, MVT::v4i32, { 1, 1, 1, 1 } }, // pslld
|
|
{ ISD::SRL, MVT::v4i32, { 1, 1, 1, 1 } }, // psrld
|
|
{ ISD::SRA, MVT::v4i32, { 1, 1, 1, 1 } }, // psrad
|
|
{ ISD::SHL, MVT::v8i32, { 2, 2, 1, 2 } }, // pslld
|
|
{ ISD::SRL, MVT::v8i32, { 2, 2, 1, 2 } }, // psrld
|
|
{ ISD::SRA, MVT::v8i32, { 2, 2, 1, 2 } }, // psrad
|
|
|
|
{ ISD::SHL, MVT::v2i64, { 1, 1, 1, 1 } }, // psllq
|
|
{ ISD::SRL, MVT::v2i64, { 1, 1, 1, 1 } }, // psrlq
|
|
{ ISD::SRA, MVT::v2i64, { 2, 3, 3, 3 } }, // psrad + shuffle.
|
|
{ ISD::SHL, MVT::v4i64, { 2, 2, 1, 2 } }, // psllq
|
|
{ ISD::SRL, MVT::v4i64, { 2, 2, 1, 2 } }, // psrlq
|
|
{ ISD::SRA, MVT::v4i64, { 4, 4, 3, 6 } }, // psrad + shuffle + split.
|
|
|
|
{ ISD::SDIV, MVT::v8i32, { 6 } }, // pmuludq sequence
|
|
{ ISD::SREM, MVT::v8i32, { 8 } }, // pmuludq+mul+sub sequence
|
|
{ ISD::UDIV, MVT::v8i32, { 5 } }, // pmuludq sequence
|
|
{ ISD::UREM, MVT::v8i32, { 7 } }, // pmuludq+mul+sub sequence
|
|
};
|
|
|
|
if (Op2Info.isUniform() && Op2Info.isConstant() && ST->hasAVX2())
|
|
if (const auto *Entry =
|
|
CostTableLookup(AVX2UniformConstCostTable, ISD, LT.second))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * *KindCost;
|
|
|
|
static const CostKindTblEntry AVXUniformConstCostTable[] = {
|
|
{ ISD::SHL, MVT::v16i8, { 2, 7, 2, 3 } }, // psllw + pand.
|
|
{ ISD::SRL, MVT::v16i8, { 2, 7, 2, 3 } }, // psrlw + pand.
|
|
{ ISD::SRA, MVT::v16i8, { 3, 9, 5, 6 } }, // psrlw, pand, pxor, psubb.
|
|
{ ISD::SHL, MVT::v32i8, { 4, 7, 7, 8 } }, // 2*(psllw + pand) + split.
|
|
{ ISD::SRL, MVT::v32i8, { 4, 7, 7, 8 } }, // 2*(psrlw + pand) + split.
|
|
{ ISD::SRA, MVT::v32i8, { 7, 7, 12, 13 } }, // 2*(psrlw, pand, pxor, psubb) + split.
|
|
|
|
{ ISD::SHL, MVT::v8i16, { 1, 2, 1, 1 } }, // psllw.
|
|
{ ISD::SRL, MVT::v8i16, { 1, 2, 1, 1 } }, // psrlw.
|
|
{ ISD::SRA, MVT::v8i16, { 1, 2, 1, 1 } }, // psraw.
|
|
{ ISD::SHL, MVT::v16i16,{ 3, 6, 4, 5 } }, // psllw + split.
|
|
{ ISD::SRL, MVT::v16i16,{ 3, 6, 4, 5 } }, // psrlw + split.
|
|
{ ISD::SRA, MVT::v16i16,{ 3, 6, 4, 5 } }, // psraw + split.
|
|
|
|
{ ISD::SHL, MVT::v4i32, { 1, 2, 1, 1 } }, // pslld.
|
|
{ ISD::SRL, MVT::v4i32, { 1, 2, 1, 1 } }, // psrld.
|
|
{ ISD::SRA, MVT::v4i32, { 1, 2, 1, 1 } }, // psrad.
|
|
{ ISD::SHL, MVT::v8i32, { 3, 6, 4, 5 } }, // pslld + split.
|
|
{ ISD::SRL, MVT::v8i32, { 3, 6, 4, 5 } }, // psrld + split.
|
|
{ ISD::SRA, MVT::v8i32, { 3, 6, 4, 5 } }, // psrad + split.
|
|
|
|
{ ISD::SHL, MVT::v2i64, { 1, 2, 1, 1 } }, // psllq.
|
|
{ ISD::SRL, MVT::v2i64, { 1, 2, 1, 1 } }, // psrlq.
|
|
{ ISD::SRA, MVT::v2i64, { 2, 3, 3, 3 } }, // psrad + shuffle.
|
|
{ ISD::SHL, MVT::v4i64, { 3, 6, 4, 5 } }, // 2 x psllq + split.
|
|
{ ISD::SRL, MVT::v4i64, { 3, 6, 4, 5 } }, // 2 x psllq + split.
|
|
{ ISD::SRA, MVT::v4i64, { 5, 7, 8, 9 } }, // 2 x psrad + shuffle + split.
|
|
|
|
{ ISD::SDIV, MVT::v8i32, { 14 } }, // 2*pmuludq sequence + split.
|
|
{ ISD::SREM, MVT::v8i32, { 18 } }, // 2*pmuludq+mul+sub sequence + split.
|
|
{ ISD::UDIV, MVT::v8i32, { 12 } }, // 2*pmuludq sequence + split.
|
|
{ ISD::UREM, MVT::v8i32, { 16 } }, // 2*pmuludq+mul+sub sequence + split.
|
|
};
|
|
|
|
// XOP has faster vXi8 shifts.
|
|
if (Op2Info.isUniform() && Op2Info.isConstant() && ST->hasAVX() &&
|
|
(!ST->hasXOP() || LT.second.getScalarSizeInBits() != 8))
|
|
if (const auto *Entry =
|
|
CostTableLookup(AVXUniformConstCostTable, ISD, LT.second))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * *KindCost;
|
|
|
|
static const CostKindTblEntry SSE2UniformConstCostTable[] = {
|
|
{ ISD::SHL, MVT::v16i8, { 1, 7, 2, 3 } }, // psllw + pand.
|
|
{ ISD::SRL, MVT::v16i8, { 1, 7, 2, 3 } }, // psrlw + pand.
|
|
{ ISD::SRA, MVT::v16i8, { 3, 9, 5, 6 } }, // psrlw, pand, pxor, psubb.
|
|
|
|
{ ISD::SHL, MVT::v8i16, { 1, 1, 1, 1 } }, // psllw.
|
|
{ ISD::SRL, MVT::v8i16, { 1, 1, 1, 1 } }, // psrlw.
|
|
{ ISD::SRA, MVT::v8i16, { 1, 1, 1, 1 } }, // psraw.
|
|
|
|
{ ISD::SHL, MVT::v4i32, { 1, 1, 1, 1 } }, // pslld
|
|
{ ISD::SRL, MVT::v4i32, { 1, 1, 1, 1 } }, // psrld.
|
|
{ ISD::SRA, MVT::v4i32, { 1, 1, 1, 1 } }, // psrad.
|
|
|
|
{ ISD::SHL, MVT::v2i64, { 1, 1, 1, 1 } }, // psllq.
|
|
{ ISD::SRL, MVT::v2i64, { 1, 1, 1, 1 } }, // psrlq.
|
|
{ ISD::SRA, MVT::v2i64, { 3, 5, 6, 6 } }, // 2 x psrad + shuffle.
|
|
|
|
{ ISD::SDIV, MVT::v4i32, { 6 } }, // pmuludq sequence
|
|
{ ISD::SREM, MVT::v4i32, { 8 } }, // pmuludq+mul+sub sequence
|
|
{ ISD::UDIV, MVT::v4i32, { 5 } }, // pmuludq sequence
|
|
{ ISD::UREM, MVT::v4i32, { 7 } }, // pmuludq+mul+sub sequence
|
|
};
|
|
|
|
// XOP has faster vXi8 shifts.
|
|
if (Op2Info.isUniform() && Op2Info.isConstant() && ST->hasSSE2() &&
|
|
(!ST->hasXOP() || LT.second.getScalarSizeInBits() != 8))
|
|
if (const auto *Entry =
|
|
CostTableLookup(SSE2UniformConstCostTable, ISD, LT.second))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * *KindCost;
|
|
|
|
static const CostKindTblEntry AVX512BWConstCostTable[] = {
|
|
{ ISD::SDIV, MVT::v64i8, { 14 } }, // 2*ext+2*pmulhw sequence
|
|
{ ISD::SREM, MVT::v64i8, { 16 } }, // 2*ext+2*pmulhw+mul+sub sequence
|
|
{ ISD::UDIV, MVT::v64i8, { 14 } }, // 2*ext+2*pmulhw sequence
|
|
{ ISD::UREM, MVT::v64i8, { 16 } }, // 2*ext+2*pmulhw+mul+sub sequence
|
|
|
|
{ ISD::SDIV, MVT::v32i16, { 6 } }, // vpmulhw sequence
|
|
{ ISD::SREM, MVT::v32i16, { 8 } }, // vpmulhw+mul+sub sequence
|
|
{ ISD::UDIV, MVT::v32i16, { 6 } }, // vpmulhuw sequence
|
|
{ ISD::UREM, MVT::v32i16, { 8 } }, // vpmulhuw+mul+sub sequence
|
|
};
|
|
|
|
if (Op2Info.isConstant() && ST->hasBWI())
|
|
if (const auto *Entry =
|
|
CostTableLookup(AVX512BWConstCostTable, ISD, LT.second))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * *KindCost;
|
|
|
|
static const CostKindTblEntry AVX512ConstCostTable[] = {
|
|
{ ISD::SDIV, MVT::v64i8, { 28 } }, // 4*ext+4*pmulhw sequence
|
|
{ ISD::SREM, MVT::v64i8, { 32 } }, // 4*ext+4*pmulhw+mul+sub sequence
|
|
{ ISD::UDIV, MVT::v64i8, { 28 } }, // 4*ext+4*pmulhw sequence
|
|
{ ISD::UREM, MVT::v64i8, { 32 } }, // 4*ext+4*pmulhw+mul+sub sequence
|
|
|
|
{ ISD::SDIV, MVT::v32i16, { 12 } }, // 2*vpmulhw sequence
|
|
{ ISD::SREM, MVT::v32i16, { 16 } }, // 2*vpmulhw+mul+sub sequence
|
|
{ ISD::UDIV, MVT::v32i16, { 12 } }, // 2*vpmulhuw sequence
|
|
{ ISD::UREM, MVT::v32i16, { 16 } }, // 2*vpmulhuw+mul+sub sequence
|
|
|
|
{ ISD::SDIV, MVT::v16i32, { 15 } }, // vpmuldq sequence
|
|
{ ISD::SREM, MVT::v16i32, { 17 } }, // vpmuldq+mul+sub sequence
|
|
{ ISD::UDIV, MVT::v16i32, { 15 } }, // vpmuludq sequence
|
|
{ ISD::UREM, MVT::v16i32, { 17 } }, // vpmuludq+mul+sub sequence
|
|
};
|
|
|
|
if (Op2Info.isConstant() && ST->hasAVX512())
|
|
if (const auto *Entry =
|
|
CostTableLookup(AVX512ConstCostTable, ISD, LT.second))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * *KindCost;
|
|
|
|
static const CostKindTblEntry AVX2ConstCostTable[] = {
|
|
{ ISD::SDIV, MVT::v32i8, { 14 } }, // 2*ext+2*pmulhw sequence
|
|
{ ISD::SREM, MVT::v32i8, { 16 } }, // 2*ext+2*pmulhw+mul+sub sequence
|
|
{ ISD::UDIV, MVT::v32i8, { 14 } }, // 2*ext+2*pmulhw sequence
|
|
{ ISD::UREM, MVT::v32i8, { 16 } }, // 2*ext+2*pmulhw+mul+sub sequence
|
|
|
|
{ ISD::SDIV, MVT::v16i16, { 6 } }, // vpmulhw sequence
|
|
{ ISD::SREM, MVT::v16i16, { 8 } }, // vpmulhw+mul+sub sequence
|
|
{ ISD::UDIV, MVT::v16i16, { 6 } }, // vpmulhuw sequence
|
|
{ ISD::UREM, MVT::v16i16, { 8 } }, // vpmulhuw+mul+sub sequence
|
|
|
|
{ ISD::SDIV, MVT::v8i32, { 15 } }, // vpmuldq sequence
|
|
{ ISD::SREM, MVT::v8i32, { 19 } }, // vpmuldq+mul+sub sequence
|
|
{ ISD::UDIV, MVT::v8i32, { 15 } }, // vpmuludq sequence
|
|
{ ISD::UREM, MVT::v8i32, { 19 } }, // vpmuludq+mul+sub sequence
|
|
};
|
|
|
|
if (Op2Info.isConstant() && ST->hasAVX2())
|
|
if (const auto *Entry = CostTableLookup(AVX2ConstCostTable, ISD, LT.second))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * *KindCost;
|
|
|
|
static const CostKindTblEntry AVXConstCostTable[] = {
|
|
{ ISD::SDIV, MVT::v32i8, { 30 } }, // 4*ext+4*pmulhw sequence + split.
|
|
{ ISD::SREM, MVT::v32i8, { 34 } }, // 4*ext+4*pmulhw+mul+sub sequence + split.
|
|
{ ISD::UDIV, MVT::v32i8, { 30 } }, // 4*ext+4*pmulhw sequence + split.
|
|
{ ISD::UREM, MVT::v32i8, { 34 } }, // 4*ext+4*pmulhw+mul+sub sequence + split.
|
|
|
|
{ ISD::SDIV, MVT::v16i16, { 14 } }, // 2*pmulhw sequence + split.
|
|
{ ISD::SREM, MVT::v16i16, { 18 } }, // 2*pmulhw+mul+sub sequence + split.
|
|
{ ISD::UDIV, MVT::v16i16, { 14 } }, // 2*pmulhuw sequence + split.
|
|
{ ISD::UREM, MVT::v16i16, { 18 } }, // 2*pmulhuw+mul+sub sequence + split.
|
|
|
|
{ ISD::SDIV, MVT::v8i32, { 32 } }, // vpmuludq sequence
|
|
{ ISD::SREM, MVT::v8i32, { 38 } }, // vpmuludq+mul+sub sequence
|
|
{ ISD::UDIV, MVT::v8i32, { 32 } }, // 2*pmuludq sequence + split.
|
|
{ ISD::UREM, MVT::v8i32, { 42 } }, // 2*pmuludq+mul+sub sequence + split.
|
|
};
|
|
|
|
if (Op2Info.isConstant() && ST->hasAVX())
|
|
if (const auto *Entry = CostTableLookup(AVXConstCostTable, ISD, LT.second))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * *KindCost;
|
|
|
|
static const CostKindTblEntry SSE41ConstCostTable[] = {
|
|
{ ISD::SDIV, MVT::v4i32, { 15 } }, // vpmuludq sequence
|
|
{ ISD::SREM, MVT::v4i32, { 20 } }, // vpmuludq+mul+sub sequence
|
|
};
|
|
|
|
if (Op2Info.isConstant() && ST->hasSSE41())
|
|
if (const auto *Entry =
|
|
CostTableLookup(SSE41ConstCostTable, ISD, LT.second))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * *KindCost;
|
|
|
|
static const CostKindTblEntry SSE2ConstCostTable[] = {
|
|
{ ISD::SDIV, MVT::v16i8, { 14 } }, // 2*ext+2*pmulhw sequence
|
|
{ ISD::SREM, MVT::v16i8, { 16 } }, // 2*ext+2*pmulhw+mul+sub sequence
|
|
{ ISD::UDIV, MVT::v16i8, { 14 } }, // 2*ext+2*pmulhw sequence
|
|
{ ISD::UREM, MVT::v16i8, { 16 } }, // 2*ext+2*pmulhw+mul+sub sequence
|
|
|
|
{ ISD::SDIV, MVT::v8i16, { 6 } }, // pmulhw sequence
|
|
{ ISD::SREM, MVT::v8i16, { 8 } }, // pmulhw+mul+sub sequence
|
|
{ ISD::UDIV, MVT::v8i16, { 6 } }, // pmulhuw sequence
|
|
{ ISD::UREM, MVT::v8i16, { 8 } }, // pmulhuw+mul+sub sequence
|
|
|
|
{ ISD::SDIV, MVT::v4i32, { 19 } }, // pmuludq sequence
|
|
{ ISD::SREM, MVT::v4i32, { 24 } }, // pmuludq+mul+sub sequence
|
|
{ ISD::UDIV, MVT::v4i32, { 15 } }, // pmuludq sequence
|
|
{ ISD::UREM, MVT::v4i32, { 20 } }, // pmuludq+mul+sub sequence
|
|
};
|
|
|
|
if (Op2Info.isConstant() && ST->hasSSE2())
|
|
if (const auto *Entry = CostTableLookup(SSE2ConstCostTable, ISD, LT.second))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * *KindCost;
|
|
|
|
static const CostKindTblEntry AVX512BWUniformCostTable[] = {
|
|
{ ISD::SHL, MVT::v16i8, { 3, 5, 5, 7 } }, // psllw + pand.
|
|
{ ISD::SRL, MVT::v16i8, { 3,10, 5, 8 } }, // psrlw + pand.
|
|
{ ISD::SRA, MVT::v16i8, { 4,12, 8,12 } }, // psrlw, pand, pxor, psubb.
|
|
{ ISD::SHL, MVT::v32i8, { 4, 7, 6, 8 } }, // psllw + pand.
|
|
{ ISD::SRL, MVT::v32i8, { 4, 8, 7, 9 } }, // psrlw + pand.
|
|
{ ISD::SRA, MVT::v32i8, { 5,10,10,13 } }, // psrlw, pand, pxor, psubb.
|
|
{ ISD::SHL, MVT::v64i8, { 4, 7, 6, 8 } }, // psllw + pand.
|
|
{ ISD::SRL, MVT::v64i8, { 4, 8, 7,10 } }, // psrlw + pand.
|
|
{ ISD::SRA, MVT::v64i8, { 5,10,10,15 } }, // psrlw, pand, pxor, psubb.
|
|
|
|
{ ISD::SHL, MVT::v32i16, { 2, 4, 2, 3 } }, // psllw
|
|
{ ISD::SRL, MVT::v32i16, { 2, 4, 2, 3 } }, // psrlw
|
|
{ ISD::SRA, MVT::v32i16, { 2, 4, 2, 3 } }, // psrqw
|
|
};
|
|
|
|
if (ST->hasBWI() && Op2Info.isUniform())
|
|
if (const auto *Entry =
|
|
CostTableLookup(AVX512BWUniformCostTable, ISD, LT.second))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * *KindCost;
|
|
|
|
static const CostKindTblEntry AVX512UniformCostTable[] = {
|
|
{ ISD::SHL, MVT::v32i16, { 5,10, 5, 7 } }, // psllw + split.
|
|
{ ISD::SRL, MVT::v32i16, { 5,10, 5, 7 } }, // psrlw + split.
|
|
{ ISD::SRA, MVT::v32i16, { 5,10, 5, 7 } }, // psraw + split.
|
|
|
|
{ ISD::SHL, MVT::v16i32, { 2, 4, 2, 3 } }, // pslld
|
|
{ ISD::SRL, MVT::v16i32, { 2, 4, 2, 3 } }, // psrld
|
|
{ ISD::SRA, MVT::v16i32, { 2, 4, 2, 3 } }, // psrad
|
|
|
|
{ ISD::SRA, MVT::v2i64, { 1, 2, 1, 2 } }, // psraq
|
|
{ ISD::SHL, MVT::v4i64, { 1, 4, 1, 2 } }, // psllq
|
|
{ ISD::SRL, MVT::v4i64, { 1, 4, 1, 2 } }, // psrlq
|
|
{ ISD::SRA, MVT::v4i64, { 1, 4, 1, 2 } }, // psraq
|
|
{ ISD::SHL, MVT::v8i64, { 1, 4, 1, 2 } }, // psllq
|
|
{ ISD::SRL, MVT::v8i64, { 1, 4, 1, 2 } }, // psrlq
|
|
{ ISD::SRA, MVT::v8i64, { 1, 4, 1, 2 } }, // psraq
|
|
};
|
|
|
|
if (ST->hasAVX512() && Op2Info.isUniform())
|
|
if (const auto *Entry =
|
|
CostTableLookup(AVX512UniformCostTable, ISD, LT.second))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * *KindCost;
|
|
|
|
static const CostKindTblEntry AVX2UniformCostTable[] = {
|
|
// Uniform splats are cheaper for the following instructions.
|
|
{ ISD::SHL, MVT::v16i8, { 3, 5, 5, 7 } }, // psllw + pand.
|
|
{ ISD::SRL, MVT::v16i8, { 3, 9, 5, 8 } }, // psrlw + pand.
|
|
{ ISD::SRA, MVT::v16i8, { 4, 5, 9,13 } }, // psrlw, pand, pxor, psubb.
|
|
{ ISD::SHL, MVT::v32i8, { 4, 7, 6, 8 } }, // psllw + pand.
|
|
{ ISD::SRL, MVT::v32i8, { 4, 8, 7, 9 } }, // psrlw + pand.
|
|
{ ISD::SRA, MVT::v32i8, { 6, 9,11,16 } }, // psrlw, pand, pxor, psubb.
|
|
|
|
{ ISD::SHL, MVT::v8i16, { 1, 2, 1, 2 } }, // psllw.
|
|
{ ISD::SRL, MVT::v8i16, { 1, 2, 1, 2 } }, // psrlw.
|
|
{ ISD::SRA, MVT::v8i16, { 1, 2, 1, 2 } }, // psraw.
|
|
{ ISD::SHL, MVT::v16i16, { 2, 4, 2, 3 } }, // psllw.
|
|
{ ISD::SRL, MVT::v16i16, { 2, 4, 2, 3 } }, // psrlw.
|
|
{ ISD::SRA, MVT::v16i16, { 2, 4, 2, 3 } }, // psraw.
|
|
|
|
{ ISD::SHL, MVT::v4i32, { 1, 2, 1, 2 } }, // pslld
|
|
{ ISD::SRL, MVT::v4i32, { 1, 2, 1, 2 } }, // psrld
|
|
{ ISD::SRA, MVT::v4i32, { 1, 2, 1, 2 } }, // psrad
|
|
{ ISD::SHL, MVT::v8i32, { 2, 4, 2, 3 } }, // pslld
|
|
{ ISD::SRL, MVT::v8i32, { 2, 4, 2, 3 } }, // psrld
|
|
{ ISD::SRA, MVT::v8i32, { 2, 4, 2, 3 } }, // psrad
|
|
|
|
{ ISD::SHL, MVT::v2i64, { 1, 2, 1, 2 } }, // psllq
|
|
{ ISD::SRL, MVT::v2i64, { 1, 2, 1, 2 } }, // psrlq
|
|
{ ISD::SRA, MVT::v2i64, { 2, 4, 5, 7 } }, // 2 x psrad + shuffle.
|
|
{ ISD::SHL, MVT::v4i64, { 2, 4, 1, 2 } }, // psllq
|
|
{ ISD::SRL, MVT::v4i64, { 2, 4, 1, 2 } }, // psrlq
|
|
{ ISD::SRA, MVT::v4i64, { 4, 6, 5, 9 } }, // 2 x psrad + shuffle.
|
|
};
|
|
|
|
if (ST->hasAVX2() && Op2Info.isUniform())
|
|
if (const auto *Entry =
|
|
CostTableLookup(AVX2UniformCostTable, ISD, LT.second))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * *KindCost;
|
|
|
|
static const CostKindTblEntry AVXUniformCostTable[] = {
|
|
{ ISD::SHL, MVT::v16i8, { 4, 4, 6, 8 } }, // psllw + pand.
|
|
{ ISD::SRL, MVT::v16i8, { 4, 8, 5, 8 } }, // psrlw + pand.
|
|
{ ISD::SRA, MVT::v16i8, { 6, 6, 9,13 } }, // psrlw, pand, pxor, psubb.
|
|
{ ISD::SHL, MVT::v32i8, { 7, 8,11,14 } }, // psllw + pand + split.
|
|
{ ISD::SRL, MVT::v32i8, { 7, 9,10,14 } }, // psrlw + pand + split.
|
|
{ ISD::SRA, MVT::v32i8, { 10,11,16,21 } }, // psrlw, pand, pxor, psubb + split.
|
|
|
|
{ ISD::SHL, MVT::v8i16, { 1, 3, 1, 2 } }, // psllw.
|
|
{ ISD::SRL, MVT::v8i16, { 1, 3, 1, 2 } }, // psrlw.
|
|
{ ISD::SRA, MVT::v8i16, { 1, 3, 1, 2 } }, // psraw.
|
|
{ ISD::SHL, MVT::v16i16, { 3, 7, 5, 7 } }, // psllw + split.
|
|
{ ISD::SRL, MVT::v16i16, { 3, 7, 5, 7 } }, // psrlw + split.
|
|
{ ISD::SRA, MVT::v16i16, { 3, 7, 5, 7 } }, // psraw + split.
|
|
|
|
{ ISD::SHL, MVT::v4i32, { 1, 3, 1, 2 } }, // pslld.
|
|
{ ISD::SRL, MVT::v4i32, { 1, 3, 1, 2 } }, // psrld.
|
|
{ ISD::SRA, MVT::v4i32, { 1, 3, 1, 2 } }, // psrad.
|
|
{ ISD::SHL, MVT::v8i32, { 3, 7, 5, 7 } }, // pslld + split.
|
|
{ ISD::SRL, MVT::v8i32, { 3, 7, 5, 7 } }, // psrld + split.
|
|
{ ISD::SRA, MVT::v8i32, { 3, 7, 5, 7 } }, // psrad + split.
|
|
|
|
{ ISD::SHL, MVT::v2i64, { 1, 3, 1, 2 } }, // psllq.
|
|
{ ISD::SRL, MVT::v2i64, { 1, 3, 1, 2 } }, // psrlq.
|
|
{ ISD::SRA, MVT::v2i64, { 3, 4, 5, 7 } }, // 2 x psrad + shuffle.
|
|
{ ISD::SHL, MVT::v4i64, { 3, 7, 4, 6 } }, // psllq + split.
|
|
{ ISD::SRL, MVT::v4i64, { 3, 7, 4, 6 } }, // psrlq + split.
|
|
{ ISD::SRA, MVT::v4i64, { 6, 7,10,13 } }, // 2 x (2 x psrad + shuffle) + split.
|
|
};
|
|
|
|
// XOP has faster vXi8 shifts.
|
|
if (ST->hasAVX() && Op2Info.isUniform() &&
|
|
(!ST->hasXOP() || LT.second.getScalarSizeInBits() != 8))
|
|
if (const auto *Entry =
|
|
CostTableLookup(AVXUniformCostTable, ISD, LT.second))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * *KindCost;
|
|
|
|
static const CostKindTblEntry SSE2UniformCostTable[] = {
|
|
// Uniform splats are cheaper for the following instructions.
|
|
{ ISD::SHL, MVT::v16i8, { 9, 10, 6, 9 } }, // psllw + pand.
|
|
{ ISD::SRL, MVT::v16i8, { 9, 13, 5, 9 } }, // psrlw + pand.
|
|
{ ISD::SRA, MVT::v16i8, { 11, 15, 9,13 } }, // pcmpgtb sequence.
|
|
|
|
{ ISD::SHL, MVT::v8i16, { 2, 2, 1, 2 } }, // psllw.
|
|
{ ISD::SRL, MVT::v8i16, { 2, 2, 1, 2 } }, // psrlw.
|
|
{ ISD::SRA, MVT::v8i16, { 2, 2, 1, 2 } }, // psraw.
|
|
|
|
{ ISD::SHL, MVT::v4i32, { 2, 2, 1, 2 } }, // pslld
|
|
{ ISD::SRL, MVT::v4i32, { 2, 2, 1, 2 } }, // psrld.
|
|
{ ISD::SRA, MVT::v4i32, { 2, 2, 1, 2 } }, // psrad.
|
|
|
|
{ ISD::SHL, MVT::v2i64, { 2, 2, 1, 2 } }, // psllq.
|
|
{ ISD::SRL, MVT::v2i64, { 2, 2, 1, 2 } }, // psrlq.
|
|
{ ISD::SRA, MVT::v2i64, { 5, 9, 5, 7 } }, // 2*psrlq + xor + sub.
|
|
};
|
|
|
|
if (ST->hasSSE2() && Op2Info.isUniform() &&
|
|
(!ST->hasXOP() || LT.second.getScalarSizeInBits() != 8))
|
|
if (const auto *Entry =
|
|
CostTableLookup(SSE2UniformCostTable, ISD, LT.second))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * *KindCost;
|
|
|
|
static const CostKindTblEntry AVX512DQCostTable[] = {
|
|
{ ISD::MUL, MVT::v2i64, { 2, 15, 1, 3 } }, // pmullq
|
|
{ ISD::MUL, MVT::v4i64, { 2, 15, 1, 3 } }, // pmullq
|
|
{ ISD::MUL, MVT::v8i64, { 3, 15, 1, 3 } } // pmullq
|
|
};
|
|
|
|
// Look for AVX512DQ lowering tricks for custom cases.
|
|
if (ST->hasDQI())
|
|
if (const auto *Entry = CostTableLookup(AVX512DQCostTable, ISD, LT.second))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * *KindCost;
|
|
|
|
static const CostKindTblEntry AVX512BWCostTable[] = {
|
|
{ ISD::SHL, MVT::v16i8, { 4, 8, 4, 5 } }, // extend/vpsllvw/pack sequence.
|
|
{ ISD::SRL, MVT::v16i8, { 4, 8, 4, 5 } }, // extend/vpsrlvw/pack sequence.
|
|
{ ISD::SRA, MVT::v16i8, { 4, 8, 4, 5 } }, // extend/vpsravw/pack sequence.
|
|
{ ISD::SHL, MVT::v32i8, { 4, 23,11,16 } }, // extend/vpsllvw/pack sequence.
|
|
{ ISD::SRL, MVT::v32i8, { 4, 30,12,18 } }, // extend/vpsrlvw/pack sequence.
|
|
{ ISD::SRA, MVT::v32i8, { 6, 13,24,30 } }, // extend/vpsravw/pack sequence.
|
|
{ ISD::SHL, MVT::v64i8, { 6, 19,13,15 } }, // extend/vpsllvw/pack sequence.
|
|
{ ISD::SRL, MVT::v64i8, { 7, 27,15,18 } }, // extend/vpsrlvw/pack sequence.
|
|
{ ISD::SRA, MVT::v64i8, { 15, 15,30,30 } }, // extend/vpsravw/pack sequence.
|
|
|
|
{ ISD::SHL, MVT::v8i16, { 1, 1, 1, 1 } }, // vpsllvw
|
|
{ ISD::SRL, MVT::v8i16, { 1, 1, 1, 1 } }, // vpsrlvw
|
|
{ ISD::SRA, MVT::v8i16, { 1, 1, 1, 1 } }, // vpsravw
|
|
{ ISD::SHL, MVT::v16i16, { 1, 1, 1, 1 } }, // vpsllvw
|
|
{ ISD::SRL, MVT::v16i16, { 1, 1, 1, 1 } }, // vpsrlvw
|
|
{ ISD::SRA, MVT::v16i16, { 1, 1, 1, 1 } }, // vpsravw
|
|
{ ISD::SHL, MVT::v32i16, { 1, 1, 1, 1 } }, // vpsllvw
|
|
{ ISD::SRL, MVT::v32i16, { 1, 1, 1, 1 } }, // vpsrlvw
|
|
{ ISD::SRA, MVT::v32i16, { 1, 1, 1, 1 } }, // vpsravw
|
|
|
|
{ ISD::ADD, MVT::v64i8, { 1, 1, 1, 1 } }, // paddb
|
|
{ ISD::ADD, MVT::v32i16, { 1, 1, 1, 1 } }, // paddw
|
|
|
|
{ ISD::ADD, MVT::v32i8, { 1, 1, 1, 1 } }, // paddb
|
|
{ ISD::ADD, MVT::v16i16, { 1, 1, 1, 1 } }, // paddw
|
|
{ ISD::ADD, MVT::v8i32, { 1, 1, 1, 1 } }, // paddd
|
|
{ ISD::ADD, MVT::v4i64, { 1, 1, 1, 1 } }, // paddq
|
|
|
|
{ ISD::SUB, MVT::v64i8, { 1, 1, 1, 1 } }, // psubb
|
|
{ ISD::SUB, MVT::v32i16, { 1, 1, 1, 1 } }, // psubw
|
|
|
|
{ ISD::MUL, MVT::v64i8, { 5, 10,10,11 } },
|
|
{ ISD::MUL, MVT::v32i16, { 1, 5, 1, 1 } }, // pmullw
|
|
|
|
{ ISD::SUB, MVT::v32i8, { 1, 1, 1, 1 } }, // psubb
|
|
{ ISD::SUB, MVT::v16i16, { 1, 1, 1, 1 } }, // psubw
|
|
{ ISD::SUB, MVT::v8i32, { 1, 1, 1, 1 } }, // psubd
|
|
{ ISD::SUB, MVT::v4i64, { 1, 1, 1, 1 } }, // psubq
|
|
};
|
|
|
|
// Look for AVX512BW lowering tricks for custom cases.
|
|
if (ST->hasBWI())
|
|
if (const auto *Entry = CostTableLookup(AVX512BWCostTable, ISD, LT.second))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * *KindCost;
|
|
|
|
static const CostKindTblEntry AVX512CostTable[] = {
|
|
{ ISD::SHL, MVT::v64i8, { 15, 19,27,33 } }, // vpblendv+split sequence.
|
|
{ ISD::SRL, MVT::v64i8, { 15, 19,30,36 } }, // vpblendv+split sequence.
|
|
{ ISD::SRA, MVT::v64i8, { 37, 37,51,63 } }, // vpblendv+split sequence.
|
|
|
|
{ ISD::SHL, MVT::v32i16, { 11, 16,11,15 } }, // 2*extend/vpsrlvd/pack sequence.
|
|
{ ISD::SRL, MVT::v32i16, { 11, 16,11,15 } }, // 2*extend/vpsrlvd/pack sequence.
|
|
{ ISD::SRA, MVT::v32i16, { 11, 16,11,15 } }, // 2*extend/vpsravd/pack sequence.
|
|
|
|
{ ISD::SHL, MVT::v4i32, { 1, 1, 1, 1 } },
|
|
{ ISD::SRL, MVT::v4i32, { 1, 1, 1, 1 } },
|
|
{ ISD::SRA, MVT::v4i32, { 1, 1, 1, 1 } },
|
|
{ ISD::SHL, MVT::v8i32, { 1, 1, 1, 1 } },
|
|
{ ISD::SRL, MVT::v8i32, { 1, 1, 1, 1 } },
|
|
{ ISD::SRA, MVT::v8i32, { 1, 1, 1, 1 } },
|
|
{ ISD::SHL, MVT::v16i32, { 1, 1, 1, 1 } },
|
|
{ ISD::SRL, MVT::v16i32, { 1, 1, 1, 1 } },
|
|
{ ISD::SRA, MVT::v16i32, { 1, 1, 1, 1 } },
|
|
|
|
{ ISD::SHL, MVT::v2i64, { 1, 1, 1, 1 } },
|
|
{ ISD::SRL, MVT::v2i64, { 1, 1, 1, 1 } },
|
|
{ ISD::SRA, MVT::v2i64, { 1, 1, 1, 1 } },
|
|
{ ISD::SHL, MVT::v4i64, { 1, 1, 1, 1 } },
|
|
{ ISD::SRL, MVT::v4i64, { 1, 1, 1, 1 } },
|
|
{ ISD::SRA, MVT::v4i64, { 1, 1, 1, 1 } },
|
|
{ ISD::SHL, MVT::v8i64, { 1, 1, 1, 1 } },
|
|
{ ISD::SRL, MVT::v8i64, { 1, 1, 1, 1 } },
|
|
{ ISD::SRA, MVT::v8i64, { 1, 1, 1, 1 } },
|
|
|
|
{ ISD::ADD, MVT::v64i8, { 3, 7, 5, 5 } }, // 2*paddb + split
|
|
{ ISD::ADD, MVT::v32i16, { 3, 7, 5, 5 } }, // 2*paddw + split
|
|
|
|
{ ISD::SUB, MVT::v64i8, { 3, 7, 5, 5 } }, // 2*psubb + split
|
|
{ ISD::SUB, MVT::v32i16, { 3, 7, 5, 5 } }, // 2*psubw + split
|
|
|
|
{ ISD::AND, MVT::v32i8, { 1, 1, 1, 1 } },
|
|
{ ISD::AND, MVT::v16i16, { 1, 1, 1, 1 } },
|
|
{ ISD::AND, MVT::v8i32, { 1, 1, 1, 1 } },
|
|
{ ISD::AND, MVT::v4i64, { 1, 1, 1, 1 } },
|
|
|
|
{ ISD::OR, MVT::v32i8, { 1, 1, 1, 1 } },
|
|
{ ISD::OR, MVT::v16i16, { 1, 1, 1, 1 } },
|
|
{ ISD::OR, MVT::v8i32, { 1, 1, 1, 1 } },
|
|
{ ISD::OR, MVT::v4i64, { 1, 1, 1, 1 } },
|
|
|
|
{ ISD::XOR, MVT::v32i8, { 1, 1, 1, 1 } },
|
|
{ ISD::XOR, MVT::v16i16, { 1, 1, 1, 1 } },
|
|
{ ISD::XOR, MVT::v8i32, { 1, 1, 1, 1 } },
|
|
{ ISD::XOR, MVT::v4i64, { 1, 1, 1, 1 } },
|
|
|
|
{ ISD::MUL, MVT::v16i32, { 1, 10, 1, 2 } }, // pmulld (Skylake from agner.org)
|
|
{ ISD::MUL, MVT::v8i32, { 1, 10, 1, 2 } }, // pmulld (Skylake from agner.org)
|
|
{ ISD::MUL, MVT::v4i32, { 1, 10, 1, 2 } }, // pmulld (Skylake from agner.org)
|
|
{ ISD::MUL, MVT::v8i64, { 6, 9, 8, 8 } }, // 3*pmuludq/3*shift/2*add
|
|
{ ISD::MUL, MVT::i64, { 1 } }, // Skylake from http://www.agner.org/
|
|
|
|
{ X86ISD::PMULUDQ, MVT::v8i64, { 1, 5, 1, 1 } },
|
|
|
|
{ ISD::FNEG, MVT::v8f64, { 1, 1, 1, 2 } }, // Skylake from http://www.agner.org/
|
|
{ ISD::FADD, MVT::v8f64, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
|
|
{ ISD::FADD, MVT::v4f64, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
|
|
{ ISD::FSUB, MVT::v8f64, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
|
|
{ ISD::FSUB, MVT::v4f64, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
|
|
{ ISD::FMUL, MVT::v8f64, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
|
|
{ ISD::FMUL, MVT::v4f64, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
|
|
{ ISD::FMUL, MVT::v2f64, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
|
|
{ ISD::FMUL, MVT::f64, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
|
|
|
|
{ ISD::FDIV, MVT::f64, { 4, 14, 1, 1 } }, // Skylake from http://www.agner.org/
|
|
{ ISD::FDIV, MVT::v2f64, { 4, 14, 1, 1 } }, // Skylake from http://www.agner.org/
|
|
{ ISD::FDIV, MVT::v4f64, { 8, 14, 1, 1 } }, // Skylake from http://www.agner.org/
|
|
{ ISD::FDIV, MVT::v8f64, { 16, 23, 1, 3 } }, // Skylake from http://www.agner.org/
|
|
|
|
{ ISD::FNEG, MVT::v16f32, { 1, 1, 1, 2 } }, // Skylake from http://www.agner.org/
|
|
{ ISD::FADD, MVT::v16f32, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
|
|
{ ISD::FADD, MVT::v8f32, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
|
|
{ ISD::FSUB, MVT::v16f32, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
|
|
{ ISD::FSUB, MVT::v8f32, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
|
|
{ ISD::FMUL, MVT::v16f32, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
|
|
{ ISD::FMUL, MVT::v8f32, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
|
|
{ ISD::FMUL, MVT::v4f32, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
|
|
{ ISD::FMUL, MVT::f32, { 1, 4, 1, 1 } }, // Skylake from http://www.agner.org/
|
|
|
|
{ ISD::FDIV, MVT::f32, { 3, 11, 1, 1 } }, // Skylake from http://www.agner.org/
|
|
{ ISD::FDIV, MVT::v4f32, { 3, 11, 1, 1 } }, // Skylake from http://www.agner.org/
|
|
{ ISD::FDIV, MVT::v8f32, { 5, 11, 1, 1 } }, // Skylake from http://www.agner.org/
|
|
{ ISD::FDIV, MVT::v16f32, { 10, 18, 1, 3 } }, // Skylake from http://www.agner.org/
|
|
};
|
|
|
|
if (ST->hasAVX512())
|
|
if (const auto *Entry = CostTableLookup(AVX512CostTable, ISD, LT.second))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * *KindCost;
|
|
|
|
static const CostKindTblEntry AVX2ShiftCostTable[] = {
|
|
// Shifts on vXi64/vXi32 on AVX2 is legal even though we declare to
|
|
// customize them to detect the cases where shift amount is a scalar one.
|
|
{ ISD::SHL, MVT::v4i32, { 2, 3, 1, 3 } }, // vpsllvd (Haswell from agner.org)
|
|
{ ISD::SRL, MVT::v4i32, { 2, 3, 1, 3 } }, // vpsrlvd (Haswell from agner.org)
|
|
{ ISD::SRA, MVT::v4i32, { 2, 3, 1, 3 } }, // vpsravd (Haswell from agner.org)
|
|
{ ISD::SHL, MVT::v8i32, { 4, 4, 1, 3 } }, // vpsllvd (Haswell from agner.org)
|
|
{ ISD::SRL, MVT::v8i32, { 4, 4, 1, 3 } }, // vpsrlvd (Haswell from agner.org)
|
|
{ ISD::SRA, MVT::v8i32, { 4, 4, 1, 3 } }, // vpsravd (Haswell from agner.org)
|
|
{ ISD::SHL, MVT::v2i64, { 2, 3, 1, 1 } }, // vpsllvq (Haswell from agner.org)
|
|
{ ISD::SRL, MVT::v2i64, { 2, 3, 1, 1 } }, // vpsrlvq (Haswell from agner.org)
|
|
{ ISD::SHL, MVT::v4i64, { 4, 4, 1, 2 } }, // vpsllvq (Haswell from agner.org)
|
|
{ ISD::SRL, MVT::v4i64, { 4, 4, 1, 2 } }, // vpsrlvq (Haswell from agner.org)
|
|
};
|
|
|
|
if (ST->hasAVX512()) {
|
|
if (ISD == ISD::SHL && LT.second == MVT::v32i16 && Op2Info.isConstant())
|
|
// On AVX512, a packed v32i16 shift left by a constant build_vector
|
|
// is lowered into a vector multiply (vpmullw).
|
|
return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
|
|
Op1Info.getNoProps(), Op2Info.getNoProps());
|
|
}
|
|
|
|
// Look for AVX2 lowering tricks (XOP is always better at v4i32 shifts).
|
|
if (ST->hasAVX2() && !(ST->hasXOP() && LT.second == MVT::v4i32)) {
|
|
if (ISD == ISD::SHL && LT.second == MVT::v16i16 &&
|
|
Op2Info.isConstant())
|
|
// On AVX2, a packed v16i16 shift left by a constant build_vector
|
|
// is lowered into a vector multiply (vpmullw).
|
|
return getArithmeticInstrCost(Instruction::Mul, Ty, CostKind,
|
|
Op1Info.getNoProps(), Op2Info.getNoProps());
|
|
|
|
if (const auto *Entry = CostTableLookup(AVX2ShiftCostTable, ISD, LT.second))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * *KindCost;
|
|
}
|
|
|
|
static const CostKindTblEntry XOPShiftCostTable[] = {
|
|
// 128bit shifts take 1cy, but right shifts require negation beforehand.
|
|
{ ISD::SHL, MVT::v16i8, { 1, 3, 1, 1 } },
|
|
{ ISD::SRL, MVT::v16i8, { 2, 3, 1, 1 } },
|
|
{ ISD::SRA, MVT::v16i8, { 2, 3, 1, 1 } },
|
|
{ ISD::SHL, MVT::v8i16, { 1, 3, 1, 1 } },
|
|
{ ISD::SRL, MVT::v8i16, { 2, 3, 1, 1 } },
|
|
{ ISD::SRA, MVT::v8i16, { 2, 3, 1, 1 } },
|
|
{ ISD::SHL, MVT::v4i32, { 1, 3, 1, 1 } },
|
|
{ ISD::SRL, MVT::v4i32, { 2, 3, 1, 1 } },
|
|
{ ISD::SRA, MVT::v4i32, { 2, 3, 1, 1 } },
|
|
{ ISD::SHL, MVT::v2i64, { 1, 3, 1, 1 } },
|
|
{ ISD::SRL, MVT::v2i64, { 2, 3, 1, 1 } },
|
|
{ ISD::SRA, MVT::v2i64, { 2, 3, 1, 1 } },
|
|
// 256bit shifts require splitting if AVX2 didn't catch them above.
|
|
{ ISD::SHL, MVT::v32i8, { 4, 7, 5, 6 } },
|
|
{ ISD::SRL, MVT::v32i8, { 6, 7, 5, 6 } },
|
|
{ ISD::SRA, MVT::v32i8, { 6, 7, 5, 6 } },
|
|
{ ISD::SHL, MVT::v16i16, { 4, 7, 5, 6 } },
|
|
{ ISD::SRL, MVT::v16i16, { 6, 7, 5, 6 } },
|
|
{ ISD::SRA, MVT::v16i16, { 6, 7, 5, 6 } },
|
|
{ ISD::SHL, MVT::v8i32, { 4, 7, 5, 6 } },
|
|
{ ISD::SRL, MVT::v8i32, { 6, 7, 5, 6 } },
|
|
{ ISD::SRA, MVT::v8i32, { 6, 7, 5, 6 } },
|
|
{ ISD::SHL, MVT::v4i64, { 4, 7, 5, 6 } },
|
|
{ ISD::SRL, MVT::v4i64, { 6, 7, 5, 6 } },
|
|
{ ISD::SRA, MVT::v4i64, { 6, 7, 5, 6 } },
|
|
};
|
|
|
|
// Look for XOP lowering tricks.
|
|
if (ST->hasXOP()) {
|
|
// If the right shift is constant then we'll fold the negation so
|
|
// it's as cheap as a left shift.
|
|
int ShiftISD = ISD;
|
|
if ((ShiftISD == ISD::SRL || ShiftISD == ISD::SRA) && Op2Info.isConstant())
|
|
ShiftISD = ISD::SHL;
|
|
if (const auto *Entry =
|
|
CostTableLookup(XOPShiftCostTable, ShiftISD, LT.second))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * *KindCost;
|
|
}
|
|
|
|
if (ISD == ISD::SHL && !Op2Info.isUniform() && Op2Info.isConstant()) {
|
|
MVT VT = LT.second;
|
|
// Vector shift left by non uniform constant can be lowered
|
|
// into vector multiply.
|
|
if (((VT == MVT::v8i16 || VT == MVT::v4i32) && ST->hasSSE2()) ||
|
|
((VT == MVT::v16i16 || VT == MVT::v8i32) && ST->hasAVX()))
|
|
ISD = ISD::MUL;
|
|
}
|
|
|
|
static const CostKindTblEntry GLMCostTable[] = {
|
|
{ ISD::FDIV, MVT::f32, { 18, 19, 1, 1 } }, // divss
|
|
{ ISD::FDIV, MVT::v4f32, { 35, 36, 1, 1 } }, // divps
|
|
{ ISD::FDIV, MVT::f64, { 33, 34, 1, 1 } }, // divsd
|
|
{ ISD::FDIV, MVT::v2f64, { 65, 66, 1, 1 } }, // divpd
|
|
};
|
|
|
|
if (ST->useGLMDivSqrtCosts())
|
|
if (const auto *Entry = CostTableLookup(GLMCostTable, ISD, LT.second))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * *KindCost;
|
|
|
|
static const CostKindTblEntry SLMCostTable[] = {
|
|
{ ISD::MUL, MVT::v4i32, { 11, 11, 1, 7 } }, // pmulld
|
|
{ ISD::MUL, MVT::v8i16, { 2, 5, 1, 1 } }, // pmullw
|
|
{ ISD::FMUL, MVT::f64, { 2, 5, 1, 1 } }, // mulsd
|
|
{ ISD::FMUL, MVT::f32, { 1, 4, 1, 1 } }, // mulss
|
|
{ ISD::FMUL, MVT::v2f64, { 4, 7, 1, 1 } }, // mulpd
|
|
{ ISD::FMUL, MVT::v4f32, { 2, 5, 1, 1 } }, // mulps
|
|
{ ISD::FDIV, MVT::f32, { 17, 19, 1, 1 } }, // divss
|
|
{ ISD::FDIV, MVT::v4f32, { 39, 39, 1, 6 } }, // divps
|
|
{ ISD::FDIV, MVT::f64, { 32, 34, 1, 1 } }, // divsd
|
|
{ ISD::FDIV, MVT::v2f64, { 69, 69, 1, 6 } }, // divpd
|
|
{ ISD::FADD, MVT::v2f64, { 2, 4, 1, 1 } }, // addpd
|
|
{ ISD::FSUB, MVT::v2f64, { 2, 4, 1, 1 } }, // subpd
|
|
// v2i64/v4i64 mul is custom lowered as a series of long:
|
|
// multiplies(3), shifts(3) and adds(2)
|
|
// slm muldq version throughput is 2 and addq throughput 4
|
|
// thus: 3X2 (muldq throughput) + 3X1 (shift throughput) +
|
|
// 3X4 (addq throughput) = 17
|
|
{ ISD::MUL, MVT::v2i64, { 17, 22, 9, 9 } },
|
|
// slm addq\subq throughput is 4
|
|
{ ISD::ADD, MVT::v2i64, { 4, 2, 1, 2 } },
|
|
{ ISD::SUB, MVT::v2i64, { 4, 2, 1, 2 } },
|
|
};
|
|
|
|
if (ST->useSLMArithCosts())
|
|
if (const auto *Entry = CostTableLookup(SLMCostTable, ISD, LT.second))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * *KindCost;
|
|
|
|
static const CostKindTblEntry AVX2CostTable[] = {
|
|
{ ISD::SHL, MVT::v16i8, { 6, 21,11,16 } }, // vpblendvb sequence.
