mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-27 12:36:09 +00:00

This is phase 2 of the MD5 refactoring on Sample Profile following https://reviews.llvm.org/D147740 In previous implementation, when a MD5 Sample Profile is read, the reader first converts the MD5 values to strings, and then create a StringRef as if the numerical strings are regular function names, and later on IPO transformation passes perform string comparison over these numerical strings for profile matching. This is inefficient since it causes many small heap allocations. In this patch I created a class `ProfileFuncRef` that is similar to `StringRef` but it can represent a hash value directly without any conversion, and it will be more efficient (I will attach some benchmark results later) when being used in associative containers. ProfileFuncRef guarantees the same function name in string form or in MD5 form has the same hash value, which also fix a few issue in IPO passes where function matching/lookup only check for function name string, while returns a no-match if the profile is MD5. When testing on an internal large profile (> 1 GB, with more than 10 million functions), the full profile load time is reduced from 28 sec to 25 sec in average, and reading function offset table from 0.78s to 0.7s
391 lines
15 KiB
C++
391 lines
15 KiB
C++
//===-- ProfileGenerator.h - Profile Generator -----------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_TOOLS_LLVM_PROGEN_PROFILEGENERATOR_H
|
|
#define LLVM_TOOLS_LLVM_PROGEN_PROFILEGENERATOR_H
|
|
#include "CSPreInliner.h"
|
|
#include "ErrorHandling.h"
|
|
#include "PerfReader.h"
|
|
#include "ProfiledBinary.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/ProfileData/SampleProfWriter.h"
|
|
#include <memory>
|
|
#include <unordered_set>
|
|
|
|
using namespace llvm;
|
|
using namespace sampleprof;
|
|
|
|
namespace llvm {
|
|
namespace sampleprof {
|
|
|
|
using ProbeCounterMap =
|
|
std::unordered_map<const MCDecodedPseudoProbe *, uint64_t>;
|
|
|
|
// This base class for profile generation of sample-based PGO. We reuse all
|
|
// structures relating to function profiles and profile writers as seen in
|
|
// /ProfileData/SampleProf.h.
|
|
class ProfileGeneratorBase {
|
|
|
|
public:
|
|
ProfileGeneratorBase(ProfiledBinary *Binary) : Binary(Binary){};
|
|
ProfileGeneratorBase(ProfiledBinary *Binary,
|
|
const ContextSampleCounterMap *Counters)
|
|
: Binary(Binary), SampleCounters(Counters){};
|
|
ProfileGeneratorBase(ProfiledBinary *Binary,
|
|
const SampleProfileMap &&Profiles)
|
|
: Binary(Binary), ProfileMap(std::move(Profiles)){};
|
|
|
|
virtual ~ProfileGeneratorBase() = default;
|
|
static std::unique_ptr<ProfileGeneratorBase>
|
|
create(ProfiledBinary *Binary, const ContextSampleCounterMap *Counters,
|
|
bool profileIsCS);
|
|
static std::unique_ptr<ProfileGeneratorBase>
|
|
create(ProfiledBinary *Binary, SampleProfileMap &ProfileMap,
|
|
bool profileIsCS);
|
|
virtual void generateProfile() = 0;
|
|
void write();
|
|
|
|
static uint32_t
|
|
getDuplicationFactor(unsigned Discriminator,
|
|
bool UseFSD = ProfileGeneratorBase::UseFSDiscriminator) {
|
|
return UseFSD ? 1
|
|
: llvm::DILocation::getDuplicationFactorFromDiscriminator(
|
|
Discriminator);
|
|
}
|
|
|
|
static uint32_t
|
|
getBaseDiscriminator(unsigned Discriminator,
|
|
bool UseFSD = ProfileGeneratorBase::UseFSDiscriminator) {
|
|
return UseFSD ? Discriminator
|
|
: DILocation::getBaseDiscriminatorFromDiscriminator(
|
|
Discriminator, /* IsFSDiscriminator */ false);
|
|
}
|
|
|
|
static bool UseFSDiscriminator;
|
|
|
|
protected:
|
|
// Use SampleProfileWriter to serialize profile map
|
|
void write(std::unique_ptr<SampleProfileWriter> Writer,
|
|
SampleProfileMap &ProfileMap);
|
|
/*
|
|
For each region boundary point, mark if it is begin or end (or both) of
|
|
the region. Boundary points are inclusive. Log the sample count as well
|
|
so we can use it when we compute the sample count of each disjoint region
|
|
later. Note that there might be multiple ranges with different sample
|
|
count that share same begin/end point. We need to accumulate the sample
|
|
count for the boundary point for such case, because for the example
|
|
below,
|
|
|
|
|<--100-->|
|
|
|<------200------>|
|
|
A B C
|
|
|
|
sample count for disjoint region [A,B] would be 300.