|
|
{ ISD::SHL, MVT::v32i8, { 6, 23,11,22 } }, // vpblendvb sequence.
|
|
{ ISD::SHL, MVT::v8i16, { 5, 18, 5,10 } }, // extend/vpsrlvd/pack sequence.
|
|
{ ISD::SHL, MVT::v16i16, { 8, 10,10,14 } }, // extend/vpsrlvd/pack sequence.
|
|
|
|
{ ISD::SRL, MVT::v16i8, { 6, 27,12,18 } }, // vpblendvb sequence.
|
|
{ ISD::SRL, MVT::v32i8, { 8, 30,12,24 } }, // vpblendvb sequence.
|
|
{ ISD::SRL, MVT::v8i16, { 5, 11, 5,10 } }, // extend/vpsrlvd/pack sequence.
|
|
{ ISD::SRL, MVT::v16i16, { 8, 10,10,14 } }, // extend/vpsrlvd/pack sequence.
|
|
|
|
{ ISD::SRA, MVT::v16i8, { 17, 17,24,30 } }, // vpblendvb sequence.
|
|
{ ISD::SRA, MVT::v32i8, { 18, 20,24,43 } }, // vpblendvb sequence.
|
|
{ ISD::SRA, MVT::v8i16, { 5, 11, 5,10 } }, // extend/vpsravd/pack sequence.
|
|
{ ISD::SRA, MVT::v16i16, { 8, 10,10,14 } }, // extend/vpsravd/pack sequence.
|
|
{ ISD::SRA, MVT::v2i64, { 4, 5, 5, 5 } }, // srl/xor/sub sequence.
|
|
{ ISD::SRA, MVT::v4i64, { 8, 8, 5, 9 } }, // srl/xor/sub sequence.
|
|
|
|
{ ISD::SUB, MVT::v32i8, { 1, 1, 1, 2 } }, // psubb
|
|
{ ISD::ADD, MVT::v32i8, { 1, 1, 1, 2 } }, // paddb
|
|
{ ISD::SUB, MVT::v16i16, { 1, 1, 1, 2 } }, // psubw
|
|
{ ISD::ADD, MVT::v16i16, { 1, 1, 1, 2 } }, // paddw
|
|
{ ISD::SUB, MVT::v8i32, { 1, 1, 1, 2 } }, // psubd
|
|
{ ISD::ADD, MVT::v8i32, { 1, 1, 1, 2 } }, // paddd
|
|
{ ISD::SUB, MVT::v4i64, { 1, 1, 1, 2 } }, // psubq
|
|
{ ISD::ADD, MVT::v4i64, { 1, 1, 1, 2 } }, // paddq
|
|
|
|
{ ISD::MUL, MVT::v16i8, { 5, 18, 6,12 } }, // extend/pmullw/pack
|
|
{ ISD::MUL, MVT::v32i8, { 6, 11,10,19 } }, // unpack/pmullw
|
|
{ ISD::MUL, MVT::v16i16, { 2, 5, 1, 2 } }, // pmullw
|
|
{ ISD::MUL, MVT::v8i32, { 4, 10, 1, 2 } }, // pmulld
|
|
{ ISD::MUL, MVT::v4i32, { 2, 10, 1, 2 } }, // pmulld
|
|
{ ISD::MUL, MVT::v4i64, { 6, 10, 8,13 } }, // 3*pmuludq/3*shift/2*add
|
|
{ ISD::MUL, MVT::v2i64, { 6, 10, 8, 8 } }, // 3*pmuludq/3*shift/2*add
|
|
|
|
{ X86ISD::PMULUDQ, MVT::v4i64, { 1, 5, 1, 1 } },
|
|
|
|
{ ISD::FNEG, MVT::v4f64, { 1, 1, 1, 2 } }, // vxorpd
|
|
{ ISD::FNEG, MVT::v8f32, { 1, 1, 1, 2 } }, // vxorps
|
|
|
|
{ ISD::FADD, MVT::f64, { 1, 4, 1, 1 } }, // vaddsd
|
|
{ ISD::FADD, MVT::f32, { 1, 4, 1, 1 } }, // vaddss
|
|
{ ISD::FADD, MVT::v2f64, { 1, 4, 1, 1 } }, // vaddpd
|
|
{ ISD::FADD, MVT::v4f32, { 1, 4, 1, 1 } }, // vaddps
|
|
{ ISD::FADD, MVT::v4f64, { 1, 4, 1, 2 } }, // vaddpd
|
|
{ ISD::FADD, MVT::v8f32, { 1, 4, 1, 2 } }, // vaddps
|
|
|
|
{ ISD::FSUB, MVT::f64, { 1, 4, 1, 1 } }, // vsubsd
|
|
{ ISD::FSUB, MVT::f32, { 1, 4, 1, 1 } }, // vsubss
|
|
{ ISD::FSUB, MVT::v2f64, { 1, 4, 1, 1 } }, // vsubpd
|
|
{ ISD::FSUB, MVT::v4f32, { 1, 4, 1, 1 } }, // vsubps
|
|
{ ISD::FSUB, MVT::v4f64, { 1, 4, 1, 2 } }, // vsubpd
|
|
{ ISD::FSUB, MVT::v8f32, { 1, 4, 1, 2 } }, // vsubps
|
|
|
|
{ ISD::FMUL, MVT::f64, { 1, 5, 1, 1 } }, // vmulsd
|
|
{ ISD::FMUL, MVT::f32, { 1, 5, 1, 1 } }, // vmulss
|
|
{ ISD::FMUL, MVT::v2f64, { 1, 5, 1, 1 } }, // vmulpd
|
|
{ ISD::FMUL, MVT::v4f32, { 1, 5, 1, 1 } }, // vmulps
|
|
{ ISD::FMUL, MVT::v4f64, { 1, 5, 1, 2 } }, // vmulpd
|
|
{ ISD::FMUL, MVT::v8f32, { 1, 5, 1, 2 } }, // vmulps
|
|
|
|
{ ISD::FDIV, MVT::f32, { 7, 13, 1, 1 } }, // vdivss
|
|
{ ISD::FDIV, MVT::v4f32, { 7, 13, 1, 1 } }, // vdivps
|
|
{ ISD::FDIV, MVT::v8f32, { 14, 21, 1, 3 } }, // vdivps
|
|
{ ISD::FDIV, MVT::f64, { 14, 20, 1, 1 } }, // vdivsd
|
|
{ ISD::FDIV, MVT::v2f64, { 14, 20, 1, 1 } }, // vdivpd
|
|
{ ISD::FDIV, MVT::v4f64, { 28, 35, 1, 3 } }, // vdivpd
|
|
};
|
|
|
|
// Look for AVX2 lowering tricks for custom cases.
|
|
if (ST->hasAVX2())
|
|
if (const auto *Entry = CostTableLookup(AVX2CostTable, ISD, LT.second))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * *KindCost;
|
|
|
|
static const CostKindTblEntry AVX1CostTable[] = {
|
|
// We don't have to scalarize unsupported ops. We can issue two half-sized
|
|
// operations and we only need to extract the upper YMM half.
|
|
// Two ops + 1 extract + 1 insert = 4.
|
|
{ ISD::MUL, MVT::v32i8, { 12, 13, 22, 23 } }, // unpack/pmullw + split
|
|
{ ISD::MUL, MVT::v16i16, { 4, 8, 5, 6 } }, // pmullw + split
|
|
{ ISD::MUL, MVT::v8i32, { 5, 8, 5, 10 } }, // pmulld + split
|
|
{ ISD::MUL, MVT::v4i32, { 2, 5, 1, 3 } }, // pmulld
|
|
{ ISD::MUL, MVT::v4i64, { 12, 15, 19, 20 } },
|
|
|
|
{ ISD::AND, MVT::v32i8, { 1, 1, 1, 2 } }, // vandps
|
|
{ ISD::AND, MVT::v16i16, { 1, 1, 1, 2 } }, // vandps
|
|
{ ISD::AND, MVT::v8i32, { 1, 1, 1, 2 } }, // vandps
|
|
{ ISD::AND, MVT::v4i64, { 1, 1, 1, 2 } }, // vandps
|
|
|
|
{ ISD::OR, MVT::v32i8, { 1, 1, 1, 2 } }, // vorps
|
|
{ ISD::OR, MVT::v16i16, { 1, 1, 1, 2 } }, // vorps
|
|
{ ISD::OR, MVT::v8i32, { 1, 1, 1, 2 } }, // vorps
|
|
{ ISD::OR, MVT::v4i64, { 1, 1, 1, 2 } }, // vorps
|
|
|
|
{ ISD::XOR, MVT::v32i8, { 1, 1, 1, 2 } }, // vxorps
|
|
{ ISD::XOR, MVT::v16i16, { 1, 1, 1, 2 } }, // vxorps
|
|
{ ISD::XOR, MVT::v8i32, { 1, 1, 1, 2 } }, // vxorps
|
|
{ ISD::XOR, MVT::v4i64, { 1, 1, 1, 2 } }, // vxorps
|
|
|
|
{ ISD::SUB, MVT::v32i8, { 4, 2, 5, 6 } }, // psubb + split
|
|
{ ISD::ADD, MVT::v32i8, { 4, 2, 5, 6 } }, // paddb + split
|
|
{ ISD::SUB, MVT::v16i16, { 4, 2, 5, 6 } }, // psubw + split
|
|
{ ISD::ADD, MVT::v16i16, { 4, 2, 5, 6 } }, // paddw + split
|
|
{ ISD::SUB, MVT::v8i32, { 4, 2, 5, 6 } }, // psubd + split
|
|
{ ISD::ADD, MVT::v8i32, { 4, 2, 5, 6 } }, // paddd + split
|
|
{ ISD::SUB, MVT::v4i64, { 4, 2, 5, 6 } }, // psubq + split
|
|
{ ISD::ADD, MVT::v4i64, { 4, 2, 5, 6 } }, // paddq + split
|
|
{ ISD::SUB, MVT::v2i64, { 1, 1, 1, 1 } }, // psubq
|
|
{ ISD::ADD, MVT::v2i64, { 1, 1, 1, 1 } }, // paddq
|
|
|
|
{ ISD::SHL, MVT::v16i8, { 10, 21,11,17 } }, // pblendvb sequence.
|
|
{ ISD::SHL, MVT::v32i8, { 22, 22,27,40 } }, // pblendvb sequence + split.
|
|
{ ISD::SHL, MVT::v8i16, { 6, 9,11,11 } }, // pblendvb sequence.
|
|
{ ISD::SHL, MVT::v16i16, { 13, 16,24,25 } }, // pblendvb sequence + split.
|
|
{ ISD::SHL, MVT::v4i32, { 3, 11, 4, 6 } }, // pslld/paddd/cvttps2dq/pmulld
|
|
{ ISD::SHL, MVT::v8i32, { 9, 11,12,17 } }, // pslld/paddd/cvttps2dq/pmulld + split
|
|
{ ISD::SHL, MVT::v2i64, { 2, 4, 4, 6 } }, // Shift each lane + blend.
|
|
{ ISD::SHL, MVT::v4i64, { 6, 7,11,15 } }, // Shift each lane + blend + split.
|
|
|
|
{ ISD::SRL, MVT::v16i8, { 11, 27,12,18 } }, // pblendvb sequence.
|
|
{ ISD::SRL, MVT::v32i8, { 23, 23,30,43 } }, // pblendvb sequence + split.
|
|
{ ISD::SRL, MVT::v8i16, { 13, 16,14,22 } }, // pblendvb sequence.
|
|
{ ISD::SRL, MVT::v16i16, { 28, 30,31,48 } }, // pblendvb sequence + split.
|
|
{ ISD::SRL, MVT::v4i32, { 6, 7,12,16 } }, // Shift each lane + blend.
|
|
{ ISD::SRL, MVT::v8i32, { 14, 14,26,34 } }, // Shift each lane + blend + split.
|
|
{ ISD::SRL, MVT::v2i64, { 2, 4, 4, 6 } }, // Shift each lane + blend.
|
|
{ ISD::SRL, MVT::v4i64, { 6, 7,11,15 } }, // Shift each lane + blend + split.
|
|
|
|
{ ISD::SRA, MVT::v16i8, { 21, 22,24,36 } }, // pblendvb sequence.
|
|
{ ISD::SRA, MVT::v32i8, { 44, 45,51,76 } }, // pblendvb sequence + split.
|
|
{ ISD::SRA, MVT::v8i16, { 13, 16,14,22 } }, // pblendvb sequence.
|
|
{ ISD::SRA, MVT::v16i16, { 28, 30,31,48 } }, // pblendvb sequence + split.
|
|
{ ISD::SRA, MVT::v4i32, { 6, 7,12,16 } }, // Shift each lane + blend.
|
|
{ ISD::SRA, MVT::v8i32, { 14, 14,26,34 } }, // Shift each lane + blend + split.
|
|
{ ISD::SRA, MVT::v2i64, { 5, 6,10,14 } }, // Shift each lane + blend.
|
|
{ ISD::SRA, MVT::v4i64, { 12, 12,22,30 } }, // Shift each lane + blend + split.
|
|
|
|
{ ISD::FNEG, MVT::v4f64, { 2, 2, 1, 2 } }, // BTVER2 from http://www.agner.org/
|
|
{ ISD::FNEG, MVT::v8f32, { 2, 2, 1, 2 } }, // BTVER2 from http://www.agner.org/
|
|
|
|
{ ISD::FADD, MVT::f64, { 1, 5, 1, 1 } }, // BDVER2 from http://www.agner.org/
|
|
{ ISD::FADD, MVT::f32, { 1, 5, 1, 1 } }, // BDVER2 from http://www.agner.org/
|
|
{ ISD::FADD, MVT::v2f64, { 1, 5, 1, 1 } }, // BDVER2 from http://www.agner.org/
|
|
{ ISD::FADD, MVT::v4f32, { 1, 5, 1, 1 } }, // BDVER2 from http://www.agner.org/
|
|
{ ISD::FADD, MVT::v4f64, { 2, 5, 1, 2 } }, // BDVER2 from http://www.agner.org/
|
|
{ ISD::FADD, MVT::v8f32, { 2, 5, 1, 2 } }, // BDVER2 from http://www.agner.org/
|
|
|
|
{ ISD::FSUB, MVT::f64, { 1, 5, 1, 1 } }, // BDVER2 from http://www.agner.org/
|
|
{ ISD::FSUB, MVT::f32, { 1, 5, 1, 1 } }, // BDVER2 from http://www.agner.org/
|
|
{ ISD::FSUB, MVT::v2f64, { 1, 5, 1, 1 } }, // BDVER2 from http://www.agner.org/
|
|
{ ISD::FSUB, MVT::v4f32, { 1, 5, 1, 1 } }, // BDVER2 from http://www.agner.org/
|
|
{ ISD::FSUB, MVT::v4f64, { 2, 5, 1, 2 } }, // BDVER2 from http://www.agner.org/
|
|
{ ISD::FSUB, MVT::v8f32, { 2, 5, 1, 2 } }, // BDVER2 from http://www.agner.org/
|
|
|
|
{ ISD::FMUL, MVT::f64, { 2, 5, 1, 1 } }, // BTVER2 from http://www.agner.org/
|
|
{ ISD::FMUL, MVT::f32, { 1, 5, 1, 1 } }, // BTVER2 from http://www.agner.org/
|
|
{ ISD::FMUL, MVT::v2f64, { 2, 5, 1, 1 } }, // BTVER2 from http://www.agner.org/
|
|
{ ISD::FMUL, MVT::v4f32, { 1, 5, 1, 1 } }, // BTVER2 from http://www.agner.org/
|
|
{ ISD::FMUL, MVT::v4f64, { 4, 5, 1, 2 } }, // BTVER2 from http://www.agner.org/
|
|
{ ISD::FMUL, MVT::v8f32, { 2, 5, 1, 2 } }, // BTVER2 from http://www.agner.org/
|
|
|
|
{ ISD::FDIV, MVT::f32, { 14, 14, 1, 1 } }, // SNB from http://www.agner.org/
|
|
{ ISD::FDIV, MVT::v4f32, { 14, 14, 1, 1 } }, // SNB from http://www.agner.org/
|
|
{ ISD::FDIV, MVT::v8f32, { 28, 29, 1, 3 } }, // SNB from http://www.agner.org/
|
|
{ ISD::FDIV, MVT::f64, { 22, 22, 1, 1 } }, // SNB from http://www.agner.org/
|
|
{ ISD::FDIV, MVT::v2f64, { 22, 22, 1, 1 } }, // SNB from http://www.agner.org/
|
|
{ ISD::FDIV, MVT::v4f64, { 44, 45, 1, 3 } }, // SNB from http://www.agner.org/
|
|
};
|
|
|
|
if (ST->hasAVX())
|
|
if (const auto *Entry = CostTableLookup(AVX1CostTable, ISD, LT.second))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * *KindCost;
|
|
|
|
static const CostKindTblEntry SSE42CostTable[] = {
|
|
{ ISD::FADD, MVT::f64, { 1, 3, 1, 1 } }, // Nehalem from http://www.agner.org/
|
|
{ ISD::FADD, MVT::f32, { 1, 3, 1, 1 } }, // Nehalem from http://www.agner.org/
|
|
{ ISD::FADD, MVT::v2f64, { 1, 3, 1, 1 } }, // Nehalem from http://www.agner.org/
|
|
{ ISD::FADD, MVT::v4f32, { 1, 3, 1, 1 } }, // Nehalem from http://www.agner.org/
|
|
|
|
{ ISD::FSUB, MVT::f64, { 1, 3, 1, 1 } }, // Nehalem from http://www.agner.org/
|
|
{ ISD::FSUB, MVT::f32 , { 1, 3, 1, 1 } }, // Nehalem from http://www.agner.org/
|
|
{ ISD::FSUB, MVT::v2f64, { 1, 3, 1, 1 } }, // Nehalem from http://www.agner.org/
|
|
{ ISD::FSUB, MVT::v4f32, { 1, 3, 1, 1 } }, // Nehalem from http://www.agner.org/
|
|
|
|
{ ISD::FMUL, MVT::f64, { 1, 5, 1, 1 } }, // Nehalem from http://www.agner.org/
|
|
{ ISD::FMUL, MVT::f32, { 1, 5, 1, 1 } }, // Nehalem from http://www.agner.org/
|
|
{ ISD::FMUL, MVT::v2f64, { 1, 5, 1, 1 } }, // Nehalem from http://www.agner.org/
|
|
{ ISD::FMUL, MVT::v4f32, { 1, 5, 1, 1 } }, // Nehalem from http://www.agner.org/
|
|
|
|
{ ISD::FDIV, MVT::f32, { 14, 14, 1, 1 } }, // Nehalem from http://www.agner.org/
|
|
{ ISD::FDIV, MVT::v4f32, { 14, 14, 1, 1 } }, // Nehalem from http://www.agner.org/
|
|
{ ISD::FDIV, MVT::f64, { 22, 22, 1, 1 } }, // Nehalem from http://www.agner.org/
|
|
{ ISD::FDIV, MVT::v2f64, { 22, 22, 1, 1 } }, // Nehalem from http://www.agner.org/
|
|
|
|
{ ISD::MUL, MVT::v2i64, { 6, 10,10,10 } } // 3*pmuludq/3*shift/2*add
|
|
};
|
|
|
|
if (ST->hasSSE42())
|
|
if (const auto *Entry = CostTableLookup(SSE42CostTable, ISD, LT.second))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * *KindCost;
|
|
|
|
static const CostKindTblEntry SSE41CostTable[] = {
|
|
{ ISD::SHL, MVT::v16i8, { 15, 24,17,22 } }, // pblendvb sequence.
|
|
{ ISD::SHL, MVT::v8i16, { 11, 14,11,11 } }, // pblendvb sequence.
|
|
{ ISD::SHL, MVT::v4i32, { 14, 20, 4,10 } }, // pslld/paddd/cvttps2dq/pmulld
|
|
|
|
{ ISD::SRL, MVT::v16i8, { 16, 27,18,24 } }, // pblendvb sequence.
|
|
{ ISD::SRL, MVT::v8i16, { 22, 26,23,27 } }, // pblendvb sequence.
|
|
{ ISD::SRL, MVT::v4i32, { 16, 17,15,19 } }, // Shift each lane + blend.
|
|
{ ISD::SRL, MVT::v2i64, { 4, 6, 5, 7 } }, // splat+shuffle sequence.
|
|
|
|
{ ISD::SRA, MVT::v16i8, { 38, 41,30,36 } }, // pblendvb sequence.
|
|
{ ISD::SRA, MVT::v8i16, { 22, 26,23,27 } }, // pblendvb sequence.
|
|
{ ISD::SRA, MVT::v4i32, { 16, 17,15,19 } }, // Shift each lane + blend.
|
|
{ ISD::SRA, MVT::v2i64, { 8, 17, 5, 7 } }, // splat+shuffle sequence.
|
|
|
|
{ ISD::MUL, MVT::v16i8, { 5, 18,10,12 } }, // 2*unpack/2*pmullw/2*and/pack
|
|
{ ISD::MUL, MVT::v4i32, { 2, 11, 1, 1 } } // pmulld (Nehalem from agner.org)
|
|
};
|
|
|
|
if (ST->hasSSE41())
|
|
if (const auto *Entry = CostTableLookup(SSE41CostTable, ISD, LT.second))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * *KindCost;
|
|
|
|
static const CostKindTblEntry SSE2CostTable[] = {
|
|
// We don't correctly identify costs of casts because they are marked as
|
|
// custom.
|
|
{ ISD::SHL, MVT::v16i8, { 13, 21,26,28 } }, // cmpgtb sequence.
|
|
{ ISD::SHL, MVT::v8i16, { 24, 27,16,20 } }, // cmpgtw sequence.
|
|
{ ISD::SHL, MVT::v4i32, { 17, 19,10,12 } }, // pslld/paddd/cvttps2dq/pmuludq.
|
|
{ ISD::SHL, MVT::v2i64, { 4, 6, 5, 7 } }, // splat+shuffle sequence.
|
|
|
|
{ ISD::SRL, MVT::v16i8, { 14, 28,27,30 } }, // cmpgtb sequence.
|
|
{ ISD::SRL, MVT::v8i16, { 16, 19,31,31 } }, // cmpgtw sequence.
|
|
{ ISD::SRL, MVT::v4i32, { 12, 12,15,19 } }, // Shift each lane + blend.
|
|
{ ISD::SRL, MVT::v2i64, { 4, 6, 5, 7 } }, // splat+shuffle sequence.
|
|
|
|
{ ISD::SRA, MVT::v16i8, { 27, 30,54,54 } }, // unpacked cmpgtb sequence.
|
|
{ ISD::SRA, MVT::v8i16, { 16, 19,31,31 } }, // cmpgtw sequence.
|
|
{ ISD::SRA, MVT::v4i32, { 12, 12,15,19 } }, // Shift each lane + blend.
|
|
{ ISD::SRA, MVT::v2i64, { 8, 11,12,16 } }, // srl/xor/sub splat+shuffle sequence.
|
|
|
|
{ ISD::AND, MVT::v16i8, { 1, 1, 1, 1 } }, // pand
|
|
{ ISD::AND, MVT::v8i16, { 1, 1, 1, 1 } }, // pand
|
|
{ ISD::AND, MVT::v4i32, { 1, 1, 1, 1 } }, // pand
|
|
{ ISD::AND, MVT::v2i64, { 1, 1, 1, 1 } }, // pand
|
|
|
|
{ ISD::OR, MVT::v16i8, { 1, 1, 1, 1 } }, // por
|
|
{ ISD::OR, MVT::v8i16, { 1, 1, 1, 1 } }, // por
|
|
{ ISD::OR, MVT::v4i32, { 1, 1, 1, 1 } }, // por
|
|
{ ISD::OR, MVT::v2i64, { 1, 1, 1, 1 } }, // por
|
|
|
|
{ ISD::XOR, MVT::v16i8, { 1, 1, 1, 1 } }, // pxor
|
|
{ ISD::XOR, MVT::v8i16, { 1, 1, 1, 1 } }, // pxor
|
|
{ ISD::XOR, MVT::v4i32, { 1, 1, 1, 1 } }, // pxor
|
|
{ ISD::XOR, MVT::v2i64, { 1, 1, 1, 1 } }, // pxor
|
|
|
|
{ ISD::ADD, MVT::v2i64, { 1, 2, 1, 2 } }, // paddq
|
|
{ ISD::SUB, MVT::v2i64, { 1, 2, 1, 2 } }, // psubq
|
|
|
|
{ ISD::MUL, MVT::v16i8, { 5, 18,12,12 } }, // 2*unpack/2*pmullw/2*and/pack
|
|
{ ISD::MUL, MVT::v8i16, { 1, 5, 1, 1 } }, // pmullw
|
|
{ ISD::MUL, MVT::v4i32, { 6, 8, 7, 7 } }, // 3*pmuludq/4*shuffle
|
|
{ ISD::MUL, MVT::v2i64, { 7, 10,10,10 } }, // 3*pmuludq/3*shift/2*add
|
|
|
|
{ X86ISD::PMULUDQ, MVT::v2i64, { 1, 5, 1, 1 } },
|
|
|
|
{ ISD::FDIV, MVT::f32, { 23, 23, 1, 1 } }, // Pentium IV from http://www.agner.org/
|
|
{ ISD::FDIV, MVT::v4f32, { 39, 39, 1, 1 } }, // Pentium IV from http://www.agner.org/
|
|
{ ISD::FDIV, MVT::f64, { 38, 38, 1, 1 } }, // Pentium IV from http://www.agner.org/
|
|
{ ISD::FDIV, MVT::v2f64, { 69, 69, 1, 1 } }, // Pentium IV from http://www.agner.org/
|
|
|
|
{ ISD::FNEG, MVT::f32, { 1, 1, 1, 1 } }, // Pentium IV from http://www.agner.org/
|
|
{ ISD::FNEG, MVT::f64, { 1, 1, 1, 1 } }, // Pentium IV from http://www.agner.org/
|
|
{ ISD::FNEG, MVT::v4f32, { 1, 1, 1, 1 } }, // Pentium IV from http://www.agner.org/
|
|
{ ISD::FNEG, MVT::v2f64, { 1, 1, 1, 1 } }, // Pentium IV from http://www.agner.org/
|
|
|
|
{ ISD::FADD, MVT::f32, { 2, 3, 1, 1 } }, // Pentium IV from http://www.agner.org/
|
|
{ ISD::FADD, MVT::f64, { 2, 3, 1, 1 } }, // Pentium IV from http://www.agner.org/
|
|
{ ISD::FADD, MVT::v2f64, { 2, 3, 1, 1 } }, // Pentium IV from http://www.agner.org/
|
|
|
|
{ ISD::FSUB, MVT::f32, { 2, 3, 1, 1 } }, // Pentium IV from http://www.agner.org/
|
|
{ ISD::FSUB, MVT::f64, { 2, 3, 1, 1 } }, // Pentium IV from http://www.agner.org/
|
|
{ ISD::FSUB, MVT::v2f64, { 2, 3, 1, 1 } }, // Pentium IV from http://www.agner.org/
|
|
|
|
{ ISD::FMUL, MVT::f64, { 2, 5, 1, 1 } }, // Pentium IV from http://www.agner.org/
|
|
{ ISD::FMUL, MVT::v2f64, { 2, 5, 1, 1 } }, // Pentium IV from http://www.agner.org/
|
|
};
|
|
|
|
if (ST->hasSSE2())
|
|
if (const auto *Entry = CostTableLookup(SSE2CostTable, ISD, LT.second))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * *KindCost;
|
|
|
|
static const CostKindTblEntry SSE1CostTable[] = {
|
|
{ ISD::FDIV, MVT::f32, { 17, 18, 1, 1 } }, // Pentium III from http://www.agner.org/
|
|
{ ISD::FDIV, MVT::v4f32, { 34, 48, 1, 1 } }, // Pentium III from http://www.agner.org/
|
|
|
|
{ ISD::FNEG, MVT::f32, { 2, 2, 1, 2 } }, // Pentium III from http://www.agner.org/
|
|
{ ISD::FNEG, MVT::v4f32, { 2, 2, 1, 2 } }, // Pentium III from http://www.agner.org/
|
|
|
|
{ ISD::FADD, MVT::f32, { 1, 3, 1, 1 } }, // Pentium III from http://www.agner.org/
|
|
{ ISD::FADD, MVT::v4f32, { 2, 3, 1, 1 } }, // Pentium III from http://www.agner.org/
|
|
|
|
{ ISD::FSUB, MVT::f32, { 1, 3, 1, 1 } }, // Pentium III from http://www.agner.org/
|
|
{ ISD::FSUB, MVT::v4f32, { 2, 3, 1, 1 } }, // Pentium III from http://www.agner.org/
|
|
|
|
{ ISD::FMUL, MVT::f32, { 2, 5, 1, 1 } }, // Pentium III from http://www.agner.org/
|
|
{ ISD::FMUL, MVT::v4f32, { 2, 5, 1, 1 } }, // Pentium III from http://www.agner.org/
|
|
};
|
|
|
|
if (ST->hasSSE1())
|
|
if (const auto *Entry = CostTableLookup(SSE1CostTable, ISD, LT.second))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * *KindCost;
|
|
|
|
static const CostKindTblEntry X64CostTbl[] = { // 64-bit targets
|
|
{ ISD::ADD, MVT::i64, { 1 } }, // Core (Merom) from http://www.agner.org/
|
|
{ ISD::SUB, MVT::i64, { 1 } }, // Core (Merom) from http://www.agner.org/
|
|
{ ISD::MUL, MVT::i64, { 2, 6, 1, 2 } },
|
|
};
|
|
|
|
if (ST->is64Bit())
|
|
if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, LT.second))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * *KindCost;
|
|
|
|
static const CostKindTblEntry X86CostTbl[] = { // 32 or 64-bit targets
|
|
{ ISD::ADD, MVT::i8, { 1 } }, // Pentium III from http://www.agner.org/
|
|
{ ISD::ADD, MVT::i16, { 1 } }, // Pentium III from http://www.agner.org/
|
|
{ ISD::ADD, MVT::i32, { 1 } }, // Pentium III from http://www.agner.org/
|
|
|
|
{ ISD::SUB, MVT::i8, { 1 } }, // Pentium III from http://www.agner.org/
|
|
{ ISD::SUB, MVT::i16, { 1 } }, // Pentium III from http://www.agner.org/
|
|
{ ISD::SUB, MVT::i32, { 1 } }, // Pentium III from http://www.agner.org/
|
|
|
|
{ ISD::MUL, MVT::i8, { 3, 4, 1, 1 } },
|
|
{ ISD::MUL, MVT::i16, { 2, 4, 1, 1 } },
|
|
{ ISD::MUL, MVT::i32, { 1, 4, 1, 1 } },
|
|
|
|
{ ISD::FNEG, MVT::f64, { 2, 2, 1, 3 } }, // (x87)
|
|
{ ISD::FADD, MVT::f64, { 2, 3, 1, 1 } }, // (x87)
|
|
{ ISD::FSUB, MVT::f64, { 2, 3, 1, 1 } }, // (x87)
|
|
{ ISD::FMUL, MVT::f64, { 2, 5, 1, 1 } }, // (x87)
|
|
{ ISD::FDIV, MVT::f64, { 38, 38, 1, 1 } }, // (x87)
|
|
};
|
|
|
|
if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, LT.second))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * *KindCost;
|
|
|
|
// It is not a good idea to vectorize division. We have to scalarize it and
|
|
// in the process we will often end up having to spilling regular
|
|
// registers. The overhead of division is going to dominate most kernels
|
|
// anyways so try hard to prevent vectorization of division - it is
|
|
// generally a bad idea. Assume somewhat arbitrarily that we have to be able
|
|
// to hide "20 cycles" for each lane.
|
|
if (CostKind == TTI::TCK_RecipThroughput && LT.second.isVector() &&
|
|
(ISD == ISD::SDIV || ISD == ISD::SREM || ISD == ISD::UDIV ||
|
|
ISD == ISD::UREM)) {
|
|
InstructionCost ScalarCost =
|
|
getArithmeticInstrCost(Opcode, Ty->getScalarType(), CostKind,
|
|
Op1Info.getNoProps(), Op2Info.getNoProps());
|
|
return 20 * LT.first * LT.second.getVectorNumElements() * ScalarCost;
|
|
}
|
|
|
|
// Handle some basic single instruction code size cases.
|
|
if (CostKind == TTI::TCK_CodeSize) {
|
|
switch (ISD) {
|
|
case ISD::FADD:
|
|
case ISD::FSUB:
|
|
case ISD::FMUL:
|
|
case ISD::FDIV:
|
|
case ISD::FNEG:
|
|
case ISD::AND:
|
|
case ISD::OR:
|
|
case ISD::XOR:
|
|
return LT.first;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Fallback to the default implementation.
|
|
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
|
|
Args, CxtI);
|
|
}
|
|
|
|
InstructionCost
|
|
X86TTIImpl::getAltInstrCost(VectorType *VecTy, unsigned Opcode0,
|
|
unsigned Opcode1, const SmallBitVector &OpcodeMask,
|
|
TTI::TargetCostKind CostKind) const {
|
|
if (isLegalAltInstr(VecTy, Opcode0, Opcode1, OpcodeMask))
|
|
return TTI::TCC_Basic;
|
|
return InstructionCost::getInvalid();
|
|
}
|
|
|
|
InstructionCost X86TTIImpl::getShuffleCost(TTI::ShuffleKind Kind,
|
|
VectorType *BaseTp,
|
|
ArrayRef<int> Mask,
|
|
TTI::TargetCostKind CostKind,
|
|
int Index, VectorType *SubTp,
|
|
ArrayRef<const Value *> Args) {
|
|
// 64-bit packed float vectors (v2f32) are widened to type v4f32.
|
|
// 64-bit packed integer vectors (v2i32) are widened to type v4i32.
|
|
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(BaseTp);
|
|
|
|
Kind = improveShuffleKindFromMask(Kind, Mask, BaseTp, Index, SubTp);
|
|
|
|
// Treat Transpose as 2-op shuffles - there's no difference in lowering.
|
|
if (Kind == TTI::SK_Transpose)
|
|
Kind = TTI::SK_PermuteTwoSrc;
|
|
|
|
// For Broadcasts we are splatting the first element from the first input
|
|
// register, so only need to reference that input and all the output
|
|
// registers are the same.
|
|
if (Kind == TTI::SK_Broadcast)
|
|
LT.first = 1;
|
|
|
|
// Treat <X x bfloat> shuffles as <X x half>.
|
|
if (LT.second.isVector() && LT.second.getScalarType() == MVT::bf16)
|
|
LT.second = LT.second.changeVectorElementType(MVT::f16);
|
|
|
|
// Subvector extractions are free if they start at the beginning of a
|
|
// vector and cheap if the subvectors are aligned.
|
|
if (Kind == TTI::SK_ExtractSubvector && LT.second.isVector()) {
|
|
int NumElts = LT.second.getVectorNumElements();
|
|
if ((Index % NumElts) == 0)
|
|
return 0;
|
|
std::pair<InstructionCost, MVT> SubLT = getTypeLegalizationCost(SubTp);
|
|
if (SubLT.second.isVector()) {
|
|
int NumSubElts = SubLT.second.getVectorNumElements();
|
|
if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
|
|
return SubLT.first;
|
|
// Handle some cases for widening legalization. For now we only handle
|
|
// cases where the original subvector was naturally aligned and evenly
|
|
// fit in its legalized subvector type.
|
|
// FIXME: Remove some of the alignment restrictions.
|
|
// FIXME: We can use permq for 64-bit or larger extracts from 256-bit
|
|
// vectors.
|
|
int OrigSubElts = cast<FixedVectorType>(SubTp)->getNumElements();
|
|
if (NumSubElts > OrigSubElts && (Index % OrigSubElts) == 0 &&
|
|
(NumSubElts % OrigSubElts) == 0 &&
|
|
LT.second.getVectorElementType() ==
|
|
SubLT.second.getVectorElementType() &&
|
|
LT.second.getVectorElementType().getSizeInBits() ==
|
|
BaseTp->getElementType()->getPrimitiveSizeInBits()) {
|
|
assert(NumElts >= NumSubElts && NumElts > OrigSubElts &&
|
|
"Unexpected number of elements!");
|
|
auto *VecTy = FixedVectorType::get(BaseTp->getElementType(),
|
|
LT.second.getVectorNumElements());
|
|
auto *SubTy = FixedVectorType::get(BaseTp->getElementType(),
|
|
SubLT.second.getVectorNumElements());
|
|
int ExtractIndex = alignDown((Index % NumElts), NumSubElts);
|
|
InstructionCost ExtractCost =
|
|
getShuffleCost(TTI::SK_ExtractSubvector, VecTy, std::nullopt,
|
|
CostKind, ExtractIndex, SubTy);
|
|
|
|
// If the original size is 32-bits or more, we can use pshufd. Otherwise
|
|
// if we have SSSE3 we can use pshufb.
|
|
if (SubTp->getPrimitiveSizeInBits() >= 32 || ST->hasSSSE3())
|
|
return ExtractCost + 1; // pshufd or pshufb
|
|
|
|
assert(SubTp->getPrimitiveSizeInBits() == 16 &&
|
|
"Unexpected vector size");
|
|
|
|
return ExtractCost + 2; // worst case pshufhw + pshufd
|
|
}
|
|
}
|
|
// If the extract subvector is not optimal, treat it as single op shuffle.
|
|
Kind = TTI::SK_PermuteSingleSrc;
|
|
}
|
|
|
|
// Subvector insertions are cheap if the subvectors are aligned.
|
|
// Note that in general, the insertion starting at the beginning of a vector
|
|
// isn't free, because we need to preserve the rest of the wide vector.
|
|
if (Kind == TTI::SK_InsertSubvector && LT.second.isVector()) {
|
|
int NumElts = LT.second.getVectorNumElements();
|
|
std::pair<InstructionCost, MVT> SubLT = getTypeLegalizationCost(SubTp);
|
|
if (SubLT.second.isVector()) {
|
|
int NumSubElts = SubLT.second.getVectorNumElements();
|
|
if ((Index % NumSubElts) == 0 && (NumElts % NumSubElts) == 0)
|
|
return SubLT.first;
|
|
}
|
|
|
|
// If the insertion isn't aligned, treat it like a 2-op shuffle.
|
|
Kind = TTI::SK_PermuteTwoSrc;
|
|
}
|
|
|
|
// Handle some common (illegal) sub-vector types as they are often very cheap
|
|
// to shuffle even on targets without PSHUFB.
|
|
EVT VT = TLI->getValueType(DL, BaseTp);
|
|
if (VT.isSimple() && VT.isVector() && VT.getSizeInBits() < 128 &&
|
|
!ST->hasSSSE3()) {
|
|
static const CostTblEntry SSE2SubVectorShuffleTbl[] = {
|
|
{TTI::SK_Broadcast, MVT::v4i16, 1}, // pshuflw
|
|
{TTI::SK_Broadcast, MVT::v2i16, 1}, // pshuflw
|
|
{TTI::SK_Broadcast, MVT::v8i8, 2}, // punpck/pshuflw
|
|
{TTI::SK_Broadcast, MVT::v4i8, 2}, // punpck/pshuflw
|
|
{TTI::SK_Broadcast, MVT::v2i8, 1}, // punpck
|
|
|
|
{TTI::SK_Reverse, MVT::v4i16, 1}, // pshuflw
|
|
{TTI::SK_Reverse, MVT::v2i16, 1}, // pshuflw
|
|
{TTI::SK_Reverse, MVT::v4i8, 3}, // punpck/pshuflw/packus
|
|
{TTI::SK_Reverse, MVT::v2i8, 1}, // punpck
|
|
|
|
{TTI::SK_Splice, MVT::v4i16, 2}, // punpck+psrldq
|
|
{TTI::SK_Splice, MVT::v2i16, 2}, // punpck+psrldq
|
|
{TTI::SK_Splice, MVT::v4i8, 2}, // punpck+psrldq
|
|
{TTI::SK_Splice, MVT::v2i8, 2}, // punpck+psrldq
|
|
|
|
{TTI::SK_PermuteTwoSrc, MVT::v4i16, 2}, // punpck/pshuflw
|
|
{TTI::SK_PermuteTwoSrc, MVT::v2i16, 2}, // punpck/pshuflw
|
|
{TTI::SK_PermuteTwoSrc, MVT::v8i8, 7}, // punpck/pshuflw
|
|
{TTI::SK_PermuteTwoSrc, MVT::v4i8, 4}, // punpck/pshuflw
|
|
{TTI::SK_PermuteTwoSrc, MVT::v2i8, 2}, // punpck
|
|
|
|
{TTI::SK_PermuteSingleSrc, MVT::v4i16, 1}, // pshuflw
|
|
{TTI::SK_PermuteSingleSrc, MVT::v2i16, 1}, // pshuflw
|
|
{TTI::SK_PermuteSingleSrc, MVT::v8i8, 5}, // punpck/pshuflw
|
|
{TTI::SK_PermuteSingleSrc, MVT::v4i8, 3}, // punpck/pshuflw
|
|
{TTI::SK_PermuteSingleSrc, MVT::v2i8, 1}, // punpck
|
|
};
|
|
|
|
if (ST->hasSSE2())
|
|
if (const auto *Entry =
|
|
CostTableLookup(SSE2SubVectorShuffleTbl, Kind, VT.getSimpleVT()))
|
|
return Entry->Cost;
|
|
}
|
|
|
|
// We are going to permute multiple sources and the result will be in multiple
|
|
// destinations. Providing an accurate cost only for splits where the element
|
|
// type remains the same.
|
|
if (Kind == TTI::SK_PermuteSingleSrc && LT.first != 1) {
|
|
MVT LegalVT = LT.second;
|
|
if (LegalVT.isVector() &&
|
|
LegalVT.getVectorElementType().getSizeInBits() ==
|
|
BaseTp->getElementType()->getPrimitiveSizeInBits() &&
|
|
LegalVT.getVectorNumElements() <
|
|
cast<FixedVectorType>(BaseTp)->getNumElements()) {
|
|
unsigned VecTySize = DL.getTypeStoreSize(BaseTp);
|
|
unsigned LegalVTSize = LegalVT.getStoreSize();
|
|
// Number of source vectors after legalization:
|
|
unsigned NumOfSrcs = (VecTySize + LegalVTSize - 1) / LegalVTSize;
|
|
// Number of destination vectors after legalization:
|
|
InstructionCost NumOfDests = LT.first;
|
|
|
|
auto *SingleOpTy = FixedVectorType::get(BaseTp->getElementType(),
|
|
LegalVT.getVectorNumElements());
|
|
|
|
if (!Mask.empty() && NumOfDests.isValid()) {
|
|
// Try to perform better estimation of the permutation.
|
|
// 1. Split the source/destination vectors into real registers.
|
|
// 2. Do the mask analysis to identify which real registers are
|
|
// permuted. If more than 1 source registers are used for the
|
|
// destination register building, the cost for this destination register
|
|
// is (Number_of_source_register - 1) * Cost_PermuteTwoSrc. If only one
|
|
// source register is used, build mask and calculate the cost as a cost
|
|
// of PermuteSingleSrc.
|
|
// Also, for the single register permute we try to identify if the
|
|
// destination register is just a copy of the source register or the
|
|
// copy of the previous destination register (the cost is
|
|
// TTI::TCC_Basic). If the source register is just reused, the cost for
|
|
// this operation is 0.
|
|
NumOfDests =
|
|
getTypeLegalizationCost(
|
|
FixedVectorType::get(BaseTp->getElementType(), Mask.size()))
|
|
.first;
|
|
unsigned E = *NumOfDests.getValue();
|
|
unsigned NormalizedVF =
|
|
LegalVT.getVectorNumElements() * std::max(NumOfSrcs, E);
|
|
unsigned NumOfSrcRegs = NormalizedVF / LegalVT.getVectorNumElements();
|
|
unsigned NumOfDestRegs = NormalizedVF / LegalVT.getVectorNumElements();
|
|
SmallVector<int> NormalizedMask(NormalizedVF, PoisonMaskElem);
|
|
copy(Mask, NormalizedMask.begin());
|
|
unsigned PrevSrcReg = 0;
|
|
ArrayRef<int> PrevRegMask;
|
|
InstructionCost Cost = 0;
|
|
processShuffleMasks(
|
|
NormalizedMask, NumOfSrcRegs, NumOfDestRegs, NumOfDestRegs, []() {},
|
|
[this, SingleOpTy, CostKind, &PrevSrcReg, &PrevRegMask,
|
|
&Cost](ArrayRef<int> RegMask, unsigned SrcReg, unsigned DestReg) {
|
|
if (!ShuffleVectorInst::isIdentityMask(RegMask, RegMask.size())) {
|
|
// Check if the previous register can be just copied to the next
|
|
// one.
|
|
if (PrevRegMask.empty() || PrevSrcReg != SrcReg ||
|
|
PrevRegMask != RegMask)
|
|
Cost += getShuffleCost(TTI::SK_PermuteSingleSrc, SingleOpTy,
|
|
RegMask, CostKind, 0, nullptr);
|
|
else
|
|
// Just a copy of previous destination register.
|
|
Cost += TTI::TCC_Basic;
|
|
return;
|
|
}
|
|
if (SrcReg != DestReg &&
|
|
any_of(RegMask, [](int I) { return I != PoisonMaskElem; })) {
|
|
// Just a copy of the source register.
|
|
Cost += TTI::TCC_Basic;
|
|
}
|
|
PrevSrcReg = SrcReg;
|
|
PrevRegMask = RegMask;
|
|
},
|
|
[this, SingleOpTy, CostKind, &Cost](ArrayRef<int> RegMask,
|
|
unsigned /*Unused*/,
|
|
unsigned /*Unused*/) {
|
|
Cost += getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy, RegMask,
|
|
CostKind, 0, nullptr);
|
|
});
|
|
return Cost;
|
|
}
|
|
|
|
InstructionCost NumOfShuffles = (NumOfSrcs - 1) * NumOfDests;
|
|
return NumOfShuffles * getShuffleCost(TTI::SK_PermuteTwoSrc, SingleOpTy,
|
|
std::nullopt, CostKind, 0, nullptr);
|
|
}
|
|
|
|
return BaseT::getShuffleCost(Kind, BaseTp, Mask, CostKind, Index, SubTp);
|
|
}
|
|
|
|
// For 2-input shuffles, we must account for splitting the 2 inputs into many.
|
|
if (Kind == TTI::SK_PermuteTwoSrc && LT.first != 1) {
|
|
// We assume that source and destination have the same vector type.
|
|
InstructionCost NumOfDests = LT.first;
|
|
InstructionCost NumOfShufflesPerDest = LT.first * 2 - 1;
|
|
LT.first = NumOfDests * NumOfShufflesPerDest;
|
|
}
|
|
|
|
static const CostTblEntry AVX512VBMIShuffleTbl[] = {
|
|
{TTI::SK_Reverse, MVT::v64i8, 1}, // vpermb
|
|
{TTI::SK_Reverse, MVT::v32i8, 1}, // vpermb
|
|
|
|
{TTI::SK_PermuteSingleSrc, MVT::v64i8, 1}, // vpermb
|
|
{TTI::SK_PermuteSingleSrc, MVT::v32i8, 1}, // vpermb
|
|
|
|
{TTI::SK_PermuteTwoSrc, MVT::v64i8, 2}, // vpermt2b
|
|
{TTI::SK_PermuteTwoSrc, MVT::v32i8, 2}, // vpermt2b
|
|
{TTI::SK_PermuteTwoSrc, MVT::v16i8, 2} // vpermt2b
|
|
};
|
|
|
|
if (ST->hasVBMI())
|
|
if (const auto *Entry =
|
|
CostTableLookup(AVX512VBMIShuffleTbl, Kind, LT.second))
|
|
return LT.first * Entry->Cost;
|
|
|
|
static const CostTblEntry AVX512BWShuffleTbl[] = {
|
|
{TTI::SK_Broadcast, MVT::v32i16, 1}, // vpbroadcastw
|
|
{TTI::SK_Broadcast, MVT::v32f16, 1}, // vpbroadcastw
|
|
{TTI::SK_Broadcast, MVT::v64i8, 1}, // vpbroadcastb
|
|
|
|
{TTI::SK_Reverse, MVT::v32i16, 2}, // vpermw
|
|
{TTI::SK_Reverse, MVT::v32f16, 2}, // vpermw
|
|
{TTI::SK_Reverse, MVT::v16i16, 2}, // vpermw
|
|
{TTI::SK_Reverse, MVT::v64i8, 2}, // pshufb + vshufi64x2
|
|
|
|
{TTI::SK_PermuteSingleSrc, MVT::v32i16, 2}, // vpermw
|
|
{TTI::SK_PermuteSingleSrc, MVT::v32f16, 2}, // vpermw
|
|
{TTI::SK_PermuteSingleSrc, MVT::v16i16, 2}, // vpermw
|
|
{TTI::SK_PermuteSingleSrc, MVT::v16f16, 2}, // vpermw
|
|
{TTI::SK_PermuteSingleSrc, MVT::v64i8, 8}, // extend to v32i16
|
|
|
|
{TTI::SK_PermuteTwoSrc, MVT::v32i16, 2}, // vpermt2w
|
|
{TTI::SK_PermuteTwoSrc, MVT::v32f16, 2}, // vpermt2w
|
|
{TTI::SK_PermuteTwoSrc, MVT::v16i16, 2}, // vpermt2w
|
|
{TTI::SK_PermuteTwoSrc, MVT::v8i16, 2}, // vpermt2w
|
|
{TTI::SK_PermuteTwoSrc, MVT::v64i8, 19}, // 6 * v32i8 + 1
|
|
|
|
{TTI::SK_Select, MVT::v32i16, 1}, // vblendmw
|
|
{TTI::SK_Select, MVT::v64i8, 1}, // vblendmb
|
|
|
|
{TTI::SK_Splice, MVT::v32i16, 2}, // vshufi64x2 + palignr
|
|
{TTI::SK_Splice, MVT::v32f16, 2}, // vshufi64x2 + palignr
|
|
{TTI::SK_Splice, MVT::v64i8, 2}, // vshufi64x2 + palignr
|
|
};
|
|
|
|
if (ST->hasBWI())
|
|
if (const auto *Entry =
|
|
CostTableLookup(AVX512BWShuffleTbl, Kind, LT.second))
|
|
return LT.first * Entry->Cost;
|
|
|
|
static const CostKindTblEntry AVX512ShuffleTbl[] = {
|
|
{TTI::SK_Broadcast, MVT::v8f64, { 1, 1, 1, 1 } }, // vbroadcastsd
|
|
{TTI::SK_Broadcast, MVT::v16f32, { 1, 1, 1, 1 } }, // vbroadcastss
|
|
{TTI::SK_Broadcast, MVT::v8i64, { 1, 1, 1, 1 } }, // vpbroadcastq
|
|
{TTI::SK_Broadcast, MVT::v16i32, { 1, 1, 1, 1 } }, // vpbroadcastd
|
|
{TTI::SK_Broadcast, MVT::v32i16, { 1, 1, 1, 1 } }, // vpbroadcastw
|
|
{TTI::SK_Broadcast, MVT::v32f16, { 1, 1, 1, 1 } }, // vpbroadcastw
|
|
{TTI::SK_Broadcast, MVT::v64i8, { 1, 1, 1, 1 } }, // vpbroadcastb
|
|
|
|
{TTI::SK_Reverse, MVT::v8f64, { 1, 3, 1, 1 } }, // vpermpd
|
|
{TTI::SK_Reverse, MVT::v16f32, { 1, 3, 1, 1 } }, // vpermps
|
|
{TTI::SK_Reverse, MVT::v8i64, { 1, 3, 1, 1 } }, // vpermq
|
|
{TTI::SK_Reverse, MVT::v16i32, { 1, 3, 1, 1 } }, // vpermd
|
|
{TTI::SK_Reverse, MVT::v32i16, { 7, 7, 7, 7 } }, // per mca
|
|
{TTI::SK_Reverse, MVT::v32f16, { 7, 7, 7, 7 } }, // per mca
|
|
{TTI::SK_Reverse, MVT::v64i8, { 7, 7, 7, 7 } }, // per mca
|
|
|
|
{TTI::SK_Splice, MVT::v8f64, { 1, 1, 1, 1 } }, // vpalignd
|
|
{TTI::SK_Splice, MVT::v4f64, { 1, 1, 1, 1 } }, // vpalignd
|
|
{TTI::SK_Splice, MVT::v16f32, { 1, 1, 1, 1 } }, // vpalignd
|
|
{TTI::SK_Splice, MVT::v8f32, { 1, 1, 1, 1 } }, // vpalignd
|
|
{TTI::SK_Splice, MVT::v8i64, { 1, 1, 1, 1 } }, // vpalignd
|
|
{TTI::SK_Splice, MVT::v4i64, { 1, 1, 1, 1 } }, // vpalignd
|
|
{TTI::SK_Splice, MVT::v16i32, { 1, 1, 1, 1 } }, // vpalignd
|
|
{TTI::SK_Splice, MVT::v8i32, { 1, 1, 1, 1 } }, // vpalignd
|
|
{TTI::SK_Splice, MVT::v32i16, { 4, 4, 4, 4 } }, // split + palignr
|
|
{TTI::SK_Splice, MVT::v32f16, { 4, 4, 4, 4 } }, // split + palignr
|
|
{TTI::SK_Splice, MVT::v64i8, { 4, 4, 4, 4 } }, // split + palignr
|
|
|
|
{TTI::SK_PermuteSingleSrc, MVT::v8f64, { 1, 3, 1, 1 } }, // vpermpd
|
|
{TTI::SK_PermuteSingleSrc, MVT::v4f64, { 1, 3, 1, 1 } }, // vpermpd
|
|
{TTI::SK_PermuteSingleSrc, MVT::v2f64, { 1, 3, 1, 1 } }, // vpermpd
|
|
{TTI::SK_PermuteSingleSrc, MVT::v16f32, { 1, 3, 1, 1 } }, // vpermps
|
|
{TTI::SK_PermuteSingleSrc, MVT::v8f32, { 1, 3, 1, 1 } }, // vpermps
|
|
{TTI::SK_PermuteSingleSrc, MVT::v4f32, { 1, 3, 1, 1 } }, // vpermps
|
|
{TTI::SK_PermuteSingleSrc, MVT::v8i64, { 1, 3, 1, 1 } }, // vpermq
|
|
{TTI::SK_PermuteSingleSrc, MVT::v4i64, { 1, 3, 1, 1 } }, // vpermq
|
|
{TTI::SK_PermuteSingleSrc, MVT::v2i64, { 1, 3, 1, 1 } }, // vpermq
|
|
{TTI::SK_PermuteSingleSrc, MVT::v16i32, { 1, 3, 1, 1 } }, // vpermd
|
|
{TTI::SK_PermuteSingleSrc, MVT::v8i32, { 1, 3, 1, 1 } }, // vpermd
|
|
{TTI::SK_PermuteSingleSrc, MVT::v4i32, { 1, 3, 1, 1 } }, // vpermd
|
|
{TTI::SK_PermuteSingleSrc, MVT::v16i8, { 1, 3, 1, 1 } }, // pshufb
|
|
|
|
{TTI::SK_PermuteTwoSrc, MVT::v8f64, { 1, 3, 1, 1 } }, // vpermt2pd
|
|
{TTI::SK_PermuteTwoSrc, MVT::v16f32, { 1, 3, 1, 1 } }, // vpermt2ps
|
|
{TTI::SK_PermuteTwoSrc, MVT::v8i64, { 1, 3, 1, 1 } }, // vpermt2q
|
|
{TTI::SK_PermuteTwoSrc, MVT::v16i32, { 1, 3, 1, 1 } }, // vpermt2d
|
|
{TTI::SK_PermuteTwoSrc, MVT::v4f64, { 1, 3, 1, 1 } }, // vpermt2pd
|
|
{TTI::SK_PermuteTwoSrc, MVT::v8f32, { 1, 3, 1, 1 } }, // vpermt2ps
|
|
{TTI::SK_PermuteTwoSrc, MVT::v4i64, { 1, 3, 1, 1 } }, // vpermt2q
|
|
{TTI::SK_PermuteTwoSrc, MVT::v8i32, { 1, 3, 1, 1 } }, // vpermt2d
|
|
{TTI::SK_PermuteTwoSrc, MVT::v2f64, { 1, 3, 1, 1 } }, // vpermt2pd
|
|
{TTI::SK_PermuteTwoSrc, MVT::v4f32, { 1, 3, 1, 1 } }, // vpermt2ps
|
|
{TTI::SK_PermuteTwoSrc, MVT::v2i64, { 1, 3, 1, 1 } }, // vpermt2q
|
|
{TTI::SK_PermuteTwoSrc, MVT::v4i32, { 1, 3, 1, 1 } }, // vpermt2d
|
|
|
|
// FIXME: This just applies the type legalization cost rules above
|
|
// assuming these completely split.
|
|
{TTI::SK_PermuteSingleSrc, MVT::v32i16, { 14, 14, 14, 14 } },
|
|
{TTI::SK_PermuteSingleSrc, MVT::v32f16, { 14, 14, 14, 14 } },
|
|
{TTI::SK_PermuteSingleSrc, MVT::v64i8, { 14, 14, 14, 14 } },
|
|
{TTI::SK_PermuteTwoSrc, MVT::v32i16, { 42, 42, 42, 42 } },
|
|
{TTI::SK_PermuteTwoSrc, MVT::v32f16, { 42, 42, 42, 42 } },
|
|
{TTI::SK_PermuteTwoSrc, MVT::v64i8, { 42, 42, 42, 42 } },
|
|
|
|
{TTI::SK_Select, MVT::v32i16, { 1, 1, 1, 1 } }, // vpternlogq
|
|
{TTI::SK_Select, MVT::v32f16, { 1, 1, 1, 1 } }, // vpternlogq
|
|
{TTI::SK_Select, MVT::v64i8, { 1, 1, 1, 1 } }, // vpternlogq
|
|
{TTI::SK_Select, MVT::v8f64, { 1, 1, 1, 1 } }, // vblendmpd
|
|
{TTI::SK_Select, MVT::v16f32, { 1, 1, 1, 1 } }, // vblendmps
|
|
{TTI::SK_Select, MVT::v8i64, { 1, 1, 1, 1 } }, // vblendmq
|
|
{TTI::SK_Select, MVT::v16i32, { 1, 1, 1, 1 } }, // vblendmd
|
|
};
|
|
|
|
if (ST->hasAVX512())
|
|
if (const auto *Entry = CostTableLookup(AVX512ShuffleTbl, Kind, LT.second))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * *KindCost;
|
|
|
|
static const CostTblEntry AVX2ShuffleTbl[] = {
|
|
{TTI::SK_Broadcast, MVT::v4f64, 1}, // vbroadcastpd
|
|
{TTI::SK_Broadcast, MVT::v8f32, 1}, // vbroadcastps
|
|
{TTI::SK_Broadcast, MVT::v4i64, 1}, // vpbroadcastq
|
|
{TTI::SK_Broadcast, MVT::v8i32, 1}, // vpbroadcastd
|
|
{TTI::SK_Broadcast, MVT::v16i16, 1}, // vpbroadcastw
|
|
{TTI::SK_Broadcast, MVT::v16f16, 1}, // vpbroadcastw
|
|
{TTI::SK_Broadcast, MVT::v32i8, 1}, // vpbroadcastb
|
|
|
|
{TTI::SK_Reverse, MVT::v4f64, 1}, // vpermpd
|
|
{TTI::SK_Reverse, MVT::v8f32, 1}, // vpermps
|
|
{TTI::SK_Reverse, MVT::v4i64, 1}, // vpermq
|
|
{TTI::SK_Reverse, MVT::v8i32, 1}, // vpermd
|
|
{TTI::SK_Reverse, MVT::v16i16, 2}, // vperm2i128 + pshufb
|
|
{TTI::SK_Reverse, MVT::v16f16, 2}, // vperm2i128 + pshufb
|
|
{TTI::SK_Reverse, MVT::v32i8, 2}, // vperm2i128 + pshufb
|
|
|
|
{TTI::SK_Select, MVT::v16i16, 1}, // vpblendvb
|
|
{TTI::SK_Select, MVT::v16f16, 1}, // vpblendvb
|
|
{TTI::SK_Select, MVT::v32i8, 1}, // vpblendvb
|
|
|
|
{TTI::SK_Splice, MVT::v8i32, 2}, // vperm2i128 + vpalignr
|
|
{TTI::SK_Splice, MVT::v8f32, 2}, // vperm2i128 + vpalignr
|
|
{TTI::SK_Splice, MVT::v16i16, 2}, // vperm2i128 + vpalignr
|
|
{TTI::SK_Splice, MVT::v16f16, 2}, // vperm2i128 + vpalignr
|
|
{TTI::SK_Splice, MVT::v32i8, 2}, // vperm2i128 + vpalignr
|
|
|
|
{TTI::SK_PermuteSingleSrc, MVT::v4f64, 1}, // vpermpd
|
|
{TTI::SK_PermuteSingleSrc, MVT::v8f32, 1}, // vpermps
|
|
{TTI::SK_PermuteSingleSrc, MVT::v4i64, 1}, // vpermq
|
|
{TTI::SK_PermuteSingleSrc, MVT::v8i32, 1}, // vpermd
|
|
{TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vperm2i128 + 2*vpshufb
|
|
// + vpblendvb
|
|
{TTI::SK_PermuteSingleSrc, MVT::v16f16, 4}, // vperm2i128 + 2*vpshufb
|
|
// + vpblendvb
|
|
{TTI::SK_PermuteSingleSrc, MVT::v32i8, 4}, // vperm2i128 + 2*vpshufb
|
|
// + vpblendvb
|
|
|
|
{TTI::SK_PermuteTwoSrc, MVT::v4f64, 3}, // 2*vpermpd + vblendpd
|
|
{TTI::SK_PermuteTwoSrc, MVT::v8f32, 3}, // 2*vpermps + vblendps
|
|
{TTI::SK_PermuteTwoSrc, MVT::v4i64, 3}, // 2*vpermq + vpblendd
|
|
{TTI::SK_PermuteTwoSrc, MVT::v8i32, 3}, // 2*vpermd + vpblendd
|
|
{TTI::SK_PermuteTwoSrc, MVT::v16i16, 7}, // 2*vperm2i128 + 4*vpshufb
|
|
// + vpblendvb
|
|
{TTI::SK_PermuteTwoSrc, MVT::v16f16, 7}, // 2*vperm2i128 + 4*vpshufb
|
|
// + vpblendvb
|
|
{TTI::SK_PermuteTwoSrc, MVT::v32i8, 7}, // 2*vperm2i128 + 4*vpshufb
|
|
// + vpblendvb
|
|
};
|
|
|
|
if (ST->hasAVX2())
|
|
if (const auto *Entry = CostTableLookup(AVX2ShuffleTbl, Kind, LT.second))
|
|
return LT.first * Entry->Cost;
|
|
|
|
static const CostTblEntry XOPShuffleTbl[] = {
|
|
{TTI::SK_PermuteSingleSrc, MVT::v4f64, 2}, // vperm2f128 + vpermil2pd
|
|
{TTI::SK_PermuteSingleSrc, MVT::v8f32, 2}, // vperm2f128 + vpermil2ps
|
|
{TTI::SK_PermuteSingleSrc, MVT::v4i64, 2}, // vperm2f128 + vpermil2pd
|
|
{TTI::SK_PermuteSingleSrc, MVT::v8i32, 2}, // vperm2f128 + vpermil2ps
|
|
{TTI::SK_PermuteSingleSrc, MVT::v16i16, 4}, // vextractf128 + 2*vpperm
|
|
// + vinsertf128
|
|
{TTI::SK_PermuteSingleSrc, MVT::v32i8, 4}, // vextractf128 + 2*vpperm
|
|
// + vinsertf128
|
|
|
|
{TTI::SK_PermuteTwoSrc, MVT::v16i16, 9}, // 2*vextractf128 + 6*vpperm
|
|
// + vinsertf128
|
|
{TTI::SK_PermuteTwoSrc, MVT::v8i16, 1}, // vpperm
|
|
{TTI::SK_PermuteTwoSrc, MVT::v32i8, 9}, // 2*vextractf128 + 6*vpperm
|
|
// + vinsertf128
|
|
{TTI::SK_PermuteTwoSrc, MVT::v16i8, 1}, // vpperm
|
|
};
|
|
|
|
if (ST->hasXOP())
|
|
if (const auto *Entry = CostTableLookup(XOPShuffleTbl, Kind, LT.second))
|
|
return LT.first * Entry->Cost;
|
|
|
|
static const CostTblEntry AVX1ShuffleTbl[] = {
|
|
{TTI::SK_Broadcast, MVT::v4f64, 2}, // vperm2f128 + vpermilpd
|
|
{TTI::SK_Broadcast, MVT::v8f32, 2}, // vperm2f128 + vpermilps
|
|
{TTI::SK_Broadcast, MVT::v4i64, 2}, // vperm2f128 + vpermilpd
|
|
{TTI::SK_Broadcast, MVT::v8i32, 2}, // vperm2f128 + vpermilps
|
|
{TTI::SK_Broadcast, MVT::v16i16, 3}, // vpshuflw + vpshufd + vinsertf128
|
|
{TTI::SK_Broadcast, MVT::v16f16, 3}, // vpshuflw + vpshufd + vinsertf128
|
|
{TTI::SK_Broadcast, MVT::v32i8, 2}, // vpshufb + vinsertf128
|
|
|
|
{TTI::SK_Reverse, MVT::v4f64, 2}, // vperm2f128 + vpermilpd
|
|
{TTI::SK_Reverse, MVT::v8f32, 2}, // vperm2f128 + vpermilps
|
|
{TTI::SK_Reverse, MVT::v4i64, 2}, // vperm2f128 + vpermilpd
|
|
{TTI::SK_Reverse, MVT::v8i32, 2}, // vperm2f128 + vpermilps
|
|
{TTI::SK_Reverse, MVT::v16i16, 4}, // vextractf128 + 2*pshufb
|
|
// + vinsertf128
|
|
{TTI::SK_Reverse, MVT::v16f16, 4}, // vextractf128 + 2*pshufb
|
|
// + vinsertf128
|
|
{TTI::SK_Reverse, MVT::v32i8, 4}, // vextractf128 + 2*pshufb
|
|
// + vinsertf128
|
|
|
|
{TTI::SK_Select, MVT::v4i64, 1}, // vblendpd
|
|
{TTI::SK_Select, MVT::v4f64, 1}, // vblendpd
|
|
{TTI::SK_Select, MVT::v8i32, 1}, // vblendps
|
|
{TTI::SK_Select, MVT::v8f32, 1}, // vblendps
|
|
{TTI::SK_Select, MVT::v16i16, 3}, // vpand + vpandn + vpor
|
|
{TTI::SK_Select, MVT::v16f16, 3}, // vpand + vpandn + vpor
|
|
{TTI::SK_Select, MVT::v32i8, 3}, // vpand + vpandn + vpor
|
|
|
|
{TTI::SK_Splice, MVT::v4i64, 2}, // vperm2f128 + shufpd
|
|
{TTI::SK_Splice, MVT::v4f64, 2}, // vperm2f128 + shufpd
|
|
{TTI::SK_Splice, MVT::v8i32, 4}, // 2*vperm2f128 + 2*vshufps
|
|
{TTI::SK_Splice, MVT::v8f32, 4}, // 2*vperm2f128 + 2*vshufps
|
|
{TTI::SK_Splice, MVT::v16i16, 5}, // 2*vperm2f128 + 2*vpalignr + vinsertf128
|
|
{TTI::SK_Splice, MVT::v16f16, 5}, // 2*vperm2f128 + 2*vpalignr + vinsertf128
|
|
{TTI::SK_Splice, MVT::v32i8, 5}, // 2*vperm2f128 + 2*vpalignr + vinsertf128
|
|
|
|
{TTI::SK_PermuteSingleSrc, MVT::v4f64, 2}, // vperm2f128 + vshufpd
|
|
{TTI::SK_PermuteSingleSrc, MVT::v4i64, 2}, // vperm2f128 + vshufpd
|
|
{TTI::SK_PermuteSingleSrc, MVT::v8f32, 4}, // 2*vperm2f128 + 2*vshufps
|
|
{TTI::SK_PermuteSingleSrc, MVT::v8i32, 4}, // 2*vperm2f128 + 2*vshufps
|
|
{TTI::SK_PermuteSingleSrc, MVT::v16i16, 8}, // vextractf128 + 4*pshufb
|
|
// + 2*por + vinsertf128
|
|
{TTI::SK_PermuteSingleSrc, MVT::v16f16, 8}, // vextractf128 + 4*pshufb
|
|
// + 2*por + vinsertf128
|
|
{TTI::SK_PermuteSingleSrc, MVT::v32i8, 8}, // vextractf128 + 4*pshufb
|
|
// + 2*por + vinsertf128
|
|
|
|
{TTI::SK_PermuteTwoSrc, MVT::v4f64, 3}, // 2*vperm2f128 + vshufpd
|
|
{TTI::SK_PermuteTwoSrc, MVT::v4i64, 3}, // 2*vperm2f128 + vshufpd
|
|
{TTI::SK_PermuteTwoSrc, MVT::v8f32, 4}, // 2*vperm2f128 + 2*vshufps
|
|
{TTI::SK_PermuteTwoSrc, MVT::v8i32, 4}, // 2*vperm2f128 + 2*vshufps
|
|
{TTI::SK_PermuteTwoSrc, MVT::v16i16, 15}, // 2*vextractf128 + 8*pshufb
|
|
// + 4*por + vinsertf128
|
|
{TTI::SK_PermuteTwoSrc, MVT::v16f16, 15}, // 2*vextractf128 + 8*pshufb
|
|
// + 4*por + vinsertf128
|
|
{TTI::SK_PermuteTwoSrc, MVT::v32i8, 15}, // 2*vextractf128 + 8*pshufb
|
|
// + 4*por + vinsertf128
|
|
};
|
|
|
|
if (ST->hasAVX())
|
|
if (const auto *Entry = CostTableLookup(AVX1ShuffleTbl, Kind, LT.second))
|
|
return LT.first * Entry->Cost;
|
|
|
|
static const CostTblEntry SSE41ShuffleTbl[] = {
|
|
{TTI::SK_Select, MVT::v2i64, 1}, // pblendw
|
|
{TTI::SK_Select, MVT::v2f64, 1}, // movsd
|
|
{TTI::SK_Select, MVT::v4i32, 1}, // pblendw
|
|
{TTI::SK_Select, MVT::v4f32, 1}, // blendps
|
|
{TTI::SK_Select, MVT::v8i16, 1}, // pblendw
|
|
{TTI::SK_Select, MVT::v8f16, 1}, // pblendw
|
|
{TTI::SK_Select, MVT::v16i8, 1} // pblendvb
|
|
};
|
|
|
|
if (ST->hasSSE41())
|
|
if (const auto *Entry = CostTableLookup(SSE41ShuffleTbl, Kind, LT.second))
|
|
return LT.first * Entry->Cost;
|
|
|
|
static const CostTblEntry SSSE3ShuffleTbl[] = {
|
|
{TTI::SK_Broadcast, MVT::v8i16, 1}, // pshufb
|
|
{TTI::SK_Broadcast, MVT::v8f16, 1}, // pshufb
|
|
{TTI::SK_Broadcast, MVT::v16i8, 1}, // pshufb
|
|
|
|
{TTI::SK_Reverse, MVT::v8i16, 1}, // pshufb
|
|
{TTI::SK_Reverse, MVT::v8f16, 1}, // pshufb
|
|
{TTI::SK_Reverse, MVT::v16i8, 1}, // pshufb
|
|
|
|
{TTI::SK_Select, MVT::v8i16, 3}, // 2*pshufb + por
|
|
{TTI::SK_Select, MVT::v8f16, 3}, // 2*pshufb + por
|
|
{TTI::SK_Select, MVT::v16i8, 3}, // 2*pshufb + por
|
|
|
|
{TTI::SK_Splice, MVT::v4i32, 1}, // palignr
|
|
{TTI::SK_Splice, MVT::v4f32, 1}, // palignr
|
|
{TTI::SK_Splice, MVT::v8i16, 1}, // palignr
|
|
{TTI::SK_Splice, MVT::v8f16, 1}, // palignr
|
|
{TTI::SK_Splice, MVT::v16i8, 1}, // palignr
|
|
|
|
{TTI::SK_PermuteSingleSrc, MVT::v8i16, 1}, // pshufb
|
|
{TTI::SK_PermuteSingleSrc, MVT::v8f16, 1}, // pshufb
|
|
{TTI::SK_PermuteSingleSrc, MVT::v16i8, 1}, // pshufb
|
|
|
|
{TTI::SK_PermuteTwoSrc, MVT::v8i16, 3}, // 2*pshufb + por
|
|
{TTI::SK_PermuteTwoSrc, MVT::v8f16, 3}, // 2*pshufb + por
|
|
{TTI::SK_PermuteTwoSrc, MVT::v16i8, 3}, // 2*pshufb + por
|
|
};
|
|
|
|
if (ST->hasSSSE3())
|
|
if (const auto *Entry = CostTableLookup(SSSE3ShuffleTbl, Kind, LT.second))
|
|
return LT.first * Entry->Cost;
|
|
|
|
static const CostTblEntry SSE2ShuffleTbl[] = {
|
|
{TTI::SK_Broadcast, MVT::v2f64, 1}, // shufpd
|
|
{TTI::SK_Broadcast, MVT::v2i64, 1}, // pshufd
|
|
{TTI::SK_Broadcast, MVT::v4i32, 1}, // pshufd
|
|
{TTI::SK_Broadcast, MVT::v8i16, 2}, // pshuflw + pshufd
|
|
{TTI::SK_Broadcast, MVT::v8f16, 2}, // pshuflw + pshufd
|
|
{TTI::SK_Broadcast, MVT::v16i8, 3}, // unpck + pshuflw + pshufd
|
|
|
|
{TTI::SK_Reverse, MVT::v2f64, 1}, // shufpd
|
|
{TTI::SK_Reverse, MVT::v2i64, 1}, // pshufd
|
|
{TTI::SK_Reverse, MVT::v4i32, 1}, // pshufd
|
|
{TTI::SK_Reverse, MVT::v8i16, 3}, // pshuflw + pshufhw + pshufd
|
|
{TTI::SK_Reverse, MVT::v8f16, 3}, // pshuflw + pshufhw + pshufd
|
|
{TTI::SK_Reverse, MVT::v16i8, 9}, // 2*pshuflw + 2*pshufhw
|
|
// + 2*pshufd + 2*unpck + packus
|
|
|
|
{TTI::SK_Select, MVT::v2i64, 1}, // movsd
|
|
{TTI::SK_Select, MVT::v2f64, 1}, // movsd
|
|
{TTI::SK_Select, MVT::v4i32, 2}, // 2*shufps
|
|
{TTI::SK_Select, MVT::v8i16, 3}, // pand + pandn + por
|
|
{TTI::SK_Select, MVT::v8f16, 3}, // pand + pandn + por
|
|
{TTI::SK_Select, MVT::v16i8, 3}, // pand + pandn + por
|
|
|
|
{TTI::SK_Splice, MVT::v2i64, 1}, // shufpd
|
|
{TTI::SK_Splice, MVT::v2f64, 1}, // shufpd
|
|
{TTI::SK_Splice, MVT::v4i32, 2}, // 2*{unpck,movsd,pshufd}
|
|
{TTI::SK_Splice, MVT::v8i16, 3}, // psrldq + psrlldq + por
|
|
{TTI::SK_Splice, MVT::v8f16, 3}, // psrldq + psrlldq + por
|
|
{TTI::SK_Splice, MVT::v16i8, 3}, // psrldq + psrlldq + por
|
|
|
|
{TTI::SK_PermuteSingleSrc, MVT::v2f64, 1}, // shufpd
|
|
{TTI::SK_PermuteSingleSrc, MVT::v2i64, 1}, // pshufd
|
|
{TTI::SK_PermuteSingleSrc, MVT::v4i32, 1}, // pshufd
|
|
{TTI::SK_PermuteSingleSrc, MVT::v8i16, 5}, // 2*pshuflw + 2*pshufhw
|
|
// + pshufd/unpck
|
|
{TTI::SK_PermuteSingleSrc, MVT::v8f16, 5}, // 2*pshuflw + 2*pshufhw
|
|
// + pshufd/unpck
|
|
{ TTI::SK_PermuteSingleSrc, MVT::v16i8, 10 }, // 2*pshuflw + 2*pshufhw
|
|
// + 2*pshufd + 2*unpck + 2*packus
|
|
|
|
{ TTI::SK_PermuteTwoSrc, MVT::v2f64, 1 }, // shufpd
|
|
{ TTI::SK_PermuteTwoSrc, MVT::v2i64, 1 }, // shufpd
|
|
{ TTI::SK_PermuteTwoSrc, MVT::v4i32, 2 }, // 2*{unpck,movsd,pshufd}
|
|
{ TTI::SK_PermuteTwoSrc, MVT::v8i16, 8 }, // blend+permute
|
|
{ TTI::SK_PermuteTwoSrc, MVT::v8f16, 8 }, // blend+permute
|
|
{ TTI::SK_PermuteTwoSrc, MVT::v16i8, 13 }, // blend+permute
|
|
};
|
|
|
|
static const CostTblEntry SSE3BroadcastLoadTbl[] = {
|
|
{TTI::SK_Broadcast, MVT::v2f64, 0}, // broadcast handled by movddup
|
|
};
|
|
|
|
if (ST->hasSSE2()) {
|
|
bool IsLoad =
|
|
llvm::any_of(Args, [](const auto &V) { return isa<LoadInst>(V); });
|
|
if (ST->hasSSE3() && IsLoad)
|
|
if (const auto *Entry =
|
|
CostTableLookup(SSE3BroadcastLoadTbl, Kind, LT.second)) {
|
|
assert(isLegalBroadcastLoad(BaseTp->getElementType(),
|
|
LT.second.getVectorElementCount()) &&
|
|
"Table entry missing from isLegalBroadcastLoad()");
|
|
return LT.first * Entry->Cost;
|
|
}
|
|
|
|
if (const auto *Entry = CostTableLookup(SSE2ShuffleTbl, Kind, LT.second))
|
|
return LT.first * Entry->Cost;
|
|
}
|
|
|
|
static const CostTblEntry SSE1ShuffleTbl[] = {
|
|
{ TTI::SK_Broadcast, MVT::v4f32, 1 }, // shufps
|
|
{ TTI::SK_Reverse, MVT::v4f32, 1 }, // shufps
|
|
{ TTI::SK_Select, MVT::v4f32, 2 }, // 2*shufps
|
|
{ TTI::SK_Splice, MVT::v4f32, 2 }, // 2*shufps
|
|
{ TTI::SK_PermuteSingleSrc, MVT::v4f32, 1 }, // shufps
|
|
{ TTI::SK_PermuteTwoSrc, MVT::v4f32, 2 }, // 2*shufps
|
|
};
|
|
|
|
if (ST->hasSSE1())
|
|
if (const auto *Entry = CostTableLookup(SSE1ShuffleTbl, Kind, LT.second))
|
|
return LT.first * Entry->Cost;
|
|
|
|
return BaseT::getShuffleCost(Kind, BaseTp, Mask, CostKind, Index, SubTp);
|
|
}
|
|
|
|
InstructionCost X86TTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst,
|
|
Type *Src,
|
|
TTI::CastContextHint CCH,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I) {
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
// TODO: Allow non-throughput costs that aren't binary.
|
|
auto AdjustCost = [&CostKind](InstructionCost Cost) -> InstructionCost {
|
|
if (CostKind != TTI::TCK_RecipThroughput)
|
|
return Cost == 0 ? 0 : 1;
|
|
return Cost;
|
|
};
|
|
|
|
// The cost tables include both specific, custom (non-legal) src/dst type
|
|
// conversions and generic, legalized types. We test for customs first, before
|
|
// falling back to legalization.
|
|
// FIXME: Need a better design of the cost table to handle non-simple types of
|
|
// potential massive combinations (elem_num x src_type x dst_type).
|
|
static const TypeConversionCostTblEntry AVX512BWConversionTbl[] {
|
|
{ ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 1 },
|
|
|
|
// Mask sign extend has an instruction.
|
|
{ ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v16i8, MVT::v2i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i16, MVT::v2i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v16i8, MVT::v4i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i16, MVT::v4i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v16i8, MVT::v8i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v32i8, MVT::v32i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v64i8, MVT::v64i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v32i16, MVT::v64i1, 1 },
|
|
|
|
// Mask zero extend is a sext + shift.
|
|
{ ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i8, MVT::v2i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i16, MVT::v2i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i8, MVT::v4i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i16, MVT::v4i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i8, MVT::v8i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v32i8, MVT::v32i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v64i8, MVT::v64i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v32i16, MVT::v64i1, 2 },
|
|
|
|
{ ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 2 },
|
|
{ ISD::TRUNCATE, MVT::v2i1, MVT::v16i8, 2 },
|
|
{ ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 2 },
|
|
{ ISD::TRUNCATE, MVT::v2i1, MVT::v8i16, 2 },
|
|
{ ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 2 },
|
|
{ ISD::TRUNCATE, MVT::v4i1, MVT::v16i8, 2 },
|
|
{ ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 2 },
|
|
{ ISD::TRUNCATE, MVT::v4i1, MVT::v8i16, 2 },
|
|
{ ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 2 },
|
|
{ ISD::TRUNCATE, MVT::v8i1, MVT::v16i8, 2 },
|
|
{ ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 2 },
|
|
{ ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 2 },
|
|
{ ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 2 },
|
|
{ ISD::TRUNCATE, MVT::v32i1, MVT::v32i8, 2 },
|
|
{ ISD::TRUNCATE, MVT::v32i1, MVT::v32i16, 2 },
|
|
{ ISD::TRUNCATE, MVT::v64i1, MVT::v64i8, 2 },
|
|
{ ISD::TRUNCATE, MVT::v64i1, MVT::v32i16, 2 },
|
|
|
|
{ ISD::TRUNCATE, MVT::v32i8, MVT::v32i16, 2 },
|
|
{ ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 2 }, // widen to zmm
|
|
{ ISD::TRUNCATE, MVT::v2i8, MVT::v2i16, 2 }, // vpmovwb
|
|
{ ISD::TRUNCATE, MVT::v4i8, MVT::v4i16, 2 }, // vpmovwb
|
|
{ ISD::TRUNCATE, MVT::v8i8, MVT::v8i16, 2 }, // vpmovwb
|
|
};
|
|
|
|
static const TypeConversionCostTblEntry AVX512DQConversionTbl[] = {
|
|
// Mask sign extend has an instruction.
|
|
{ ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i32, MVT::v2i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i64, MVT::v16i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 1 },
|
|
|
|
// Mask zero extend is a sext + shift.
|
|
{ ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i32, MVT::v2i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i64, MVT::v16i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 },
|
|
|
|
{ ISD::TRUNCATE, MVT::v2i1, MVT::v2i64, 2 },
|
|
{ ISD::TRUNCATE, MVT::v2i1, MVT::v4i32, 2 },
|
|
{ ISD::TRUNCATE, MVT::v4i1, MVT::v4i32, 2 },
|
|
{ ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, 2 },
|
|
{ ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 2 },
|
|
{ ISD::TRUNCATE, MVT::v8i1, MVT::v8i64, 2 },
|
|
{ ISD::TRUNCATE, MVT::v16i1, MVT::v16i32, 2 },
|
|
{ ISD::TRUNCATE, MVT::v16i1, MVT::v8i64, 2 },
|
|
|
|
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
|
|
|
|
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 1 },
|
|
|
|
{ ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f32, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::v8i64, MVT::v8f64, 1 },
|
|
|
|
{ ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f32, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::v8i64, MVT::v8f64, 1 },
|
|
};
|
|
|
|
// TODO: For AVX512DQ + AVX512VL, we also have cheap casts for 128-bit and
|
|
// 256-bit wide vectors.
|
|
|
|
static const TypeConversionCostTblEntry AVX512FConversionTbl[] = {
|
|
{ ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 1 },
|
|
{ ISD::FP_EXTEND, MVT::v8f64, MVT::v16f32, 3 },
|
|
{ ISD::FP_EXTEND, MVT::v16f64, MVT::v16f32, 4 }, // 2*vcvtps2pd+vextractf64x4
|
|
{ ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 1 },
|
|
|
|
{ ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 3 }, // sext+vpslld+vptestmd
|
|
{ ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 3 }, // sext+vpslld+vptestmd
|
|
{ ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 3 }, // sext+vpslld+vptestmd
|
|
{ ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 3 }, // sext+vpslld+vptestmd
|
|
{ ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 3 }, // sext+vpsllq+vptestmq
|
|
{ ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 3 }, // sext+vpsllq+vptestmq
|
|
{ ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 3 }, // sext+vpsllq+vptestmq
|
|
{ ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 3 }, // sext+vpslld+vptestmd
|
|
{ ISD::TRUNCATE, MVT::v2i1, MVT::v2i32, 2 }, // zmm vpslld+vptestmd
|
|
{ ISD::TRUNCATE, MVT::v4i1, MVT::v4i32, 2 }, // zmm vpslld+vptestmd
|
|
{ ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 2 }, // zmm vpslld+vptestmd
|
|
{ ISD::TRUNCATE, MVT::v16i1, MVT::v16i32, 2 }, // vpslld+vptestmd
|
|
{ ISD::TRUNCATE, MVT::v2i1, MVT::v2i64, 2 }, // zmm vpsllq+vptestmq
|
|
{ ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, 2 }, // zmm vpsllq+vptestmq
|
|
{ ISD::TRUNCATE, MVT::v8i1, MVT::v8i64, 2 }, // vpsllq+vptestmq
|
|
{ ISD::TRUNCATE, MVT::v2i8, MVT::v2i32, 2 }, // vpmovdb
|
|
{ ISD::TRUNCATE, MVT::v4i8, MVT::v4i32, 2 }, // vpmovdb
|
|
{ ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 2 }, // vpmovdb
|
|
{ ISD::TRUNCATE, MVT::v32i8, MVT::v16i32, 2 }, // vpmovdb
|
|
{ ISD::TRUNCATE, MVT::v64i8, MVT::v16i32, 2 }, // vpmovdb
|
|
{ ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 2 }, // vpmovdw
|
|
{ ISD::TRUNCATE, MVT::v32i16, MVT::v16i32, 2 }, // vpmovdw
|
|
{ ISD::TRUNCATE, MVT::v2i8, MVT::v2i64, 2 }, // vpmovqb
|
|
{ ISD::TRUNCATE, MVT::v2i16, MVT::v2i64, 1 }, // vpshufb
|
|
{ ISD::TRUNCATE, MVT::v8i8, MVT::v8i64, 2 }, // vpmovqb
|
|
{ ISD::TRUNCATE, MVT::v16i8, MVT::v8i64, 2 }, // vpmovqb
|
|
{ ISD::TRUNCATE, MVT::v32i8, MVT::v8i64, 2 }, // vpmovqb
|
|
{ ISD::TRUNCATE, MVT::v64i8, MVT::v8i64, 2 }, // vpmovqb
|
|
{ ISD::TRUNCATE, MVT::v8i16, MVT::v8i64, 2 }, // vpmovqw
|
|
{ ISD::TRUNCATE, MVT::v16i16, MVT::v8i64, 2 }, // vpmovqw
|
|
{ ISD::TRUNCATE, MVT::v32i16, MVT::v8i64, 2 }, // vpmovqw
|
|
{ ISD::TRUNCATE, MVT::v8i32, MVT::v8i64, 1 }, // vpmovqd
|
|
{ ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1 }, // zmm vpmovqd
|
|
{ ISD::TRUNCATE, MVT::v16i8, MVT::v16i64, 5 },// 2*vpmovqd+concat+vpmovdb
|
|
|
|
{ ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 }, // extend to v16i32
|
|
{ ISD::TRUNCATE, MVT::v32i8, MVT::v32i16, 8 },
|
|
{ ISD::TRUNCATE, MVT::v64i8, MVT::v32i16, 8 },
|
|
|
|
// Sign extend is zmm vpternlogd+vptruncdb.
|
|
// Zero extend is zmm broadcast load+vptruncdw.
|
|
{ ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 4 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 4 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 4 },
|
|
{ ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 4 },
|
|
|
|
// Sign extend is zmm vpternlogd+vptruncdw.
|
|
// Zero extend is zmm vpternlogd+vptruncdw+vpsrlw.
|
|
{ ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 4 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 4 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 4 },
|
|
{ ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
|
|
|
|
{ ISD::SIGN_EXTEND, MVT::v2i32, MVT::v2i1, 1 }, // zmm vpternlogd
|
|
{ ISD::ZERO_EXTEND, MVT::v2i32, MVT::v2i1, 2 }, // zmm vpternlogd+psrld
|
|
{ ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i1, 1 }, // zmm vpternlogd
|
|
{ ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i1, 2 }, // zmm vpternlogd+psrld
|
|
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 1 }, // zmm vpternlogd
|
|
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 2 }, // zmm vpternlogd+psrld
|
|
{ ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i1, 1 }, // zmm vpternlogq
|
|
{ ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i1, 2 }, // zmm vpternlogq+psrlq
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 1 }, // zmm vpternlogq
|
|
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 2 }, // zmm vpternlogq+psrlq
|
|
|
|
{ ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i1, 1 }, // vpternlogd
|
|
{ ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i1, 2 }, // vpternlogd+psrld
|
|
{ ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i1, 1 }, // vpternlogq
|
|
{ ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i1, 2 }, // vpternlogq+psrlq
|
|
|
|
{ ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i8, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i8, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i8, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i16, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i64, MVT::v8i32, 1 },
|
|
|
|
{ ISD::SIGN_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right
|
|
{ ISD::ZERO_EXTEND, MVT::v32i16, MVT::v32i8, 3 }, // FIXME: May not be right
|
|
|
|
{ ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
|
|
{ ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f64, MVT::v16i8, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i8, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i16, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
|
|
|
|
{ ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i1, 4 },
|
|
{ ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i1, 3 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f64, MVT::v16i8, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i8, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i16, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i16, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v16f32, MVT::v16i32, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i64, 26 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i64, 5 },
|
|
|
|
{ ISD::FP_TO_SINT, MVT::v16i8, MVT::v16f32, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::v16i8, MVT::v16f64, 7 },
|
|
{ ISD::FP_TO_SINT, MVT::v32i8, MVT::v32f64,15 },
|
|
{ ISD::FP_TO_SINT, MVT::v64i8, MVT::v64f32,11 },
|
|
{ ISD::FP_TO_SINT, MVT::v64i8, MVT::v64f64,31 },
|
|
{ ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f64, 3 },
|
|
{ ISD::FP_TO_SINT, MVT::v16i16, MVT::v16f64, 7 },
|
|
{ ISD::FP_TO_SINT, MVT::v32i16, MVT::v32f32, 5 },
|
|
{ ISD::FP_TO_SINT, MVT::v32i16, MVT::v32f64,15 },
|
|
{ ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f64, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::v16i32, MVT::v16f64, 3 },
|
|
|
|
{ ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f64, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f64, 3 },
|
|
{ ISD::FP_TO_UINT, MVT::v8i8, MVT::v8f64, 3 },
|
|
{ ISD::FP_TO_UINT, MVT::v16i32, MVT::v16f32, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::v16i16, MVT::v16f32, 3 },
|
|
{ ISD::FP_TO_UINT, MVT::v16i8, MVT::v16f32, 3 },
|
|
};
|
|
|
|
static const TypeConversionCostTblEntry AVX512BWVLConversionTbl[] {
|
|
// Mask sign extend has an instruction.
|
|
{ ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v16i8, MVT::v2i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i16, MVT::v2i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v16i8, MVT::v4i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i16, MVT::v4i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v16i8, MVT::v8i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v32i8, MVT::v32i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v16i16, MVT::v32i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v32i8, MVT::v64i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v16i16, MVT::v64i1, 1 },
|
|
|
|
// Mask zero extend is a sext + shift.
|
|
{ ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i8, MVT::v2i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i16, MVT::v2i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i8, MVT::v4i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i16, MVT::v4i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i8, MVT::v8i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v32i8, MVT::v32i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i16, MVT::v32i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v32i8, MVT::v64i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i16, MVT::v64i1, 2 },
|
|
|
|
{ ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 2 },
|
|
{ ISD::TRUNCATE, MVT::v2i1, MVT::v16i8, 2 },
|
|
{ ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 2 },
|
|
{ ISD::TRUNCATE, MVT::v2i1, MVT::v8i16, 2 },
|
|
{ ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 2 },
|
|
{ ISD::TRUNCATE, MVT::v4i1, MVT::v16i8, 2 },
|
|
{ ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 2 },
|
|
{ ISD::TRUNCATE, MVT::v4i1, MVT::v8i16, 2 },
|
|
{ ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 2 },
|
|
{ ISD::TRUNCATE, MVT::v8i1, MVT::v16i8, 2 },
|
|
{ ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 2 },
|
|
{ ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 2 },
|
|
{ ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 2 },
|
|
{ ISD::TRUNCATE, MVT::v32i1, MVT::v32i8, 2 },
|
|
{ ISD::TRUNCATE, MVT::v32i1, MVT::v16i16, 2 },
|
|
{ ISD::TRUNCATE, MVT::v64i1, MVT::v32i8, 2 },
|
|
{ ISD::TRUNCATE, MVT::v64i1, MVT::v16i16, 2 },
|
|
|
|
{ ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 2 },
|
|
};
|
|
|
|
static const TypeConversionCostTblEntry AVX512DQVLConversionTbl[] = {
|
|
// Mask sign extend has an instruction.
|
|
{ ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i32, MVT::v2i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v16i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v8i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v16i1, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 1 },
|
|
|
|
// Mask zero extend is a sext + shift.