|
|
*/
|
|
void findDisjointRanges(RangeSample &DisjointRanges,
|
|
const RangeSample &Ranges);
|
|
|
|
// Go through each address from range to extract the top frame probe by
|
|
// looking up in the Address2ProbeMap
|
|
void extractProbesFromRange(const RangeSample &RangeCounter,
|
|
ProbeCounterMap &ProbeCounter,
|
|
bool FindDisjointRanges = true);
|
|
|
|
// Helper function for updating body sample for a leaf location in
|
|
// FunctionProfile
|
|
void updateBodySamplesforFunctionProfile(FunctionSamples &FunctionProfile,
|
|
const SampleContextFrame &LeafLoc,
|
|
uint64_t Count);
|
|
|
|
void updateFunctionSamples();
|
|
|
|
void updateTotalSamples();
|
|
|
|
void updateCallsiteSamples();
|
|
|
|
StringRef getCalleeNameForAddress(uint64_t TargetAddress);
|
|
|
|
void computeSummaryAndThreshold(SampleProfileMap &ProfileMap);
|
|
|
|
void calculateAndShowDensity(const SampleProfileMap &Profiles);
|
|
|
|
double calculateDensity(const SampleProfileMap &Profiles,
|
|
uint64_t HotCntThreshold);
|
|
|
|
void showDensitySuggestion(double Density);
|
|
|
|
void collectProfiledFunctions();
|
|
|
|
bool collectFunctionsFromRawProfile(
|
|
std::unordered_set<const BinaryFunction *> &ProfiledFunctions);
|
|
|
|
// Collect profiled Functions for llvm sample profile input.
|
|
virtual bool collectFunctionsFromLLVMProfile(
|
|
std::unordered_set<const BinaryFunction *> &ProfiledFunctions) = 0;
|
|
|
|
// Thresholds from profile summary to answer isHotCount/isColdCount queries.
|
|
uint64_t HotCountThreshold;
|
|
|
|
uint64_t ColdCountThreshold;
|
|
|
|
ProfiledBinary *Binary = nullptr;
|
|
|
|
std::unique_ptr<ProfileSummary> Summary;
|
|
|
|
// Used by SampleProfileWriter
|
|
SampleProfileMap ProfileMap;
|
|
|
|
const ContextSampleCounterMap *SampleCounters = nullptr;
|
|
};
|
|
|
|
class ProfileGenerator : public ProfileGeneratorBase {
|
|
|
|
public:
|
|
ProfileGenerator(ProfiledBinary *Binary,
|
|
const ContextSampleCounterMap *Counters)
|
|
: ProfileGeneratorBase(Binary, Counters){};
|
|
ProfileGenerator(ProfiledBinary *Binary, const SampleProfileMap &&Profiles)
|
|
: ProfileGeneratorBase(Binary, std::move(Profiles)){};
|
|
void generateProfile() override;
|
|
|
|
private:
|
|
void generateLineNumBasedProfile();
|
|
void generateProbeBasedProfile();
|
|
RangeSample preprocessRangeCounter(const RangeSample &RangeCounter);
|
|
FunctionSamples &getTopLevelFunctionProfile(FunctionId FuncName);
|
|
// Helper function to get the leaf frame's FunctionProfile by traversing the
|
|
// inline stack and meanwhile it adds the total samples for each frame's
|
|
// function profile.
|
|
FunctionSamples &
|
|
getLeafProfileAndAddTotalSamples(const SampleContextFrameVector &FrameVec,
|
|
uint64_t Count);
|
|
void populateBodySamplesForAllFunctions(const RangeSample &RangeCounter);
|
|
void
|
|
populateBoundarySamplesForAllFunctions(const BranchSample &BranchCounters);
|
|
void
|
|
populateBodySamplesWithProbesForAllFunctions(const RangeSample &RangeCounter);
|
|
void populateBoundarySamplesWithProbesForAllFunctions(
|
|
const BranchSample &BranchCounters);
|
|
void postProcessProfiles();
|
|
void trimColdProfiles(const SampleProfileMap &Profiles,
|
|
uint64_t ColdCntThreshold);
|
|
bool collectFunctionsFromLLVMProfile(
|
|
std::unordered_set<const BinaryFunction *> &ProfiledFunctions) override;
|
|
};
|
|
|
|
class CSProfileGenerator : public ProfileGeneratorBase {
|
|
public:
|
|
CSProfileGenerator(ProfiledBinary *Binary,
|
|
const ContextSampleCounterMap *Counters)
|
|
: ProfileGeneratorBase(Binary, Counters){};
|
|
CSProfileGenerator(ProfiledBinary *Binary, SampleProfileMap &Profiles)
|
|
: ProfileGeneratorBase(Binary), ContextTracker(Profiles, nullptr){};
|
|
void generateProfile() override;
|
|
|
|
// Trim the context stack at a given depth.