|
|
{ ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i32, MVT::v2i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v16i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v8i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v16i1, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 2 },
|
|
|
|
{ ISD::TRUNCATE, MVT::v16i1, MVT::v4i64, 2 },
|
|
{ ISD::TRUNCATE, MVT::v16i1, MVT::v8i32, 2 },
|
|
{ ISD::TRUNCATE, MVT::v2i1, MVT::v2i64, 2 },
|
|
{ ISD::TRUNCATE, MVT::v2i1, MVT::v4i32, 2 },
|
|
{ ISD::TRUNCATE, MVT::v4i1, MVT::v4i32, 2 },
|
|
{ ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, 2 },
|
|
{ ISD::TRUNCATE, MVT::v8i1, MVT::v4i64, 2 },
|
|
{ ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 2 },
|
|
|
|
{ ISD::SINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
|
|
|
|
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 1 },
|
|
|
|
{ ISD::FP_TO_SINT, MVT::v2i64, MVT::v4f32, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f32, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::v2i64, MVT::v2f64, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::v4i64, MVT::v4f64, 1 },
|
|
|
|
{ ISD::FP_TO_UINT, MVT::v2i64, MVT::v4f32, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f32, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::v2i64, MVT::v2f64, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i64, MVT::v4f64, 1 },
|
|
};
|
|
|
|
static const TypeConversionCostTblEntry AVX512VLConversionTbl[] = {
|
|
{ ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 3 }, // sext+vpslld+vptestmd
|
|
{ ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 3 }, // sext+vpslld+vptestmd
|
|
{ ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 3 }, // sext+vpslld+vptestmd
|
|
{ ISD::TRUNCATE, MVT::v16i1, MVT::v16i8, 8 }, // split+2*v8i8
|
|
{ ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 3 }, // sext+vpsllq+vptestmq
|
|
{ ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 3 }, // sext+vpsllq+vptestmq
|
|
{ ISD::TRUNCATE, MVT::v8i1, MVT::v8i16, 3 }, // sext+vpsllq+vptestmq
|
|
{ ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 8 }, // split+2*v8i16
|
|
{ ISD::TRUNCATE, MVT::v2i1, MVT::v2i32, 2 }, // vpslld+vptestmd
|
|
{ ISD::TRUNCATE, MVT::v4i1, MVT::v4i32, 2 }, // vpslld+vptestmd
|
|
{ ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 2 }, // vpslld+vptestmd
|
|
{ ISD::TRUNCATE, MVT::v16i1, MVT::v8i32, 2 }, // vpslld+vptestmd
|
|
{ ISD::TRUNCATE, MVT::v2i1, MVT::v2i64, 2 }, // vpsllq+vptestmq
|
|
{ ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, 2 }, // vpsllq+vptestmq
|
|
{ ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1 }, // vpmovqd
|
|
{ ISD::TRUNCATE, MVT::v4i8, MVT::v4i64, 2 }, // vpmovqb
|
|
{ ISD::TRUNCATE, MVT::v4i16, MVT::v4i64, 2 }, // vpmovqw
|
|
{ ISD::TRUNCATE, MVT::v8i8, MVT::v8i32, 2 }, // vpmovwb
|
|
|
|
// sign extend is vpcmpeq+maskedmove+vpmovdw+vpacksswb
|
|
// zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw+vpackuswb
|
|
{ ISD::SIGN_EXTEND, MVT::v2i8, MVT::v2i1, 5 },
|
|
{ ISD::ZERO_EXTEND, MVT::v2i8, MVT::v2i1, 6 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i8, MVT::v4i1, 5 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i8, MVT::v4i1, 6 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i8, MVT::v8i1, 5 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i8, MVT::v8i1, 6 },
|
|
{ ISD::SIGN_EXTEND, MVT::v16i8, MVT::v16i1, 10 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i8, MVT::v16i1, 12 },
|
|
|
|
// sign extend is vpcmpeq+maskedmove+vpmovdw
|
|
// zero extend is vpcmpeq+maskedmove+vpmovdw+vpsrlw
|
|
{ ISD::SIGN_EXTEND, MVT::v2i16, MVT::v2i1, 4 },
|
|
{ ISD::ZERO_EXTEND, MVT::v2i16, MVT::v2i1, 5 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i16, MVT::v4i1, 4 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i16, MVT::v4i1, 5 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i16, MVT::v8i1, 4 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i16, MVT::v8i1, 5 },
|
|
{ ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 10 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 12 },
|
|
|
|
{ ISD::SIGN_EXTEND, MVT::v2i32, MVT::v2i1, 1 }, // vpternlogd
|
|
{ ISD::ZERO_EXTEND, MVT::v2i32, MVT::v2i1, 2 }, // vpternlogd+psrld
|
|
{ ISD::SIGN_EXTEND, MVT::v4i32, MVT::v4i1, 1 }, // vpternlogd
|
|
{ ISD::ZERO_EXTEND, MVT::v4i32, MVT::v4i1, 2 }, // vpternlogd+psrld
|
|
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 1 }, // vpternlogd
|
|
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 2 }, // vpternlogd+psrld
|
|
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v16i1, 1 }, // vpternlogd
|
|
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v16i1, 2 }, // vpternlogd+psrld
|
|
|
|
{ ISD::SIGN_EXTEND, MVT::v2i64, MVT::v2i1, 1 }, // vpternlogq
|
|
{ ISD::ZERO_EXTEND, MVT::v2i64, MVT::v2i1, 2 }, // vpternlogq+psrlq
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 1 }, // vpternlogq
|
|
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 2 }, // vpternlogq+psrlq
|
|
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v16i8, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v16i8, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v16i8, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v16i8, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v8i16, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v8i16, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 1 },
|
|
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v16i8, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 1 },
|
|
|
|
{ ISD::UINT_TO_FP, MVT::f32, MVT::i64, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::f64, MVT::i64, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v16i8, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 5 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 5 },
|
|
|
|
{ ISD::FP_TO_SINT, MVT::v16i8, MVT::v8f32, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::v16i8, MVT::v16f32, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::v32i8, MVT::v32f32, 5 },
|
|
|
|
{ ISD::FP_TO_UINT, MVT::i64, MVT::f32, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::i64, MVT::f64, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i32, MVT::v2f64, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f64, 1 },
|
|
};
|
|
|
|
static const TypeConversionCostTblEntry AVX2ConversionTbl[] = {
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 3 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 3 },
|
|
{ ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 1 },
|
|
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v16i8, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v16i8, 2 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v16i8, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v16i8, 2 },
|
|
{ ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 2 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v8i16, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v8i16, 2 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
|
|
{ ISD::SIGN_EXTEND, MVT::v16i32, MVT::v16i16, 3 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 2 },
|
|
|
|
{ ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 2 },
|
|
|
|
{ ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 4 },
|
|
{ ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 4 },
|
|
{ ISD::TRUNCATE, MVT::v16i8, MVT::v8i16, 1 },
|
|
{ ISD::TRUNCATE, MVT::v16i8, MVT::v4i32, 1 },
|
|
{ ISD::TRUNCATE, MVT::v16i8, MVT::v2i64, 1 },
|
|
{ ISD::TRUNCATE, MVT::v16i8, MVT::v8i32, 4 },
|
|
{ ISD::TRUNCATE, MVT::v16i8, MVT::v4i64, 4 },
|
|
{ ISD::TRUNCATE, MVT::v8i16, MVT::v4i32, 1 },
|
|
{ ISD::TRUNCATE, MVT::v8i16, MVT::v2i64, 1 },
|
|
{ ISD::TRUNCATE, MVT::v8i16, MVT::v4i64, 5 },
|
|
{ ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 1 },
|
|
{ ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 2 },
|
|
|
|
{ ISD::FP_EXTEND, MVT::v8f64, MVT::v8f32, 3 },
|
|
{ ISD::FP_ROUND, MVT::v8f32, MVT::v8f64, 3 },
|
|
|
|
{ ISD::FP_TO_SINT, MVT::v16i16, MVT::v8f32, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f64, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f32, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f64, 3 },
|
|
|
|
{ ISD::FP_TO_UINT, MVT::i64, MVT::f32, 3 },
|
|
{ ISD::FP_TO_UINT, MVT::i64, MVT::f64, 3 },
|
|
{ ISD::FP_TO_UINT, MVT::v16i16, MVT::v8f32, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 3 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i32, MVT::v2f64, 4 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 4 },
|
|
{ ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 3 },
|
|
{ ISD::FP_TO_UINT, MVT::v8i32, MVT::v4f64, 4 },
|
|
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v16i8, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 3 },
|
|
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v16i8, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 4 },
|
|
};
|
|
|
|
static const TypeConversionCostTblEntry AVXConversionTbl[] = {
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i1, 6 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i1, 4 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i1, 7 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i1, 4 },
|
|
{ ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i1, 4 },
|
|
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v16i8, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v16i8, 3 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v16i8, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v16i8, 3 },
|
|
{ ISD::SIGN_EXTEND, MVT::v16i16, MVT::v16i8, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v16i16, MVT::v16i8, 3 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v8i16, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v8i16, 3 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i32, MVT::v8i16, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i32, MVT::v8i16, 3 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i64, MVT::v4i32, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i64, MVT::v4i32, 3 },
|
|
|
|
{ ISD::TRUNCATE, MVT::v4i1, MVT::v4i64, 4 },
|
|
{ ISD::TRUNCATE, MVT::v8i1, MVT::v8i32, 5 },
|
|
{ ISD::TRUNCATE, MVT::v16i1, MVT::v16i16, 4 },
|
|
{ ISD::TRUNCATE, MVT::v8i1, MVT::v8i64, 9 },
|
|
{ ISD::TRUNCATE, MVT::v16i1, MVT::v16i64, 11 },
|
|
|
|
{ ISD::TRUNCATE, MVT::v16i16, MVT::v16i32, 6 },
|
|
{ ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 6 },
|
|
{ ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 2 }, // and+extract+packuswb
|
|
{ ISD::TRUNCATE, MVT::v16i8, MVT::v8i32, 5 },
|
|
{ ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
|
|
{ ISD::TRUNCATE, MVT::v16i8, MVT::v4i64, 5 },
|
|
{ ISD::TRUNCATE, MVT::v8i16, MVT::v4i64, 3 }, // and+extract+2*packusdw
|
|
{ ISD::TRUNCATE, MVT::v4i32, MVT::v4i64, 2 },
|
|
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i1, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i1, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i1, 8 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v16i8, 4 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f64, MVT::v16i8, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f64, MVT::v8i16, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f32, MVT::v8i32, 2 },
|
|
{ ISD::SINT_TO_FP, MVT::v8f64, MVT::v8i32, 4 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 5 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i64, 8 },
|
|
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i1, 7 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i1, 7 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i1, 6 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v16i8, 4 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f64, MVT::v16i8, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i16, 4 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f64, MVT::v8i16, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 4 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i32, 4 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i32, 6 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f32, MVT::v8i32, 8 },
|
|
{ ISD::UINT_TO_FP, MVT::v8f64, MVT::v8i32, 10 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i64, 10 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 18 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 5 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f64, MVT::v4i64, 10 },
|
|
|
|
{ ISD::FP_TO_SINT, MVT::v16i8, MVT::v8f32, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::v16i8, MVT::v4f64, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::v32i8, MVT::v8f32, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::v32i8, MVT::v4f64, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::v8i16, MVT::v8f32, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::v8i16, MVT::v4f64, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::v16i16, MVT::v8f32, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::v16i16, MVT::v4f64, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f64, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f32, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::v8i32, MVT::v8f64, 5 },
|
|
|
|
{ ISD::FP_TO_UINT, MVT::v16i8, MVT::v8f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::v16i8, MVT::v4f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::v32i8, MVT::v8f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::v32i8, MVT::v4f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::v8i16, MVT::v8f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::v8i16, MVT::v4f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::v16i16, MVT::v8f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::v16i16, MVT::v4f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 3 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i32, MVT::v2f64, 4 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f64, 6 },
|
|
{ ISD::FP_TO_UINT, MVT::v8i32, MVT::v8f32, 7 },
|
|
{ ISD::FP_TO_UINT, MVT::v8i32, MVT::v4f64, 7 },
|
|
|
|
{ ISD::FP_EXTEND, MVT::v4f64, MVT::v4f32, 1 },
|
|
{ ISD::FP_ROUND, MVT::v4f32, MVT::v4f64, 1 },
|
|
};
|
|
|
|
static const TypeConversionCostTblEntry SSE41ConversionTbl[] = {
|
|
{ ISD::ZERO_EXTEND, MVT::v2i64, MVT::v16i8, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v2i64, MVT::v16i8, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i32, MVT::v16i8, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i32, MVT::v16i8, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i16, MVT::v16i8, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i16, MVT::v16i8, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v2i64, MVT::v8i16, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v2i64, MVT::v8i16, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i32, MVT::v8i16, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i32, MVT::v8i16, 1 },
|
|
{ ISD::ZERO_EXTEND, MVT::v2i64, MVT::v4i32, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v2i64, MVT::v4i32, 1 },
|
|
|
|
// These truncates end up widening elements.
|
|
{ ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 1 }, // PMOVXZBQ
|
|
{ ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 1 }, // PMOVXZWQ
|
|
{ ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 1 }, // PMOVXZBD
|
|
|
|
{ ISD::TRUNCATE, MVT::v16i8, MVT::v4i32, 2 },
|
|
{ ISD::TRUNCATE, MVT::v8i16, MVT::v4i32, 2 },
|
|
{ ISD::TRUNCATE, MVT::v16i8, MVT::v2i64, 2 },
|
|
|
|
{ ISD::SINT_TO_FP, MVT::f32, MVT::i32, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::f64, MVT::i32, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::f32, MVT::i64, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::f64, MVT::i64, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 1 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f64, MVT::v4i32, 2 },
|
|
|
|
{ ISD::UINT_TO_FP, MVT::f32, MVT::i32, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::f64, MVT::i32, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::f32, MVT::i64, 4 },
|
|
{ ISD::UINT_TO_FP, MVT::f64, MVT::i64, 4 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 1 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 3 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 3 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 2 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 12 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i64, 22 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 4 },
|
|
|
|
{ ISD::FP_TO_SINT, MVT::i32, MVT::f32, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::i64, MVT::f32, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::i32, MVT::f64, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::i64, MVT::f64, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::v16i8, MVT::v4f32, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::v16i8, MVT::v2f64, 2 },
|
|
{ ISD::FP_TO_SINT, MVT::v8i16, MVT::v4f32, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::v8i16, MVT::v2f64, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 1 },
|
|
{ ISD::FP_TO_SINT, MVT::v4i32, MVT::v2f64, 1 },
|
|
|
|
{ ISD::FP_TO_UINT, MVT::i32, MVT::f32, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::i64, MVT::f32, 4 },
|
|
{ ISD::FP_TO_UINT, MVT::i32, MVT::f64, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::i64, MVT::f64, 4 },
|
|
{ ISD::FP_TO_UINT, MVT::v16i8, MVT::v4f32, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::v16i8, MVT::v2f64, 2 },
|
|
{ ISD::FP_TO_UINT, MVT::v8i16, MVT::v4f32, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::v8i16, MVT::v2f64, 1 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 4 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i32, MVT::v2f64, 4 },
|
|
};
|
|
|
|
static const TypeConversionCostTblEntry SSE2ConversionTbl[] = {
|
|
// These are somewhat magic numbers justified by comparing the
|
|
// output of llvm-mca for our various supported scheduler models
|
|
// and basing it off the worst case scenario.
|
|
{ ISD::SINT_TO_FP, MVT::f32, MVT::i32, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::f64, MVT::i32, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::f32, MVT::i64, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::f64, MVT::i64, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v16i8, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v16i8, 4 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v8i16, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v8i16, 4 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v4i32, 3 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v4i32, 4 },
|
|
{ ISD::SINT_TO_FP, MVT::v4f32, MVT::v2i64, 8 },
|
|
{ ISD::SINT_TO_FP, MVT::v2f64, MVT::v2i64, 8 },
|
|
|
|
{ ISD::UINT_TO_FP, MVT::f32, MVT::i32, 3 },
|
|
{ ISD::UINT_TO_FP, MVT::f64, MVT::i32, 3 },
|
|
{ ISD::UINT_TO_FP, MVT::f32, MVT::i64, 8 },
|
|
{ ISD::UINT_TO_FP, MVT::f64, MVT::i64, 9 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v16i8, 4 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v16i8, 4 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v8i16, 4 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v8i16, 4 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f32, MVT::v2i32, 7 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v4i32, 7 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v4i32, 5 },
|
|
{ ISD::UINT_TO_FP, MVT::v2f64, MVT::v2i64, 15 },
|
|
{ ISD::UINT_TO_FP, MVT::v4f32, MVT::v2i64, 18 },
|
|
|
|
{ ISD::FP_TO_SINT, MVT::i32, MVT::f32, 4 },
|
|
{ ISD::FP_TO_SINT, MVT::i64, MVT::f32, 4 },
|
|
{ ISD::FP_TO_SINT, MVT::i32, MVT::f64, 4 },
|
|
{ ISD::FP_TO_SINT, MVT::i64, MVT::f64, 4 },
|
|
{ ISD::FP_TO_SINT, MVT::v16i8, MVT::v4f32, 6 },
|
|
{ ISD::FP_TO_SINT, MVT::v16i8, MVT::v2f64, 6 },
|
|
{ ISD::FP_TO_SINT, MVT::v8i16, MVT::v4f32, 5 },
|
|
{ ISD::FP_TO_SINT, MVT::v8i16, MVT::v2f64, 5 },
|
|
{ ISD::FP_TO_SINT, MVT::v4i32, MVT::v4f32, 4 },
|
|
{ ISD::FP_TO_SINT, MVT::v4i32, MVT::v2f64, 4 },
|
|
|
|
{ ISD::FP_TO_UINT, MVT::i32, MVT::f32, 4 },
|
|
{ ISD::FP_TO_UINT, MVT::i64, MVT::f32, 4 },
|
|
{ ISD::FP_TO_UINT, MVT::i32, MVT::f64, 4 },
|
|
{ ISD::FP_TO_UINT, MVT::i64, MVT::f64, 15 },
|
|
{ ISD::FP_TO_UINT, MVT::v16i8, MVT::v4f32, 6 },
|
|
{ ISD::FP_TO_UINT, MVT::v16i8, MVT::v2f64, 6 },
|
|
{ ISD::FP_TO_UINT, MVT::v8i16, MVT::v4f32, 5 },
|
|
{ ISD::FP_TO_UINT, MVT::v8i16, MVT::v2f64, 5 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i32, MVT::v4f32, 8 },
|
|
{ ISD::FP_TO_UINT, MVT::v4i32, MVT::v2f64, 8 },
|
|
|
|
{ ISD::ZERO_EXTEND, MVT::v2i64, MVT::v16i8, 4 },
|
|
{ ISD::SIGN_EXTEND, MVT::v2i64, MVT::v16i8, 4 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i32, MVT::v16i8, 2 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i32, MVT::v16i8, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v8i16, MVT::v16i8, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v8i16, MVT::v16i8, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v2i64, MVT::v8i16, 2 },
|
|
{ ISD::SIGN_EXTEND, MVT::v2i64, MVT::v8i16, 3 },
|
|
{ ISD::ZERO_EXTEND, MVT::v4i32, MVT::v8i16, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v4i32, MVT::v8i16, 2 },
|
|
{ ISD::ZERO_EXTEND, MVT::v2i64, MVT::v4i32, 1 },
|
|
{ ISD::SIGN_EXTEND, MVT::v2i64, MVT::v4i32, 2 },
|
|
|
|
// These truncates are really widening elements.
|
|
{ ISD::TRUNCATE, MVT::v2i1, MVT::v2i32, 1 }, // PSHUFD
|
|
{ ISD::TRUNCATE, MVT::v2i1, MVT::v2i16, 2 }, // PUNPCKLWD+DQ
|
|
{ ISD::TRUNCATE, MVT::v2i1, MVT::v2i8, 3 }, // PUNPCKLBW+WD+PSHUFD
|
|
{ ISD::TRUNCATE, MVT::v4i1, MVT::v4i16, 1 }, // PUNPCKLWD
|
|
{ ISD::TRUNCATE, MVT::v4i1, MVT::v4i8, 2 }, // PUNPCKLBW+WD
|
|
{ ISD::TRUNCATE, MVT::v8i1, MVT::v8i8, 1 }, // PUNPCKLBW
|
|
|
|
{ ISD::TRUNCATE, MVT::v16i8, MVT::v8i16, 2 }, // PAND+PACKUSWB
|
|
{ ISD::TRUNCATE, MVT::v16i8, MVT::v16i16, 3 },
|
|
{ ISD::TRUNCATE, MVT::v16i8, MVT::v4i32, 3 }, // PAND+2*PACKUSWB
|
|
{ ISD::TRUNCATE, MVT::v16i8, MVT::v16i32, 7 },
|
|
{ ISD::TRUNCATE, MVT::v2i16, MVT::v2i32, 1 },
|
|
{ ISD::TRUNCATE, MVT::v8i16, MVT::v4i32, 3 },
|
|
{ ISD::TRUNCATE, MVT::v8i16, MVT::v8i32, 5 },
|
|
{ ISD::TRUNCATE, MVT::v16i16, MVT::v16i32,10 },
|
|
{ ISD::TRUNCATE, MVT::v16i8, MVT::v2i64, 4 }, // PAND+3*PACKUSWB
|
|
{ ISD::TRUNCATE, MVT::v8i16, MVT::v2i64, 2 }, // PSHUFD+PSHUFLW
|
|
{ ISD::TRUNCATE, MVT::v4i32, MVT::v2i64, 1 }, // PSHUFD
|
|
};
|
|
|
|
// Attempt to map directly to (simple) MVT types to let us match custom entries.
|
|
EVT SrcTy = TLI->getValueType(DL, Src);
|
|
EVT DstTy = TLI->getValueType(DL, Dst);
|
|
|
|
// The function getSimpleVT only handles simple value types.
|
|
if (SrcTy.isSimple() && DstTy.isSimple()) {
|
|
MVT SimpleSrcTy = SrcTy.getSimpleVT();
|
|
MVT SimpleDstTy = DstTy.getSimpleVT();
|
|
|
|
if (ST->useAVX512Regs()) {
|
|
if (ST->hasBWI())
|
|
if (const auto *Entry = ConvertCostTableLookup(
|
|
AVX512BWConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
|
|
return AdjustCost(Entry->Cost);
|
|
|
|
if (ST->hasDQI())
|
|
if (const auto *Entry = ConvertCostTableLookup(
|
|
AVX512DQConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
|
|
return AdjustCost(Entry->Cost);
|
|
|
|
if (ST->hasAVX512())
|
|
if (const auto *Entry = ConvertCostTableLookup(
|
|
AVX512FConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
|
|
return AdjustCost(Entry->Cost);
|
|
}
|
|
|
|
if (ST->hasBWI())
|
|
if (const auto *Entry = ConvertCostTableLookup(
|
|
AVX512BWVLConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
|
|
return AdjustCost(Entry->Cost);
|
|
|
|
if (ST->hasDQI())
|
|
if (const auto *Entry = ConvertCostTableLookup(
|
|
AVX512DQVLConversionTbl, ISD, SimpleDstTy, SimpleSrcTy))
|
|
return AdjustCost(Entry->Cost);
|
|
|
|
if (ST->hasAVX512())
|
|
if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD,
|
|
SimpleDstTy, SimpleSrcTy))
|
|
return AdjustCost(Entry->Cost);
|
|
|
|
if (ST->hasAVX2()) {
|
|
if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
|
|
SimpleDstTy, SimpleSrcTy))
|
|
return AdjustCost(Entry->Cost);
|
|
}
|
|
|
|
if (ST->hasAVX()) {
|
|
if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
|
|
SimpleDstTy, SimpleSrcTy))
|
|
return AdjustCost(Entry->Cost);
|
|
}
|
|
|
|
if (ST->hasSSE41()) {
|
|
if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
|
|
SimpleDstTy, SimpleSrcTy))
|
|
return AdjustCost(Entry->Cost);
|
|
}
|
|
|
|
if (ST->hasSSE2()) {
|
|
if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
|
|
SimpleDstTy, SimpleSrcTy))
|
|
return AdjustCost(Entry->Cost);
|
|
}
|
|
}
|
|
|
|
// Fall back to legalized types.
|
|
std::pair<InstructionCost, MVT> LTSrc = getTypeLegalizationCost(Src);
|
|
std::pair<InstructionCost, MVT> LTDest = getTypeLegalizationCost(Dst);
|
|
|
|
// If we're truncating to the same legalized type - just assume its free.
|
|
if (ISD == ISD::TRUNCATE && LTSrc.second == LTDest.second)
|
|
return TTI::TCC_Free;
|
|
|
|
if (ST->useAVX512Regs()) {
|
|
if (ST->hasBWI())
|
|
if (const auto *Entry = ConvertCostTableLookup(
|
|
AVX512BWConversionTbl, ISD, LTDest.second, LTSrc.second))
|
|
return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
|
|
|
|
if (ST->hasDQI())
|
|
if (const auto *Entry = ConvertCostTableLookup(
|
|
AVX512DQConversionTbl, ISD, LTDest.second, LTSrc.second))
|
|
return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
|
|
|
|
if (ST->hasAVX512())
|
|
if (const auto *Entry = ConvertCostTableLookup(
|
|
AVX512FConversionTbl, ISD, LTDest.second, LTSrc.second))
|
|
return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
|
|
}
|
|
|
|
if (ST->hasBWI())
|
|
if (const auto *Entry = ConvertCostTableLookup(AVX512BWVLConversionTbl, ISD,
|
|
LTDest.second, LTSrc.second))
|
|
return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
|
|
|
|
if (ST->hasDQI())
|
|
if (const auto *Entry = ConvertCostTableLookup(AVX512DQVLConversionTbl, ISD,
|
|
LTDest.second, LTSrc.second))
|
|
return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
|
|
|
|
if (ST->hasAVX512())
|
|
if (const auto *Entry = ConvertCostTableLookup(AVX512VLConversionTbl, ISD,
|
|
LTDest.second, LTSrc.second))
|
|
return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
|
|
|
|
if (ST->hasAVX2())
|
|
if (const auto *Entry = ConvertCostTableLookup(AVX2ConversionTbl, ISD,
|
|
LTDest.second, LTSrc.second))
|
|
return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
|
|
|
|
if (ST->hasAVX())
|
|
if (const auto *Entry = ConvertCostTableLookup(AVXConversionTbl, ISD,
|
|
LTDest.second, LTSrc.second))
|
|
return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
|
|
|
|
if (ST->hasSSE41())
|
|
if (const auto *Entry = ConvertCostTableLookup(SSE41ConversionTbl, ISD,
|
|
LTDest.second, LTSrc.second))
|
|
return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
|
|
|
|
if (ST->hasSSE2())
|
|
if (const auto *Entry = ConvertCostTableLookup(SSE2ConversionTbl, ISD,
|
|
LTDest.second, LTSrc.second))
|
|
return AdjustCost(std::max(LTSrc.first, LTDest.first) * Entry->Cost);
|
|
|
|
// Fallback, for i8/i16 sitofp/uitofp cases we need to extend to i32 for
|
|
// sitofp.
|
|
if ((ISD == ISD::SINT_TO_FP || ISD == ISD::UINT_TO_FP) &&
|
|
1 < Src->getScalarSizeInBits() && Src->getScalarSizeInBits() < 32) {
|
|
Type *ExtSrc = Src->getWithNewBitWidth(32);
|
|
unsigned ExtOpc =
|
|
(ISD == ISD::SINT_TO_FP) ? Instruction::SExt : Instruction::ZExt;
|
|
|
|
// For scalar loads the extend would be free.
|
|
InstructionCost ExtCost = 0;
|
|
if (!(Src->isIntegerTy() && I && isa<LoadInst>(I->getOperand(0))))
|
|
ExtCost = getCastInstrCost(ExtOpc, ExtSrc, Src, CCH, CostKind);
|
|
|
|
return ExtCost + getCastInstrCost(Instruction::SIToFP, Dst, ExtSrc,
|
|
TTI::CastContextHint::None, CostKind);
|
|
}
|
|
|
|
// Fallback for fptosi/fptoui i8/i16 cases we need to truncate from fptosi
|
|
// i32.
|
|
if ((ISD == ISD::FP_TO_SINT || ISD == ISD::FP_TO_UINT) &&
|
|
1 < Dst->getScalarSizeInBits() && Dst->getScalarSizeInBits() < 32) {
|
|
Type *TruncDst = Dst->getWithNewBitWidth(32);
|
|
return getCastInstrCost(Instruction::FPToSI, TruncDst, Src, CCH, CostKind) +
|
|
getCastInstrCost(Instruction::Trunc, Dst, TruncDst,
|
|
TTI::CastContextHint::None, CostKind);
|
|
}
|
|
|
|
return AdjustCost(
|
|
BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I));
|
|
}
|
|
|
|
InstructionCost X86TTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
|
|
Type *CondTy,
|
|
CmpInst::Predicate VecPred,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I) {
|
|
// Early out if this type isn't scalar/vector integer/float.
|
|
if (!(ValTy->isIntOrIntVectorTy() || ValTy->isFPOrFPVectorTy()))
|
|
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
|
|
I);
|
|
|
|
// Legalize the type.
|
|
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
|
|
|
|
MVT MTy = LT.second;
|
|
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
InstructionCost ExtraCost = 0;
|
|
if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) {
|
|
// Some vector comparison predicates cost extra instructions.
|
|
// TODO: Adjust ExtraCost based on CostKind?
|
|
// TODO: Should we invert this and assume worst case cmp costs
|
|
// and reduce for particular predicates?
|
|
if (MTy.isVector() &&
|
|
!((ST->hasXOP() && (!ST->hasAVX2() || MTy.is128BitVector())) ||
|
|
(ST->hasAVX512() && 32 <= MTy.getScalarSizeInBits()) ||
|
|
ST->hasBWI())) {
|
|
// Fallback to I if a specific predicate wasn't specified.
|
|
CmpInst::Predicate Pred = VecPred;
|
|
if (I && (Pred == CmpInst::BAD_ICMP_PREDICATE ||
|
|
Pred == CmpInst::BAD_FCMP_PREDICATE))
|
|
Pred = cast<CmpInst>(I)->getPredicate();
|
|
|
|
bool CmpWithConstant = false;
|
|
if (auto *CmpInstr = dyn_cast_or_null<CmpInst>(I))
|
|
CmpWithConstant = isa<Constant>(CmpInstr->getOperand(1));
|
|
|
|
switch (Pred) {
|
|
case CmpInst::Predicate::ICMP_NE:
|
|
// xor(cmpeq(x,y),-1)
|
|
ExtraCost = CmpWithConstant ? 0 : 1;
|
|
break;
|
|
case CmpInst::Predicate::ICMP_SGE:
|
|
case CmpInst::Predicate::ICMP_SLE:
|
|
// xor(cmpgt(x,y),-1)
|
|
ExtraCost = CmpWithConstant ? 0 : 1;
|
|
break;
|
|
case CmpInst::Predicate::ICMP_ULT:
|
|
case CmpInst::Predicate::ICMP_UGT:
|
|
// cmpgt(xor(x,signbit),xor(y,signbit))
|
|
// xor(cmpeq(pmaxu(x,y),x),-1)
|
|
ExtraCost = CmpWithConstant ? 1 : 2;
|
|
break;
|
|
case CmpInst::Predicate::ICMP_ULE:
|
|
case CmpInst::Predicate::ICMP_UGE:
|
|
if ((ST->hasSSE41() && MTy.getScalarSizeInBits() == 32) ||
|
|
(ST->hasSSE2() && MTy.getScalarSizeInBits() < 32)) {
|
|
// cmpeq(psubus(x,y),0)
|
|
// cmpeq(pminu(x,y),x)
|
|
ExtraCost = 1;
|
|
} else {
|
|
// xor(cmpgt(xor(x,signbit),xor(y,signbit)),-1)
|
|
ExtraCost = CmpWithConstant ? 2 : 3;
|
|
}
|
|
break;
|
|
case CmpInst::Predicate::FCMP_ONE:
|
|
case CmpInst::Predicate::FCMP_UEQ:
|
|
// Without AVX we need to expand FCMP_ONE/FCMP_UEQ cases.
|
|
// Use FCMP_UEQ expansion - FCMP_ONE should be the same.
|
|
if (CondTy && !ST->hasAVX())
|
|
return getCmpSelInstrCost(Opcode, ValTy, CondTy,
|
|
CmpInst::Predicate::FCMP_UNO, CostKind) +
|
|
getCmpSelInstrCost(Opcode, ValTy, CondTy,
|
|
CmpInst::Predicate::FCMP_OEQ, CostKind) +
|
|
getArithmeticInstrCost(Instruction::Or, CondTy, CostKind);
|
|
|
|
break;
|
|
case CmpInst::Predicate::BAD_ICMP_PREDICATE:
|
|
case CmpInst::Predicate::BAD_FCMP_PREDICATE:
|
|
// Assume worst case scenario and add the maximum extra cost.
|
|
ExtraCost = 3;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static const CostKindTblEntry SLMCostTbl[] = {
|
|
// slm pcmpeq/pcmpgt throughput is 2
|
|
{ ISD::SETCC, MVT::v2i64, { 2, 5, 1, 2 } },
|
|
// slm pblendvb/blendvpd/blendvps throughput is 4
|
|
{ ISD::SELECT, MVT::v2f64, { 4, 4, 1, 3 } }, // vblendvpd
|
|
{ ISD::SELECT, MVT::v4f32, { 4, 4, 1, 3 } }, // vblendvps
|
|
{ ISD::SELECT, MVT::v2i64, { 4, 4, 1, 3 } }, // pblendvb
|
|
{ ISD::SELECT, MVT::v8i32, { 4, 4, 1, 3 } }, // pblendvb
|
|
{ ISD::SELECT, MVT::v8i16, { 4, 4, 1, 3 } }, // pblendvb
|
|
{ ISD::SELECT, MVT::v16i8, { 4, 4, 1, 3 } }, // pblendvb
|
|
};
|
|
|
|
static const CostKindTblEntry AVX512BWCostTbl[] = {
|
|
{ ISD::SETCC, MVT::v32i16, { 1, 1, 1, 1 } },
|
|
{ ISD::SETCC, MVT::v16i16, { 1, 1, 1, 1 } },
|
|
{ ISD::SETCC, MVT::v64i8, { 1, 1, 1, 1 } },
|
|
{ ISD::SETCC, MVT::v32i8, { 1, 1, 1, 1 } },
|
|
|
|
{ ISD::SELECT, MVT::v32i16, { 1, 1, 1, 1 } },
|
|
{ ISD::SELECT, MVT::v64i8, { 1, 1, 1, 1 } },
|
|
};
|
|
|
|
static const CostKindTblEntry AVX512CostTbl[] = {
|
|
{ ISD::SETCC, MVT::v8f64, { 1, 4, 1, 1 } },
|
|
{ ISD::SETCC, MVT::v4f64, { 1, 4, 1, 1 } },
|
|
{ ISD::SETCC, MVT::v16f32, { 1, 4, 1, 1 } },
|
|
{ ISD::SETCC, MVT::v8f32, { 1, 4, 1, 1 } },
|
|
|
|
{ ISD::SETCC, MVT::v8i64, { 1, 1, 1, 1 } },
|
|
{ ISD::SETCC, MVT::v4i64, { 1, 1, 1, 1 } },
|
|
{ ISD::SETCC, MVT::v2i64, { 1, 1, 1, 1 } },
|
|
{ ISD::SETCC, MVT::v16i32, { 1, 1, 1, 1 } },
|
|
{ ISD::SETCC, MVT::v8i32, { 1, 1, 1, 1 } },
|
|
{ ISD::SETCC, MVT::v32i16, { 3, 7, 5, 5 } },
|
|
{ ISD::SETCC, MVT::v64i8, { 3, 7, 5, 5 } },
|
|
|
|
{ ISD::SELECT, MVT::v8i64, { 1, 1, 1, 1 } },
|
|
{ ISD::SELECT, MVT::v4i64, { 1, 1, 1, 1 } },
|
|
{ ISD::SELECT, MVT::v2i64, { 1, 1, 1, 1 } },
|
|
{ ISD::SELECT, MVT::v16i32, { 1, 1, 1, 1 } },
|
|
{ ISD::SELECT, MVT::v8i32, { 1, 1, 1, 1 } },
|
|
{ ISD::SELECT, MVT::v4i32, { 1, 1, 1, 1 } },
|
|
{ ISD::SELECT, MVT::v8f64, { 1, 1, 1, 1 } },
|
|
{ ISD::SELECT, MVT::v4f64, { 1, 1, 1, 1 } },
|
|
{ ISD::SELECT, MVT::v2f64, { 1, 1, 1, 1 } },
|
|
{ ISD::SELECT, MVT::f64, { 1, 1, 1, 1 } },
|
|
{ ISD::SELECT, MVT::v16f32, { 1, 1, 1, 1 } },
|
|
{ ISD::SELECT, MVT::v8f32 , { 1, 1, 1, 1 } },
|
|
{ ISD::SELECT, MVT::v4f32, { 1, 1, 1, 1 } },
|
|
{ ISD::SELECT, MVT::f32 , { 1, 1, 1, 1 } },
|
|
|
|
{ ISD::SELECT, MVT::v32i16, { 2, 2, 4, 4 } },
|
|
{ ISD::SELECT, MVT::v16i16, { 1, 1, 1, 1 } },
|
|
{ ISD::SELECT, MVT::v8i16, { 1, 1, 1, 1 } },
|
|
{ ISD::SELECT, MVT::v64i8, { 2, 2, 4, 4 } },
|
|
{ ISD::SELECT, MVT::v32i8, { 1, 1, 1, 1 } },
|
|
{ ISD::SELECT, MVT::v16i8, { 1, 1, 1, 1 } },
|
|
};
|
|
|
|
static const CostKindTblEntry AVX2CostTbl[] = {
|
|
{ ISD::SETCC, MVT::v4f64, { 1, 4, 1, 2 } },
|
|
{ ISD::SETCC, MVT::v2f64, { 1, 4, 1, 1 } },
|
|
{ ISD::SETCC, MVT::f64, { 1, 4, 1, 1 } },
|
|
{ ISD::SETCC, MVT::v8f32, { 1, 4, 1, 2 } },
|
|
{ ISD::SETCC, MVT::v4f32, { 1, 4, 1, 1 } },
|
|
{ ISD::SETCC, MVT::f32, { 1, 4, 1, 1 } },
|
|
|
|
{ ISD::SETCC, MVT::v4i64, { 1, 1, 1, 2 } },
|
|
{ ISD::SETCC, MVT::v8i32, { 1, 1, 1, 2 } },
|
|
{ ISD::SETCC, MVT::v16i16, { 1, 1, 1, 2 } },
|
|
{ ISD::SETCC, MVT::v32i8, { 1, 1, 1, 2 } },
|
|
|
|
{ ISD::SELECT, MVT::v4f64, { 2, 2, 1, 2 } }, // vblendvpd
|
|
{ ISD::SELECT, MVT::v8f32, { 2, 2, 1, 2 } }, // vblendvps
|
|
{ ISD::SELECT, MVT::v4i64, { 2, 2, 1, 2 } }, // pblendvb
|
|
{ ISD::SELECT, MVT::v8i32, { 2, 2, 1, 2 } }, // pblendvb
|
|
{ ISD::SELECT, MVT::v16i16, { 2, 2, 1, 2 } }, // pblendvb
|
|
{ ISD::SELECT, MVT::v32i8, { 2, 2, 1, 2 } }, // pblendvb
|
|
};
|
|
|
|
static const CostKindTblEntry XOPCostTbl[] = {
|
|
{ ISD::SETCC, MVT::v4i64, { 4, 2, 5, 6 } },
|
|
{ ISD::SETCC, MVT::v2i64, { 1, 1, 1, 1 } },
|
|
};
|
|
|
|
static const CostKindTblEntry AVX1CostTbl[] = {
|
|
{ ISD::SETCC, MVT::v4f64, { 2, 3, 1, 2 } },
|
|
{ ISD::SETCC, MVT::v2f64, { 1, 3, 1, 1 } },
|
|
{ ISD::SETCC, MVT::f64, { 1, 3, 1, 1 } },
|
|
{ ISD::SETCC, MVT::v8f32, { 2, 3, 1, 2 } },
|
|
{ ISD::SETCC, MVT::v4f32, { 1, 3, 1, 1 } },
|
|
{ ISD::SETCC, MVT::f32, { 1, 3, 1, 1 } },
|
|
|
|
// AVX1 does not support 8-wide integer compare.
|
|
{ ISD::SETCC, MVT::v4i64, { 4, 2, 5, 6 } },
|
|
{ ISD::SETCC, MVT::v8i32, { 4, 2, 5, 6 } },
|
|
{ ISD::SETCC, MVT::v16i16, { 4, 2, 5, 6 } },
|
|
{ ISD::SETCC, MVT::v32i8, { 4, 2, 5, 6 } },
|
|
|
|
{ ISD::SELECT, MVT::v4f64, { 3, 3, 1, 2 } }, // vblendvpd
|
|
{ ISD::SELECT, MVT::v8f32, { 3, 3, 1, 2 } }, // vblendvps
|
|
{ ISD::SELECT, MVT::v4i64, { 3, 3, 1, 2 } }, // vblendvpd
|
|
{ ISD::SELECT, MVT::v8i32, { 3, 3, 1, 2 } }, // vblendvps
|
|
{ ISD::SELECT, MVT::v16i16, { 3, 3, 3, 3 } }, // vandps + vandnps + vorps
|
|
{ ISD::SELECT, MVT::v32i8, { 3, 3, 3, 3 } }, // vandps + vandnps + vorps
|
|
};
|
|
|
|
static const CostKindTblEntry SSE42CostTbl[] = {
|
|
{ ISD::SETCC, MVT::v2i64, { 1, 2, 1, 2 } },
|
|
};
|
|
|
|
static const CostKindTblEntry SSE41CostTbl[] = {
|
|
{ ISD::SETCC, MVT::v2f64, { 1, 5, 1, 1 } },
|
|
{ ISD::SETCC, MVT::v4f32, { 1, 5, 1, 1 } },
|
|
|
|
{ ISD::SELECT, MVT::v2f64, { 2, 2, 1, 2 } }, // blendvpd
|
|
{ ISD::SELECT, MVT::f64, { 2, 2, 1, 2 } }, // blendvpd
|
|
{ ISD::SELECT, MVT::v4f32, { 2, 2, 1, 2 } }, // blendvps
|
|
{ ISD::SELECT, MVT::f32 , { 2, 2, 1, 2 } }, // blendvps
|
|
{ ISD::SELECT, MVT::v2i64, { 2, 2, 1, 2 } }, // pblendvb
|
|
{ ISD::SELECT, MVT::v4i32, { 2, 2, 1, 2 } }, // pblendvb
|
|
{ ISD::SELECT, MVT::v8i16, { 2, 2, 1, 2 } }, // pblendvb
|
|
{ ISD::SELECT, MVT::v16i8, { 2, 2, 1, 2 } }, // pblendvb
|
|
};
|
|
|
|
static const CostKindTblEntry SSE2CostTbl[] = {
|
|
{ ISD::SETCC, MVT::v2f64, { 2, 5, 1, 1 } },
|
|
{ ISD::SETCC, MVT::f64, { 1, 5, 1, 1 } },
|
|
|
|
{ ISD::SETCC, MVT::v2i64, { 5, 4, 5, 5 } }, // pcmpeqd/pcmpgtd expansion
|
|
{ ISD::SETCC, MVT::v4i32, { 1, 1, 1, 1 } },
|
|
{ ISD::SETCC, MVT::v8i16, { 1, 1, 1, 1 } },
|
|
{ ISD::SETCC, MVT::v16i8, { 1, 1, 1, 1 } },
|
|
|
|
{ ISD::SELECT, MVT::v2f64, { 2, 2, 3, 3 } }, // andpd + andnpd + orpd
|
|
{ ISD::SELECT, MVT::f64, { 2, 2, 3, 3 } }, // andpd + andnpd + orpd
|
|
{ ISD::SELECT, MVT::v2i64, { 2, 2, 3, 3 } }, // pand + pandn + por
|
|
{ ISD::SELECT, MVT::v4i32, { 2, 2, 3, 3 } }, // pand + pandn + por
|
|
{ ISD::SELECT, MVT::v8i16, { 2, 2, 3, 3 } }, // pand + pandn + por
|
|
{ ISD::SELECT, MVT::v16i8, { 2, 2, 3, 3 } }, // pand + pandn + por
|
|
};
|
|
|
|
static const CostKindTblEntry SSE1CostTbl[] = {
|
|
{ ISD::SETCC, MVT::v4f32, { 2, 5, 1, 1 } },
|
|
{ ISD::SETCC, MVT::f32, { 1, 5, 1, 1 } },
|
|
|
|
{ ISD::SELECT, MVT::v4f32, { 2, 2, 3, 3 } }, // andps + andnps + orps
|
|
{ ISD::SELECT, MVT::f32, { 2, 2, 3, 3 } }, // andps + andnps + orps
|
|
};
|
|
|
|
if (ST->useSLMArithCosts())
|
|
if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * (ExtraCost + *KindCost);
|
|
|
|
if (ST->hasBWI())
|
|
if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * (ExtraCost + *KindCost);
|
|
|
|
if (ST->hasAVX512())
|
|
if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * (ExtraCost + *KindCost);
|
|
|
|
if (ST->hasAVX2())
|
|
if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * (ExtraCost + *KindCost);
|
|
|
|
if (ST->hasXOP())
|
|
if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * (ExtraCost + *KindCost);
|
|
|
|
if (ST->hasAVX())
|
|
if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * (ExtraCost + *KindCost);
|
|
|
|
if (ST->hasSSE42())
|
|
if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * (ExtraCost + *KindCost);
|
|
|
|
if (ST->hasSSE41())
|
|
if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * (ExtraCost + *KindCost);
|
|
|
|
if (ST->hasSSE2())
|
|
if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * (ExtraCost + *KindCost);
|
|
|
|
if (ST->hasSSE1())
|
|
if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return LT.first * (ExtraCost + *KindCost);
|
|
|
|
// Assume a 3cy latency for fp select ops.
|
|
if (CostKind == TTI::TCK_Latency && Opcode == Instruction::Select)
|
|
if (ValTy->getScalarType()->isFloatingPointTy())
|
|
return 3;
|
|
|
|
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind, I);
|
|
}
|
|
|
|
unsigned X86TTIImpl::getAtomicMemIntrinsicMaxElementSize() const { return 16; }
|
|
|
|
InstructionCost
|
|
X86TTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
|
|
TTI::TargetCostKind CostKind) {
|
|
// Costs should match the codegen from:
|
|
// BITREVERSE: llvm\test\CodeGen\X86\vector-bitreverse.ll
|
|
// BSWAP: llvm\test\CodeGen\X86\bswap-vector.ll
|
|
// CTLZ: llvm\test\CodeGen\X86\vector-lzcnt-*.ll
|
|
// CTPOP: llvm\test\CodeGen\X86\vector-popcnt-*.ll
|
|
// CTTZ: llvm\test\CodeGen\X86\vector-tzcnt-*.ll
|
|
|
|
// TODO: Overflow intrinsics (*ADDO, *SUBO, *MULO) with vector types are not
|
|
// specialized in these tables yet.
|
|
static const CostKindTblEntry AVX512VBMI2CostTbl[] = {
|
|
{ ISD::FSHL, MVT::v8i64, { 1, 1, 1, 1 } },
|
|
{ ISD::FSHL, MVT::v4i64, { 1, 1, 1, 1 } },
|
|
{ ISD::FSHL, MVT::v2i64, { 1, 1, 1, 1 } },
|
|
{ ISD::FSHL, MVT::v16i32, { 1, 1, 1, 1 } },
|
|
{ ISD::FSHL, MVT::v8i32, { 1, 1, 1, 1 } },
|
|
{ ISD::FSHL, MVT::v4i32, { 1, 1, 1, 1 } },
|
|
{ ISD::FSHL, MVT::v32i16, { 1, 1, 1, 1 } },
|
|
{ ISD::FSHL, MVT::v16i16, { 1, 1, 1, 1 } },
|
|
{ ISD::FSHL, MVT::v8i16, { 1, 1, 1, 1 } },
|
|
{ ISD::ROTL, MVT::v32i16, { 1, 1, 1, 1 } },
|
|
{ ISD::ROTL, MVT::v16i16, { 1, 1, 1, 1 } },
|
|
{ ISD::ROTL, MVT::v8i16, { 1, 1, 1, 1 } },
|
|
{ ISD::ROTR, MVT::v32i16, { 1, 1, 1, 1 } },
|
|
{ ISD::ROTR, MVT::v16i16, { 1, 1, 1, 1 } },
|
|
{ ISD::ROTR, MVT::v8i16, { 1, 1, 1, 1 } },
|
|
};
|
|
static const CostKindTblEntry AVX512BITALGCostTbl[] = {
|
|
{ ISD::CTPOP, MVT::v32i16, { 1, 1, 1, 1 } },
|
|
{ ISD::CTPOP, MVT::v64i8, { 1, 1, 1, 1 } },
|
|
{ ISD::CTPOP, MVT::v16i16, { 1, 1, 1, 1 } },
|
|
{ ISD::CTPOP, MVT::v32i8, { 1, 1, 1, 1 } },
|
|
{ ISD::CTPOP, MVT::v8i16, { 1, 1, 1, 1 } },
|
|
{ ISD::CTPOP, MVT::v16i8, { 1, 1, 1, 1 } },
|
|
};
|
|
static const CostKindTblEntry AVX512VPOPCNTDQCostTbl[] = {
|
|
{ ISD::CTPOP, MVT::v8i64, { 1, 1, 1, 1 } },
|
|
{ ISD::CTPOP, MVT::v16i32, { 1, 1, 1, 1 } },
|
|
{ ISD::CTPOP, MVT::v4i64, { 1, 1, 1, 1 } },
|
|
{ ISD::CTPOP, MVT::v8i32, { 1, 1, 1, 1 } },
|
|
{ ISD::CTPOP, MVT::v2i64, { 1, 1, 1, 1 } },
|
|
{ ISD::CTPOP, MVT::v4i32, { 1, 1, 1, 1 } },
|
|
};
|
|
static const CostKindTblEntry AVX512CDCostTbl[] = {
|
|
{ ISD::CTLZ, MVT::v8i64, { 1, 5, 1, 1 } },
|
|
{ ISD::CTLZ, MVT::v16i32, { 1, 5, 1, 1 } },
|
|
{ ISD::CTLZ, MVT::v32i16, { 18, 27, 23, 27 } },
|
|
{ ISD::CTLZ, MVT::v64i8, { 3, 16, 9, 11 } },
|
|
{ ISD::CTLZ, MVT::v4i64, { 1, 5, 1, 1 } },
|
|
{ ISD::CTLZ, MVT::v8i32, { 1, 5, 1, 1 } },
|
|
{ ISD::CTLZ, MVT::v16i16, { 8, 19, 11, 13 } },
|
|
{ ISD::CTLZ, MVT::v32i8, { 2, 11, 9, 10 } },
|
|
{ ISD::CTLZ, MVT::v2i64, { 1, 5, 1, 1 } },
|
|
{ ISD::CTLZ, MVT::v4i32, { 1, 5, 1, 1 } },
|
|
{ ISD::CTLZ, MVT::v8i16, { 3, 15, 4, 6 } },
|
|
{ ISD::CTLZ, MVT::v16i8, { 2, 10, 9, 10 } },
|
|
|
|
{ ISD::CTTZ, MVT::v8i64, { 2, 8, 6, 7 } },
|
|
{ ISD::CTTZ, MVT::v16i32, { 2, 8, 6, 7 } },
|
|
{ ISD::CTTZ, MVT::v4i64, { 1, 8, 6, 6 } },
|
|
{ ISD::CTTZ, MVT::v8i32, { 1, 8, 6, 6 } },
|
|
{ ISD::CTTZ, MVT::v2i64, { 1, 8, 6, 6 } },
|
|
{ ISD::CTTZ, MVT::v4i32, { 1, 8, 6, 6 } },
|
|
};
|
|
static const CostKindTblEntry AVX512BWCostTbl[] = {
|
|
{ ISD::ABS, MVT::v32i16, { 1, 1, 1, 1 } },
|
|
{ ISD::ABS, MVT::v64i8, { 1, 1, 1, 1 } },
|
|
{ ISD::BITREVERSE, MVT::v2i64, { 3, 10, 10, 11 } },
|
|
{ ISD::BITREVERSE, MVT::v4i64, { 3, 11, 10, 11 } },
|
|
{ ISD::BITREVERSE, MVT::v8i64, { 3, 12, 10, 14 } },
|
|
{ ISD::BITREVERSE, MVT::v4i32, { 3, 10, 10, 11 } },
|
|
{ ISD::BITREVERSE, MVT::v8i32, { 3, 11, 10, 11 } },
|
|
{ ISD::BITREVERSE, MVT::v16i32, { 3, 12, 10, 14 } },
|
|
{ ISD::BITREVERSE, MVT::v8i16, { 3, 10, 10, 11 } },
|
|
{ ISD::BITREVERSE, MVT::v16i16, { 3, 11, 10, 11 } },
|
|
{ ISD::BITREVERSE, MVT::v32i16, { 3, 12, 10, 14 } },
|
|
{ ISD::BITREVERSE, MVT::v16i8, { 2, 5, 9, 9 } },
|
|
{ ISD::BITREVERSE, MVT::v32i8, { 2, 5, 9, 9 } },
|
|
{ ISD::BITREVERSE, MVT::v64i8, { 2, 5, 9, 12 } },
|
|
{ ISD::BSWAP, MVT::v2i64, { 1, 1, 1, 2 } },
|
|
{ ISD::BSWAP, MVT::v4i64, { 1, 1, 1, 2 } },
|
|
{ ISD::BSWAP, MVT::v8i64, { 1, 1, 1, 2 } },
|
|
{ ISD::BSWAP, MVT::v4i32, { 1, 1, 1, 2 } },
|
|
{ ISD::BSWAP, MVT::v8i32, { 1, 1, 1, 2 } },
|
|
{ ISD::BSWAP, MVT::v16i32, { 1, 1, 1, 2 } },
|
|
{ ISD::BSWAP, MVT::v8i16, { 1, 1, 1, 2 } },
|
|
{ ISD::BSWAP, MVT::v16i16, { 1, 1, 1, 2 } },
|
|
{ ISD::BSWAP, MVT::v32i16, { 1, 1, 1, 2 } },
|
|
{ ISD::CTLZ, MVT::v8i64, { 8, 22, 23, 23 } },
|
|
{ ISD::CTLZ, MVT::v16i32, { 8, 23, 25, 25 } },
|
|
{ ISD::CTLZ, MVT::v32i16, { 4, 15, 15, 16 } },
|
|
{ ISD::CTLZ, MVT::v64i8, { 3, 12, 10, 9 } },
|
|
{ ISD::CTPOP, MVT::v2i64, { 3, 7, 10, 10 } },
|
|
{ ISD::CTPOP, MVT::v4i64, { 3, 7, 10, 10 } },
|
|
{ ISD::CTPOP, MVT::v8i64, { 3, 8, 10, 12 } },
|
|
{ ISD::CTPOP, MVT::v4i32, { 7, 11, 14, 14 } },
|
|
{ ISD::CTPOP, MVT::v8i32, { 7, 11, 14, 14 } },
|
|
{ ISD::CTPOP, MVT::v16i32, { 7, 12, 14, 16 } },
|
|
{ ISD::CTPOP, MVT::v8i16, { 2, 7, 11, 11 } },
|
|
{ ISD::CTPOP, MVT::v16i16, { 2, 7, 11, 11 } },
|
|
{ ISD::CTPOP, MVT::v32i16, { 3, 7, 11, 13 } },
|
|
{ ISD::CTPOP, MVT::v16i8, { 2, 4, 8, 8 } },
|
|
{ ISD::CTPOP, MVT::v32i8, { 2, 4, 8, 8 } },
|
|
{ ISD::CTPOP, MVT::v64i8, { 2, 5, 8, 10 } },
|
|
{ ISD::CTTZ, MVT::v8i16, { 3, 9, 14, 14 } },
|
|
{ ISD::CTTZ, MVT::v16i16, { 3, 9, 14, 14 } },
|
|
{ ISD::CTTZ, MVT::v32i16, { 3, 10, 14, 16 } },
|
|
{ ISD::CTTZ, MVT::v16i8, { 2, 6, 11, 11 } },
|
|
{ ISD::CTTZ, MVT::v32i8, { 2, 6, 11, 11 } },
|
|
{ ISD::CTTZ, MVT::v64i8, { 3, 7, 11, 13 } },
|
|
{ ISD::ROTL, MVT::v32i16, { 2, 8, 6, 8 } },
|
|
{ ISD::ROTL, MVT::v16i16, { 2, 8, 6, 7 } },
|
|
{ ISD::ROTL, MVT::v8i16, { 2, 7, 6, 7 } },
|
|
{ ISD::ROTL, MVT::v64i8, { 5, 6, 11, 12 } },
|
|
{ ISD::ROTL, MVT::v32i8, { 5, 15, 7, 10 } },
|
|
{ ISD::ROTL, MVT::v16i8, { 5, 15, 7, 10 } },
|
|
{ ISD::ROTR, MVT::v32i16, { 2, 8, 6, 8 } },
|
|
{ ISD::ROTR, MVT::v16i16, { 2, 8, 6, 7 } },
|
|
{ ISD::ROTR, MVT::v8i16, { 2, 7, 6, 7 } },
|
|
{ ISD::ROTR, MVT::v64i8, { 5, 6, 12, 14 } },
|
|
{ ISD::ROTR, MVT::v32i8, { 5, 14, 6, 9 } },
|
|
{ ISD::ROTR, MVT::v16i8, { 5, 14, 6, 9 } },
|
|
{ ISD::SADDSAT, MVT::v32i16, { 1 } },
|
|
{ ISD::SADDSAT, MVT::v64i8, { 1 } },
|
|
{ ISD::SMAX, MVT::v32i16, { 1, 1, 1, 1 } },
|
|
{ ISD::SMAX, MVT::v64i8, { 1, 1, 1, 1 } },
|
|
{ ISD::SMIN, MVT::v32i16, { 1, 1, 1, 1 } },
|
|
{ ISD::SMIN, MVT::v64i8, { 1, 1, 1, 1 } },
|
|
{ ISD::SSUBSAT, MVT::v32i16, { 1 } },
|
|
{ ISD::SSUBSAT, MVT::v64i8, { 1 } },
|
|
{ ISD::UADDSAT, MVT::v32i16, { 1 } },
|
|
{ ISD::UADDSAT, MVT::v64i8, { 1 } },
|
|
{ ISD::UMAX, MVT::v32i16, { 1, 1, 1, 1 } },
|
|
{ ISD::UMAX, MVT::v64i8, { 1, 1, 1, 1 } },
|
|
{ ISD::UMIN, MVT::v32i16, { 1, 1, 1, 1 } },
|
|
{ ISD::UMIN, MVT::v64i8, { 1, 1, 1, 1 } },
|
|
{ ISD::USUBSAT, MVT::v32i16, { 1 } },
|
|
{ ISD::USUBSAT, MVT::v64i8, { 1 } },
|
|
};
|
|
static const CostKindTblEntry AVX512CostTbl[] = {
|
|
{ ISD::ABS, MVT::v8i64, { 1, 1, 1, 1 } },
|
|
{ ISD::ABS, MVT::v4i64, { 1, 1, 1, 1 } },
|
|
{ ISD::ABS, MVT::v2i64, { 1, 1, 1, 1 } },
|
|
{ ISD::ABS, MVT::v16i32, { 1, 1, 1, 1 } },
|
|
{ ISD::ABS, MVT::v8i32, { 1, 1, 1, 1 } },
|
|
{ ISD::ABS, MVT::v32i16, { 2, 7, 4, 4 } },
|
|
{ ISD::ABS, MVT::v16i16, { 1, 1, 1, 1 } },
|
|
{ ISD::ABS, MVT::v64i8, { 2, 7, 4, 4 } },
|
|
{ ISD::ABS, MVT::v32i8, { 1, 1, 1, 1 } },
|
|
{ ISD::BITREVERSE, MVT::v8i64, { 9, 13, 20, 20 } },
|
|
{ ISD::BITREVERSE, MVT::v16i32, { 9, 13, 20, 20 } },
|
|
{ ISD::BITREVERSE, MVT::v32i16, { 9, 13, 20, 20 } },
|
|
{ ISD::BITREVERSE, MVT::v64i8, { 6, 11, 17, 17 } },
|
|
{ ISD::BSWAP, MVT::v8i64, { 4, 7, 5, 5 } },
|
|
{ ISD::BSWAP, MVT::v16i32, { 4, 7, 5, 5 } },
|
|
{ ISD::BSWAP, MVT::v32i16, { 4, 7, 5, 5 } },
|
|
{ ISD::CTLZ, MVT::v8i64, { 10, 28, 32, 32 } },
|
|
{ ISD::CTLZ, MVT::v16i32, { 12, 30, 38, 38 } },
|
|
{ ISD::CTLZ, MVT::v32i16, { 8, 15, 29, 29 } },
|
|
{ ISD::CTLZ, MVT::v64i8, { 6, 11, 19, 19 } },
|
|
{ ISD::CTPOP, MVT::v8i64, { 16, 16, 19, 19 } },
|
|
{ ISD::CTPOP, MVT::v16i32, { 24, 19, 27, 27 } },
|
|
{ ISD::CTPOP, MVT::v32i16, { 18, 15, 22, 22 } },
|
|
{ ISD::CTPOP, MVT::v64i8, { 12, 11, 16, 16 } },
|
|
{ ISD::CTTZ, MVT::v8i64, { 2, 8, 6, 7 } },
|
|
{ ISD::CTTZ, MVT::v16i32, { 2, 8, 6, 7 } },
|
|
{ ISD::CTTZ, MVT::v32i16, { 7, 17, 27, 27 } },
|
|
{ ISD::CTTZ, MVT::v64i8, { 6, 13, 21, 21 } },
|
|
{ ISD::ROTL, MVT::v8i64, { 1, 1, 1, 1 } },
|
|
{ ISD::ROTL, MVT::v4i64, { 1, 1, 1, 1 } },
|
|
{ ISD::ROTL, MVT::v2i64, { 1, 1, 1, 1 } },
|
|
{ ISD::ROTL, MVT::v16i32, { 1, 1, 1, 1 } },
|
|
{ ISD::ROTL, MVT::v8i32, { 1, 1, 1, 1 } },
|
|
{ ISD::ROTL, MVT::v4i32, { 1, 1, 1, 1 } },
|
|
{ ISD::ROTR, MVT::v8i64, { 1, 1, 1, 1 } },
|
|
{ ISD::ROTR, MVT::v4i64, { 1, 1, 1, 1 } },
|
|
{ ISD::ROTR, MVT::v2i64, { 1, 1, 1, 1 } },
|
|
{ ISD::ROTR, MVT::v16i32, { 1, 1, 1, 1 } },
|
|
{ ISD::ROTR, MVT::v8i32, { 1, 1, 1, 1 } },
|
|
{ ISD::ROTR, MVT::v4i32, { 1, 1, 1, 1 } },
|
|
{ ISD::SMAX, MVT::v8i64, { 1, 3, 1, 1 } },
|
|
{ ISD::SMAX, MVT::v16i32, { 1, 1, 1, 1 } },
|
|
{ ISD::SMAX, MVT::v32i16, { 3, 7, 5, 5 } },
|
|
{ ISD::SMAX, MVT::v64i8, { 3, 7, 5, 5 } },
|
|
{ ISD::SMAX, MVT::v4i64, { 1, 3, 1, 1 } },
|
|
{ ISD::SMAX, MVT::v2i64, { 1, 3, 1, 1 } },
|
|
{ ISD::SMIN, MVT::v8i64, { 1, 3, 1, 1 } },
|
|
{ ISD::SMIN, MVT::v16i32, { 1, 1, 1, 1 } },
|
|
{ ISD::SMIN, MVT::v32i16, { 3, 7, 5, 5 } },
|
|
{ ISD::SMIN, MVT::v64i8, { 3, 7, 5, 5 } },
|
|
{ ISD::SMIN, MVT::v4i64, { 1, 3, 1, 1 } },
|
|
{ ISD::SMIN, MVT::v2i64, { 1, 3, 1, 1 } },
|
|
{ ISD::UMAX, MVT::v8i64, { 1, 3, 1, 1 } },
|
|
{ ISD::UMAX, MVT::v16i32, { 1, 1, 1, 1 } },
|
|
{ ISD::UMAX, MVT::v32i16, { 3, 7, 5, 5 } },
|
|
{ ISD::UMAX, MVT::v64i8, { 3, 7, 5, 5 } },
|
|
{ ISD::UMAX, MVT::v4i64, { 1, 3, 1, 1 } },
|
|
{ ISD::UMAX, MVT::v2i64, { 1, 3, 1, 1 } },
|
|
{ ISD::UMIN, MVT::v8i64, { 1, 3, 1, 1 } },
|
|
{ ISD::UMIN, MVT::v16i32, { 1, 1, 1, 1 } },
|
|
{ ISD::UMIN, MVT::v32i16, { 3, 7, 5, 5 } },
|
|
{ ISD::UMIN, MVT::v64i8, { 3, 7, 5, 5 } },
|
|
{ ISD::UMIN, MVT::v4i64, { 1, 3, 1, 1 } },
|
|
{ ISD::UMIN, MVT::v2i64, { 1, 3, 1, 1 } },
|
|
{ ISD::USUBSAT, MVT::v16i32, { 2 } }, // pmaxud + psubd
|
|
{ ISD::USUBSAT, MVT::v2i64, { 2 } }, // pmaxuq + psubq
|
|
{ ISD::USUBSAT, MVT::v4i64, { 2 } }, // pmaxuq + psubq
|
|
{ ISD::USUBSAT, MVT::v8i64, { 2 } }, // pmaxuq + psubq
|
|
{ ISD::UADDSAT, MVT::v16i32, { 3 } }, // not + pminud + paddd
|
|
{ ISD::UADDSAT, MVT::v2i64, { 3 } }, // not + pminuq + paddq
|
|
{ ISD::UADDSAT, MVT::v4i64, { 3 } }, // not + pminuq + paddq
|
|
{ ISD::UADDSAT, MVT::v8i64, { 3 } }, // not + pminuq + paddq
|
|
{ ISD::SADDSAT, MVT::v32i16, { 2 } },
|
|
{ ISD::SADDSAT, MVT::v64i8, { 2 } },
|
|
{ ISD::SSUBSAT, MVT::v32i16, { 2 } },
|
|
{ ISD::SSUBSAT, MVT::v64i8, { 2 } },
|
|
{ ISD::UADDSAT, MVT::v32i16, { 2 } },
|
|
{ ISD::UADDSAT, MVT::v64i8, { 2 } },
|
|
{ ISD::USUBSAT, MVT::v32i16, { 2 } },
|
|
{ ISD::USUBSAT, MVT::v64i8, { 2 } },
|
|
{ ISD::FMAXNUM, MVT::f32, { 2, 2, 3, 3 } },
|
|
{ ISD::FMAXNUM, MVT::v4f32, { 1, 1, 3, 3 } },
|
|
{ ISD::FMAXNUM, MVT::v8f32, { 2, 2, 3, 3 } },
|
|
{ ISD::FMAXNUM, MVT::v16f32, { 4, 4, 3, 3 } },
|
|
{ ISD::FMAXNUM, MVT::f64, { 2, 2, 3, 3 } },
|
|
{ ISD::FMAXNUM, MVT::v2f64, { 1, 1, 3, 3 } },
|
|
{ ISD::FMAXNUM, MVT::v4f64, { 2, 2, 3, 3 } },
|
|
{ ISD::FMAXNUM, MVT::v8f64, { 3, 3, 3, 3 } },
|
|
{ ISD::FSQRT, MVT::f32, { 3, 12, 1, 1 } }, // Skylake from http://www.agner.org/
|
|
{ ISD::FSQRT, MVT::v4f32, { 3, 12, 1, 1 } }, // Skylake from http://www.agner.org/
|
|
{ ISD::FSQRT, MVT::v8f32, { 6, 12, 1, 1 } }, // Skylake from http://www.agner.org/
|
|
{ ISD::FSQRT, MVT::v16f32, { 12, 20, 1, 3 } }, // Skylake from http://www.agner.org/
|
|
{ ISD::FSQRT, MVT::f64, { 6, 18, 1, 1 } }, // Skylake from http://www.agner.org/
|
|
{ ISD::FSQRT, MVT::v2f64, { 6, 18, 1, 1 } }, // Skylake from http://www.agner.org/
|
|
{ ISD::FSQRT, MVT::v4f64, { 12, 18, 1, 1 } }, // Skylake from http://www.agner.org/
|
|
{ ISD::FSQRT, MVT::v8f64, { 24, 32, 1, 3 } }, // Skylake from http://www.agner.org/
|
|
};
|
|
static const CostKindTblEntry XOPCostTbl[] = {
|
|
{ ISD::BITREVERSE, MVT::v4i64, { 3, 6, 5, 6 } },
|
|
{ ISD::BITREVERSE, MVT::v8i32, { 3, 6, 5, 6 } },
|
|
{ ISD::BITREVERSE, MVT::v16i16, { 3, 6, 5, 6 } },
|
|
{ ISD::BITREVERSE, MVT::v32i8, { 3, 6, 5, 6 } },
|
|
{ ISD::BITREVERSE, MVT::v2i64, { 2, 7, 1, 1 } },
|
|
{ ISD::BITREVERSE, MVT::v4i32, { 2, 7, 1, 1 } },
|
|
{ ISD::BITREVERSE, MVT::v8i16, { 2, 7, 1, 1 } },
|
|
{ ISD::BITREVERSE, MVT::v16i8, { 2, 7, 1, 1 } },
|
|
{ ISD::BITREVERSE, MVT::i64, { 2, 2, 3, 4 } },
|
|
{ ISD::BITREVERSE, MVT::i32, { 2, 2, 3, 4 } },
|
|
{ ISD::BITREVERSE, MVT::i16, { 2, 2, 3, 4 } },
|
|
{ ISD::BITREVERSE, MVT::i8, { 2, 2, 3, 4 } },
|
|
// XOP: ROTL = VPROT(X,Y), ROTR = VPROT(X,SUB(0,Y))
|
|
{ ISD::ROTL, MVT::v4i64, { 4, 7, 5, 6 } },
|
|
{ ISD::ROTL, MVT::v8i32, { 4, 7, 5, 6 } },
|
|
{ ISD::ROTL, MVT::v16i16, { 4, 7, 5, 6 } },
|
|
{ ISD::ROTL, MVT::v32i8, { 4, 7, 5, 6 } },
|
|
{ ISD::ROTL, MVT::v2i64, { 1, 3, 1, 1 } },
|
|
{ ISD::ROTL, MVT::v4i32, { 1, 3, 1, 1 } },
|
|
{ ISD::ROTL, MVT::v8i16, { 1, 3, 1, 1 } },
|
|
{ ISD::ROTL, MVT::v16i8, { 1, 3, 1, 1 } },
|
|
{ ISD::ROTR, MVT::v4i64, { 4, 7, 8, 9 } },
|
|
{ ISD::ROTR, MVT::v8i32, { 4, 7, 8, 9 } },
|
|
{ ISD::ROTR, MVT::v16i16, { 4, 7, 8, 9 } },
|
|
{ ISD::ROTR, MVT::v32i8, { 4, 7, 8, 9 } },
|
|
{ ISD::ROTR, MVT::v2i64, { 1, 3, 3, 3 } },
|
|
{ ISD::ROTR, MVT::v4i32, { 1, 3, 3, 3 } },
|
|
{ ISD::ROTR, MVT::v8i16, { 1, 3, 3, 3 } },
|
|
{ ISD::ROTR, MVT::v16i8, { 1, 3, 3, 3 } }
|
|
};
|
|
static const CostKindTblEntry AVX2CostTbl[] = {
|
|
{ ISD::ABS, MVT::v2i64, { 2, 4, 3, 5 } }, // VBLENDVPD(X,VPSUBQ(0,X),X)
|
|
{ ISD::ABS, MVT::v4i64, { 2, 4, 3, 5 } }, // VBLENDVPD(X,VPSUBQ(0,X),X)
|
|
{ ISD::ABS, MVT::v4i32, { 1, 1, 1, 1 } },
|
|
{ ISD::ABS, MVT::v8i32, { 1, 1, 1, 2 } },
|
|
{ ISD::ABS, MVT::v8i16, { 1, 1, 1, 1 } },
|
|
{ ISD::ABS, MVT::v16i16, { 1, 1, 1, 2 } },
|
|
{ ISD::ABS, MVT::v16i8, { 1, 1, 1, 1 } },
|
|
{ ISD::ABS, MVT::v32i8, { 1, 1, 1, 2 } },
|
|
{ ISD::BITREVERSE, MVT::v2i64, { 3, 11, 10, 11 } },
|
|
{ ISD::BITREVERSE, MVT::v4i64, { 5, 11, 10, 17 } },
|
|
{ ISD::BITREVERSE, MVT::v4i32, { 3, 11, 10, 11 } },
|
|
{ ISD::BITREVERSE, MVT::v8i32, { 5, 11, 10, 17 } },
|
|
{ ISD::BITREVERSE, MVT::v8i16, { 3, 11, 10, 11 } },
|
|
{ ISD::BITREVERSE, MVT::v16i16, { 5, 11, 10, 17 } },
|
|
{ ISD::BITREVERSE, MVT::v16i8, { 3, 6, 9, 9 } },
|
|
{ ISD::BITREVERSE, MVT::v32i8, { 4, 5, 9, 15 } },
|
|
{ ISD::BSWAP, MVT::v2i64, { 1, 2, 1, 2 } },
|
|
{ ISD::BSWAP, MVT::v4i64, { 1, 3, 1, 2 } },
|
|
{ ISD::BSWAP, MVT::v4i32, { 1, 2, 1, 2 } },
|
|
{ ISD::BSWAP, MVT::v8i32, { 1, 3, 1, 2 } },
|
|
{ ISD::BSWAP, MVT::v8i16, { 1, 2, 1, 2 } },
|
|
{ ISD::BSWAP, MVT::v16i16, { 1, 3, 1, 2 } },
|
|
{ ISD::CTLZ, MVT::v2i64, { 7, 18, 24, 25 } },
|
|
{ ISD::CTLZ, MVT::v4i64, { 14, 18, 24, 44 } },
|
|
{ ISD::CTLZ, MVT::v4i32, { 5, 16, 19, 20 } },
|
|
{ ISD::CTLZ, MVT::v8i32, { 10, 16, 19, 34 } },
|
|
{ ISD::CTLZ, MVT::v8i16, { 4, 13, 14, 15 } },
|
|
{ ISD::CTLZ, MVT::v16i16, { 6, 14, 14, 24 } },
|
|
{ ISD::CTLZ, MVT::v16i8, { 3, 12, 9, 10 } },
|
|
{ ISD::CTLZ, MVT::v32i8, { 4, 12, 9, 14 } },
|
|
{ ISD::CTPOP, MVT::v2i64, { 3, 9, 10, 10 } },
|
|
{ ISD::CTPOP, MVT::v4i64, { 4, 9, 10, 14 } },
|
|
{ ISD::CTPOP, MVT::v4i32, { 7, 12, 14, 14 } },
|
|
{ ISD::CTPOP, MVT::v8i32, { 7, 12, 14, 18 } },
|
|
{ ISD::CTPOP, MVT::v8i16, { 3, 7, 11, 11 } },
|
|
{ ISD::CTPOP, MVT::v16i16, { 6, 8, 11, 18 } },
|
|
{ ISD::CTPOP, MVT::v16i8, { 2, 5, 8, 8 } },
|
|
{ ISD::CTPOP, MVT::v32i8, { 3, 5, 8, 12 } },
|
|
{ ISD::CTTZ, MVT::v2i64, { 4, 11, 13, 13 } },
|
|
{ ISD::CTTZ, MVT::v4i64, { 5, 11, 13, 20 } },
|
|
{ ISD::CTTZ, MVT::v4i32, { 7, 14, 17, 17 } },
|
|
{ ISD::CTTZ, MVT::v8i32, { 7, 15, 17, 24 } },
|
|
{ ISD::CTTZ, MVT::v8i16, { 4, 9, 14, 14 } },
|
|
{ ISD::CTTZ, MVT::v16i16, { 6, 9, 14, 24 } },
|
|
{ ISD::CTTZ, MVT::v16i8, { 3, 7, 11, 11 } },
|
|
{ ISD::CTTZ, MVT::v32i8, { 5, 7, 11, 18 } },
|
|
{ ISD::SADDSAT, MVT::v16i16, { 1 } },
|
|
{ ISD::SADDSAT, MVT::v32i8, { 1 } },
|
|
{ ISD::SMAX, MVT::v2i64, { 2, 7, 2, 3 } },
|
|
{ ISD::SMAX, MVT::v4i64, { 2, 7, 2, 3 } },
|
|
{ ISD::SMAX, MVT::v8i32, { 1, 1, 1, 2 } },
|
|
{ ISD::SMAX, MVT::v16i16, { 1, 1, 1, 2 } },
|
|
{ ISD::SMAX, MVT::v32i8, { 1, 1, 1, 2 } },
|
|
{ ISD::SMIN, MVT::v2i64, { 2, 7, 2, 3 } },
|
|
{ ISD::SMIN, MVT::v4i64, { 2, 7, 2, 3 } },
|
|
{ ISD::SMIN, MVT::v8i32, { 1, 1, 1, 2 } },
|
|
{ ISD::SMIN, MVT::v16i16, { 1, 1, 1, 2 } },
|
|
{ ISD::SMIN, MVT::v32i8, { 1, 1, 1, 2 } },
|
|
{ ISD::SSUBSAT, MVT::v16i16, { 1 } },
|
|
{ ISD::SSUBSAT, MVT::v32i8, { 1 } },
|
|
{ ISD::UADDSAT, MVT::v16i16, { 1 } },
|
|
{ ISD::UADDSAT, MVT::v32i8, { 1 } },
|
|
{ ISD::UADDSAT, MVT::v8i32, { 3 } }, // not + pminud + paddd
|
|
{ ISD::UMAX, MVT::v2i64, { 2, 8, 5, 6 } },
|
|
{ ISD::UMAX, MVT::v4i64, { 2, 8, 5, 8 } },
|
|
{ ISD::UMAX, MVT::v8i32, { 1, 1, 1, 2 } },
|
|
{ ISD::UMAX, MVT::v16i16, { 1, 1, 1, 2 } },
|
|
{ ISD::UMAX, MVT::v32i8, { 1, 1, 1, 2 } },
|
|
{ ISD::UMIN, MVT::v2i64, { 2, 8, 5, 6 } },
|
|
{ ISD::UMIN, MVT::v4i64, { 2, 8, 5, 8 } },
|
|
{ ISD::UMIN, MVT::v8i32, { 1, 1, 1, 2 } },
|
|
{ ISD::UMIN, MVT::v16i16, { 1, 1, 1, 2 } },
|
|
{ ISD::UMIN, MVT::v32i8, { 1, 1, 1, 2 } },
|
|
{ ISD::USUBSAT, MVT::v16i16, { 1 } },
|
|
{ ISD::USUBSAT, MVT::v32i8, { 1 } },
|
|
{ ISD::USUBSAT, MVT::v8i32, { 2 } }, // pmaxud + psubd
|
|
{ ISD::FMAXNUM, MVT::f32, { 2, 7, 3, 5 } }, // MAXSS + CMPUNORDSS + BLENDVPS
|
|
{ ISD::FMAXNUM, MVT::v4f32, { 2, 7, 3, 5 } }, // MAXPS + CMPUNORDPS + BLENDVPS
|
|
{ ISD::FMAXNUM, MVT::v8f32, { 3, 7, 3, 6 } }, // MAXPS + CMPUNORDPS + BLENDVPS
|
|
{ ISD::FMAXNUM, MVT::f64, { 2, 7, 3, 5 } }, // MAXSD + CMPUNORDSD + BLENDVPD
|
|
{ ISD::FMAXNUM, MVT::v2f64, { 2, 7, 3, 5 } }, // MAXPD + CMPUNORDPD + BLENDVPD
|
|
{ ISD::FMAXNUM, MVT::v4f64, { 3, 7, 3, 6 } }, // MAXPD + CMPUNORDPD + BLENDVPD
|
|
{ ISD::FSQRT, MVT::f32, { 7, 15, 1, 1 } }, // vsqrtss
|
|
{ ISD::FSQRT, MVT::v4f32, { 7, 15, 1, 1 } }, // vsqrtps
|
|
{ ISD::FSQRT, MVT::v8f32, { 14, 21, 1, 3 } }, // vsqrtps
|
|
{ ISD::FSQRT, MVT::f64, { 14, 21, 1, 1 } }, // vsqrtsd
|
|
{ ISD::FSQRT, MVT::v2f64, { 14, 21, 1, 1 } }, // vsqrtpd
|
|
{ ISD::FSQRT, MVT::v4f64, { 28, 35, 1, 3 } }, // vsqrtpd
|
|
};
|
|
static const CostKindTblEntry AVX1CostTbl[] = {
|
|
{ ISD::ABS, MVT::v4i64, { 6, 8, 6, 12 } }, // VBLENDVPD(X,VPSUBQ(0,X),X)
|
|
{ ISD::ABS, MVT::v8i32, { 3, 6, 4, 5 } },
|
|
{ ISD::ABS, MVT::v16i16, { 3, 6, 4, 5 } },
|
|
{ ISD::ABS, MVT::v32i8, { 3, 6, 4, 5 } },
|
|
{ ISD::BITREVERSE, MVT::v4i64, { 17, 20, 20, 33 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::BITREVERSE, MVT::v2i64, { 8, 13, 10, 16 } },
|
|
{ ISD::BITREVERSE, MVT::v8i32, { 17, 20, 20, 33 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::BITREVERSE, MVT::v4i32, { 8, 13, 10, 16 } },
|
|
{ ISD::BITREVERSE, MVT::v16i16, { 17, 20, 20, 33 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::BITREVERSE, MVT::v8i16, { 8, 13, 10, 16 } },
|
|
{ ISD::BITREVERSE, MVT::v32i8, { 13, 15, 17, 26 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::BITREVERSE, MVT::v16i8, { 7, 7, 9, 13 } },
|
|
{ ISD::BSWAP, MVT::v4i64, { 5, 6, 5, 10 } },
|
|
{ ISD::BSWAP, MVT::v2i64, { 2, 2, 1, 3 } },
|
|
{ ISD::BSWAP, MVT::v8i32, { 5, 6, 5, 10 } },
|
|
{ ISD::BSWAP, MVT::v4i32, { 2, 2, 1, 3 } },
|
|
{ ISD::BSWAP, MVT::v16i16, { 5, 6, 5, 10 } },
|
|
{ ISD::BSWAP, MVT::v8i16, { 2, 2, 1, 3 } },
|
|
{ ISD::CTLZ, MVT::v4i64, { 29, 33, 49, 58 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::CTLZ, MVT::v2i64, { 14, 24, 24, 28 } },
|
|
{ ISD::CTLZ, MVT::v8i32, { 24, 28, 39, 48 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::CTLZ, MVT::v4i32, { 12, 20, 19, 23 } },
|
|
{ ISD::CTLZ, MVT::v16i16, { 19, 22, 29, 38 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::CTLZ, MVT::v8i16, { 9, 16, 14, 18 } },
|
|
{ ISD::CTLZ, MVT::v32i8, { 14, 15, 19, 28 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::CTLZ, MVT::v16i8, { 7, 12, 9, 13 } },
|
|
{ ISD::CTPOP, MVT::v4i64, { 14, 18, 19, 28 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::CTPOP, MVT::v2i64, { 7, 14, 10, 14 } },
|
|
{ ISD::CTPOP, MVT::v8i32, { 18, 24, 27, 36 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::CTPOP, MVT::v4i32, { 9, 20, 14, 18 } },
|
|
{ ISD::CTPOP, MVT::v16i16, { 16, 21, 22, 31 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::CTPOP, MVT::v8i16, { 8, 18, 11, 15 } },
|
|
{ ISD::CTPOP, MVT::v32i8, { 13, 15, 16, 25 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::CTPOP, MVT::v16i8, { 6, 12, 8, 12 } },
|
|
{ ISD::CTTZ, MVT::v4i64, { 17, 22, 24, 33 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::CTTZ, MVT::v2i64, { 9, 19, 13, 17 } },
|
|
{ ISD::CTTZ, MVT::v8i32, { 21, 27, 32, 41 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::CTTZ, MVT::v4i32, { 11, 24, 17, 21 } },
|
|
{ ISD::CTTZ, MVT::v16i16, { 18, 24, 27, 36 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::CTTZ, MVT::v8i16, { 9, 21, 14, 18 } },
|
|
{ ISD::CTTZ, MVT::v32i8, { 15, 18, 21, 30 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::CTTZ, MVT::v16i8, { 8, 16, 11, 15 } },
|
|
{ ISD::SADDSAT, MVT::v16i16, { 4 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::SADDSAT, MVT::v32i8, { 4 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::SMAX, MVT::v4i64, { 6, 9, 6, 12 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::SMAX, MVT::v2i64, { 3, 7, 2, 4 } },
|
|
{ ISD::SMAX, MVT::v8i32, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::SMAX, MVT::v16i16, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::SMAX, MVT::v32i8, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::SMIN, MVT::v4i64, { 6, 9, 6, 12 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::SMIN, MVT::v2i64, { 3, 7, 2, 3 } },
|
|
{ ISD::SMIN, MVT::v8i32, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::SMIN, MVT::v16i16, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::SMIN, MVT::v32i8, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::SSUBSAT, MVT::v16i16, { 4 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::SSUBSAT, MVT::v32i8, { 4 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::UADDSAT, MVT::v16i16, { 4 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::UADDSAT, MVT::v32i8, { 4 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::UADDSAT, MVT::v8i32, { 8 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::UMAX, MVT::v4i64, { 9, 10, 11, 17 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::UMAX, MVT::v2i64, { 4, 8, 5, 7 } },
|
|
{ ISD::UMAX, MVT::v8i32, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::UMAX, MVT::v16i16, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::UMAX, MVT::v32i8, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::UMIN, MVT::v4i64, { 9, 10, 11, 17 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::UMIN, MVT::v2i64, { 4, 8, 5, 7 } },
|
|
{ ISD::UMIN, MVT::v8i32, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::UMIN, MVT::v16i16, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::UMIN, MVT::v32i8, { 4, 6, 5, 6 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::USUBSAT, MVT::v16i16, { 4 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::USUBSAT, MVT::v32i8, { 4 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::USUBSAT, MVT::v8i32, { 6 } }, // 2 x 128-bit Op + extract/insert
|
|
{ ISD::FMAXNUM, MVT::f32, { 3, 6, 3, 5 } }, // MAXSS + CMPUNORDSS + BLENDVPS
|
|
{ ISD::FMAXNUM, MVT::v4f32, { 3, 6, 3, 5 } }, // MAXPS + CMPUNORDPS + BLENDVPS
|
|
{ ISD::FMAXNUM, MVT::v8f32, { 5, 7, 3, 10 } }, // MAXPS + CMPUNORDPS + BLENDVPS
|
|
{ ISD::FMAXNUM, MVT::f64, { 3, 6, 3, 5 } }, // MAXSD + CMPUNORDSD + BLENDVPD
|
|
{ ISD::FMAXNUM, MVT::v2f64, { 3, 6, 3, 5 } }, // MAXPD + CMPUNORDPD + BLENDVPD
|
|
{ ISD::FMAXNUM, MVT::v4f64, { 5, 7, 3, 10 } }, // MAXPD + CMPUNORDPD + BLENDVPD
|
|
{ ISD::FSQRT, MVT::f32, { 21, 21, 1, 1 } }, // vsqrtss
|
|
{ ISD::FSQRT, MVT::v4f32, { 21, 21, 1, 1 } }, // vsqrtps
|
|
{ ISD::FSQRT, MVT::v8f32, { 42, 42, 1, 3 } }, // vsqrtps
|
|
{ ISD::FSQRT, MVT::f64, { 27, 27, 1, 1 } }, // vsqrtsd
|
|
{ ISD::FSQRT, MVT::v2f64, { 27, 27, 1, 1 } }, // vsqrtpd
|
|
{ ISD::FSQRT, MVT::v4f64, { 54, 54, 1, 3 } }, // vsqrtpd
|
|
};
|
|
static const CostKindTblEntry GLMCostTbl[] = {
|
|
{ ISD::FSQRT, MVT::f32, { 19, 20, 1, 1 } }, // sqrtss
|
|
{ ISD::FSQRT, MVT::v4f32, { 37, 41, 1, 5 } }, // sqrtps
|
|
{ ISD::FSQRT, MVT::f64, { 34, 35, 1, 1 } }, // sqrtsd
|
|
{ ISD::FSQRT, MVT::v2f64, { 67, 71, 1, 5 } }, // sqrtpd
|
|
};
|
|
static const CostKindTblEntry SLMCostTbl[] = {
|
|
{ ISD::BSWAP, MVT::v2i64, { 5, 5, 1, 5 } },
|
|
{ ISD::BSWAP, MVT::v4i32, { 5, 5, 1, 5 } },
|
|
{ ISD::BSWAP, MVT::v8i16, { 5, 5, 1, 5 } },
|
|
{ ISD::FSQRT, MVT::f32, { 20, 20, 1, 1 } }, // sqrtss
|
|
{ ISD::FSQRT, MVT::v4f32, { 40, 41, 1, 5 } }, // sqrtps
|
|
{ ISD::FSQRT, MVT::f64, { 35, 35, 1, 1 } }, // sqrtsd
|
|
{ ISD::FSQRT, MVT::v2f64, { 70, 71, 1, 5 } }, // sqrtpd
|
|
};
|
|
static const CostKindTblEntry SSE42CostTbl[] = {
|
|
{ ISD::USUBSAT, MVT::v4i32, { 2 } }, // pmaxud + psubd
|
|
{ ISD::UADDSAT, MVT::v4i32, { 3 } }, // not + pminud + paddd
|
|
{ ISD::FMAXNUM, MVT::f32, { 5, 5, 7, 7 } }, // MAXSS + CMPUNORDSS + BLENDVPS
|
|
{ ISD::FMAXNUM, MVT::v4f32, { 4, 4, 4, 5 } }, // MAXPS + CMPUNORDPS + BLENDVPS
|
|
{ ISD::FMAXNUM, MVT::f64, { 5, 5, 7, 7 } }, // MAXSD + CMPUNORDSD + BLENDVPD
|
|
{ ISD::FMAXNUM, MVT::v2f64, { 4, 4, 4, 5 } }, // MAXPD + CMPUNORDPD + BLENDVPD
|
|
{ ISD::FSQRT, MVT::f32, { 18, 18, 1, 1 } }, // Nehalem from http://www.agner.org/
|
|
{ ISD::FSQRT, MVT::v4f32, { 18, 18, 1, 1 } }, // Nehalem from http://www.agner.org/
|
|
};
|
|
static const CostKindTblEntry SSE41CostTbl[] = {
|
|
{ ISD::ABS, MVT::v2i64, { 3, 4, 3, 5 } }, // BLENDVPD(X,PSUBQ(0,X),X)
|
|
{ ISD::SMAX, MVT::v2i64, { 3, 7, 2, 3 } },
|
|
{ ISD::SMAX, MVT::v4i32, { 1, 1, 1, 1 } },
|
|
{ ISD::SMAX, MVT::v16i8, { 1, 1, 1, 1 } },
|
|
{ ISD::SMIN, MVT::v2i64, { 3, 7, 2, 3 } },
|
|
{ ISD::SMIN, MVT::v4i32, { 1, 1, 1, 1 } },
|
|
{ ISD::SMIN, MVT::v16i8, { 1, 1, 1, 1 } },
|
|
{ ISD::UMAX, MVT::v2i64, { 2, 11, 6, 7 } },
|
|
{ ISD::UMAX, MVT::v4i32, { 1, 1, 1, 1 } },
|
|
{ ISD::UMAX, MVT::v8i16, { 1, 1, 1, 1 } },
|
|
{ ISD::UMIN, MVT::v2i64, { 2, 11, 6, 7 } },
|
|
{ ISD::UMIN, MVT::v4i32, { 1, 1, 1, 1 } },
|
|
{ ISD::UMIN, MVT::v8i16, { 1, 1, 1, 1 } },
|
|
};
|
|
static const CostKindTblEntry SSSE3CostTbl[] = {
|
|
{ ISD::ABS, MVT::v4i32, { 1, 2, 1, 1 } },
|
|
{ ISD::ABS, MVT::v8i16, { 1, 2, 1, 1 } },
|
|
{ ISD::ABS, MVT::v16i8, { 1, 2, 1, 1 } },
|
|
{ ISD::BITREVERSE, MVT::v2i64, { 16, 20, 11, 21 } },
|
|
{ ISD::BITREVERSE, MVT::v4i32, { 16, 20, 11, 21 } },
|
|
{ ISD::BITREVERSE, MVT::v8i16, { 16, 20, 11, 21 } },
|
|
{ ISD::BITREVERSE, MVT::v16i8, { 11, 12, 10, 16 } },
|
|
{ ISD::BSWAP, MVT::v2i64, { 2, 3, 1, 5 } },
|
|
{ ISD::BSWAP, MVT::v4i32, { 2, 3, 1, 5 } },
|
|
{ ISD::BSWAP, MVT::v8i16, { 2, 3, 1, 5 } },
|
|
{ ISD::CTLZ, MVT::v2i64, { 18, 28, 28, 35 } },
|
|
{ ISD::CTLZ, MVT::v4i32, { 15, 20, 22, 28 } },
|
|
{ ISD::CTLZ, MVT::v8i16, { 13, 17, 16, 22 } },
|
|
{ ISD::CTLZ, MVT::v16i8, { 11, 15, 10, 16 } },
|
|
{ ISD::CTPOP, MVT::v2i64, { 13, 19, 12, 18 } },
|
|
{ ISD::CTPOP, MVT::v4i32, { 18, 24, 16, 22 } },
|
|
{ ISD::CTPOP, MVT::v8i16, { 13, 18, 14, 20 } },
|
|
{ ISD::CTPOP, MVT::v16i8, { 11, 12, 10, 16 } },
|
|
{ ISD::CTTZ, MVT::v2i64, { 13, 25, 15, 22 } },
|
|
{ ISD::CTTZ, MVT::v4i32, { 18, 26, 19, 25 } },
|
|
{ ISD::CTTZ, MVT::v8i16, { 13, 20, 17, 23 } },
|
|
{ ISD::CTTZ, MVT::v16i8, { 11, 16, 13, 19 } }
|
|
};
|
|
static const CostKindTblEntry SSE2CostTbl[] = {
|
|
{ ISD::ABS, MVT::v2i64, { 3, 6, 5, 5 } },
|
|
{ ISD::ABS, MVT::v4i32, { 1, 4, 4, 4 } },
|
|
{ ISD::ABS, MVT::v8i16, { 1, 2, 3, 3 } },
|
|
{ ISD::ABS, MVT::v16i8, { 1, 2, 3, 3 } },
|
|
{ ISD::BITREVERSE, MVT::v2i64, { 16, 20, 32, 32 } },
|
|
{ ISD::BITREVERSE, MVT::v4i32, { 16, 20, 30, 30 } },
|
|
{ ISD::BITREVERSE, MVT::v8i16, { 16, 20, 25, 25 } },
|
|
{ ISD::BITREVERSE, MVT::v16i8, { 11, 12, 21, 21 } },
|
|
{ ISD::BSWAP, MVT::v2i64, { 5, 6, 11, 11 } },
|
|
{ ISD::BSWAP, MVT::v4i32, { 5, 5, 9, 9 } },
|
|
{ ISD::BSWAP, MVT::v8i16, { 5, 5, 4, 5 } },
|
|
{ ISD::CTLZ, MVT::v2i64, { 10, 45, 36, 38 } },
|
|
{ ISD::CTLZ, MVT::v4i32, { 10, 45, 38, 40 } },
|
|
{ ISD::CTLZ, MVT::v8i16, { 9, 38, 32, 34 } },
|
|
{ ISD::CTLZ, MVT::v16i8, { 8, 39, 29, 32 } },
|
|
{ ISD::CTPOP, MVT::v2i64, { 12, 26, 16, 18 } },
|
|
{ ISD::CTPOP, MVT::v4i32, { 15, 29, 21, 23 } },
|
|
{ ISD::CTPOP, MVT::v8i16, { 13, 25, 18, 20 } },
|
|
{ ISD::CTPOP, MVT::v16i8, { 10, 21, 14, 16 } },
|
|
{ ISD::CTTZ, MVT::v2i64, { 14, 28, 19, 21 } },
|
|
{ ISD::CTTZ, MVT::v4i32, { 18, 31, 24, 26 } },
|
|
{ ISD::CTTZ, MVT::v8i16, { 16, 27, 21, 23 } },
|
|
{ ISD::CTTZ, MVT::v16i8, { 13, 23, 17, 19 } },
|
|
{ ISD::SADDSAT, MVT::v8i16, { 1 } },
|
|
{ ISD::SADDSAT, MVT::v16i8, { 1 } },
|
|
{ ISD::SMAX, MVT::v2i64, { 4, 8, 15, 15 } },
|
|
{ ISD::SMAX, MVT::v4i32, { 2, 4, 5, 5 } },
|
|
{ ISD::SMAX, MVT::v8i16, { 1, 1, 1, 1 } },
|
|
{ ISD::SMAX, MVT::v16i8, { 2, 4, 5, 5 } },
|
|
{ ISD::SMIN, MVT::v2i64, { 4, 8, 15, 15 } },
|
|
{ ISD::SMIN, MVT::v4i32, { 2, 4, 5, 5 } },
|
|
{ ISD::SMIN, MVT::v8i16, { 1, 1, 1, 1 } },
|
|
{ ISD::SMIN, MVT::v16i8, { 2, 4, 5, 5 } },
|
|
{ ISD::SSUBSAT, MVT::v8i16, { 1 } },
|
|
{ ISD::SSUBSAT, MVT::v16i8, { 1 } },
|
|
{ ISD::UADDSAT, MVT::v8i16, { 1 } },
|
|
{ ISD::UADDSAT, MVT::v16i8, { 1 } },
|
|
{ ISD::UMAX, MVT::v2i64, { 4, 8, 15, 15 } },
|
|
{ ISD::UMAX, MVT::v4i32, { 2, 5, 8, 8 } },
|
|
{ ISD::UMAX, MVT::v8i16, { 1, 3, 3, 3 } },
|
|
{ ISD::UMAX, MVT::v16i8, { 1, 1, 1, 1 } },
|
|
{ ISD::UMIN, MVT::v2i64, { 4, 8, 15, 15 } },
|
|
{ ISD::UMIN, MVT::v4i32, { 2, 5, 8, 8 } },
|
|
{ ISD::UMIN, MVT::v8i16, { 1, 3, 3, 3 } },
|
|
{ ISD::UMIN, MVT::v16i8, { 1, 1, 1, 1 } },
|
|
{ ISD::USUBSAT, MVT::v8i16, { 1 } },
|
|
{ ISD::USUBSAT, MVT::v16i8, { 1 } },
|
|
{ ISD::FMAXNUM, MVT::f64, { 5, 5, 7, 7 } },
|
|
{ ISD::FMAXNUM, MVT::v2f64, { 4, 6, 6, 6 } },
|
|
{ ISD::FSQRT, MVT::f64, { 32, 32, 1, 1 } }, // Nehalem from http://www.agner.org/
|
|
{ ISD::FSQRT, MVT::v2f64, { 32, 32, 1, 1 } }, // Nehalem from http://www.agner.org/
|
|
};
|
|
static const CostKindTblEntry SSE1CostTbl[] = {
|
|
{ ISD::FMAXNUM, MVT::f32, { 5, 5, 7, 7 } },
|
|
{ ISD::FMAXNUM, MVT::v4f32, { 4, 6, 6, 6 } },
|
|
{ ISD::FSQRT, MVT::f32, { 28, 30, 1, 2 } }, // Pentium III from http://www.agner.org/
|
|
{ ISD::FSQRT, MVT::v4f32, { 56, 56, 1, 2 } }, // Pentium III from http://www.agner.org/
|
|
};
|
|
static const CostKindTblEntry BMI64CostTbl[] = { // 64-bit targets
|
|
{ ISD::CTTZ, MVT::i64, { 1 } },
|
|
};
|
|
static const CostKindTblEntry BMI32CostTbl[] = { // 32 or 64-bit targets
|
|
{ ISD::CTTZ, MVT::i32, { 1 } },
|
|
{ ISD::CTTZ, MVT::i16, { 1 } },
|
|
{ ISD::CTTZ, MVT::i8, { 1 } },
|
|
};
|
|
static const CostKindTblEntry LZCNT64CostTbl[] = { // 64-bit targets
|
|
{ ISD::CTLZ, MVT::i64, { 1 } },
|
|
};
|
|
static const CostKindTblEntry LZCNT32CostTbl[] = { // 32 or 64-bit targets
|
|
{ ISD::CTLZ, MVT::i32, { 1 } },
|
|
{ ISD::CTLZ, MVT::i16, { 2 } },
|
|
{ ISD::CTLZ, MVT::i8, { 2 } },
|
|
};
|
|
static const CostKindTblEntry POPCNT64CostTbl[] = { // 64-bit targets
|
|
{ ISD::CTPOP, MVT::i64, { 1, 1, 1, 1 } }, // popcnt
|
|
};
|
|
static const CostKindTblEntry POPCNT32CostTbl[] = { // 32 or 64-bit targets
|
|
{ ISD::CTPOP, MVT::i32, { 1, 1, 1, 1 } }, // popcnt
|
|
{ ISD::CTPOP, MVT::i16, { 1, 1, 2, 2 } }, // popcnt(zext())
|
|
{ ISD::CTPOP, MVT::i8, { 1, 1, 2, 2 } }, // popcnt(zext())
|
|
};
|
|
static const CostKindTblEntry X64CostTbl[] = { // 64-bit targets
|
|
{ ISD::ABS, MVT::i64, { 1, 2, 3, 4 } }, // SUB+CMOV
|
|
{ ISD::BITREVERSE, MVT::i64, { 10, 12, 20, 22 } },
|
|
{ ISD::BSWAP, MVT::i64, { 1, 2, 1, 2 } },
|
|
{ ISD::CTLZ, MVT::i64, { 4 } }, // BSR+XOR or BSR+XOR+CMOV
|
|
{ ISD::CTLZ_ZERO_UNDEF, MVT::i64,{ 1, 1, 1, 1 } }, // BSR+XOR
|
|
{ ISD::CTTZ, MVT::i64, { 3 } }, // TEST+BSF+CMOV/BRANCH
|
|
{ ISD::CTTZ_ZERO_UNDEF, MVT::i64,{ 1, 1, 1, 1 } }, // BSR
|
|
{ ISD::CTPOP, MVT::i64, { 10, 6, 19, 19 } },
|
|
{ ISD::ROTL, MVT::i64, { 2, 3, 1, 3 } },
|
|
{ ISD::ROTR, MVT::i64, { 2, 3, 1, 3 } },
|
|
{ X86ISD::VROTLI, MVT::i64, { 1, 1, 1, 1 } },
|
|
{ ISD::FSHL, MVT::i64, { 4, 4, 1, 4 } },
|
|
{ ISD::SMAX, MVT::i64, { 1, 3, 2, 3 } },
|
|
{ ISD::SMIN, MVT::i64, { 1, 3, 2, 3 } },
|
|
{ ISD::UMAX, MVT::i64, { 1, 3, 2, 3 } },
|
|
{ ISD::UMIN, MVT::i64, { 1, 3, 2, 3 } },
|
|
{ ISD::SADDO, MVT::i64, { 1 } },
|
|
{ ISD::UADDO, MVT::i64, { 1 } },
|
|
{ ISD::UMULO, MVT::i64, { 2 } }, // mulq + seto
|
|
};
|
|
static const CostKindTblEntry X86CostTbl[] = { // 32 or 64-bit targets
|
|
{ ISD::ABS, MVT::i32, { 1, 2, 3, 4 } }, // SUB+XOR+SRA or SUB+CMOV
|
|
{ ISD::ABS, MVT::i16, { 2, 2, 3, 4 } }, // SUB+XOR+SRA or SUB+CMOV
|
|
{ ISD::ABS, MVT::i8, { 2, 4, 4, 4 } }, // SUB+XOR+SRA
|
|
{ ISD::BITREVERSE, MVT::i32, { 9, 12, 17, 19 } },
|
|
{ ISD::BITREVERSE, MVT::i16, { 9, 12, 17, 19 } },
|
|
{ ISD::BITREVERSE, MVT::i8, { 7, 9, 13, 14 } },
|
|
{ ISD::BSWAP, MVT::i32, { 1, 1, 1, 1 } },
|
|
{ ISD::BSWAP, MVT::i16, { 1, 2, 1, 2 } }, // ROL
|
|
{ ISD::CTLZ, MVT::i32, { 4 } }, // BSR+XOR or BSR+XOR+CMOV
|
|
{ ISD::CTLZ, MVT::i16, { 4 } }, // BSR+XOR or BSR+XOR+CMOV
|
|
{ ISD::CTLZ, MVT::i8, { 4 } }, // BSR+XOR or BSR+XOR+CMOV
|
|
{ ISD::CTLZ_ZERO_UNDEF, MVT::i32,{ 1, 1, 1, 1 } }, // BSR+XOR
|
|
{ ISD::CTLZ_ZERO_UNDEF, MVT::i16,{ 2, 2, 3, 3 } }, // BSR+XOR
|
|
{ ISD::CTLZ_ZERO_UNDEF, MVT::i8, { 2, 2, 3, 3 } }, // BSR+XOR
|
|
{ ISD::CTTZ, MVT::i32, { 3 } }, // TEST+BSF+CMOV/BRANCH
|
|
{ ISD::CTTZ, MVT::i16, { 3 } }, // TEST+BSF+CMOV/BRANCH
|
|
{ ISD::CTTZ, MVT::i8, { 3 } }, // TEST+BSF+CMOV/BRANCH
|
|
{ ISD::CTTZ_ZERO_UNDEF, MVT::i32,{ 1, 1, 1, 1 } }, // BSF
|
|
{ ISD::CTTZ_ZERO_UNDEF, MVT::i16,{ 2, 2, 1, 1 } }, // BSF
|
|
{ ISD::CTTZ_ZERO_UNDEF, MVT::i8, { 2, 2, 1, 1 } }, // BSF
|
|
{ ISD::CTPOP, MVT::i32, { 8, 7, 15, 15 } },
|
|
{ ISD::CTPOP, MVT::i16, { 9, 8, 17, 17 } },
|
|
{ ISD::CTPOP, MVT::i8, { 7, 6, 6, 6 } },
|
|
{ ISD::ROTL, MVT::i32, { 2, 3, 1, 3 } },
|
|
{ ISD::ROTL, MVT::i16, { 2, 3, 1, 3 } },
|
|
{ ISD::ROTL, MVT::i8, { 2, 3, 1, 3 } },
|
|
{ ISD::ROTR, MVT::i32, { 2, 3, 1, 3 } },
|
|
{ ISD::ROTR, MVT::i16, { 2, 3, 1, 3 } },
|
|
{ ISD::ROTR, MVT::i8, { 2, 3, 1, 3 } },
|
|
{ X86ISD::VROTLI, MVT::i32, { 1, 1, 1, 1 } },
|
|
{ X86ISD::VROTLI, MVT::i16, { 1, 1, 1, 1 } },
|
|
{ X86ISD::VROTLI, MVT::i8, { 1, 1, 1, 1 } },
|
|
{ ISD::FSHL, MVT::i32, { 4, 4, 1, 4 } },
|
|
{ ISD::FSHL, MVT::i16, { 4, 4, 2, 5 } },
|
|
{ ISD::FSHL, MVT::i8, { 4, 4, 2, 5 } },
|
|
{ ISD::SMAX, MVT::i32, { 1, 2, 2, 3 } },
|
|
{ ISD::SMAX, MVT::i16, { 1, 4, 2, 4 } },
|
|
{ ISD::SMAX, MVT::i8, { 1, 4, 2, 4 } },
|
|
{ ISD::SMIN, MVT::i32, { 1, 2, 2, 3 } },
|
|
{ ISD::SMIN, MVT::i16, { 1, 4, 2, 4 } },
|
|
{ ISD::SMIN, MVT::i8, { 1, 4, 2, 4 } },
|
|
{ ISD::UMAX, MVT::i32, { 1, 2, 2, 3 } },
|
|
{ ISD::UMAX, MVT::i16, { 1, 4, 2, 4 } },
|
|
{ ISD::UMAX, MVT::i8, { 1, 4, 2, 4 } },
|
|
{ ISD::UMIN, MVT::i32, { 1, 2, 2, 3 } },
|
|
{ ISD::UMIN, MVT::i16, { 1, 4, 2, 4 } },
|
|
{ ISD::UMIN, MVT::i8, { 1, 4, 2, 4 } },
|
|
{ ISD::SADDO, MVT::i32, { 1 } },
|
|
{ ISD::SADDO, MVT::i16, { 1 } },
|
|
{ ISD::SADDO, MVT::i8, { 1 } },
|
|
{ ISD::UADDO, MVT::i32, { 1 } },
|
|
{ ISD::UADDO, MVT::i16, { 1 } },
|
|
{ ISD::UADDO, MVT::i8, { 1 } },
|
|
{ ISD::UMULO, MVT::i32, { 2 } }, // mul + seto
|
|
{ ISD::UMULO, MVT::i16, { 2 } },
|
|
{ ISD::UMULO, MVT::i8, { 2 } },
|
|
};
|
|
|
|
Type *RetTy = ICA.getReturnType();
|
|
Type *OpTy = RetTy;
|
|
Intrinsic::ID IID = ICA.getID();
|
|
unsigned ISD = ISD::DELETED_NODE;
|
|
switch (IID) {
|
|
default:
|
|
break;
|
|
case Intrinsic::abs:
|
|
ISD = ISD::ABS;
|
|
break;
|
|
case Intrinsic::bitreverse:
|
|
ISD = ISD::BITREVERSE;
|
|
break;
|
|
case Intrinsic::bswap:
|
|
ISD = ISD::BSWAP;
|
|
break;
|
|
case Intrinsic::ctlz:
|
|
ISD = ISD::CTLZ;
|
|
break;
|
|
case Intrinsic::ctpop:
|
|
ISD = ISD::CTPOP;
|
|
break;
|
|
case Intrinsic::cttz:
|
|
ISD = ISD::CTTZ;
|
|
break;
|
|
case Intrinsic::fshl:
|
|
ISD = ISD::FSHL;
|
|
if (!ICA.isTypeBasedOnly()) {
|
|
const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
|
|
if (Args[0] == Args[1]) {
|
|
ISD = ISD::ROTL;
|
|
// Handle scalar constant rotation amounts.