|
|
template <typename T>
|
|
static void trimContext(SmallVectorImpl<T> &S, int Depth = MaxContextDepth) {
|
|
if (Depth < 0 || static_cast<size_t>(Depth) >= S.size())
|
|
return;
|
|
std::copy(S.begin() + S.size() - static_cast<size_t>(Depth), S.end(),
|
|
S.begin());
|
|
S.resize(Depth);
|
|
}
|
|
|
|
// Remove adjacent repeated context sequences up to a given sequence length,
|
|
// -1 means no size limit. Note that repeated sequences are identified based
|
|
// on the exact call site, this is finer granularity than function recursion.
|
|
template <typename T>
|
|
static void compressRecursionContext(SmallVectorImpl<T> &Context,
|
|
int32_t CSize = MaxCompressionSize) {
|
|
uint32_t I = 1;
|
|
uint32_t HS = static_cast<uint32_t>(Context.size() / 2);
|
|
uint32_t MaxDedupSize =
|
|
CSize == -1 ? HS : std::min(static_cast<uint32_t>(CSize), HS);
|
|
auto BeginIter = Context.begin();
|
|
// Use an in-place algorithm to save memory copy
|
|
// End indicates the end location of current iteration's data
|
|
uint32_t End = 0;
|
|
// Deduplicate from length 1 to the max possible size of a repeated
|
|
// sequence.
|
|
while (I <= MaxDedupSize) {
|
|
// This is a linear algorithm that deduplicates adjacent repeated
|
|
// sequences of size I. The deduplication detection runs on a sliding
|
|
// window whose size is 2*I and it keeps sliding the window to deduplicate
|
|
// the data inside. Once duplication is detected, deduplicate it by
|
|
// skipping the right half part of the window, otherwise just copy back
|
|
// the new one by appending them at the back of End pointer(for the next
|
|
// iteration).
|
|
//
|
|
// For example:
|
|
// Input: [a1, a2, b1, b2]
|
|
// (Added index to distinguish the same char, the origin is [a, a, b,
|
|
// b], the size of the dedup window is 2(I = 1) at the beginning)
|
|
//
|
|
// 1) The initial status is a dummy window[null, a1], then just copy the
|
|
// right half of the window(End = 0), then slide the window.
|
|
// Result: [a1], a2, b1, b2 (End points to the element right before ],
|
|
// after ] is the data of the previous iteration)
|
|
//
|
|
// 2) Next window is [a1, a2]. Since a1 == a2, then skip the right half of
|
|
// the window i.e the duplication happen. Only slide the window.
|
|
// Result: [a1], a2, b1, b2
|
|
//
|
|
// 3) Next window is [a2, b1], copy the right half of the window(b1 is
|
|
// new) to the End and slide the window.
|
|
// Result: [a1, b1], b1, b2
|
|
//
|
|
// 4) Next window is [b1, b2], same to 2), skip b2.
|
|
// Result: [a1, b1], b1, b2
|
|
// After resize, it will be [a, b]
|
|
|
|
// Use pointers like below to do comparison inside the window
|
|
// [a b c a b c]
|
|
// | | | | |
|
|
// LeftBoundary Left Right Left+I Right+I
|
|
// A duplication found if Left < LeftBoundry.
|
|
|
|
int32_t Right = I - 1;
|
|
End = I;
|
|
int32_t LeftBoundary = 0;
|
|
while (Right + I < Context.size()) {
|
|
// To avoids scanning a part of a sequence repeatedly, it finds out
|
|
// the common suffix of two hald in the window. The common suffix will
|
|
// serve as the common prefix of next possible pair of duplicate
|
|
// sequences. The non-common part will be ignored and never scanned
|
|
// again.
|
|
|
|
// For example.
|
|
// Input: [a, b1], c1, b2, c2
|
|
// I = 2
|
|
//
|
|
// 1) For the window [a, b1, c1, b2], non-common-suffix for the right
|
|
// part is 'c1', copy it and only slide the window 1 step.
|
|
// Result: [a, b1, c1], b2, c2
|
|
//
|
|
// 2) Next window is [b1, c1, b2, c2], so duplication happen.
|
|
// Result after resize: [a, b, c]
|
|
|
|
int32_t Left = Right;
|
|
while (Left >= LeftBoundary && Context[Left] == Context[Left + I]) {
|
|
// Find the longest suffix inside the window. When stops, Left points
|
|
// at the diverging point in the current sequence.
|
|
Left--;
|
|
}
|
|
|
|
bool DuplicationFound = (Left < LeftBoundary);
|
|
// Don't need to recheck the data before Right
|
|
LeftBoundary = Right + 1;
|
|
if (DuplicationFound) {
|
|
// Duplication found, skip right half of the window.