|
|
// TODO: Handle vector + funnel-shift cases.
|
|
if (isa_and_nonnull<ConstantInt>(Args[2]))
|
|
ISD = X86ISD::VROTLI;
|
|
}
|
|
}
|
|
break;
|
|
case Intrinsic::fshr:
|
|
// FSHR has same costs so don't duplicate.
|
|
ISD = ISD::FSHL;
|
|
if (!ICA.isTypeBasedOnly()) {
|
|
const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
|
|
if (Args[0] == Args[1]) {
|
|
// Handle scalar constant rotation amount.
|
|
// TODO: Handle vector + funnel-shift cases.
|
|
ISD = ISD::ROTR;
|
|
if (isa_and_nonnull<ConstantInt>(Args[2]))
|
|
ISD = X86ISD::VROTLI;
|
|
}
|
|
}
|
|
break;
|
|
case Intrinsic::maxnum:
|
|
case Intrinsic::minnum:
|
|
// FMINNUM has same costs so don't duplicate.
|
|
ISD = ISD::FMAXNUM;
|
|
break;
|
|
case Intrinsic::sadd_sat:
|
|
ISD = ISD::SADDSAT;
|
|
break;
|
|
case Intrinsic::smax:
|
|
ISD = ISD::SMAX;
|
|
break;
|
|
case Intrinsic::smin:
|
|
ISD = ISD::SMIN;
|
|
break;
|
|
case Intrinsic::ssub_sat:
|
|
ISD = ISD::SSUBSAT;
|
|
break;
|
|
case Intrinsic::uadd_sat:
|
|
ISD = ISD::UADDSAT;
|
|
break;
|
|
case Intrinsic::umax:
|
|
ISD = ISD::UMAX;
|
|
break;
|
|
case Intrinsic::umin:
|
|
ISD = ISD::UMIN;
|
|
break;
|
|
case Intrinsic::usub_sat:
|
|
ISD = ISD::USUBSAT;
|
|
break;
|
|
case Intrinsic::sqrt:
|
|
ISD = ISD::FSQRT;
|
|
break;
|
|
case Intrinsic::sadd_with_overflow:
|
|
case Intrinsic::ssub_with_overflow:
|
|
// SSUBO has same costs so don't duplicate.
|
|
ISD = ISD::SADDO;
|
|
OpTy = RetTy->getContainedType(0);
|
|
break;
|
|
case Intrinsic::uadd_with_overflow:
|
|
case Intrinsic::usub_with_overflow:
|
|
// USUBO has same costs so don't duplicate.
|
|
ISD = ISD::UADDO;
|
|
OpTy = RetTy->getContainedType(0);
|
|
break;
|
|
case Intrinsic::umul_with_overflow:
|
|
case Intrinsic::smul_with_overflow:
|
|
// SMULO has same costs so don't duplicate.
|
|
ISD = ISD::UMULO;
|
|
OpTy = RetTy->getContainedType(0);
|
|
break;
|
|
}
|
|
|
|
if (ISD != ISD::DELETED_NODE) {
|
|
// Legalize the type.
|
|
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(OpTy);
|
|
MVT MTy = LT.second;
|
|
|
|
// Attempt to lookup cost.
|
|
if (ISD == ISD::BITREVERSE && ST->hasGFNI() && ST->hasSSSE3() &&
|
|
MTy.isVector()) {
|
|
// With PSHUFB the code is very similar for all types. If we have integer
|
|
// byte operations, we just need a GF2P8AFFINEQB for vXi8. For other types
|
|
// we also need a PSHUFB.
|
|
unsigned Cost = MTy.getVectorElementType() == MVT::i8 ? 1 : 2;
|
|
|
|
// Without byte operations, we need twice as many GF2P8AFFINEQB and PSHUFB
|
|
// instructions. We also need an extract and an insert.
|
|
if (!(MTy.is128BitVector() || (ST->hasAVX2() && MTy.is256BitVector()) ||
|
|
(ST->hasBWI() && MTy.is512BitVector())))
|
|
Cost = Cost * 2 + 2;
|
|
|
|
return LT.first * Cost;
|
|
}
|
|
|
|
// Without BMI/LZCNT see if we're only looking for a *_ZERO_UNDEF cost.
|
|
if (((ISD == ISD::CTTZ && !ST->hasBMI()) ||
|
|
(ISD == ISD::CTLZ && !ST->hasLZCNT())) &&
|
|
!MTy.isVector() && !ICA.isTypeBasedOnly()) {
|
|
const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
|
|
if (auto *Cst = dyn_cast<ConstantInt>(Args[1]))
|
|
if (Cst->isAllOnesValue())
|
|
ISD = ISD == ISD::CTTZ ? ISD::CTTZ_ZERO_UNDEF : ISD::CTLZ_ZERO_UNDEF;
|
|
}
|
|
|
|
// FSQRT is a single instruction.
|
|
if (ISD == ISD::FSQRT && CostKind == TTI::TCK_CodeSize)
|
|
return LT.first;
|
|
|
|
auto adjustTableCost = [](int ISD, unsigned Cost,
|
|
InstructionCost LegalizationCost,
|
|
FastMathFlags FMF) {
|
|
// If there are no NANs to deal with, then these are reduced to a
|
|
// single MIN** or MAX** instruction instead of the MIN/CMP/SELECT that we
|
|
// assume is used in the non-fast case.
|
|
if (ISD == ISD::FMAXNUM || ISD == ISD::FMINNUM) {
|
|
if (FMF.noNaNs())
|
|
return LegalizationCost * 1;
|
|
}
|
|
return LegalizationCost * (int)Cost;
|
|
};
|
|
|
|
if (ST->useGLMDivSqrtCosts())
|
|
if (const auto *Entry = CostTableLookup(GLMCostTbl, ISD, MTy))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return adjustTableCost(Entry->ISD, *KindCost, LT.first,
|
|
ICA.getFlags());
|
|
|
|
if (ST->useSLMArithCosts())
|
|
if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return adjustTableCost(Entry->ISD, *KindCost, LT.first,
|
|
ICA.getFlags());
|
|
|
|
if (ST->hasVBMI2())
|
|
if (const auto *Entry = CostTableLookup(AVX512VBMI2CostTbl, ISD, MTy))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return adjustTableCost(Entry->ISD, *KindCost, LT.first,
|
|
ICA.getFlags());
|
|
|
|
if (ST->hasBITALG())
|
|
if (const auto *Entry = CostTableLookup(AVX512BITALGCostTbl, ISD, MTy))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return adjustTableCost(Entry->ISD, *KindCost, LT.first,
|
|
ICA.getFlags());
|
|
|
|
if (ST->hasVPOPCNTDQ())
|
|
if (const auto *Entry = CostTableLookup(AVX512VPOPCNTDQCostTbl, ISD, MTy))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return adjustTableCost(Entry->ISD, *KindCost, LT.first,
|
|
ICA.getFlags());
|
|
|
|
if (ST->hasCDI())
|
|
if (const auto *Entry = CostTableLookup(AVX512CDCostTbl, ISD, MTy))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return adjustTableCost(Entry->ISD, *KindCost, LT.first,
|
|
ICA.getFlags());
|
|
|
|
if (ST->hasBWI())
|
|
if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return adjustTableCost(Entry->ISD, *KindCost, LT.first,
|
|
ICA.getFlags());
|
|
|
|
if (ST->hasAVX512())
|
|
if (const auto *Entry = CostTableLookup(AVX512CostTbl, ISD, MTy))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return adjustTableCost(Entry->ISD, *KindCost, LT.first,
|
|
ICA.getFlags());
|
|
|
|
if (ST->hasXOP())
|
|
if (const auto *Entry = CostTableLookup(XOPCostTbl, ISD, MTy))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return adjustTableCost(Entry->ISD, *KindCost, LT.first,
|
|
ICA.getFlags());
|
|
|
|
if (ST->hasAVX2())
|
|
if (const auto *Entry = CostTableLookup(AVX2CostTbl, ISD, MTy))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return adjustTableCost(Entry->ISD, *KindCost, LT.first,
|
|
ICA.getFlags());
|
|
|
|
if (ST->hasAVX())
|
|
if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return adjustTableCost(Entry->ISD, *KindCost, LT.first,
|
|
ICA.getFlags());
|
|
|
|
if (ST->hasSSE42())
|
|
if (const auto *Entry = CostTableLookup(SSE42CostTbl, ISD, MTy))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return adjustTableCost(Entry->ISD, *KindCost, LT.first,
|
|
ICA.getFlags());
|
|
|
|
if (ST->hasSSE41())
|
|
if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return adjustTableCost(Entry->ISD, *KindCost, LT.first,
|
|
ICA.getFlags());
|
|
|
|
if (ST->hasSSSE3())
|
|
if (const auto *Entry = CostTableLookup(SSSE3CostTbl, ISD, MTy))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return adjustTableCost(Entry->ISD, *KindCost, LT.first,
|
|
ICA.getFlags());
|
|
|
|
if (ST->hasSSE2())
|
|
if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return adjustTableCost(Entry->ISD, *KindCost, LT.first,
|
|
ICA.getFlags());
|
|
|
|
if (ST->hasSSE1())
|
|
if (const auto *Entry = CostTableLookup(SSE1CostTbl, ISD, MTy))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return adjustTableCost(Entry->ISD, *KindCost, LT.first,
|
|
ICA.getFlags());
|
|
|
|
if (ST->hasBMI()) {
|
|
if (ST->is64Bit())
|
|
if (const auto *Entry = CostTableLookup(BMI64CostTbl, ISD, MTy))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return adjustTableCost(Entry->ISD, *KindCost, LT.first,
|
|
ICA.getFlags());
|
|
|
|
if (const auto *Entry = CostTableLookup(BMI32CostTbl, ISD, MTy))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return adjustTableCost(Entry->ISD, *KindCost, LT.first,
|
|
ICA.getFlags());
|
|
}
|
|
|
|
if (ST->hasLZCNT()) {
|
|
if (ST->is64Bit())
|
|
if (const auto *Entry = CostTableLookup(LZCNT64CostTbl, ISD, MTy))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return adjustTableCost(Entry->ISD, *KindCost, LT.first,
|
|
ICA.getFlags());
|
|
|
|
if (const auto *Entry = CostTableLookup(LZCNT32CostTbl, ISD, MTy))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return adjustTableCost(Entry->ISD, *KindCost, LT.first,
|
|
ICA.getFlags());
|
|
}
|
|
|
|
if (ST->hasPOPCNT()) {
|
|
if (ST->is64Bit())
|
|
if (const auto *Entry = CostTableLookup(POPCNT64CostTbl, ISD, MTy))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return adjustTableCost(Entry->ISD, *KindCost, LT.first,
|
|
ICA.getFlags());
|
|
|
|
if (const auto *Entry = CostTableLookup(POPCNT32CostTbl, ISD, MTy))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return adjustTableCost(Entry->ISD, *KindCost, LT.first,
|
|
ICA.getFlags());
|
|
}
|
|
|
|
if (ISD == ISD::BSWAP && ST->hasMOVBE() && ST->hasFastMOVBE()) {
|
|
if (const Instruction *II = ICA.getInst()) {
|
|
if (II->hasOneUse() && isa<StoreInst>(II->user_back()))
|
|
return TTI::TCC_Free;
|
|
if (auto *LI = dyn_cast<LoadInst>(II->getOperand(0))) {
|
|
if (LI->hasOneUse())
|
|
return TTI::TCC_Free;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ST->is64Bit())
|
|
if (const auto *Entry = CostTableLookup(X64CostTbl, ISD, MTy))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return adjustTableCost(Entry->ISD, *KindCost, LT.first,
|
|
ICA.getFlags());
|
|
|
|
if (const auto *Entry = CostTableLookup(X86CostTbl, ISD, MTy))
|
|
if (auto KindCost = Entry->Cost[CostKind])
|
|
return adjustTableCost(Entry->ISD, *KindCost, LT.first, ICA.getFlags());
|
|
}
|
|
|
|
return BaseT::getIntrinsicInstrCost(ICA, CostKind);
|
|
}
|
|
|
|
InstructionCost X86TTIImpl::getVectorInstrCost(unsigned Opcode, Type *Val,
|
|
TTI::TargetCostKind CostKind,
|
|
unsigned Index, Value *Op0,
|
|
Value *Op1) {
|
|
static const CostTblEntry SLMCostTbl[] = {
|
|
{ ISD::EXTRACT_VECTOR_ELT, MVT::i8, 4 },
|
|
{ ISD::EXTRACT_VECTOR_ELT, MVT::i16, 4 },
|
|
{ ISD::EXTRACT_VECTOR_ELT, MVT::i32, 4 },
|
|
{ ISD::EXTRACT_VECTOR_ELT, MVT::i64, 7 }
|
|
};
|
|
|
|
assert(Val->isVectorTy() && "This must be a vector type");
|
|
Type *ScalarType = Val->getScalarType();
|
|
InstructionCost RegisterFileMoveCost = 0;
|
|
|
|
// Non-immediate extraction/insertion can be handled as a sequence of
|
|
// aliased loads+stores via the stack.
|
|
if (Index == -1U && (Opcode == Instruction::ExtractElement ||
|
|
Opcode == Instruction::InsertElement)) {
|
|
// TODO: On some SSE41+ targets, we expand to cmp+splat+select patterns:
|
|
// inselt N0, N1, N2 --> select (SplatN2 == {0,1,2...}) ? SplatN1 : N0.
|
|
|
|
// TODO: Move this to BasicTTIImpl.h? We'd need better gep + index handling.
|
|
assert(isa<FixedVectorType>(Val) && "Fixed vector type expected");
|
|
Align VecAlign = DL.getPrefTypeAlign(Val);
|
|
Align SclAlign = DL.getPrefTypeAlign(ScalarType);
|
|
|
|
// Extract - store vector to stack, load scalar.
|
|
if (Opcode == Instruction::ExtractElement) {
|
|
return getMemoryOpCost(Instruction::Store, Val, VecAlign, 0, CostKind) +
|
|
getMemoryOpCost(Instruction::Load, ScalarType, SclAlign, 0,
|
|
CostKind);
|
|
}
|
|
// Insert - store vector to stack, store scalar, load vector.
|
|
if (Opcode == Instruction::InsertElement) {
|
|
return getMemoryOpCost(Instruction::Store, Val, VecAlign, 0, CostKind) +
|
|
getMemoryOpCost(Instruction::Store, ScalarType, SclAlign, 0,
|
|
CostKind) +
|
|
getMemoryOpCost(Instruction::Load, Val, VecAlign, 0, CostKind);
|
|
}
|
|
}
|
|
|
|
if (Index != -1U && (Opcode == Instruction::ExtractElement ||
|
|
Opcode == Instruction::InsertElement)) {
|
|
// Extraction of vXi1 elements are now efficiently handled by MOVMSK.
|
|
if (Opcode == Instruction::ExtractElement &&
|
|
ScalarType->getScalarSizeInBits() == 1 &&
|
|
cast<FixedVectorType>(Val)->getNumElements() > 1)
|
|
return 1;
|
|
|
|
// Legalize the type.
|
|
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Val);
|
|
|
|
// This type is legalized to a scalar type.
|
|
if (!LT.second.isVector())
|
|
return 0;
|
|
|
|
// The type may be split. Normalize the index to the new type.
|
|
unsigned SizeInBits = LT.second.getSizeInBits();
|
|
unsigned NumElts = LT.second.getVectorNumElements();
|
|
unsigned SubNumElts = NumElts;
|
|
Index = Index % NumElts;
|
|
|
|
// For >128-bit vectors, we need to extract higher 128-bit subvectors.
|
|
// For inserts, we also need to insert the subvector back.
|
|
if (SizeInBits > 128) {
|
|
assert((SizeInBits % 128) == 0 && "Illegal vector");
|
|
unsigned NumSubVecs = SizeInBits / 128;
|
|
SubNumElts = NumElts / NumSubVecs;
|
|
if (SubNumElts <= Index) {
|
|
RegisterFileMoveCost += (Opcode == Instruction::InsertElement ? 2 : 1);
|
|
Index %= SubNumElts;
|
|
}
|
|
}
|
|
|
|
MVT MScalarTy = LT.second.getScalarType();
|
|
auto IsCheapPInsrPExtrInsertPS = [&]() {
|
|
// Assume pinsr/pextr XMM <-> GPR is relatively cheap on all targets.
|
|
// Also, assume insertps is relatively cheap on all >= SSE41 targets.
|
|
return (MScalarTy == MVT::i16 && ST->hasSSE2()) ||
|
|
(MScalarTy.isInteger() && ST->hasSSE41()) ||
|
|
(MScalarTy == MVT::f32 && ST->hasSSE41() &&
|
|
Opcode == Instruction::InsertElement);
|
|
};
|
|
|
|
if (Index == 0) {
|
|
// Floating point scalars are already located in index #0.
|
|
// Many insertions to #0 can fold away for scalar fp-ops, so let's assume
|
|
// true for all.
|
|
if (ScalarType->isFloatingPointTy() &&
|
|
(Opcode != Instruction::InsertElement || !Op0 ||
|
|
isa<UndefValue>(Op0)))
|
|
return RegisterFileMoveCost;
|
|
|
|
if (Opcode == Instruction::InsertElement &&
|
|
isa_and_nonnull<UndefValue>(Op0)) {
|
|
// Consider the gather cost to be cheap.
|
|
if (isa_and_nonnull<LoadInst>(Op1))
|
|
return RegisterFileMoveCost;
|
|
if (!IsCheapPInsrPExtrInsertPS()) {
|
|
// mov constant-to-GPR + movd/movq GPR -> XMM.
|
|
if (isa_and_nonnull<Constant>(Op1) && Op1->getType()->isIntegerTy())
|
|
return 2 + RegisterFileMoveCost;
|
|
// Assume movd/movq GPR -> XMM is relatively cheap on all targets.
|
|
return 1 + RegisterFileMoveCost;
|
|
}
|
|
}
|
|
|
|
// Assume movd/movq XMM -> GPR is relatively cheap on all targets.
|
|
if (ScalarType->isIntegerTy() && Opcode == Instruction::ExtractElement)
|
|
return 1 + RegisterFileMoveCost;
|
|
}
|
|
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Unexpected vector opcode");
|
|
if (ST->useSLMArithCosts())
|
|
if (auto *Entry = CostTableLookup(SLMCostTbl, ISD, MScalarTy))
|
|
return Entry->Cost + RegisterFileMoveCost;
|
|
|
|
// Consider cheap cases.
|
|
if (IsCheapPInsrPExtrInsertPS())
|
|
return 1 + RegisterFileMoveCost;
|
|
|
|
// For extractions we just need to shuffle the element to index 0, which
|
|
// should be very cheap (assume cost = 1). For insertions we need to shuffle
|
|
// the elements to its destination. In both cases we must handle the
|
|
// subvector move(s).
|
|
// If the vector type is already less than 128-bits then don't reduce it.
|
|
// TODO: Under what circumstances should we shuffle using the full width?
|
|
InstructionCost ShuffleCost = 1;
|
|
if (Opcode == Instruction::InsertElement) {
|
|
auto *SubTy = cast<VectorType>(Val);
|
|
EVT VT = TLI->getValueType(DL, Val);
|
|
if (VT.getScalarType() != MScalarTy || VT.getSizeInBits() >= 128)
|
|
SubTy = FixedVectorType::get(ScalarType, SubNumElts);
|
|
ShuffleCost = getShuffleCost(TTI::SK_PermuteTwoSrc, SubTy, std::nullopt,
|
|
CostKind, 0, SubTy);
|
|
}
|
|
int IntOrFpCost = ScalarType->isFloatingPointTy() ? 0 : 1;
|
|
return ShuffleCost + IntOrFpCost + RegisterFileMoveCost;
|
|
}
|
|
|
|
return BaseT::getVectorInstrCost(Opcode, Val, CostKind, Index, Op0, Op1) +
|
|
RegisterFileMoveCost;
|
|
}
|
|
|
|
InstructionCost
|
|
X86TTIImpl::getScalarizationOverhead(VectorType *Ty, const APInt &DemandedElts,
|
|
bool Insert, bool Extract,
|
|
TTI::TargetCostKind CostKind) {
|
|
assert(DemandedElts.getBitWidth() ==
|
|
cast<FixedVectorType>(Ty)->getNumElements() &&
|
|
"Vector size mismatch");
|
|
|
|
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Ty);
|
|
MVT MScalarTy = LT.second.getScalarType();
|
|
unsigned LegalVectorBitWidth = LT.second.getSizeInBits();
|
|
InstructionCost Cost = 0;
|
|
|
|
constexpr unsigned LaneBitWidth = 128;
|
|
assert((LegalVectorBitWidth < LaneBitWidth ||
|
|
(LegalVectorBitWidth % LaneBitWidth) == 0) &&
|
|
"Illegal vector");
|
|
|
|
const int NumLegalVectors = *LT.first.getValue();
|
|
assert(NumLegalVectors >= 0 && "Negative cost!");
|
|
|
|
// For insertions, a ISD::BUILD_VECTOR style vector initialization can be much
|
|
// cheaper than an accumulation of ISD::INSERT_VECTOR_ELT.
|
|
if (Insert) {
|
|
if ((MScalarTy == MVT::i16 && ST->hasSSE2()) ||
|
|
(MScalarTy.isInteger() && ST->hasSSE41()) ||
|
|
(MScalarTy == MVT::f32 && ST->hasSSE41())) {
|
|
// For types we can insert directly, insertion into 128-bit sub vectors is
|
|
// cheap, followed by a cheap chain of concatenations.
|
|
if (LegalVectorBitWidth <= LaneBitWidth) {
|
|
Cost += BaseT::getScalarizationOverhead(Ty, DemandedElts, Insert,
|
|
/*Extract*/ false, CostKind);
|
|
} else {
|
|
// In each 128-lane, if at least one index is demanded but not all
|
|
// indices are demanded and this 128-lane is not the first 128-lane of
|
|
// the legalized-vector, then this 128-lane needs a extracti128; If in
|
|
// each 128-lane, there is at least one demanded index, this 128-lane
|
|
// needs a inserti128.
|
|
|
|
// The following cases will help you build a better understanding:
|
|
// Assume we insert several elements into a v8i32 vector in avx2,
|
|
// Case#1: inserting into 1th index needs vpinsrd + inserti128.
|
|
// Case#2: inserting into 5th index needs extracti128 + vpinsrd +
|
|
// inserti128.
|
|
// Case#3: inserting into 4,5,6,7 index needs 4*vpinsrd + inserti128.
|
|
assert((LegalVectorBitWidth % LaneBitWidth) == 0 && "Illegal vector");
|
|
unsigned NumLegalLanes = LegalVectorBitWidth / LaneBitWidth;
|
|
unsigned NumLanesTotal = NumLegalLanes * NumLegalVectors;
|
|
unsigned NumLegalElts =
|
|
LT.second.getVectorNumElements() * NumLegalVectors;
|
|
assert(NumLegalElts >= DemandedElts.getBitWidth() &&
|
|
"Vector has been legalized to smaller element count");
|
|
assert((NumLegalElts % NumLanesTotal) == 0 &&
|
|
"Unexpected elts per lane");
|
|
unsigned NumEltsPerLane = NumLegalElts / NumLanesTotal;
|
|
|
|
APInt WidenedDemandedElts = DemandedElts.zext(NumLegalElts);
|
|
auto *LaneTy =
|
|
FixedVectorType::get(Ty->getElementType(), NumEltsPerLane);
|
|
|
|
for (unsigned I = 0; I != NumLanesTotal; ++I) {
|
|
APInt LaneEltMask = WidenedDemandedElts.extractBits(
|
|
NumEltsPerLane, NumEltsPerLane * I);
|
|
if (LaneEltMask.isZero())
|
|
continue;
|
|
// FIXME: we don't need to extract if all non-demanded elements
|
|
// are legalization-inserted padding.
|
|
if (!LaneEltMask.isAllOnes())
|
|
Cost += getShuffleCost(TTI::SK_ExtractSubvector, Ty, std::nullopt,
|
|
CostKind, I * NumEltsPerLane, LaneTy);
|
|
Cost += BaseT::getScalarizationOverhead(LaneTy, LaneEltMask, Insert,
|
|
/*Extract*/ false, CostKind);
|
|
}
|
|
|
|
APInt AffectedLanes =
|
|
APIntOps::ScaleBitMask(WidenedDemandedElts, NumLanesTotal);
|
|
APInt FullyAffectedLegalVectors = APIntOps::ScaleBitMask(
|
|
AffectedLanes, NumLegalVectors, /*MatchAllBits=*/true);
|
|
for (int LegalVec = 0; LegalVec != NumLegalVectors; ++LegalVec) {
|
|
for (unsigned Lane = 0; Lane != NumLegalLanes; ++Lane) {
|
|
unsigned I = NumLegalLanes * LegalVec + Lane;
|
|
// No need to insert unaffected lane; or lane 0 of each legal vector
|
|
// iff ALL lanes of that vector were affected and will be inserted.
|
|
if (!AffectedLanes[I] ||
|
|
(Lane == 0 && FullyAffectedLegalVectors[LegalVec]))
|
|
continue;
|
|
Cost += getShuffleCost(TTI::SK_InsertSubvector, Ty, std::nullopt,
|
|
CostKind, I * NumEltsPerLane, LaneTy);
|
|
}
|
|
}
|
|
}
|
|
} else if (LT.second.isVector()) {
|
|
// Without fast insertion, we need to use MOVD/MOVQ to pass each demanded
|
|
// integer element as a SCALAR_TO_VECTOR, then we build the vector as a
|
|
// series of UNPCK followed by CONCAT_VECTORS - all of these can be
|
|
// considered cheap.
|
|
if (Ty->isIntOrIntVectorTy())
|
|
Cost += DemandedElts.popcount();
|
|
|
|
// Get the smaller of the legalized or original pow2-extended number of
|
|
// vector elements, which represents the number of unpacks we'll end up
|
|
// performing.
|
|
unsigned NumElts = LT.second.getVectorNumElements();
|
|
unsigned Pow2Elts =
|
|
PowerOf2Ceil(cast<FixedVectorType>(Ty)->getNumElements());
|
|
Cost += (std::min<unsigned>(NumElts, Pow2Elts) - 1) * LT.first;
|
|
}
|
|
}
|
|
|
|
if (Extract) {
|
|
// vXi1 can be efficiently extracted with MOVMSK.
|
|
// TODO: AVX512 predicate mask handling.
|
|
// NOTE: This doesn't work well for roundtrip scalarization.
|
|
if (!Insert && Ty->getScalarSizeInBits() == 1 && !ST->hasAVX512()) {
|
|
unsigned NumElts = cast<FixedVectorType>(Ty)->getNumElements();
|
|
unsigned MaxElts = ST->hasAVX2() ? 32 : 16;
|
|
unsigned MOVMSKCost = (NumElts + MaxElts - 1) / MaxElts;
|
|
return MOVMSKCost;
|
|
}
|
|
|
|
if (LT.second.isVector()) {
|
|
unsigned NumLegalElts =
|
|
LT.second.getVectorNumElements() * NumLegalVectors;
|
|
assert(NumLegalElts >= DemandedElts.getBitWidth() &&
|
|
"Vector has been legalized to smaller element count");
|
|
|
|
// If we're extracting elements from a 128-bit subvector lane,
|
|
// we only need to extract each lane once, not for every element.
|
|
if (LegalVectorBitWidth > LaneBitWidth) {
|
|
unsigned NumLegalLanes = LegalVectorBitWidth / LaneBitWidth;
|
|
unsigned NumLanesTotal = NumLegalLanes * NumLegalVectors;
|
|
assert((NumLegalElts % NumLanesTotal) == 0 &&
|
|
"Unexpected elts per lane");
|
|
unsigned NumEltsPerLane = NumLegalElts / NumLanesTotal;
|
|
|
|
// Add cost for each demanded 128-bit subvector extraction.
|
|
// Luckily this is a lot easier than for insertion.
|
|
APInt WidenedDemandedElts = DemandedElts.zext(NumLegalElts);
|
|
auto *LaneTy =
|
|
FixedVectorType::get(Ty->getElementType(), NumEltsPerLane);
|
|
|
|
for (unsigned I = 0; I != NumLanesTotal; ++I) {
|
|
APInt LaneEltMask = WidenedDemandedElts.extractBits(
|
|
NumEltsPerLane, I * NumEltsPerLane);
|
|
if (LaneEltMask.isZero())
|
|
continue;
|
|
Cost += getShuffleCost(TTI::SK_ExtractSubvector, Ty, std::nullopt,
|
|
CostKind, I * NumEltsPerLane, LaneTy);
|
|
Cost += BaseT::getScalarizationOverhead(
|
|
LaneTy, LaneEltMask, /*Insert*/ false, Extract, CostKind);
|
|
}
|
|
|
|
return Cost;
|
|
}
|
|
}
|
|
|
|
// Fallback to default extraction.
|
|
Cost += BaseT::getScalarizationOverhead(Ty, DemandedElts, /*Insert*/ false,
|
|
Extract, CostKind);
|
|
}
|
|
|
|
return Cost;
|
|
}
|
|
|
|
InstructionCost
|
|
X86TTIImpl::getReplicationShuffleCost(Type *EltTy, int ReplicationFactor,
|
|
int VF, const APInt &DemandedDstElts,
|
|
TTI::TargetCostKind CostKind) {
|
|
const unsigned EltTyBits = DL.getTypeSizeInBits(EltTy);
|
|
// We don't differentiate element types here, only element bit width.
|
|
EltTy = IntegerType::getIntNTy(EltTy->getContext(), EltTyBits);
|
|
|
|
auto bailout = [&]() {
|
|
return BaseT::getReplicationShuffleCost(EltTy, ReplicationFactor, VF,
|
|
DemandedDstElts, CostKind);
|
|
};
|
|
|
|
// For now, only deal with AVX512 cases.
|
|
if (!ST->hasAVX512())
|
|
return bailout();
|
|
|
|
// Do we have a native shuffle for this element type, or should we promote?
|
|
unsigned PromEltTyBits = EltTyBits;
|
|
switch (EltTyBits) {
|
|
case 32:
|
|
case 64:
|
|
break; // AVX512F.
|
|
case 16:
|
|
if (!ST->hasBWI())
|
|
PromEltTyBits = 32; // promote to i32, AVX512F.
|
|
break; // AVX512BW
|
|
case 8:
|
|
if (!ST->hasVBMI())
|
|
PromEltTyBits = 32; // promote to i32, AVX512F.
|
|
break; // AVX512VBMI
|
|
case 1:
|
|
// There is no support for shuffling i1 elements. We *must* promote.
|
|
if (ST->hasBWI()) {
|
|
if (ST->hasVBMI())
|
|
PromEltTyBits = 8; // promote to i8, AVX512VBMI.
|
|
else
|
|
PromEltTyBits = 16; // promote to i16, AVX512BW.
|
|
break;
|
|
}
|
|
PromEltTyBits = 32; // promote to i32, AVX512F.
|
|
break;
|
|
default:
|
|
return bailout();
|
|
}
|
|
auto *PromEltTy = IntegerType::getIntNTy(EltTy->getContext(), PromEltTyBits);
|
|
|
|
auto *SrcVecTy = FixedVectorType::get(EltTy, VF);
|
|
auto *PromSrcVecTy = FixedVectorType::get(PromEltTy, VF);
|
|
|
|
int NumDstElements = VF * ReplicationFactor;
|
|
auto *PromDstVecTy = FixedVectorType::get(PromEltTy, NumDstElements);
|
|
auto *DstVecTy = FixedVectorType::get(EltTy, NumDstElements);
|
|
|
|
// Legalize the types.
|
|
MVT LegalSrcVecTy = getTypeLegalizationCost(SrcVecTy).second;
|
|
MVT LegalPromSrcVecTy = getTypeLegalizationCost(PromSrcVecTy).second;
|
|
MVT LegalPromDstVecTy = getTypeLegalizationCost(PromDstVecTy).second;
|
|
MVT LegalDstVecTy = getTypeLegalizationCost(DstVecTy).second;
|
|
// They should have legalized into vector types.
|
|
if (!LegalSrcVecTy.isVector() || !LegalPromSrcVecTy.isVector() ||
|
|
!LegalPromDstVecTy.isVector() || !LegalDstVecTy.isVector())
|
|
return bailout();
|
|
|
|
if (PromEltTyBits != EltTyBits) {
|
|
// If we have to perform the shuffle with wider elt type than our data type,
|
|
// then we will first need to anyext (we don't care about the new bits)
|
|
// the source elements, and then truncate Dst elements.
|
|
InstructionCost PromotionCost;
|
|
PromotionCost += getCastInstrCost(
|
|
Instruction::SExt, /*Dst=*/PromSrcVecTy, /*Src=*/SrcVecTy,
|
|
TargetTransformInfo::CastContextHint::None, CostKind);
|
|
PromotionCost +=
|
|
getCastInstrCost(Instruction::Trunc, /*Dst=*/DstVecTy,
|
|
/*Src=*/PromDstVecTy,
|
|
TargetTransformInfo::CastContextHint::None, CostKind);
|
|
return PromotionCost + getReplicationShuffleCost(PromEltTy,
|
|
ReplicationFactor, VF,
|
|
DemandedDstElts, CostKind);
|
|
}
|
|
|
|
assert(LegalSrcVecTy.getScalarSizeInBits() == EltTyBits &&
|
|
LegalSrcVecTy.getScalarType() == LegalDstVecTy.getScalarType() &&
|
|
"We expect that the legalization doesn't affect the element width, "
|
|
"doesn't coalesce/split elements.");
|
|
|
|
unsigned NumEltsPerDstVec = LegalDstVecTy.getVectorNumElements();
|
|
unsigned NumDstVectors =
|
|
divideCeil(DstVecTy->getNumElements(), NumEltsPerDstVec);
|
|
|
|
auto *SingleDstVecTy = FixedVectorType::get(EltTy, NumEltsPerDstVec);
|
|
|
|
// Not all the produced Dst elements may be demanded. In our case,
|
|
// given that a single Dst vector is formed by a single shuffle,
|
|
// if all elements that will form a single Dst vector aren't demanded,
|
|
// then we won't need to do that shuffle, so adjust the cost accordingly.
|
|
APInt DemandedDstVectors = APIntOps::ScaleBitMask(
|
|
DemandedDstElts.zext(NumDstVectors * NumEltsPerDstVec), NumDstVectors);
|
|
unsigned NumDstVectorsDemanded = DemandedDstVectors.popcount();
|
|
|
|
InstructionCost SingleShuffleCost = getShuffleCost(
|
|
TTI::SK_PermuteSingleSrc, SingleDstVecTy, /*Mask=*/std::nullopt, CostKind,
|
|
/*Index=*/0, /*SubTp=*/nullptr);
|
|
return NumDstVectorsDemanded * SingleShuffleCost;
|
|
}
|
|
|
|
InstructionCost X86TTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
|
|
MaybeAlign Alignment,
|
|
unsigned AddressSpace,
|
|
TTI::TargetCostKind CostKind,
|
|
TTI::OperandValueInfo OpInfo,
|
|
const Instruction *I) {
|
|
// TODO: Handle other cost kinds.
|
|
if (CostKind != TTI::TCK_RecipThroughput) {
|
|
if (auto *SI = dyn_cast_or_null<StoreInst>(I)) {
|
|
// Store instruction with index and scale costs 2 Uops.
|
|
// Check the preceding GEP to identify non-const indices.
|
|
if (auto *GEP = dyn_cast<GetElementPtrInst>(SI->getPointerOperand())) {
|
|
if (!all_of(GEP->indices(), [](Value *V) { return isa<Constant>(V); }))
|
|
return TTI::TCC_Basic * 2;
|
|
}
|
|
}
|
|
return TTI::TCC_Basic;
|
|
}
|
|
|
|
assert((Opcode == Instruction::Load || Opcode == Instruction::Store) &&
|
|
"Invalid Opcode");
|
|
// Type legalization can't handle structs
|
|
if (TLI->getValueType(DL, Src, true) == MVT::Other)
|
|
return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
|
|
CostKind);
|
|
|
|
// Legalize the type.
|
|
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(Src);
|
|
|
|
auto *VTy = dyn_cast<FixedVectorType>(Src);
|
|
|
|
InstructionCost Cost = 0;
|
|
|
|
// Add a cost for constant load to vector.
|
|
if (Opcode == Instruction::Store && OpInfo.isConstant())
|
|
Cost += getMemoryOpCost(Instruction::Load, Src, DL.getABITypeAlign(Src),
|
|
/*AddressSpace=*/0, CostKind);
|
|
|
|
// Handle the simple case of non-vectors.
|
|
// NOTE: this assumes that legalization never creates vector from scalars!
|
|
if (!VTy || !LT.second.isVector()) {
|
|
// Each load/store unit costs 1.
|
|
return (LT.second.isFloatingPoint() ? Cost : 0) + LT.first * 1;
|
|
}
|
|
|
|
bool IsLoad = Opcode == Instruction::Load;
|
|
|
|
Type *EltTy = VTy->getElementType();
|
|
|
|
const int EltTyBits = DL.getTypeSizeInBits(EltTy);
|
|
|
|
// Source of truth: how many elements were there in the original IR vector?
|
|
const unsigned SrcNumElt = VTy->getNumElements();
|
|
|
|
// How far have we gotten?
|
|
int NumEltRemaining = SrcNumElt;
|
|
// Note that we intentionally capture by-reference, NumEltRemaining changes.
|
|
auto NumEltDone = [&]() { return SrcNumElt - NumEltRemaining; };
|
|
|
|
const int MaxLegalOpSizeBytes = divideCeil(LT.second.getSizeInBits(), 8);
|
|
|
|
// Note that even if we can store 64 bits of an XMM, we still operate on XMM.
|
|
const unsigned XMMBits = 128;
|
|
if (XMMBits % EltTyBits != 0)
|
|
// Vector size must be a multiple of the element size. I.e. no padding.
|
|
return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
|
|
CostKind);
|
|
const int NumEltPerXMM = XMMBits / EltTyBits;
|
|
|
|
auto *XMMVecTy = FixedVectorType::get(EltTy, NumEltPerXMM);
|
|
|
|
for (int CurrOpSizeBytes = MaxLegalOpSizeBytes, SubVecEltsLeft = 0;
|
|
NumEltRemaining > 0; CurrOpSizeBytes /= 2) {
|
|
// How many elements would a single op deal with at once?
|
|
if ((8 * CurrOpSizeBytes) % EltTyBits != 0)
|
|
// Vector size must be a multiple of the element size. I.e. no padding.
|
|
return BaseT::getMemoryOpCost(Opcode, Src, Alignment, AddressSpace,
|
|
CostKind);
|
|
int CurrNumEltPerOp = (8 * CurrOpSizeBytes) / EltTyBits;
|
|
|
|
assert(CurrOpSizeBytes > 0 && CurrNumEltPerOp > 0 && "How'd we get here?");
|
|
assert((((NumEltRemaining * EltTyBits) < (2 * 8 * CurrOpSizeBytes)) ||
|
|
(CurrOpSizeBytes == MaxLegalOpSizeBytes)) &&
|
|
"Unless we haven't halved the op size yet, "
|
|
"we have less than two op's sized units of work left.");
|
|
|
|
auto *CurrVecTy = CurrNumEltPerOp > NumEltPerXMM
|
|
? FixedVectorType::get(EltTy, CurrNumEltPerOp)
|
|
: XMMVecTy;
|
|
|
|
assert(CurrVecTy->getNumElements() % CurrNumEltPerOp == 0 &&
|
|
"After halving sizes, the vector elt count is no longer a multiple "
|
|
"of number of elements per operation?");
|
|
auto *CoalescedVecTy =
|
|
CurrNumEltPerOp == 1
|
|
? CurrVecTy
|
|
: FixedVectorType::get(
|
|
IntegerType::get(Src->getContext(),
|
|
EltTyBits * CurrNumEltPerOp),
|
|
CurrVecTy->getNumElements() / CurrNumEltPerOp);
|
|
assert(DL.getTypeSizeInBits(CoalescedVecTy) ==
|
|
DL.getTypeSizeInBits(CurrVecTy) &&
|
|
"coalesciing elements doesn't change vector width.");
|
|
|
|
while (NumEltRemaining > 0) {
|
|
assert(SubVecEltsLeft >= 0 && "Subreg element count overconsumtion?");
|
|
|
|
// Can we use this vector size, as per the remaining element count?
|
|
// Iff the vector is naturally aligned, we can do a wide load regardless.
|
|
if (NumEltRemaining < CurrNumEltPerOp &&
|
|
(!IsLoad || Alignment.valueOrOne() < CurrOpSizeBytes) &&
|
|
CurrOpSizeBytes != 1)
|
|
break; // Try smalled vector size.
|
|
|
|
bool Is0thSubVec = (NumEltDone() % LT.second.getVectorNumElements()) == 0;
|
|
|
|
// If we have fully processed the previous reg, we need to replenish it.
|
|
if (SubVecEltsLeft == 0) {
|
|
SubVecEltsLeft += CurrVecTy->getNumElements();
|
|
// And that's free only for the 0'th subvector of a legalized vector.