|
|
Right += I;
|
|
} else {
|
|
// Copy the non-common-suffix part of the adjacent sequence.
|
|
std::copy(BeginIter + Right + 1, BeginIter + Left + I + 1,
|
|
BeginIter + End);
|
|
End += Left + I - Right;
|
|
// Only slide the window by the size of non-common-suffix
|
|
Right = Left + I;
|
|
}
|
|
}
|
|
// Don't forget the remaining part that's not scanned.
|
|
std::copy(BeginIter + Right + 1, Context.end(), BeginIter + End);
|
|
End += Context.size() - Right - 1;
|
|
I++;
|
|
Context.resize(End);
|
|
MaxDedupSize = std::min(static_cast<uint32_t>(End / 2), MaxDedupSize);
|
|
}
|
|
}
|
|
|
|
private:
|
|
void generateLineNumBasedProfile();
|
|
|
|
FunctionSamples *getOrCreateFunctionSamples(ContextTrieNode *ContextNode,
|
|
bool WasLeafInlined = false);
|
|
|
|
// Lookup or create ContextTrieNode for the context, FunctionSamples is
|
|
// created inside this function.
|
|
ContextTrieNode *getOrCreateContextNode(const SampleContextFrames Context,
|
|
bool WasLeafInlined = false);
|
|
|
|
// For profiled only functions, on-demand compute their inline context
|
|
// function byte size which is used by the pre-inliner.
|
|
void computeSizeForProfiledFunctions();
|
|
// Post processing for profiles before writing out, such as mermining
|
|
// and trimming cold profiles, running preinliner on profiles.
|
|
void postProcessProfiles();
|
|
|
|
void populateBodySamplesForFunction(FunctionSamples &FunctionProfile,
|
|
const RangeSample &RangeCounters);
|
|
|
|
void populateBoundarySamplesForFunction(ContextTrieNode *CallerNode,
|
|
const BranchSample &BranchCounters);
|
|
|
|
void populateInferredFunctionSamples(ContextTrieNode &Node);
|
|
|
|
void updateFunctionSamples();
|
|
|
|
void generateProbeBasedProfile();
|
|
|
|
// Fill in function body samples from probes
|
|
void populateBodySamplesWithProbes(const RangeSample &RangeCounter,
|
|
const AddrBasedCtxKey *CtxKey);
|
|
// Fill in boundary samples for a call probe
|
|
void populateBoundarySamplesWithProbes(const BranchSample &BranchCounter,
|
|
const AddrBasedCtxKey *CtxKey);
|
|
|
|
ContextTrieNode *
|
|
getContextNodeForLeafProbe(const AddrBasedCtxKey *CtxKey,
|
|
const MCDecodedPseudoProbe *LeafProbe);
|
|
|
|
// Helper function to get FunctionSamples for the leaf probe
|
|
FunctionSamples &
|
|
getFunctionProfileForLeafProbe(const AddrBasedCtxKey *CtxKey,
|
|
const MCDecodedPseudoProbe *LeafProbe);
|
|
|
|
void convertToProfileMap(ContextTrieNode &Node,
|
|
SampleContextFrameVector &Context);
|
|
|
|
void convertToProfileMap();
|
|
|
|
void computeSummaryAndThreshold();
|
|
|
|
bool collectFunctionsFromLLVMProfile(
|
|
std::unordered_set<const BinaryFunction *> &ProfiledFunctions) override;
|
|
|
|
void initializeMissingFrameInferrer();
|
|
|
|
// Given an input `Context`, output `NewContext` with inferred missing tail
|
|
// call frames.
|
|
void inferMissingFrames(const SmallVectorImpl<uint64_t> &Context,
|
|
SmallVectorImpl<uint64_t> &NewContext);
|
|
|
|
ContextTrieNode &getRootContext() { return ContextTracker.getRootContext(); };
|
|
|
|
// The container for holding the FunctionSamples used by context trie.
|
|
std::list<FunctionSamples> FSamplesList;
|
|
|
|
// Underlying context table serves for sample profile writer.
|
|
std::unordered_set<SampleContextFrameVector, SampleContextFrameHash> Contexts;
|
|
|
|
SampleContextTracker ContextTracker;
|
|
|
|
bool IsProfileValidOnTrie = true;
|
|
|
|
public:
|
|
// Deduplicate adjacent repeated context sequences up to a given sequence
|
|
// length. -1 means no size limit.
|
|
static int32_t MaxCompressionSize;
|
|
static int MaxContextDepth;
|
|
};
|
|
|
|
} // end namespace sampleprof
|
|
} // end namespace llvm
|
|
|
|
#endif
|