|
|
if (!Is0thSubVec)
|
|
Cost += getShuffleCost(IsLoad ? TTI::ShuffleKind::SK_InsertSubvector
|
|
: TTI::ShuffleKind::SK_ExtractSubvector,
|
|
VTy, std::nullopt, CostKind, NumEltDone(),
|
|
CurrVecTy);
|
|
}
|
|
|
|
// While we can directly load/store ZMM, YMM, and 64-bit halves of XMM,
|
|
// for smaller widths (32/16/8) we have to insert/extract them separately.
|
|
// Again, it's free for the 0'th subreg (if op is 32/64 bit wide,
|
|
// but let's pretend that it is also true for 16/8 bit wide ops...)
|
|
if (CurrOpSizeBytes <= 32 / 8 && !Is0thSubVec) {
|
|
int NumEltDoneInCurrXMM = NumEltDone() % NumEltPerXMM;
|
|
assert(NumEltDoneInCurrXMM % CurrNumEltPerOp == 0 && "");
|
|
int CoalescedVecEltIdx = NumEltDoneInCurrXMM / CurrNumEltPerOp;
|
|
APInt DemandedElts =
|
|
APInt::getBitsSet(CoalescedVecTy->getNumElements(),
|
|
CoalescedVecEltIdx, CoalescedVecEltIdx + 1);
|
|
assert(DemandedElts.popcount() == 1 && "Inserting single value");
|
|
Cost += getScalarizationOverhead(CoalescedVecTy, DemandedElts, IsLoad,
|
|
!IsLoad, CostKind);
|
|
}
|
|
|
|
// This isn't exactly right. We're using slow unaligned 32-byte accesses
|
|
// as a proxy for a double-pumped AVX memory interface such as on
|
|
// Sandybridge.
|
|
// Sub-32-bit loads/stores will be slower either with PINSR*/PEXTR* or
|
|
// will be scalarized.
|
|
if (CurrOpSizeBytes == 32 && ST->isUnalignedMem32Slow())
|
|
Cost += 2;
|
|
else if (CurrOpSizeBytes < 4)
|
|
Cost += 2;
|
|
else
|
|
Cost += 1;
|
|
|
|
SubVecEltsLeft -= CurrNumEltPerOp;
|
|
NumEltRemaining -= CurrNumEltPerOp;
|
|
Alignment = commonAlignment(Alignment.valueOrOne(), CurrOpSizeBytes);
|
|
}
|
|
}
|
|
|
|
assert(NumEltRemaining <= 0 && "Should have processed all the elements.");
|
|
|
|
return Cost;
|
|
}
|
|
|
|
InstructionCost
|
|
X86TTIImpl::getMaskedMemoryOpCost(unsigned Opcode, Type *SrcTy, Align Alignment,
|
|
unsigned AddressSpace,
|
|
TTI::TargetCostKind CostKind) {
|
|
bool IsLoad = (Instruction::Load == Opcode);
|
|
bool IsStore = (Instruction::Store == Opcode);
|
|
|
|
auto *SrcVTy = dyn_cast<FixedVectorType>(SrcTy);
|
|
if (!SrcVTy)
|
|
// To calculate scalar take the regular cost, without mask
|
|
return getMemoryOpCost(Opcode, SrcTy, Alignment, AddressSpace, CostKind);
|
|
|
|
unsigned NumElem = SrcVTy->getNumElements();
|
|
auto *MaskTy =
|
|
FixedVectorType::get(Type::getInt8Ty(SrcVTy->getContext()), NumElem);
|
|
if ((IsLoad && !isLegalMaskedLoad(SrcVTy, Alignment)) ||
|
|
(IsStore && !isLegalMaskedStore(SrcVTy, Alignment))) {
|
|
// Scalarization
|
|
APInt DemandedElts = APInt::getAllOnes(NumElem);
|
|
InstructionCost MaskSplitCost = getScalarizationOverhead(
|
|
MaskTy, DemandedElts, /*Insert*/ false, /*Extract*/ true, CostKind);
|
|
InstructionCost ScalarCompareCost = getCmpSelInstrCost(
|
|
Instruction::ICmp, Type::getInt8Ty(SrcVTy->getContext()), nullptr,
|
|
CmpInst::BAD_ICMP_PREDICATE, CostKind);
|
|
InstructionCost BranchCost = getCFInstrCost(Instruction::Br, CostKind);
|
|
InstructionCost MaskCmpCost = NumElem * (BranchCost + ScalarCompareCost);
|
|
InstructionCost ValueSplitCost = getScalarizationOverhead(
|
|
SrcVTy, DemandedElts, IsLoad, IsStore, CostKind);
|
|
InstructionCost MemopCost =
|
|
NumElem * BaseT::getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
|
|
Alignment, AddressSpace, CostKind);
|
|
return MemopCost + ValueSplitCost + MaskSplitCost + MaskCmpCost;
|
|
}
|
|
|
|
// Legalize the type.
|
|
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(SrcVTy);
|
|
auto VT = TLI->getValueType(DL, SrcVTy);
|
|
InstructionCost Cost = 0;
|
|
if (VT.isSimple() && LT.second != VT.getSimpleVT() &&
|
|
LT.second.getVectorNumElements() == NumElem)
|
|
// Promotion requires extend/truncate for data and a shuffle for mask.
|
|
Cost += getShuffleCost(TTI::SK_PermuteTwoSrc, SrcVTy, std::nullopt,
|
|
CostKind, 0, nullptr) +
|
|
getShuffleCost(TTI::SK_PermuteTwoSrc, MaskTy, std::nullopt,
|
|
CostKind, 0, nullptr);
|
|
|
|
else if (LT.first * LT.second.getVectorNumElements() > NumElem) {
|
|
auto *NewMaskTy = FixedVectorType::get(MaskTy->getElementType(),
|
|
LT.second.getVectorNumElements());
|
|
// Expanding requires fill mask with zeroes
|
|
Cost += getShuffleCost(TTI::SK_InsertSubvector, NewMaskTy, std::nullopt,
|
|
CostKind, 0, MaskTy);
|
|
}
|
|
|
|
// Pre-AVX512 - each maskmov load costs 2 + store costs ~8.
|
|
if (!ST->hasAVX512())
|
|
return Cost + LT.first * (IsLoad ? 2 : 8);
|
|
|
|
// AVX-512 masked load/store is cheaper
|
|
return Cost + LT.first;
|
|
}
|
|
|
|
InstructionCost
|
|
X86TTIImpl::getPointersChainCost(ArrayRef<const Value *> Ptrs,
|
|
const Value *Base,
|
|
const TTI::PointersChainInfo &Info,
|
|
Type *AccessTy, TTI::TargetCostKind CostKind) {
|
|
if (Info.isSameBase() && Info.isKnownStride()) {
|
|
// If all the pointers have known stride all the differences are translated
|
|
// into constants. X86 memory addressing allows encoding it into
|
|
// displacement. So we just need to take the base GEP cost.
|
|
if (const auto *BaseGEP = dyn_cast<GetElementPtrInst>(Base)) {
|
|
SmallVector<const Value *> Indices(BaseGEP->indices());
|
|
return getGEPCost(BaseGEP->getSourceElementType(),
|
|
BaseGEP->getPointerOperand(), Indices, nullptr,
|
|
CostKind);
|
|
}
|
|
return TTI::TCC_Free;
|
|
}
|
|
return BaseT::getPointersChainCost(Ptrs, Base, Info, AccessTy, CostKind);
|
|
}
|
|
|
|
InstructionCost X86TTIImpl::getAddressComputationCost(Type *Ty,
|
|
ScalarEvolution *SE,
|
|
const SCEV *Ptr) {
|
|
// Address computations in vectorized code with non-consecutive addresses will
|
|
// likely result in more instructions compared to scalar code where the
|
|
// computation can more often be merged into the index mode. The resulting
|
|
// extra micro-ops can significantly decrease throughput.
|
|
const unsigned NumVectorInstToHideOverhead = 10;
|
|
|
|
// Cost modeling of Strided Access Computation is hidden by the indexing
|
|
// modes of X86 regardless of the stride value. We dont believe that there
|
|
// is a difference between constant strided access in gerenal and constant
|
|
// strided value which is less than or equal to 64.
|
|
// Even in the case of (loop invariant) stride whose value is not known at
|
|
// compile time, the address computation will not incur more than one extra
|
|
// ADD instruction.
|
|
if (Ty->isVectorTy() && SE && !ST->hasAVX2()) {
|
|
// TODO: AVX2 is the current cut-off because we don't have correct
|
|
// interleaving costs for prior ISA's.
|
|
if (!BaseT::isStridedAccess(Ptr))
|
|
return NumVectorInstToHideOverhead;
|
|
if (!BaseT::getConstantStrideStep(SE, Ptr))
|
|
return 1;
|
|
}
|
|
|
|
return BaseT::getAddressComputationCost(Ty, SE, Ptr);
|
|
}
|
|
|
|
InstructionCost
|
|
X86TTIImpl::getArithmeticReductionCost(unsigned Opcode, VectorType *ValTy,
|
|
std::optional<FastMathFlags> FMF,
|
|
TTI::TargetCostKind CostKind) {
|
|
if (TTI::requiresOrderedReduction(FMF))
|
|
return BaseT::getArithmeticReductionCost(Opcode, ValTy, FMF, CostKind);
|
|
|
|
// We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
|
|
// and make it as the cost.
|
|
|
|
static const CostTblEntry SLMCostTbl[] = {
|
|
{ ISD::FADD, MVT::v2f64, 3 },
|
|
{ ISD::ADD, MVT::v2i64, 5 },
|
|
};
|
|
|
|
static const CostTblEntry SSE2CostTbl[] = {
|
|
{ ISD::FADD, MVT::v2f64, 2 },
|
|
{ ISD::FADD, MVT::v2f32, 2 },
|
|
{ ISD::FADD, MVT::v4f32, 4 },
|
|
{ ISD::ADD, MVT::v2i64, 2 }, // The data reported by the IACA tool is "1.6".
|
|
{ ISD::ADD, MVT::v2i32, 2 }, // FIXME: chosen to be less than v4i32
|
|
{ ISD::ADD, MVT::v4i32, 3 }, // The data reported by the IACA tool is "3.3".
|
|
{ ISD::ADD, MVT::v2i16, 2 }, // The data reported by the IACA tool is "4.3".
|
|
{ ISD::ADD, MVT::v4i16, 3 }, // The data reported by the IACA tool is "4.3".
|
|
{ ISD::ADD, MVT::v8i16, 4 }, // The data reported by the IACA tool is "4.3".
|
|
{ ISD::ADD, MVT::v2i8, 2 },
|
|
{ ISD::ADD, MVT::v4i8, 2 },
|
|
{ ISD::ADD, MVT::v8i8, 2 },
|
|
{ ISD::ADD, MVT::v16i8, 3 },
|
|
};
|
|
|
|
static const CostTblEntry AVX1CostTbl[] = {
|
|
{ ISD::FADD, MVT::v4f64, 3 },
|
|
{ ISD::FADD, MVT::v4f32, 3 },
|
|
{ ISD::FADD, MVT::v8f32, 4 },
|
|
{ ISD::ADD, MVT::v2i64, 1 }, // The data reported by the IACA tool is "1.5".
|
|
{ ISD::ADD, MVT::v4i64, 3 },
|
|
{ ISD::ADD, MVT::v8i32, 5 },
|
|
{ ISD::ADD, MVT::v16i16, 5 },
|
|
{ ISD::ADD, MVT::v32i8, 4 },
|
|
};
|
|
|
|
int ISD = TLI->InstructionOpcodeToISD(Opcode);
|
|
assert(ISD && "Invalid opcode");
|
|
|
|
// Before legalizing the type, give a chance to look up illegal narrow types
|
|
// in the table.
|
|
// FIXME: Is there a better way to do this?
|
|
EVT VT = TLI->getValueType(DL, ValTy);
|
|
if (VT.isSimple()) {
|
|
MVT MTy = VT.getSimpleVT();
|
|
if (ST->useSLMArithCosts())
|
|
if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
|
|
return Entry->Cost;
|
|
|
|
if (ST->hasAVX())
|
|
if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
|
|
return Entry->Cost;
|
|
|
|
if (ST->hasSSE2())
|
|
if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
|
|
return Entry->Cost;
|
|
}
|
|
|
|
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
|
|
|
|
MVT MTy = LT.second;
|
|
|
|
auto *ValVTy = cast<FixedVectorType>(ValTy);
|
|
|
|
// Special case: vXi8 mul reductions are performed as vXi16.
|
|
if (ISD == ISD::MUL && MTy.getScalarType() == MVT::i8) {
|
|
auto *WideSclTy = IntegerType::get(ValVTy->getContext(), 16);
|
|
auto *WideVecTy = FixedVectorType::get(WideSclTy, ValVTy->getNumElements());
|
|
return getCastInstrCost(Instruction::ZExt, WideVecTy, ValTy,
|
|
TargetTransformInfo::CastContextHint::None,
|
|
CostKind) +
|
|
getArithmeticReductionCost(Opcode, WideVecTy, FMF, CostKind);
|
|
}
|
|
|
|
InstructionCost ArithmeticCost = 0;
|
|
if (LT.first != 1 && MTy.isVector() &&
|
|
MTy.getVectorNumElements() < ValVTy->getNumElements()) {
|
|
// Type needs to be split. We need LT.first - 1 arithmetic ops.
|
|
auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
|
|
MTy.getVectorNumElements());
|
|
ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
|
|
ArithmeticCost *= LT.first - 1;
|
|
}
|
|
|
|
if (ST->useSLMArithCosts())
|
|
if (const auto *Entry = CostTableLookup(SLMCostTbl, ISD, MTy))
|
|
return ArithmeticCost + Entry->Cost;
|
|
|
|
if (ST->hasAVX())
|
|
if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
|
|
return ArithmeticCost + Entry->Cost;
|
|
|
|
if (ST->hasSSE2())
|
|
if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
|
|
return ArithmeticCost + Entry->Cost;
|
|
|
|
// FIXME: These assume a naive kshift+binop lowering, which is probably
|
|
// conservative in most cases.
|
|
static const CostTblEntry AVX512BoolReduction[] = {
|
|
{ ISD::AND, MVT::v2i1, 3 },
|
|
{ ISD::AND, MVT::v4i1, 5 },
|
|
{ ISD::AND, MVT::v8i1, 7 },
|
|
{ ISD::AND, MVT::v16i1, 9 },
|
|
{ ISD::AND, MVT::v32i1, 11 },
|
|
{ ISD::AND, MVT::v64i1, 13 },
|
|
{ ISD::OR, MVT::v2i1, 3 },
|
|
{ ISD::OR, MVT::v4i1, 5 },
|
|
{ ISD::OR, MVT::v8i1, 7 },
|
|
{ ISD::OR, MVT::v16i1, 9 },
|
|
{ ISD::OR, MVT::v32i1, 11 },
|
|
{ ISD::OR, MVT::v64i1, 13 },
|
|
};
|
|
|
|
static const CostTblEntry AVX2BoolReduction[] = {
|
|
{ ISD::AND, MVT::v16i16, 2 }, // vpmovmskb + cmp
|
|
{ ISD::AND, MVT::v32i8, 2 }, // vpmovmskb + cmp
|
|
{ ISD::OR, MVT::v16i16, 2 }, // vpmovmskb + cmp
|
|
{ ISD::OR, MVT::v32i8, 2 }, // vpmovmskb + cmp
|
|
};
|
|
|
|
static const CostTblEntry AVX1BoolReduction[] = {
|
|
{ ISD::AND, MVT::v4i64, 2 }, // vmovmskpd + cmp
|
|
{ ISD::AND, MVT::v8i32, 2 }, // vmovmskps + cmp
|
|
{ ISD::AND, MVT::v16i16, 4 }, // vextractf128 + vpand + vpmovmskb + cmp
|
|
{ ISD::AND, MVT::v32i8, 4 }, // vextractf128 + vpand + vpmovmskb + cmp
|
|
{ ISD::OR, MVT::v4i64, 2 }, // vmovmskpd + cmp
|
|
{ ISD::OR, MVT::v8i32, 2 }, // vmovmskps + cmp
|
|
{ ISD::OR, MVT::v16i16, 4 }, // vextractf128 + vpor + vpmovmskb + cmp
|
|
{ ISD::OR, MVT::v32i8, 4 }, // vextractf128 + vpor + vpmovmskb + cmp
|
|
};
|
|
|
|
static const CostTblEntry SSE2BoolReduction[] = {
|
|
{ ISD::AND, MVT::v2i64, 2 }, // movmskpd + cmp
|
|
{ ISD::AND, MVT::v4i32, 2 }, // movmskps + cmp
|
|
{ ISD::AND, MVT::v8i16, 2 }, // pmovmskb + cmp
|
|
{ ISD::AND, MVT::v16i8, 2 }, // pmovmskb + cmp
|
|
{ ISD::OR, MVT::v2i64, 2 }, // movmskpd + cmp
|
|
{ ISD::OR, MVT::v4i32, 2 }, // movmskps + cmp
|
|
{ ISD::OR, MVT::v8i16, 2 }, // pmovmskb + cmp
|
|
{ ISD::OR, MVT::v16i8, 2 }, // pmovmskb + cmp
|
|
};
|
|
|
|
// Handle bool allof/anyof patterns.
|
|
if (ValVTy->getElementType()->isIntegerTy(1)) {
|
|
InstructionCost ArithmeticCost = 0;
|
|
if (LT.first != 1 && MTy.isVector() &&
|
|
MTy.getVectorNumElements() < ValVTy->getNumElements()) {
|
|
// Type needs to be split. We need LT.first - 1 arithmetic ops.
|
|
auto *SingleOpTy = FixedVectorType::get(ValVTy->getElementType(),
|
|
MTy.getVectorNumElements());
|
|
ArithmeticCost = getArithmeticInstrCost(Opcode, SingleOpTy, CostKind);
|
|
ArithmeticCost *= LT.first - 1;
|
|
}
|
|
|
|
if (ST->hasAVX512())
|
|
if (const auto *Entry = CostTableLookup(AVX512BoolReduction, ISD, MTy))
|
|
return ArithmeticCost + Entry->Cost;
|
|
if (ST->hasAVX2())
|
|
if (const auto *Entry = CostTableLookup(AVX2BoolReduction, ISD, MTy))
|
|
return ArithmeticCost + Entry->Cost;
|
|
if (ST->hasAVX())
|
|
if (const auto *Entry = CostTableLookup(AVX1BoolReduction, ISD, MTy))
|
|
return ArithmeticCost + Entry->Cost;
|
|
if (ST->hasSSE2())
|
|
if (const auto *Entry = CostTableLookup(SSE2BoolReduction, ISD, MTy))
|
|
return ArithmeticCost + Entry->Cost;
|
|
|
|
return BaseT::getArithmeticReductionCost(Opcode, ValVTy, FMF, CostKind);
|
|
}
|
|
|
|
unsigned NumVecElts = ValVTy->getNumElements();
|
|
unsigned ScalarSize = ValVTy->getScalarSizeInBits();
|
|
|
|
// Special case power of 2 reductions where the scalar type isn't changed
|
|
// by type legalization.
|
|
if (!isPowerOf2_32(NumVecElts) || ScalarSize != MTy.getScalarSizeInBits())
|
|
return BaseT::getArithmeticReductionCost(Opcode, ValVTy, FMF, CostKind);
|
|
|
|
InstructionCost ReductionCost = 0;
|
|
|
|
auto *Ty = ValVTy;
|
|
if (LT.first != 1 && MTy.isVector() &&
|
|
MTy.getVectorNumElements() < ValVTy->getNumElements()) {
|
|
// Type needs to be split. We need LT.first - 1 arithmetic ops.
|
|
Ty = FixedVectorType::get(ValVTy->getElementType(),
|
|
MTy.getVectorNumElements());
|
|
ReductionCost = getArithmeticInstrCost(Opcode, Ty, CostKind);
|
|
ReductionCost *= LT.first - 1;
|
|
NumVecElts = MTy.getVectorNumElements();
|
|
}
|
|
|
|
// Now handle reduction with the legal type, taking into account size changes
|
|
// at each level.
|
|
while (NumVecElts > 1) {
|
|
// Determine the size of the remaining vector we need to reduce.
|
|
unsigned Size = NumVecElts * ScalarSize;
|
|
NumVecElts /= 2;
|
|
// If we're reducing from 256/512 bits, use an extract_subvector.
|
|
if (Size > 128) {
|
|
auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
|
|
ReductionCost +=
|
|
getShuffleCost(TTI::SK_ExtractSubvector, Ty, std::nullopt, CostKind,
|
|
NumVecElts, SubTy);
|
|
Ty = SubTy;
|
|
} else if (Size == 128) {
|
|
// Reducing from 128 bits is a permute of v2f64/v2i64.
|
|
FixedVectorType *ShufTy;
|
|
if (ValVTy->isFloatingPointTy())
|
|
ShufTy =
|
|
FixedVectorType::get(Type::getDoubleTy(ValVTy->getContext()), 2);
|
|
else
|
|
ShufTy =
|
|
FixedVectorType::get(Type::getInt64Ty(ValVTy->getContext()), 2);
|
|
ReductionCost += getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy,
|
|
std::nullopt, CostKind, 0, nullptr);
|
|
} else if (Size == 64) {
|
|
// Reducing from 64 bits is a shuffle of v4f32/v4i32.
|
|
FixedVectorType *ShufTy;
|
|
if (ValVTy->isFloatingPointTy())
|
|
ShufTy =
|
|
FixedVectorType::get(Type::getFloatTy(ValVTy->getContext()), 4);
|
|
else
|
|
ShufTy =
|
|
FixedVectorType::get(Type::getInt32Ty(ValVTy->getContext()), 4);
|
|
ReductionCost += getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy,
|
|
std::nullopt, CostKind, 0, nullptr);
|
|
} else {
|
|
// Reducing from smaller size is a shift by immediate.
|
|
auto *ShiftTy = FixedVectorType::get(
|
|
Type::getIntNTy(ValVTy->getContext(), Size), 128 / Size);
|
|
ReductionCost += getArithmeticInstrCost(
|
|
Instruction::LShr, ShiftTy, CostKind,
|
|
{TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
|
|
{TargetTransformInfo::OK_UniformConstantValue, TargetTransformInfo::OP_None});
|
|
}
|
|
|
|
// Add the arithmetic op for this level.
|
|
ReductionCost += getArithmeticInstrCost(Opcode, Ty, CostKind);
|
|
}
|
|
|
|
// Add the final extract element to the cost.
|
|
return ReductionCost + getVectorInstrCost(Instruction::ExtractElement, Ty,
|
|
CostKind, 0, nullptr, nullptr);
|
|
}
|
|
|
|
InstructionCost X86TTIImpl::getMinMaxCost(Intrinsic::ID IID, Type *Ty,
|
|
TTI::TargetCostKind CostKind,
|
|
FastMathFlags FMF) {
|
|
IntrinsicCostAttributes ICA(IID, Ty, {Ty, Ty}, FMF);
|
|
return getIntrinsicInstrCost(ICA, CostKind);
|
|
}
|
|
|
|
InstructionCost
|
|
X86TTIImpl::getMinMaxReductionCost(Intrinsic::ID IID, VectorType *ValTy,
|
|
FastMathFlags FMF,
|
|
TTI::TargetCostKind CostKind) {
|
|
std::pair<InstructionCost, MVT> LT = getTypeLegalizationCost(ValTy);
|
|
|
|
MVT MTy = LT.second;
|
|
|
|
int ISD;
|
|
if (ValTy->isIntOrIntVectorTy()) {
|
|
ISD = (IID == Intrinsic::umin || IID == Intrinsic::umax) ? ISD::UMIN
|
|
: ISD::SMIN;
|
|
} else {
|
|
assert(ValTy->isFPOrFPVectorTy() &&
|
|
"Expected float point or integer vector type.");
|
|
ISD = (IID == Intrinsic::minnum || IID == Intrinsic::maxnum)
|
|
? ISD::FMINNUM
|
|
: ISD::FMINIMUM;
|
|
}
|
|
|
|
// We use the Intel Architecture Code Analyzer(IACA) to measure the throughput
|
|
// and make it as the cost.
|
|
|
|
static const CostTblEntry SSE2CostTbl[] = {
|
|
{ISD::UMIN, MVT::v2i16, 5}, // need pxors to use pminsw/pmaxsw
|
|
{ISD::UMIN, MVT::v4i16, 7}, // need pxors to use pminsw/pmaxsw
|
|
{ISD::UMIN, MVT::v8i16, 9}, // need pxors to use pminsw/pmaxsw
|
|
};
|
|
|
|
static const CostTblEntry SSE41CostTbl[] = {
|
|
{ISD::SMIN, MVT::v2i16, 3}, // same as sse2
|
|
{ISD::SMIN, MVT::v4i16, 5}, // same as sse2
|
|
{ISD::UMIN, MVT::v2i16, 5}, // same as sse2
|
|
{ISD::UMIN, MVT::v4i16, 7}, // same as sse2
|
|
{ISD::SMIN, MVT::v8i16, 4}, // phminposuw+xor
|
|
{ISD::UMIN, MVT::v8i16, 4}, // FIXME: umin is cheaper than umax
|
|
{ISD::SMIN, MVT::v2i8, 3}, // pminsb
|
|
{ISD::SMIN, MVT::v4i8, 5}, // pminsb
|
|
{ISD::SMIN, MVT::v8i8, 7}, // pminsb
|
|
{ISD::SMIN, MVT::v16i8, 6},
|
|
{ISD::UMIN, MVT::v2i8, 3}, // same as sse2
|
|
{ISD::UMIN, MVT::v4i8, 5}, // same as sse2
|
|
{ISD::UMIN, MVT::v8i8, 7}, // same as sse2
|
|
{ISD::UMIN, MVT::v16i8, 6}, // FIXME: umin is cheaper than umax
|
|
};
|
|
|
|
static const CostTblEntry AVX1CostTbl[] = {
|
|
{ISD::SMIN, MVT::v16i16, 6},
|
|
{ISD::UMIN, MVT::v16i16, 6}, // FIXME: umin is cheaper than umax
|
|
{ISD::SMIN, MVT::v32i8, 8},
|
|
{ISD::UMIN, MVT::v32i8, 8},
|
|
};
|
|
|
|
static const CostTblEntry AVX512BWCostTbl[] = {
|
|
{ISD::SMIN, MVT::v32i16, 8},
|
|
{ISD::UMIN, MVT::v32i16, 8}, // FIXME: umin is cheaper than umax
|
|
{ISD::SMIN, MVT::v64i8, 10},
|
|
{ISD::UMIN, MVT::v64i8, 10},
|
|
};
|
|
|
|
// Before legalizing the type, give a chance to look up illegal narrow types
|
|
// in the table.
|
|
// FIXME: Is there a better way to do this?
|
|
EVT VT = TLI->getValueType(DL, ValTy);
|
|
if (VT.isSimple()) {
|
|
MVT MTy = VT.getSimpleVT();
|
|
if (ST->hasBWI())
|
|
if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
|
|
return Entry->Cost;
|
|
|
|
if (ST->hasAVX())
|
|
if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
|
|
return Entry->Cost;
|
|
|
|
if (ST->hasSSE41())
|
|
if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
|
|
return Entry->Cost;
|
|
|
|
if (ST->hasSSE2())
|
|
if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
|
|
return Entry->Cost;
|
|
}
|
|
|
|
auto *ValVTy = cast<FixedVectorType>(ValTy);
|
|
unsigned NumVecElts = ValVTy->getNumElements();
|
|
|
|
auto *Ty = ValVTy;
|
|
InstructionCost MinMaxCost = 0;
|
|
if (LT.first != 1 && MTy.isVector() &&
|
|
MTy.getVectorNumElements() < ValVTy->getNumElements()) {
|
|
// Type needs to be split. We need LT.first - 1 operations ops.
|
|
Ty = FixedVectorType::get(ValVTy->getElementType(),
|
|
MTy.getVectorNumElements());
|
|
MinMaxCost = getMinMaxCost(IID, Ty, CostKind, FMF);
|
|
MinMaxCost *= LT.first - 1;
|
|
NumVecElts = MTy.getVectorNumElements();
|
|
}
|
|
|
|
if (ST->hasBWI())
|
|
if (const auto *Entry = CostTableLookup(AVX512BWCostTbl, ISD, MTy))
|
|
return MinMaxCost + Entry->Cost;
|
|
|
|
if (ST->hasAVX())
|
|
if (const auto *Entry = CostTableLookup(AVX1CostTbl, ISD, MTy))
|
|
return MinMaxCost + Entry->Cost;
|
|
|
|
if (ST->hasSSE41())
|
|
if (const auto *Entry = CostTableLookup(SSE41CostTbl, ISD, MTy))
|
|
return MinMaxCost + Entry->Cost;
|
|
|
|
if (ST->hasSSE2())
|
|
if (const auto *Entry = CostTableLookup(SSE2CostTbl, ISD, MTy))
|
|
return MinMaxCost + Entry->Cost;
|
|
|
|
unsigned ScalarSize = ValTy->getScalarSizeInBits();
|
|
|
|
// Special case power of 2 reductions where the scalar type isn't changed
|
|
// by type legalization.
|
|
if (!isPowerOf2_32(ValVTy->getNumElements()) ||
|
|
ScalarSize != MTy.getScalarSizeInBits())
|
|
return BaseT::getMinMaxReductionCost(IID, ValTy, FMF, CostKind);
|
|
|
|
// Now handle reduction with the legal type, taking into account size changes
|
|
// at each level.
|
|
while (NumVecElts > 1) {
|
|
// Determine the size of the remaining vector we need to reduce.
|
|
unsigned Size = NumVecElts * ScalarSize;
|
|
NumVecElts /= 2;
|
|
// If we're reducing from 256/512 bits, use an extract_subvector.
|
|
if (Size > 128) {
|
|
auto *SubTy = FixedVectorType::get(ValVTy->getElementType(), NumVecElts);
|
|
MinMaxCost += getShuffleCost(TTI::SK_ExtractSubvector, Ty, std::nullopt,
|
|
CostKind, NumVecElts, SubTy);
|
|
Ty = SubTy;
|
|
} else if (Size == 128) {
|
|
// Reducing from 128 bits is a permute of v2f64/v2i64.
|
|
VectorType *ShufTy;
|
|
if (ValTy->isFloatingPointTy())
|
|
ShufTy =
|
|
FixedVectorType::get(Type::getDoubleTy(ValTy->getContext()), 2);
|
|
else
|
|
ShufTy = FixedVectorType::get(Type::getInt64Ty(ValTy->getContext()), 2);
|
|
MinMaxCost += getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy,
|
|
std::nullopt, CostKind, 0, nullptr);
|
|
} else if (Size == 64) {
|
|
// Reducing from 64 bits is a shuffle of v4f32/v4i32.
|
|
FixedVectorType *ShufTy;
|
|
if (ValTy->isFloatingPointTy())
|
|
ShufTy = FixedVectorType::get(Type::getFloatTy(ValTy->getContext()), 4);
|
|
else
|
|
ShufTy = FixedVectorType::get(Type::getInt32Ty(ValTy->getContext()), 4);
|
|
MinMaxCost += getShuffleCost(TTI::SK_PermuteSingleSrc, ShufTy,
|
|
std::nullopt, CostKind, 0, nullptr);
|
|
} else {
|
|
// Reducing from smaller size is a shift by immediate.
|
|
auto *ShiftTy = FixedVectorType::get(
|
|
Type::getIntNTy(ValTy->getContext(), Size), 128 / Size);
|
|
MinMaxCost += getArithmeticInstrCost(
|
|
Instruction::LShr, ShiftTy, TTI::TCK_RecipThroughput,
|
|
{TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
|
|
{TargetTransformInfo::OK_UniformConstantValue, TargetTransformInfo::OP_None});
|
|
}
|
|
|
|
// Add the arithmetic op for this level.
|
|
MinMaxCost += getMinMaxCost(IID, Ty, CostKind, FMF);
|
|
}
|
|
|
|
// Add the final extract element to the cost.
|
|
return MinMaxCost + getVectorInstrCost(Instruction::ExtractElement, Ty,
|
|
CostKind, 0, nullptr, nullptr);
|
|
}
|
|
|
|
/// Calculate the cost of materializing a 64-bit value. This helper
|
|
/// method might only calculate a fraction of a larger immediate. Therefore it
|
|
/// is valid to return a cost of ZERO.
|
|
InstructionCost X86TTIImpl::getIntImmCost(int64_t Val) {
|
|
if (Val == 0)
|
|
return TTI::TCC_Free;
|
|
|
|
if (isInt<32>(Val))
|
|
return TTI::TCC_Basic;
|
|
|
|
return 2 * TTI::TCC_Basic;
|
|
}
|
|
|
|
InstructionCost X86TTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
|
|
TTI::TargetCostKind CostKind) {
|
|
assert(Ty->isIntegerTy());
|
|
|
|
unsigned BitSize = Ty->getPrimitiveSizeInBits();
|
|
if (BitSize == 0)
|
|
return ~0U;
|
|
|
|
// Never hoist constants larger than 128bit, because this might lead to
|
|
// incorrect code generation or assertions in codegen.
|
|
// Fixme: Create a cost model for types larger than i128 once the codegen
|
|
// issues have been fixed.
|
|
if (BitSize > 128)
|
|
return TTI::TCC_Free;
|
|
|
|
if (Imm == 0)
|
|
return TTI::TCC_Free;
|
|
|
|
// Sign-extend all constants to a multiple of 64-bit.
|
|
APInt ImmVal = Imm;
|
|
if (BitSize % 64 != 0)
|
|
ImmVal = Imm.sext(alignTo(BitSize, 64));
|
|
|
|
// Split the constant into 64-bit chunks and calculate the cost for each
|
|
// chunk.
|
|
InstructionCost Cost = 0;
|
|
for (unsigned ShiftVal = 0; ShiftVal < BitSize; ShiftVal += 64) {
|
|
APInt Tmp = ImmVal.ashr(ShiftVal).sextOrTrunc(64);
|
|
int64_t Val = Tmp.getSExtValue();
|
|
Cost += getIntImmCost(Val);
|
|
}
|
|
// We need at least one instruction to materialize the constant.
|
|
return std::max<InstructionCost>(1, Cost);
|
|
}
|
|
|
|
InstructionCost X86TTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
|
|
const APInt &Imm, Type *Ty,
|
|
TTI::TargetCostKind CostKind,
|
|
Instruction *Inst) {
|
|
assert(Ty->isIntegerTy());
|
|
|
|
unsigned BitSize = Ty->getPrimitiveSizeInBits();
|
|
// There is no cost model for constants with a bit size of 0. Return TCC_Free
|
|
// here, so that constant hoisting will ignore this constant.
|
|
if (BitSize == 0)
|
|
return TTI::TCC_Free;
|
|
|
|
unsigned ImmIdx = ~0U;
|
|
switch (Opcode) {
|
|
default:
|
|
return TTI::TCC_Free;
|
|
case Instruction::GetElementPtr:
|
|
// Always hoist the base address of a GetElementPtr. This prevents the
|
|
// creation of new constants for every base constant that gets constant
|
|
// folded with the offset.
|
|
if (Idx == 0)
|
|
return 2 * TTI::TCC_Basic;
|
|
return TTI::TCC_Free;
|
|
case Instruction::Store:
|
|
ImmIdx = 0;
|
|
break;
|
|
case Instruction::ICmp:
|
|
// This is an imperfect hack to prevent constant hoisting of
|
|
// compares that might be trying to check if a 64-bit value fits in
|
|
// 32-bits. The backend can optimize these cases using a right shift by 32.
|
|
// Ideally we would check the compare predicate here. There also other
|
|
// similar immediates the backend can use shifts for.
|
|
if (Idx == 1 && Imm.getBitWidth() == 64) {
|
|
uint64_t ImmVal = Imm.getZExtValue();
|
|
if (ImmVal == 0x100000000ULL || ImmVal == 0xffffffff)
|
|
return TTI::TCC_Free;
|
|
}
|
|
ImmIdx = 1;
|
|
break;
|
|
case Instruction::And:
|
|
// We support 64-bit ANDs with immediates with 32-bits of leading zeroes
|
|
// by using a 32-bit operation with implicit zero extension. Detect such
|
|
// immediates here as the normal path expects bit 31 to be sign extended.
|
|
if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.isIntN(32))
|
|
return TTI::TCC_Free;
|
|
ImmIdx = 1;
|
|
break;
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
// For add/sub, we can use the opposite instruction for INT32_MIN.
|
|
if (Idx == 1 && Imm.getBitWidth() == 64 && Imm.getZExtValue() == 0x80000000)
|
|
return TTI::TCC_Free;
|
|
ImmIdx = 1;
|
|
break;
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
// Division by constant is typically expanded later into a different
|
|
// instruction sequence. This completely changes the constants.
|
|
// Report them as "free" to stop ConstantHoist from marking them as opaque.
|
|
return TTI::TCC_Free;
|
|
case Instruction::Mul:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
ImmIdx = 1;
|
|
break;
|
|
// Always return TCC_Free for the shift value of a shift instruction.
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
if (Idx == 1)
|
|
return TTI::TCC_Free;
|
|
break;
|
|
case Instruction::Trunc:
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::IntToPtr:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::BitCast:
|
|
case Instruction::PHI:
|
|
case Instruction::Call:
|
|
case Instruction::Select:
|
|
case Instruction::Ret:
|
|
case Instruction::Load:
|
|
break;
|
|
}
|
|
|
|
if (Idx == ImmIdx) {
|
|
uint64_t NumConstants = divideCeil(BitSize, 64);
|
|
InstructionCost Cost = X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
|
|
return (Cost <= NumConstants * TTI::TCC_Basic)
|
|
? static_cast<int>(TTI::TCC_Free)
|
|
: Cost;
|
|
}
|
|
|
|
return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
|
|
}
|
|
|
|
InstructionCost X86TTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
|
|
const APInt &Imm, Type *Ty,
|
|
TTI::TargetCostKind CostKind) {
|
|
assert(Ty->isIntegerTy());
|
|
|
|
unsigned BitSize = Ty->getPrimitiveSizeInBits();
|
|
// There is no cost model for constants with a bit size of 0. Return TCC_Free
|
|
// here, so that constant hoisting will ignore this constant.
|
|
if (BitSize == 0)
|
|
return TTI::TCC_Free;
|
|
|
|
switch (IID) {
|
|
default:
|
|
return TTI::TCC_Free;
|
|
case Intrinsic::sadd_with_overflow:
|
|
case Intrinsic::uadd_with_overflow:
|
|
case Intrinsic::ssub_with_overflow:
|
|
case Intrinsic::usub_with_overflow:
|
|
case Intrinsic::smul_with_overflow:
|
|
case Intrinsic::umul_with_overflow:
|
|
if ((Idx == 1) && Imm.getBitWidth() <= 64 && Imm.isSignedIntN(32))
|
|
return TTI::TCC_Free;
|
|
break;
|
|
case Intrinsic::experimental_stackmap:
|
|
if ((Idx < 2) || (Imm.getBitWidth() <= 64 && Imm.isSignedIntN(64)))
|
|
return TTI::TCC_Free;
|
|
break;
|
|
case Intrinsic::experimental_patchpoint_void:
|
|
case Intrinsic::experimental_patchpoint_i64:
|
|
if ((Idx < 4) || (Imm.getBitWidth() <= 64 && Imm.isSignedIntN(64)))
|
|
return TTI::TCC_Free;
|
|
break;
|
|
}
|
|
return X86TTIImpl::getIntImmCost(Imm, Ty, CostKind);
|
|
}
|
|
|
|
InstructionCost X86TTIImpl::getCFInstrCost(unsigned Opcode,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I) {
|
|
if (CostKind != TTI::TCK_RecipThroughput)
|
|
return Opcode == Instruction::PHI ? 0 : 1;
|
|
// Branches are assumed to be predicted.
|
|
return 0;
|
|
}
|
|
|
|
int X86TTIImpl::getGatherOverhead() const {
|
|
// Some CPUs have more overhead for gather. The specified overhead is relative
|
|
// to the Load operation. "2" is the number provided by Intel architects. This
|
|
// parameter is used for cost estimation of Gather Op and comparison with
|
|
// other alternatives.
|
|
// TODO: Remove the explicit hasAVX512()?, That would mean we would only
|
|
// enable gather with a -march.
|
|
if (ST->hasAVX512() || (ST->hasAVX2() && ST->hasFastGather()))
|
|
return 2;
|
|
|
|
return 1024;
|
|
}
|
|
|
|
int X86TTIImpl::getScatterOverhead() const {
|
|
if (ST->hasAVX512())
|
|
return 2;
|
|
|
|
return 1024;
|
|
}
|
|
|
|
// Return an average cost of Gather / Scatter instruction, maybe improved later.
|
|
// FIXME: Add TargetCostKind support.
|
|
InstructionCost X86TTIImpl::getGSVectorCost(unsigned Opcode, Type *SrcVTy,
|
|
const Value *Ptr, Align Alignment,
|
|
unsigned AddressSpace) {
|
|
|
|
assert(isa<VectorType>(SrcVTy) && "Unexpected type in getGSVectorCost");
|
|
unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
|
|
|
|
// Try to reduce index size from 64 bit (default for GEP)
|
|
// to 32. It is essential for VF 16. If the index can't be reduced to 32, the
|
|
// operation will use 16 x 64 indices which do not fit in a zmm and needs
|
|
// to split. Also check that the base pointer is the same for all lanes,
|
|
// and that there's at most one variable index.
|
|
auto getIndexSizeInBits = [](const Value *Ptr, const DataLayout &DL) {
|
|
unsigned IndexSize = DL.getPointerSizeInBits();
|
|
const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
|
|
if (IndexSize < 64 || !GEP)
|
|
return IndexSize;
|
|
|
|
unsigned NumOfVarIndices = 0;
|
|
const Value *Ptrs = GEP->getPointerOperand();
|
|
if (Ptrs->getType()->isVectorTy() && !getSplatValue(Ptrs))
|
|
return IndexSize;
|
|
for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I) {
|
|
if (isa<Constant>(GEP->getOperand(I)))
|
|
continue;
|
|
Type *IndxTy = GEP->getOperand(I)->getType();
|
|
if (auto *IndexVTy = dyn_cast<VectorType>(IndxTy))
|
|
IndxTy = IndexVTy->getElementType();
|
|
if ((IndxTy->getPrimitiveSizeInBits() == 64 &&
|
|
!isa<SExtInst>(GEP->getOperand(I))) ||
|
|
++NumOfVarIndices > 1)
|
|
return IndexSize; // 64
|
|
}
|
|
return (unsigned)32;
|
|
};
|
|
|
|
// Trying to reduce IndexSize to 32 bits for vector 16.
|
|
// By default the IndexSize is equal to pointer size.
|
|
unsigned IndexSize = (ST->hasAVX512() && VF >= 16)
|
|
? getIndexSizeInBits(Ptr, DL)
|
|
: DL.getPointerSizeInBits();
|
|
|
|
auto *IndexVTy = FixedVectorType::get(
|
|
IntegerType::get(SrcVTy->getContext(), IndexSize), VF);
|
|
std::pair<InstructionCost, MVT> IdxsLT = getTypeLegalizationCost(IndexVTy);
|
|
std::pair<InstructionCost, MVT> SrcLT = getTypeLegalizationCost(SrcVTy);
|
|
InstructionCost::CostType SplitFactor =
|
|
*std::max(IdxsLT.first, SrcLT.first).getValue();
|
|
if (SplitFactor > 1) {
|
|
// Handle splitting of vector of pointers
|
|
auto *SplitSrcTy =
|
|
FixedVectorType::get(SrcVTy->getScalarType(), VF / SplitFactor);
|
|
return SplitFactor * getGSVectorCost(Opcode, SplitSrcTy, Ptr, Alignment,
|
|
AddressSpace);
|
|
}
|
|
|
|
// The gather / scatter cost is given by Intel architects. It is a rough
|
|
// number since we are looking at one instruction in a time.
|
|
const int GSOverhead = (Opcode == Instruction::Load)
|
|
? getGatherOverhead()
|
|
: getScatterOverhead();
|
|
return GSOverhead + VF * getMemoryOpCost(Opcode, SrcVTy->getScalarType(),
|
|
MaybeAlign(Alignment), AddressSpace,
|
|
TTI::TCK_RecipThroughput);
|
|
}
|
|
|
|
/// Return the cost of full scalarization of gather / scatter operation.
|
|
///
|
|
/// Opcode - Load or Store instruction.
|
|
/// SrcVTy - The type of the data vector that should be gathered or scattered.
|
|
/// VariableMask - The mask is non-constant at compile time.
|
|
/// Alignment - Alignment for one element.
|
|
/// AddressSpace - pointer[s] address space.
|
|
///
|
|
/// FIXME: Add TargetCostKind support.
|
|
InstructionCost X86TTIImpl::getGSScalarCost(unsigned Opcode, Type *SrcVTy,
|
|
bool VariableMask, Align Alignment,
|
|
unsigned AddressSpace) {
|
|
Type *ScalarTy = SrcVTy->getScalarType();
|
|
unsigned VF = cast<FixedVectorType>(SrcVTy)->getNumElements();
|
|
APInt DemandedElts = APInt::getAllOnes(VF);
|
|
TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput;
|
|
|
|
InstructionCost MaskUnpackCost = 0;
|
|
if (VariableMask) {
|
|
auto *MaskTy =
|
|
FixedVectorType::get(Type::getInt1Ty(SrcVTy->getContext()), VF);
|
|
MaskUnpackCost = getScalarizationOverhead(
|
|
MaskTy, DemandedElts, /*Insert=*/false, /*Extract=*/true, CostKind);
|
|
InstructionCost ScalarCompareCost = getCmpSelInstrCost(
|
|
Instruction::ICmp, Type::getInt1Ty(SrcVTy->getContext()), nullptr,
|
|
CmpInst::BAD_ICMP_PREDICATE, CostKind);
|
|
InstructionCost BranchCost = getCFInstrCost(Instruction::Br, CostKind);
|
|
MaskUnpackCost += VF * (BranchCost + ScalarCompareCost);
|
|
}
|
|
|
|
InstructionCost AddressUnpackCost = getScalarizationOverhead(
|
|
FixedVectorType::get(PointerType::getUnqual(ScalarTy->getContext()), VF),
|
|
DemandedElts, /*Insert=*/false, /*Extract=*/true, CostKind);
|
|
|
|
// The cost of the scalar loads/stores.
|
|
InstructionCost MemoryOpCost =
|
|
VF * getMemoryOpCost(Opcode, ScalarTy, MaybeAlign(Alignment),
|
|
AddressSpace, CostKind);
|
|
|
|
// The cost of forming the vector from loaded scalars/
|
|
// scalarizing the vector to perform scalar stores.
|
|
InstructionCost InsertExtractCost = getScalarizationOverhead(
|
|
cast<FixedVectorType>(SrcVTy), DemandedElts,
|
|
/*Insert=*/Opcode == Instruction::Load,
|
|
/*Extract=*/Opcode == Instruction::Store, CostKind);
|
|
|
|
return AddressUnpackCost + MemoryOpCost + MaskUnpackCost + InsertExtractCost;
|
|
}
|
|
|
|
/// Calculate the cost of Gather / Scatter operation
|
|
InstructionCost X86TTIImpl::getGatherScatterOpCost(
|
|
unsigned Opcode, Type *SrcVTy, const Value *Ptr, bool VariableMask,
|
|
Align Alignment, TTI::TargetCostKind CostKind,
|
|
const Instruction *I = nullptr) {
|
|
if (CostKind != TTI::TCK_RecipThroughput) {
|
|
if ((Opcode == Instruction::Load &&
|
|
isLegalMaskedGather(SrcVTy, Align(Alignment)) &&
|
|
!forceScalarizeMaskedGather(cast<VectorType>(SrcVTy),
|
|
Align(Alignment))) ||
|
|
(Opcode == Instruction::Store &&
|
|
isLegalMaskedScatter(SrcVTy, Align(Alignment)) &&
|
|
!forceScalarizeMaskedScatter(cast<VectorType>(SrcVTy),
|
|
Align(Alignment))))
|
|
return 1;
|
|
return BaseT::getGatherScatterOpCost(Opcode, SrcVTy, Ptr, VariableMask,
|
|
Alignment, CostKind, I);
|
|
}
|
|
|
|
assert(SrcVTy->isVectorTy() && "Unexpected data type for Gather/Scatter");
|
|
PointerType *PtrTy = dyn_cast<PointerType>(Ptr->getType());
|
|
if (!PtrTy && Ptr->getType()->isVectorTy())
|
|
PtrTy = dyn_cast<PointerType>(
|
|
cast<VectorType>(Ptr->getType())->getElementType());
|
|
assert(PtrTy && "Unexpected type for Ptr argument");
|
|
unsigned AddressSpace = PtrTy->getAddressSpace();
|
|
|
|
if ((Opcode == Instruction::Load &&
|
|
(!isLegalMaskedGather(SrcVTy, Align(Alignment)) ||
|
|
forceScalarizeMaskedGather(cast<VectorType>(SrcVTy),
|
|
Align(Alignment)))) ||
|
|
(Opcode == Instruction::Store &&
|
|
(!isLegalMaskedScatter(SrcVTy, Align(Alignment)) ||
|
|
forceScalarizeMaskedScatter(cast<VectorType>(SrcVTy),
|
|
Align(Alignment)))))
|
|
return getGSScalarCost(Opcode, SrcVTy, VariableMask, Alignment,
|
|
AddressSpace);
|
|
|
|
return getGSVectorCost(Opcode, SrcVTy, Ptr, Alignment, AddressSpace);
|
|
}
|
|
|
|
bool X86TTIImpl::isLSRCostLess(const TargetTransformInfo::LSRCost &C1,
|
|
const TargetTransformInfo::LSRCost &C2) {
|
|
// X86 specific here are "instruction number 1st priority".
|
|
return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
|
|
C1.NumIVMuls, C1.NumBaseAdds,
|
|
C1.ScaleCost, C1.ImmCost, C1.SetupCost) <
|
|
std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
|
|
C2.NumIVMuls, C2.NumBaseAdds,
|
|
C2.ScaleCost, C2.ImmCost, C2.SetupCost);
|
|
}
|
|
|
|
bool X86TTIImpl::canMacroFuseCmp() {
|
|
return ST->hasMacroFusion() || ST->hasBranchFusion();
|
|
}
|
|
|
|
bool X86TTIImpl::isLegalMaskedLoad(Type *DataTy, Align Alignment) {
|
|
if (!ST->hasAVX())
|
|
return false;
|
|
|
|
// The backend can't handle a single element vector.
|
|
if (isa<VectorType>(DataTy) &&
|
|
cast<FixedVectorType>(DataTy)->getNumElements() == 1)
|
|
return false;
|
|
Type *ScalarTy = DataTy->getScalarType();
|
|
|
|
if (ScalarTy->isPointerTy())
|
|
return true;
|
|
|
|
if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
|
|
return true;
|
|
|
|
if (ScalarTy->isHalfTy() && ST->hasBWI())
|
|
return true;
|
|
|
|
if (ScalarTy->isBFloatTy() && ST->hasBF16())
|
|
return true;
|
|
|
|
if (!ScalarTy->isIntegerTy())
|
|
return false;
|
|
|
|
unsigned IntWidth = ScalarTy->getIntegerBitWidth();
|
|
return IntWidth == 32 || IntWidth == 64 ||
|
|
((IntWidth == 8 || IntWidth == 16) && ST->hasBWI());
|
|
}
|
|
|
|
bool X86TTIImpl::isLegalMaskedStore(Type *DataType, Align Alignment) {
|
|
return isLegalMaskedLoad(DataType, Alignment);
|
|
}
|
|
|
|
bool X86TTIImpl::isLegalNTLoad(Type *DataType, Align Alignment) {
|
|
unsigned DataSize = DL.getTypeStoreSize(DataType);
|
|
// The only supported nontemporal loads are for aligned vectors of 16 or 32
|
|
// bytes. Note that 32-byte nontemporal vector loads are supported by AVX2
|
|
// (the equivalent stores only require AVX).
|
|
if (Alignment >= DataSize && (DataSize == 16 || DataSize == 32))
|
|
return DataSize == 16 ? ST->hasSSE1() : ST->hasAVX2();
|
|
|
|
return false;
|
|
}
|
|
|
|
bool X86TTIImpl::isLegalNTStore(Type *DataType, Align Alignment) {
|
|
unsigned DataSize = DL.getTypeStoreSize(DataType);
|
|
|
|
// SSE4A supports nontemporal stores of float and double at arbitrary
|
|
// alignment.
|
|
if (ST->hasSSE4A() && (DataType->isFloatTy() || DataType->isDoubleTy()))
|
|
return true;
|
|
|
|
// Besides the SSE4A subtarget exception above, only aligned stores are
|
|
// available nontemporaly on any other subtarget. And only stores with a size
|
|
// of 4..32 bytes (powers of 2, only) are permitted.
|
|
if (Alignment < DataSize || DataSize < 4 || DataSize > 32 ||
|
|
!isPowerOf2_32(DataSize))
|
|
return false;
|
|
|
|
// 32-byte vector nontemporal stores are supported by AVX (the equivalent
|
|
// loads require AVX2).
|
|
if (DataSize == 32)
|
|
return ST->hasAVX();
|
|
if (DataSize == 16)
|
|
return ST->hasSSE1();
|
|
return true;
|
|
}
|
|
|
|
bool X86TTIImpl::isLegalBroadcastLoad(Type *ElementTy,
|
|
ElementCount NumElements) const {
|
|
// movddup
|
|
return ST->hasSSE3() && !NumElements.isScalable() &&
|
|
NumElements.getFixedValue() == 2 &&
|
|
ElementTy == Type::getDoubleTy(ElementTy->getContext());
|
|
}
|
|
|
|
bool X86TTIImpl::isLegalMaskedExpandLoad(Type *DataTy) {
|
|
if (!isa<VectorType>(DataTy))
|
|
return false;
|
|
|
|
if (!ST->hasAVX512())
|
|
return false;
|
|
|
|
// The backend can't handle a single element vector.
|
|
if (cast<FixedVectorType>(DataTy)->getNumElements() == 1)
|
|
return false;
|
|
|
|
Type *ScalarTy = cast<VectorType>(DataTy)->getElementType();
|
|
|
|
if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
|
|
return true;
|
|
|
|
if (!ScalarTy->isIntegerTy())
|
|
return false;
|
|
|
|
unsigned IntWidth = ScalarTy->getIntegerBitWidth();
|
|
return IntWidth == 32 || IntWidth == 64 ||
|
|
((IntWidth == 8 || IntWidth == 16) && ST->hasVBMI2());
|
|
}
|
|
|
|
bool X86TTIImpl::isLegalMaskedCompressStore(Type *DataTy) {
|
|
return isLegalMaskedExpandLoad(DataTy);
|
|
}
|
|
|
|
bool X86TTIImpl::supportsGather() const {
|
|
// Some CPUs have better gather performance than others.
|
|
// TODO: Remove the explicit ST->hasAVX512()?, That would mean we would only
|
|
// enable gather with a -march.
|
|
return ST->hasAVX512() || (ST->hasFastGather() && ST->hasAVX2());
|
|
}
|
|
|
|
bool X86TTIImpl::forceScalarizeMaskedGather(VectorType *VTy, Align Alignment) {
|
|
// Gather / Scatter for vector 2 is not profitable on KNL / SKX
|
|
// Vector-4 of gather/scatter instruction does not exist on KNL. We can extend
|
|
// it to 8 elements, but zeroing upper bits of the mask vector will add more
|
|
// instructions. Right now we give the scalar cost of vector-4 for KNL. TODO:
|
|
// Check, maybe the gather/scatter instruction is better in the VariableMask
|
|
// case.
|
|
unsigned NumElts = cast<FixedVectorType>(VTy)->getNumElements();
|
|
return NumElts == 1 ||
|
|
(ST->hasAVX512() && (NumElts == 2 || (NumElts == 4 && !ST->hasVLX())));
|
|
}
|
|
|
|
bool X86TTIImpl::isLegalMaskedGatherScatter(Type *DataTy, Align Alignment) {
|
|
Type *ScalarTy = DataTy->getScalarType();
|
|
if (ScalarTy->isPointerTy())
|
|
return true;
|
|
|
|
if (ScalarTy->isFloatTy() || ScalarTy->isDoubleTy())
|
|
return true;
|
|
|
|
if (!ScalarTy->isIntegerTy())
|
|
return false;
|
|
|
|
unsigned IntWidth = ScalarTy->getIntegerBitWidth();
|
|
return IntWidth == 32 || IntWidth == 64;
|
|
}
|
|
|
|
bool X86TTIImpl::isLegalMaskedGather(Type *DataTy, Align Alignment) {
|
|
if (!supportsGather() || !ST->preferGather())
|
|
return false;
|
|
return isLegalMaskedGatherScatter(DataTy, Alignment);
|
|
}
|
|
|
|
bool X86TTIImpl::isLegalAltInstr(VectorType *VecTy, unsigned Opcode0,
|
|
unsigned Opcode1,
|
|
const SmallBitVector &OpcodeMask) const {
|
|
// ADDSUBPS 4xf32 SSE3
|
|
// VADDSUBPS 4xf32 AVX
|
|
// VADDSUBPS 8xf32 AVX2
|
|
// ADDSUBPD 2xf64 SSE3
|
|
// VADDSUBPD 2xf64 AVX
|
|
// VADDSUBPD 4xf64 AVX2
|
|
|
|
unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
|
|
assert(OpcodeMask.size() == NumElements && "Mask and VecTy are incompatible");
|
|
if (!isPowerOf2_32(NumElements))
|
|
return false;
|
|
// Check the opcode pattern. We apply the mask on the opcode arguments and
|
|
// then check if it is what we expect.
|
|
for (int Lane : seq<int>(0, NumElements)) {
|
|
unsigned Opc = OpcodeMask.test(Lane) ? Opcode1 : Opcode0;
|
|
// We expect FSub for even lanes and FAdd for odd lanes.
|
|
if (Lane % 2 == 0 && Opc != Instruction::FSub)
|
|
return false;
|
|
if (Lane % 2 == 1 && Opc != Instruction::FAdd)
|
|
return false;
|
|
}
|
|
// Now check that the pattern is supported by the target ISA.
|
|
Type *ElemTy = cast<VectorType>(VecTy)->getElementType();
|
|
if (ElemTy->isFloatTy())
|
|
return ST->hasSSE3() && NumElements % 4 == 0;
|
|
if (ElemTy->isDoubleTy())
|
|
return ST->hasSSE3() && NumElements % 2 == 0;
|
|
return false;
|
|
}
|
|
|
|
bool X86TTIImpl::isLegalMaskedScatter(Type *DataType, Align Alignment) {
|
|
// AVX2 doesn't support scatter
|
|
if (!ST->hasAVX512() || !ST->preferScatter())
|
|
return false;
|
|
return isLegalMaskedGatherScatter(DataType, Alignment);
|
|
}
|
|
|
|
bool X86TTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
|
|
EVT VT = TLI->getValueType(DL, DataType);
|
|
return TLI->isOperationLegal(IsSigned ? ISD::SDIVREM : ISD::UDIVREM, VT);
|
|
}
|
|
|
|
bool X86TTIImpl::isExpensiveToSpeculativelyExecute(const Instruction* I) {
|
|
// FDIV is always expensive, even if it has a very low uop count.
|
|
// TODO: Still necessary for recent CPUs with low latency/throughput fdiv?
|
|
if (I->getOpcode() == Instruction::FDiv)
|
|
return true;
|
|
|
|
return BaseT::isExpensiveToSpeculativelyExecute(I);
|
|
}
|
|
|
|
bool X86TTIImpl::isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
|
|
return false;
|
|
}
|
|
|
|
bool X86TTIImpl::areInlineCompatible(const Function *Caller,
|
|
const Function *Callee) const {
|
|
const TargetMachine &TM = getTLI()->getTargetMachine();
|
|
|
|
// Work this as a subsetting of subtarget features.
|
|
const FeatureBitset &CallerBits =
|
|
TM.getSubtargetImpl(*Caller)->getFeatureBits();
|
|
const FeatureBitset &CalleeBits =
|
|
TM.getSubtargetImpl(*Callee)->getFeatureBits();
|
|
|
|
// Check whether features are the same (apart from the ignore list).
|
|
FeatureBitset RealCallerBits = CallerBits & ~InlineFeatureIgnoreList;
|
|
FeatureBitset RealCalleeBits = CalleeBits & ~InlineFeatureIgnoreList;
|
|
if (RealCallerBits == RealCalleeBits)
|
|
return true;
|
|
|
|
// If the features are a subset, we need to additionally check for calls
|
|
// that may become ABI-incompatible as a result of inlining.
|
|
if ((RealCallerBits & RealCalleeBits) != RealCalleeBits)
|
|
return false;
|
|
|
|
for (const Instruction &I : instructions(Callee)) {
|
|
if (const auto *CB = dyn_cast<CallBase>(&I)) {
|
|
SmallVector<Type *, 8> Types;
|
|
for (Value *Arg : CB->args())
|
|
Types.push_back(Arg->getType());
|
|
if (!CB->getType()->isVoidTy())
|
|
Types.push_back(CB->getType());
|
|
|
|
// Simple types are always ABI compatible.
|
|
auto IsSimpleTy = [](Type *Ty) {
|
|
return !Ty->isVectorTy() && !Ty->isAggregateType();
|
|
};
|
|
if (all_of(Types, IsSimpleTy))
|
|
continue;
|
|
|
|
if (Function *NestedCallee = CB->getCalledFunction()) {
|
|
// Assume that intrinsics are always ABI compatible.
|
|
if (NestedCallee->isIntrinsic())
|
|
continue;
|
|
|
|
// Do a precise compatibility check.
|
|
if (!areTypesABICompatible(Caller, NestedCallee, Types))
|
|
return false;
|
|
} else {
|
|
// We don't know the target features of the callee,
|
|
// assume it is incompatible.
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool X86TTIImpl::areTypesABICompatible(const Function *Caller,
|
|
const Function *Callee,
|
|
const ArrayRef<Type *> &Types) const {
|
|
if (!BaseT::areTypesABICompatible(Caller, Callee, Types))
|
|
return false;
|
|
|
|
// If we get here, we know the target features match. If one function
|
|
// considers 512-bit vectors legal and the other does not, consider them
|
|
// incompatible.
|
|
const TargetMachine &TM = getTLI()->getTargetMachine();
|
|
|
|
if (TM.getSubtarget<X86Subtarget>(*Caller).useAVX512Regs() ==
|
|
TM.getSubtarget<X86Subtarget>(*Callee).useAVX512Regs())
|
|
return true;
|
|
|
|
// Consider the arguments compatible if they aren't vectors or aggregates.
|
|
// FIXME: Look at the size of vectors.
|
|
// FIXME: Look at the element types of aggregates to see if there are vectors.
|
|
return llvm::none_of(Types,
|
|
[](Type *T) { return T->isVectorTy() || T->isAggregateType(); });
|
|
}
|
|
|
|
X86TTIImpl::TTI::MemCmpExpansionOptions
|
|
X86TTIImpl::enableMemCmpExpansion(bool OptSize, bool IsZeroCmp) const {
|
|
TTI::MemCmpExpansionOptions Options;
|
|
Options.MaxNumLoads = TLI->getMaxExpandSizeMemcmp(OptSize);
|
|
Options.NumLoadsPerBlock = 2;
|
|
// All GPR and vector loads can be unaligned.
|
|
Options.AllowOverlappingLoads = true;
|
|
if (IsZeroCmp) {
|
|
// Only enable vector loads for equality comparison. Right now the vector
|
|
// version is not as fast for three way compare (see #33329).
|
|
const unsigned PreferredWidth = ST->getPreferVectorWidth();
|
|
if (PreferredWidth >= 512 && ST->hasAVX512() && ST->hasEVEX512())
|
|
Options.LoadSizes.push_back(64);
|
|
if (PreferredWidth >= 256 && ST->hasAVX()) Options.LoadSizes.push_back(32);
|
|
if (PreferredWidth >= 128 && ST->hasSSE2()) Options.LoadSizes.push_back(16);
|
|
}
|
|
if (ST->is64Bit()) {
|
|
Options.LoadSizes.push_back(8);
|
|
}
|
|
Options.LoadSizes.push_back(4);
|
|
Options.LoadSizes.push_back(2);
|
|
Options.LoadSizes.push_back(1);
|
|
return Options;
|
|
}
|
|
|
|
bool X86TTIImpl::prefersVectorizedAddressing() const {
|
|
return supportsGather();
|
|
}
|
|
|
|
bool X86TTIImpl::supportsEfficientVectorElementLoadStore() const {
|
|
return false;
|
|
}
|
|
|
|
bool X86TTIImpl::enableInterleavedAccessVectorization() {
|
|
// TODO: We expect this to be beneficial regardless of arch,
|
|
// but there are currently some unexplained performance artifacts on Atom.
|
|
// As a temporary solution, disable on Atom.
|
|
return !(ST->isAtom());
|
|
}
|
|
|
|
// Get estimation for interleaved load/store operations and strided load.
|
|
// \p Indices contains indices for strided load.
|
|
// \p Factor - the factor of interleaving.
|
|
// AVX-512 provides 3-src shuffles that significantly reduces the cost.
|
|
InstructionCost X86TTIImpl::getInterleavedMemoryOpCostAVX512(
|
|
unsigned Opcode, FixedVectorType *VecTy, unsigned Factor,
|
|
ArrayRef<unsigned> Indices, Align Alignment, unsigned AddressSpace,
|
|
TTI::TargetCostKind CostKind, bool UseMaskForCond, bool UseMaskForGaps) {
|
|
// VecTy for interleave memop is <VF*Factor x Elt>.
|
|
// So, for VF=4, Interleave Factor = 3, Element type = i32 we have
|
|
// VecTy = <12 x i32>.
|
|
|
|
// Calculate the number of memory operations (NumOfMemOps), required
|
|
// for load/store the VecTy.
|
|
MVT LegalVT = getTypeLegalizationCost(VecTy).second;
|
|
unsigned VecTySize = DL.getTypeStoreSize(VecTy);
|
|
unsigned LegalVTSize = LegalVT.getStoreSize();
|
|
unsigned NumOfMemOps = (VecTySize + LegalVTSize - 1) / LegalVTSize;
|
|
|
|
// Get the cost of one memory operation.
|
|
auto *SingleMemOpTy = FixedVectorType::get(VecTy->getElementType(),
|
|
LegalVT.getVectorNumElements());
|
|
InstructionCost MemOpCost;
|
|
bool UseMaskedMemOp = UseMaskForCond || UseMaskForGaps;
|
|
if (UseMaskedMemOp)
|
|
MemOpCost = getMaskedMemoryOpCost(Opcode, SingleMemOpTy, Alignment,
|
|
AddressSpace, CostKind);
|
|
else
|
|
MemOpCost = getMemoryOpCost(Opcode, SingleMemOpTy, MaybeAlign(Alignment),
|
|
AddressSpace, CostKind);
|
|
|
|
unsigned VF = VecTy->getNumElements() / Factor;
|
|
MVT VT = MVT::getVectorVT(MVT::getVT(VecTy->getScalarType()), VF);
|
|
|
|
InstructionCost MaskCost;
|
|
if (UseMaskedMemOp) {
|
|
APInt DemandedLoadStoreElts = APInt::getZero(VecTy->getNumElements());
|
|
for (unsigned Index : Indices) {
|
|
assert(Index < Factor && "Invalid index for interleaved memory op");
|
|
for (unsigned Elm = 0; Elm < VF; Elm++)
|
|
DemandedLoadStoreElts.setBit(Index + Elm * Factor);
|
|
}
|
|
|
|
Type *I1Type = Type::getInt1Ty(VecTy->getContext());
|
|
|
|
MaskCost = getReplicationShuffleCost(
|
|
I1Type, Factor, VF,
|
|
UseMaskForGaps ? DemandedLoadStoreElts
|
|
: APInt::getAllOnes(VecTy->getNumElements()),
|
|
CostKind);
|
|
|
|
// The Gaps mask is invariant and created outside the loop, therefore the
|
|
// cost of creating it is not accounted for here. However if we have both
|
|
// a MaskForGaps and some other mask that guards the execution of the
|
|
// memory access, we need to account for the cost of And-ing the two masks
|
|
// inside the loop.
|
|
if (UseMaskForGaps) {
|
|
auto *MaskVT = FixedVectorType::get(I1Type, VecTy->getNumElements());
|
|
MaskCost += getArithmeticInstrCost(BinaryOperator::And, MaskVT, CostKind);
|
|
}
|
|
}
|
|
|
|
if (Opcode == Instruction::Load) {
|
|
// The tables (AVX512InterleavedLoadTbl and AVX512InterleavedStoreTbl)
|
|
// contain the cost of the optimized shuffle sequence that the
|
|
// X86InterleavedAccess pass will generate.
|
|
// The cost of loads and stores are computed separately from the table.
|
|
|
|
// X86InterleavedAccess support only the following interleaved-access group.
|
|
static const CostTblEntry AVX512InterleavedLoadTbl[] = {
|
|
{3, MVT::v16i8, 12}, //(load 48i8 and) deinterleave into 3 x 16i8
|
|
{3, MVT::v32i8, 14}, //(load 96i8 and) deinterleave into 3 x 32i8
|
|
{3, MVT::v64i8, 22}, //(load 96i8 and) deinterleave into 3 x 32i8
|
|
};
|
|
|
|
if (const auto *Entry =
|
|
CostTableLookup(AVX512InterleavedLoadTbl, Factor, VT))
|
|
return MaskCost + NumOfMemOps * MemOpCost + Entry->Cost;
|
|
//If an entry does not exist, fallback to the default implementation.
|
|
|
|
// Kind of shuffle depends on number of loaded values.
|
|
// If we load the entire data in one register, we can use a 1-src shuffle.
|
|
// Otherwise, we'll merge 2 sources in each operation.
|
|
TTI::ShuffleKind ShuffleKind =
|
|
(NumOfMemOps > 1) ? TTI::SK_PermuteTwoSrc : TTI::SK_PermuteSingleSrc;
|
|
|
|
InstructionCost ShuffleCost = getShuffleCost(
|
|
ShuffleKind, SingleMemOpTy, std::nullopt, CostKind, 0, nullptr);
|
|
|
|
unsigned NumOfLoadsInInterleaveGrp =
|
|
Indices.size() ? Indices.size() : Factor;
|
|
auto *ResultTy = FixedVectorType::get(VecTy->getElementType(),
|
|
VecTy->getNumElements() / Factor);
|
|
InstructionCost NumOfResults =
|
|
getTypeLegalizationCost(ResultTy).first * NumOfLoadsInInterleaveGrp;
|
|
|
|
// About a half of the loads may be folded in shuffles when we have only
|
|
// one result. If we have more than one result, or the loads are masked,
|
|
// we do not fold loads at all.
|
|
unsigned NumOfUnfoldedLoads =
|
|
UseMaskedMemOp || NumOfResults > 1 ? NumOfMemOps : NumOfMemOps / 2;
|
|
|
|
// Get a number of shuffle operations per result.
|
|
unsigned NumOfShufflesPerResult =
|
|
std::max((unsigned)1, (unsigned)(NumOfMemOps - 1));
|
|
|
|
// The SK_MergeTwoSrc shuffle clobbers one of src operands.
|
|
// When we have more than one destination, we need additional instructions
|
|
// to keep sources.
|
|
InstructionCost NumOfMoves = 0;
|
|
if (NumOfResults > 1 && ShuffleKind == TTI::SK_PermuteTwoSrc)
|
|
NumOfMoves = NumOfResults * NumOfShufflesPerResult / 2;
|
|
|
|
InstructionCost Cost = NumOfResults * NumOfShufflesPerResult * ShuffleCost +
|
|
MaskCost + NumOfUnfoldedLoads * MemOpCost +
|
|
NumOfMoves;
|
|
|
|
return Cost;
|
|
}
|
|
|
|
// Store.
|
|
assert(Opcode == Instruction::Store &&
|
|
"Expected Store Instruction at this point");
|
|
// X86InterleavedAccess support only the following interleaved-access group.
|
|
static const CostTblEntry AVX512InterleavedStoreTbl[] = {
|
|
{3, MVT::v16i8, 12}, // interleave 3 x 16i8 into 48i8 (and store)
|
|
{3, MVT::v32i8, 14}, // interleave 3 x 32i8 into 96i8 (and store)
|
|
{3, MVT::v64i8, 26}, // interleave 3 x 64i8 into 96i8 (and store)
|
|
|
|
{4, MVT::v8i8, 10}, // interleave 4 x 8i8 into 32i8 (and store)
|
|
{4, MVT::v16i8, 11}, // interleave 4 x 16i8 into 64i8 (and store)
|
|
{4, MVT::v32i8, 14}, // interleave 4 x 32i8 into 128i8 (and store)
|
|
{4, MVT::v64i8, 24} // interleave 4 x 32i8 into 256i8 (and store)
|
|
};
|
|
|
|
if (const auto *Entry =
|
|
CostTableLookup(AVX512InterleavedStoreTbl, Factor, VT))
|
|
return MaskCost + NumOfMemOps * MemOpCost + Entry->Cost;
|
|
//If an entry does not exist, fallback to the default implementation.
|
|
|
|
// There is no strided stores meanwhile. And store can't be folded in
|
|
// shuffle.
|
|
unsigned NumOfSources = Factor; // The number of values to be merged.
|
|
InstructionCost ShuffleCost = getShuffleCost(
|
|
TTI::SK_PermuteTwoSrc, SingleMemOpTy, std::nullopt, CostKind, 0, nullptr);
|
|
unsigned NumOfShufflesPerStore = NumOfSources - 1;
|
|
|
|
// The SK_MergeTwoSrc shuffle clobbers one of src operands.
|
|
// We need additional instructions to keep sources.
|
|
unsigned NumOfMoves = NumOfMemOps * NumOfShufflesPerStore / 2;
|
|
InstructionCost Cost =
|
|
MaskCost +
|
|
NumOfMemOps * (MemOpCost + NumOfShufflesPerStore * ShuffleCost) +
|
|
NumOfMoves;
|
|
return Cost;
|
|
}
|
|
|
|
InstructionCost X86TTIImpl::getInterleavedMemoryOpCost(
|
|
unsigned Opcode, Type *BaseTy, unsigned Factor, ArrayRef<unsigned> Indices,
|
|
Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
|
|
bool UseMaskForCond, bool UseMaskForGaps) {
|
|
auto *VecTy = cast<FixedVectorType>(BaseTy);
|
|
|
|
auto isSupportedOnAVX512 = [&](Type *VecTy) {
|
|
Type *EltTy = cast<VectorType>(VecTy)->getElementType();
|
|
if (EltTy->isFloatTy() || EltTy->isDoubleTy() || EltTy->isIntegerTy(64) ||
|
|
EltTy->isIntegerTy(32) || EltTy->isPointerTy())
|
|
return true;
|
|
if (EltTy->isIntegerTy(16) || EltTy->isIntegerTy(8) || EltTy->isHalfTy())
|
|
return ST->hasBWI();
|
|
if (EltTy->isBFloatTy())
|
|
return ST->hasBF16();
|
|
return false;
|
|
};
|
|
if (ST->hasAVX512() && isSupportedOnAVX512(VecTy))
|
|
return getInterleavedMemoryOpCostAVX512(
|
|
Opcode, VecTy, Factor, Indices, Alignment,
|
|
AddressSpace, CostKind, UseMaskForCond, UseMaskForGaps);
|
|
|
|
if (UseMaskForCond || UseMaskForGaps)
|
|
return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
|
|
Alignment, AddressSpace, CostKind,
|
|
UseMaskForCond, UseMaskForGaps);
|
|
|
|
// Get estimation for interleaved load/store operations for SSE-AVX2.
|
|
// As opposed to AVX-512, SSE-AVX2 do not have generic shuffles that allow
|
|
// computing the cost using a generic formula as a function of generic
|
|
// shuffles. We therefore use a lookup table instead, filled according to
|
|
// the instruction sequences that codegen currently generates.
|
|
|
|
// VecTy for interleave memop is <VF*Factor x Elt>.
|
|
// So, for VF=4, Interleave Factor = 3, Element type = i32 we have
|
|
// VecTy = <12 x i32>.
|
|
MVT LegalVT = getTypeLegalizationCost(VecTy).second;
|
|
|
|
// This function can be called with VecTy=<6xi128>, Factor=3, in which case
|
|
// the VF=2, while v2i128 is an unsupported MVT vector type
|
|
// (see MachineValueType.h::getVectorVT()).
|
|
if (!LegalVT.isVector())
|
|
return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
|
|
Alignment, AddressSpace, CostKind);
|
|
|
|
unsigned VF = VecTy->getNumElements() / Factor;
|
|
Type *ScalarTy = VecTy->getElementType();
|
|
// Deduplicate entries, model floats/pointers as appropriately-sized integers.
|
|
if (!ScalarTy->isIntegerTy())
|
|
ScalarTy =
|
|
Type::getIntNTy(ScalarTy->getContext(), DL.getTypeSizeInBits(ScalarTy));
|
|
|
|
// Get the cost of all the memory operations.
|
|
// FIXME: discount dead loads.
|
|
InstructionCost MemOpCosts = getMemoryOpCost(
|
|
Opcode, VecTy, MaybeAlign(Alignment), AddressSpace, CostKind);
|
|
|
|
auto *VT = FixedVectorType::get(ScalarTy, VF);
|
|
EVT ETy = TLI->getValueType(DL, VT);
|
|
if (!ETy.isSimple())
|
|
return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
|
|
Alignment, AddressSpace, CostKind);
|
|
|
|
// TODO: Complete for other data-types and strides.
|
|
// Each combination of Stride, element bit width and VF results in a different
|
|
// sequence; The cost tables are therefore accessed with:
|
|
// Factor (stride) and VectorType=VFxiN.
|
|
// The Cost accounts only for the shuffle sequence;
|
|
// The cost of the loads/stores is accounted for separately.
|
|
//
|
|
static const CostTblEntry AVX2InterleavedLoadTbl[] = {
|
|
{2, MVT::v2i8, 2}, // (load 4i8 and) deinterleave into 2 x 2i8
|
|
{2, MVT::v4i8, 2}, // (load 8i8 and) deinterleave into 2 x 4i8
|
|
{2, MVT::v8i8, 2}, // (load 16i8 and) deinterleave into 2 x 8i8
|
|
{2, MVT::v16i8, 4}, // (load 32i8 and) deinterleave into 2 x 16i8
|
|
{2, MVT::v32i8, 6}, // (load 64i8 and) deinterleave into 2 x 32i8
|
|
|
|
{2, MVT::v8i16, 6}, // (load 16i16 and) deinterleave into 2 x 8i16
|
|
{2, MVT::v16i16, 9}, // (load 32i16 and) deinterleave into 2 x 16i16
|
|
{2, MVT::v32i16, 18}, // (load 64i16 and) deinterleave into 2 x 32i16
|
|
|
|
{2, MVT::v8i32, 4}, // (load 16i32 and) deinterleave into 2 x 8i32
|
|
{2, MVT::v16i32, 8}, // (load 32i32 and) deinterleave into 2 x 16i32
|
|
{2, MVT::v32i32, 16}, // (load 64i32 and) deinterleave into 2 x 32i32
|
|
|
|
{2, MVT::v4i64, 4}, // (load 8i64 and) deinterleave into 2 x 4i64
|
|
{2, MVT::v8i64, 8}, // (load 16i64 and) deinterleave into 2 x 8i64
|
|
{2, MVT::v16i64, 16}, // (load 32i64 and) deinterleave into 2 x 16i64
|
|
{2, MVT::v32i64, 32}, // (load 64i64 and) deinterleave into 2 x 32i64
|
|
|
|
{3, MVT::v2i8, 3}, // (load 6i8 and) deinterleave into 3 x 2i8
|
|
{3, MVT::v4i8, 3}, // (load 12i8 and) deinterleave into 3 x 4i8
|
|
{3, MVT::v8i8, 6}, // (load 24i8 and) deinterleave into 3 x 8i8
|
|
{3, MVT::v16i8, 11}, // (load 48i8 and) deinterleave into 3 x 16i8
|
|
{3, MVT::v32i8, 14}, // (load 96i8 and) deinterleave into 3 x 32i8
|
|
|
|
{3, MVT::v2i16, 5}, // (load 6i16 and) deinterleave into 3 x 2i16
|
|
{3, MVT::v4i16, 7}, // (load 12i16 and) deinterleave into 3 x 4i16
|
|
{3, MVT::v8i16, 9}, // (load 24i16 and) deinterleave into 3 x 8i16
|
|
{3, MVT::v16i16, 28}, // (load 48i16 and) deinterleave into 3 x 16i16
|
|
{3, MVT::v32i16, 56}, // (load 96i16 and) deinterleave into 3 x 32i16
|
|
|
|
{3, MVT::v2i32, 3}, // (load 6i32 and) deinterleave into 3 x 2i32
|
|
{3, MVT::v4i32, 3}, // (load 12i32 and) deinterleave into 3 x 4i32
|
|
{3, MVT::v8i32, 7}, // (load 24i32 and) deinterleave into 3 x 8i32
|
|
{3, MVT::v16i32, 14}, // (load 48i32 and) deinterleave into 3 x 16i32
|
|
{3, MVT::v32i32, 32}, // (load 96i32 and) deinterleave into 3 x 32i32
|
|
|
|
{3, MVT::v2i64, 1}, // (load 6i64 and) deinterleave into 3 x 2i64
|
|
{3, MVT::v4i64, 5}, // (load 12i64 and) deinterleave into 3 x 4i64
|
|
{3, MVT::v8i64, 10}, // (load 24i64 and) deinterleave into 3 x 8i64
|
|
{3, MVT::v16i64, 20}, // (load 48i64 and) deinterleave into 3 x 16i64
|
|
|
|
{4, MVT::v2i8, 4}, // (load 8i8 and) deinterleave into 4 x 2i8
|
|
{4, MVT::v4i8, 4}, // (load 16i8 and) deinterleave into 4 x 4i8
|
|
{4, MVT::v8i8, 12}, // (load 32i8 and) deinterleave into 4 x 8i8
|
|
{4, MVT::v16i8, 24}, // (load 64i8 and) deinterleave into 4 x 16i8
|
|
{4, MVT::v32i8, 56}, // (load 128i8 and) deinterleave into 4 x 32i8
|
|
|
|
{4, MVT::v2i16, 6}, // (load 8i16 and) deinterleave into 4 x 2i16
|
|
{4, MVT::v4i16, 17}, // (load 16i16 and) deinterleave into 4 x 4i16
|
|
{4, MVT::v8i16, 33}, // (load 32i16 and) deinterleave into 4 x 8i16
|
|
{4, MVT::v16i16, 75}, // (load 64i16 and) deinterleave into 4 x 16i16
|
|
{4, MVT::v32i16, 150}, // (load 128i16 and) deinterleave into 4 x 32i16
|
|
|
|
{4, MVT::v2i32, 4}, // (load 8i32 and) deinterleave into 4 x 2i32
|
|
{4, MVT::v4i32, 8}, // (load 16i32 and) deinterleave into 4 x 4i32
|
|
{4, MVT::v8i32, 16}, // (load 32i32 and) deinterleave into 4 x 8i32
|
|
{4, MVT::v16i32, 32}, // (load 64i32 and) deinterleave into 4 x 16i32
|
|
{4, MVT::v32i32, 68}, // (load 128i32 and) deinterleave into 4 x 32i32
|
|
|
|
{4, MVT::v2i64, 6}, // (load 8i64 and) deinterleave into 4 x 2i64
|
|
{4, MVT::v4i64, 8}, // (load 16i64 and) deinterleave into 4 x 4i64
|
|
{4, MVT::v8i64, 20}, // (load 32i64 and) deinterleave into 4 x 8i64
|
|
{4, MVT::v16i64, 40}, // (load 64i64 and) deinterleave into 4 x 16i64
|
|
|
|
{6, MVT::v2i8, 6}, // (load 12i8 and) deinterleave into 6 x 2i8
|
|
{6, MVT::v4i8, 14}, // (load 24i8 and) deinterleave into 6 x 4i8
|
|
{6, MVT::v8i8, 18}, // (load 48i8 and) deinterleave into 6 x 8i8
|
|
{6, MVT::v16i8, 43}, // (load 96i8 and) deinterleave into 6 x 16i8
|
|
{6, MVT::v32i8, 82}, // (load 192i8 and) deinterleave into 6 x 32i8
|
|
|
|
{6, MVT::v2i16, 13}, // (load 12i16 and) deinterleave into 6 x 2i16
|
|
{6, MVT::v4i16, 9}, // (load 24i16 and) deinterleave into 6 x 4i16
|
|
{6, MVT::v8i16, 39}, // (load 48i16 and) deinterleave into 6 x 8i16
|
|
{6, MVT::v16i16, 106}, // (load 96i16 and) deinterleave into 6 x 16i16
|
|
{6, MVT::v32i16, 212}, // (load 192i16 and) deinterleave into 6 x 32i16
|
|
|
|
{6, MVT::v2i32, 6}, // (load 12i32 and) deinterleave into 6 x 2i32
|
|
{6, MVT::v4i32, 15}, // (load 24i32 and) deinterleave into 6 x 4i32
|
|
{6, MVT::v8i32, 31}, // (load 48i32 and) deinterleave into 6 x 8i32
|
|
{6, MVT::v16i32, 64}, // (load 96i32 and) deinterleave into 6 x 16i32
|
|
|
|
{6, MVT::v2i64, 6}, // (load 12i64 and) deinterleave into 6 x 2i64
|
|
{6, MVT::v4i64, 18}, // (load 24i64 and) deinterleave into 6 x 4i64
|
|
{6, MVT::v8i64, 36}, // (load 48i64 and) deinterleave into 6 x 8i64
|
|
|
|
{8, MVT::v8i32, 40} // (load 64i32 and) deinterleave into 8 x 8i32
|
|
};
|
|
|
|
static const CostTblEntry SSSE3InterleavedLoadTbl[] = {
|
|
{2, MVT::v4i16, 2}, // (load 8i16 and) deinterleave into 2 x 4i16
|
|
};
|
|
|
|
static const CostTblEntry SSE2InterleavedLoadTbl[] = {
|
|
{2, MVT::v2i16, 2}, // (load 4i16 and) deinterleave into 2 x 2i16
|
|
{2, MVT::v4i16, 7}, // (load 8i16 and) deinterleave into 2 x 4i16
|
|
|
|
{2, MVT::v2i32, 2}, // (load 4i32 and) deinterleave into 2 x 2i32
|
|
{2, MVT::v4i32, 2}, // (load 8i32 and) deinterleave into 2 x 4i32
|
|
|
|
{2, MVT::v2i64, 2}, // (load 4i64 and) deinterleave into 2 x 2i64
|
|
};
|
|
|
|
static const CostTblEntry AVX2InterleavedStoreTbl[] = {
|
|
{2, MVT::v16i8, 3}, // interleave 2 x 16i8 into 32i8 (and store)
|
|
{2, MVT::v32i8, 4}, // interleave 2 x 32i8 into 64i8 (and store)
|
|
|
|
{2, MVT::v8i16, 3}, // interleave 2 x 8i16 into 16i16 (and store)
|
|
{2, MVT::v16i16, 4}, // interleave 2 x 16i16 into 32i16 (and store)
|
|
{2, MVT::v32i16, 8}, // interleave 2 x 32i16 into 64i16 (and store)
|
|
|
|
{2, MVT::v4i32, 2}, // interleave 2 x 4i32 into 8i32 (and store)
|
|
{2, MVT::v8i32, 4}, // interleave 2 x 8i32 into 16i32 (and store)
|
|
{2, MVT::v16i32, 8}, // interleave 2 x 16i32 into 32i32 (and store)
|
|
{2, MVT::v32i32, 16}, // interleave 2 x 32i32 into 64i32 (and store)
|
|
|
|
{2, MVT::v2i64, 2}, // interleave 2 x 2i64 into 4i64 (and store)
|
|
{2, MVT::v4i64, 4}, // interleave 2 x 4i64 into 8i64 (and store)
|
|
{2, MVT::v8i64, 8}, // interleave 2 x 8i64 into 16i64 (and store)
|
|
{2, MVT::v16i64, 16}, // interleave 2 x 16i64 into 32i64 (and store)
|
|
{2, MVT::v32i64, 32}, // interleave 2 x 32i64 into 64i64 (and store)
|
|
|
|
{3, MVT::v2i8, 4}, // interleave 3 x 2i8 into 6i8 (and store)
|
|
{3, MVT::v4i8, 4}, // interleave 3 x 4i8 into 12i8 (and store)
|
|
{3, MVT::v8i8, 6}, // interleave 3 x 8i8 into 24i8 (and store)
|
|
{3, MVT::v16i8, 11}, // interleave 3 x 16i8 into 48i8 (and store)
|
|
{3, MVT::v32i8, 13}, // interleave 3 x 32i8 into 96i8 (and store)
|
|
|
|
{3, MVT::v2i16, 4}, // interleave 3 x 2i16 into 6i16 (and store)
|
|
{3, MVT::v4i16, 6}, // interleave 3 x 4i16 into 12i16 (and store)
|
|
{3, MVT::v8i16, 12}, // interleave 3 x 8i16 into 24i16 (and store)
|
|
{3, MVT::v16i16, 27}, // interleave 3 x 16i16 into 48i16 (and store)
|
|
{3, MVT::v32i16, 54}, // interleave 3 x 32i16 into 96i16 (and store)
|
|
|
|
{3, MVT::v2i32, 4}, // interleave 3 x 2i32 into 6i32 (and store)
|
|
{3, MVT::v4i32, 5}, // interleave 3 x 4i32 into 12i32 (and store)
|
|
{3, MVT::v8i32, 11}, // interleave 3 x 8i32 into 24i32 (and store)
|
|
{3, MVT::v16i32, 22}, // interleave 3 x 16i32 into 48i32 (and store)
|
|
{3, MVT::v32i32, 48}, // interleave 3 x 32i32 into 96i32 (and store)
|
|
|
|
{3, MVT::v2i64, 4}, // interleave 3 x 2i64 into 6i64 (and store)
|
|
{3, MVT::v4i64, 6}, // interleave 3 x 4i64 into 12i64 (and store)
|
|
{3, MVT::v8i64, 12}, // interleave 3 x 8i64 into 24i64 (and store)
|
|
{3, MVT::v16i64, 24}, // interleave 3 x 16i64 into 48i64 (and store)
|
|
|
|
{4, MVT::v2i8, 4}, // interleave 4 x 2i8 into 8i8 (and store)
|
|
{4, MVT::v4i8, 4}, // interleave 4 x 4i8 into 16i8 (and store)
|
|
{4, MVT::v8i8, 4}, // interleave 4 x 8i8 into 32i8 (and store)
|
|
{4, MVT::v16i8, 8}, // interleave 4 x 16i8 into 64i8 (and store)
|
|
{4, MVT::v32i8, 12}, // interleave 4 x 32i8 into 128i8 (and store)
|
|
|
|
{4, MVT::v2i16, 2}, // interleave 4 x 2i16 into 8i16 (and store)
|
|
{4, MVT::v4i16, 6}, // interleave 4 x 4i16 into 16i16 (and store)
|
|
{4, MVT::v8i16, 10}, // interleave 4 x 8i16 into 32i16 (and store)
|
|
{4, MVT::v16i16, 32}, // interleave 4 x 16i16 into 64i16 (and store)
|
|
{4, MVT::v32i16, 64}, // interleave 4 x 32i16 into 128i16 (and store)
|
|
|
|
{4, MVT::v2i32, 5}, // interleave 4 x 2i32 into 8i32 (and store)
|
|
{4, MVT::v4i32, 6}, // interleave 4 x 4i32 into 16i32 (and store)
|
|
{4, MVT::v8i32, 16}, // interleave 4 x 8i32 into 32i32 (and store)
|
|
{4, MVT::v16i32, 32}, // interleave 4 x 16i32 into 64i32 (and store)
|
|
{4, MVT::v32i32, 64}, // interleave 4 x 32i32 into 128i32 (and store)
|
|
|
|
{4, MVT::v2i64, 6}, // interleave 4 x 2i64 into 8i64 (and store)
|
|
{4, MVT::v4i64, 8}, // interleave 4 x 4i64 into 16i64 (and store)
|
|
{4, MVT::v8i64, 20}, // interleave 4 x 8i64 into 32i64 (and store)
|
|
{4, MVT::v16i64, 40}, // interleave 4 x 16i64 into 64i64 (and store)
|
|
|
|
{6, MVT::v2i8, 7}, // interleave 6 x 2i8 into 12i8 (and store)
|
|
{6, MVT::v4i8, 9}, // interleave 6 x 4i8 into 24i8 (and store)
|
|
{6, MVT::v8i8, 16}, // interleave 6 x 8i8 into 48i8 (and store)
|
|
{6, MVT::v16i8, 27}, // interleave 6 x 16i8 into 96i8 (and store)
|
|
{6, MVT::v32i8, 90}, // interleave 6 x 32i8 into 192i8 (and store)
|
|
|
|
{6, MVT::v2i16, 10}, // interleave 6 x 2i16 into 12i16 (and store)
|
|
{6, MVT::v4i16, 15}, // interleave 6 x 4i16 into 24i16 (and store)
|
|
{6, MVT::v8i16, 21}, // interleave 6 x 8i16 into 48i16 (and store)
|
|
{6, MVT::v16i16, 58}, // interleave 6 x 16i16 into 96i16 (and store)
|
|
{6, MVT::v32i16, 90}, // interleave 6 x 32i16 into 192i16 (and store)
|
|
|
|
{6, MVT::v2i32, 9}, // interleave 6 x 2i32 into 12i32 (and store)
|
|
{6, MVT::v4i32, 12}, // interleave 6 x 4i32 into 24i32 (and store)
|
|
{6, MVT::v8i32, 33}, // interleave 6 x 8i32 into 48i32 (and store)
|
|
{6, MVT::v16i32, 66}, // interleave 6 x 16i32 into 96i32 (and store)
|
|
|
|
{6, MVT::v2i64, 8}, // interleave 6 x 2i64 into 12i64 (and store)
|
|
{6, MVT::v4i64, 15}, // interleave 6 x 4i64 into 24i64 (and store)
|
|
{6, MVT::v8i64, 30}, // interleave 6 x 8i64 into 48i64 (and store)
|
|
};
|
|
|
|
static const CostTblEntry SSE2InterleavedStoreTbl[] = {
|
|
{2, MVT::v2i8, 1}, // interleave 2 x 2i8 into 4i8 (and store)
|
|
{2, MVT::v4i8, 1}, // interleave 2 x 4i8 into 8i8 (and store)
|
|
{2, MVT::v8i8, 1}, // interleave 2 x 8i8 into 16i8 (and store)
|
|
|
|
{2, MVT::v2i16, 1}, // interleave 2 x 2i16 into 4i16 (and store)
|
|
{2, MVT::v4i16, 1}, // interleave 2 x 4i16 into 8i16 (and store)
|
|
|
|
{2, MVT::v2i32, 1}, // interleave 2 x 2i32 into 4i32 (and store)
|
|
};
|
|
|
|
if (Opcode == Instruction::Load) {
|
|
auto GetDiscountedCost = [Factor, NumMembers = Indices.size(),
|
|
MemOpCosts](const CostTblEntry *Entry) {
|
|
// NOTE: this is just an approximation!
|
|
// It can over/under -estimate the cost!
|
|
return MemOpCosts + divideCeil(NumMembers * Entry->Cost, Factor);
|
|
};
|
|
|
|
if (ST->hasAVX2())
|
|
if (const auto *Entry = CostTableLookup(AVX2InterleavedLoadTbl, Factor,
|
|
ETy.getSimpleVT()))
|
|
return GetDiscountedCost(Entry);
|
|
|
|
if (ST->hasSSSE3())
|
|
if (const auto *Entry = CostTableLookup(SSSE3InterleavedLoadTbl, Factor,
|
|
ETy.getSimpleVT()))
|
|
return GetDiscountedCost(Entry);
|
|
|
|
if (ST->hasSSE2())
|
|
if (const auto *Entry = CostTableLookup(SSE2InterleavedLoadTbl, Factor,
|
|
ETy.getSimpleVT()))
|
|
return GetDiscountedCost(Entry);
|
|
} else {
|
|
assert(Opcode == Instruction::Store &&
|
|
"Expected Store Instruction at this point");
|
|
assert((!Indices.size() || Indices.size() == Factor) &&
|
|
"Interleaved store only supports fully-interleaved groups.");
|
|
if (ST->hasAVX2())
|
|
if (const auto *Entry = CostTableLookup(AVX2InterleavedStoreTbl, Factor,
|
|
ETy.getSimpleVT()))
|
|
return MemOpCosts + Entry->Cost;
|
|
|
|
if (ST->hasSSE2())
|
|
if (const auto *Entry = CostTableLookup(SSE2InterleavedStoreTbl, Factor,
|
|
ETy.getSimpleVT()))
|
|
return MemOpCosts + Entry->Cost;
|
|
}
|
|
|
|
return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
|
|
Alignment, AddressSpace, CostKind,
|
|
UseMaskForCond, UseMaskForGaps);
|
|
}
|
|
|
|
InstructionCost X86TTIImpl::getScalingFactorCost(Type *Ty, GlobalValue *BaseGV,
|
|
int64_t BaseOffset,
|
|
bool HasBaseReg, int64_t Scale,
|
|
unsigned AddrSpace) const {
|
|
// Scaling factors are not free at all.
|
|
// An indexed folded instruction, i.e., inst (reg1, reg2, scale),
|
|
// will take 2 allocations in the out of order engine instead of 1
|
|
// for plain addressing mode, i.e. inst (reg1).
|
|
// E.g.,
|
|
// vaddps (%rsi,%rdx), %ymm0, %ymm1
|
|
// Requires two allocations (one for the load, one for the computation)
|
|
// whereas:
|
|
// vaddps (%rsi), %ymm0, %ymm1
|
|
// Requires just 1 allocation, i.e., freeing allocations for other operations
|
|
// and having less micro operations to execute.
|
|
//
|
|
// For some X86 architectures, this is even worse because for instance for
|
|
// stores, the complex addressing mode forces the instruction to use the
|
|
// "load" ports instead of the dedicated "store" port.
|
|
// E.g., on Haswell:
|
|
// vmovaps %ymm1, (%r8, %rdi) can use port 2 or 3.
|
|
// vmovaps %ymm1, (%r8) can use port 2, 3, or 7.
|
|
TargetLoweringBase::AddrMode AM;
|
|
AM.BaseGV = BaseGV;
|
|
AM.BaseOffs = BaseOffset;
|
|
AM.HasBaseReg = HasBaseReg;
|
|
AM.Scale = Scale;
|
|
if (getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace))
|
|
// Scale represents reg2 * scale, thus account for 1
|
|
// as soon as we use a second register.
|
|
return AM.Scale != 0;
|
|
return -1;
|
|
}
|