llvm-project/clang/lib/Sema/SemaChecking.cpp
Farzon Lotfi 16c84c4475
[DirectX] Add target builtins (#134439)
- fixes #132303
- Moves dot2add from a language builtin to a target builtin.
-  Sets the scaffolding for Sema checks for DX builtins
-  Setup DirectX backend as able to have target builtins
- Adds a DX TargetBuiltins emitter in
`clang/lib/CodeGen/TargetBuiltins/DirectX.cpp`
2025-04-07 12:06:57 -04:00

15719 lines
578 KiB
C++

//===- SemaChecking.cpp - Extra Semantic Checking -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements extra semantic analysis beyond what is enforced
// by the C type system.
//
//===----------------------------------------------------------------------===//
#include "CheckExprLifetime.h"
#include "clang/AST/APValue.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/AttrIterator.h"
#include "clang/AST/CharUnits.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclarationName.h"
#include "clang/AST/EvaluatedExprVisitor.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/FormatString.h"
#include "clang/AST/IgnoreExpr.h"
#include "clang/AST/NSAPI.h"
#include "clang/AST/NonTrivialTypeVisitor.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/TemplateBase.h"
#include "clang/AST/Type.h"
#include "clang/AST/TypeLoc.h"
#include "clang/AST/UnresolvedSet.h"
#include "clang/Basic/AddressSpaces.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/OpenCLOptions.h"
#include "clang/Basic/OperatorKinds.h"
#include "clang/Basic/PartialDiagnostic.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/SyncScope.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/TypeTraits.h"
#include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
#include "clang/Sema/Initialization.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Ownership.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/ScopeInfo.h"
#include "clang/Sema/Sema.h"
#include "clang/Sema/SemaAMDGPU.h"
#include "clang/Sema/SemaARM.h"
#include "clang/Sema/SemaBPF.h"
#include "clang/Sema/SemaDirectX.h"
#include "clang/Sema/SemaHLSL.h"
#include "clang/Sema/SemaHexagon.h"
#include "clang/Sema/SemaLoongArch.h"
#include "clang/Sema/SemaMIPS.h"
#include "clang/Sema/SemaNVPTX.h"
#include "clang/Sema/SemaObjC.h"
#include "clang/Sema/SemaOpenCL.h"
#include "clang/Sema/SemaPPC.h"
#include "clang/Sema/SemaRISCV.h"
#include "clang/Sema/SemaSPIRV.h"
#include "clang/Sema/SemaSystemZ.h"
#include "clang/Sema/SemaWasm.h"
#include "clang/Sema/SemaX86.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ConvertUTF.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/Locale.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TargetParser/RISCVTargetParser.h"
#include "llvm/TargetParser/Triple.h"
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cstddef>
#include <cstdint>
#include <functional>
#include <limits>
#include <optional>
#include <string>
#include <tuple>
#include <utility>
using namespace clang;
using namespace sema;
SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
unsigned ByteNo) const {
return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
Context.getTargetInfo());
}
static constexpr unsigned short combineFAPK(Sema::FormatArgumentPassingKind A,
Sema::FormatArgumentPassingKind B) {
return (A << 8) | B;
}
bool Sema::checkArgCountAtLeast(CallExpr *Call, unsigned MinArgCount) {
unsigned ArgCount = Call->getNumArgs();
if (ArgCount >= MinArgCount)
return false;
return Diag(Call->getEndLoc(), diag::err_typecheck_call_too_few_args)
<< 0 /*function call*/ << MinArgCount << ArgCount
<< /*is non object*/ 0 << Call->getSourceRange();
}
bool Sema::checkArgCountAtMost(CallExpr *Call, unsigned MaxArgCount) {
unsigned ArgCount = Call->getNumArgs();
if (ArgCount <= MaxArgCount)
return false;
return Diag(Call->getEndLoc(), diag::err_typecheck_call_too_many_args_at_most)
<< 0 /*function call*/ << MaxArgCount << ArgCount
<< /*is non object*/ 0 << Call->getSourceRange();
}
bool Sema::checkArgCountRange(CallExpr *Call, unsigned MinArgCount,
unsigned MaxArgCount) {
return checkArgCountAtLeast(Call, MinArgCount) ||
checkArgCountAtMost(Call, MaxArgCount);
}
bool Sema::checkArgCount(CallExpr *Call, unsigned DesiredArgCount) {
unsigned ArgCount = Call->getNumArgs();
if (ArgCount == DesiredArgCount)
return false;
if (checkArgCountAtLeast(Call, DesiredArgCount))
return true;
assert(ArgCount > DesiredArgCount && "should have diagnosed this");
// Highlight all the excess arguments.
SourceRange Range(Call->getArg(DesiredArgCount)->getBeginLoc(),
Call->getArg(ArgCount - 1)->getEndLoc());
return Diag(Range.getBegin(), diag::err_typecheck_call_too_many_args)
<< 0 /*function call*/ << DesiredArgCount << ArgCount
<< /*is non object*/ 0 << Call->getArg(1)->getSourceRange();
}
static bool checkBuiltinVerboseTrap(CallExpr *Call, Sema &S) {
bool HasError = false;
for (unsigned I = 0; I < Call->getNumArgs(); ++I) {
Expr *Arg = Call->getArg(I);
if (Arg->isValueDependent())
continue;
std::optional<std::string> ArgString = Arg->tryEvaluateString(S.Context);
int DiagMsgKind = -1;
// Arguments must be pointers to constant strings and cannot use '$'.
if (!ArgString.has_value())
DiagMsgKind = 0;
else if (ArgString->find('$') != std::string::npos)
DiagMsgKind = 1;
if (DiagMsgKind >= 0) {
S.Diag(Arg->getBeginLoc(), diag::err_builtin_verbose_trap_arg)
<< DiagMsgKind << Arg->getSourceRange();
HasError = true;
}
}
return !HasError;
}
static bool convertArgumentToType(Sema &S, Expr *&Value, QualType Ty) {
if (Value->isTypeDependent())
return false;
InitializedEntity Entity =
InitializedEntity::InitializeParameter(S.Context, Ty, false);
ExprResult Result =
S.PerformCopyInitialization(Entity, SourceLocation(), Value);
if (Result.isInvalid())
return true;
Value = Result.get();
return false;
}
/// Check that the first argument to __builtin_annotation is an integer
/// and the second argument is a non-wide string literal.
static bool BuiltinAnnotation(Sema &S, CallExpr *TheCall) {
if (S.checkArgCount(TheCall, 2))
return true;
// First argument should be an integer.
Expr *ValArg = TheCall->getArg(0);
QualType Ty = ValArg->getType();
if (!Ty->isIntegerType()) {
S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg)
<< ValArg->getSourceRange();
return true;
}
// Second argument should be a constant string.
Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
if (!Literal || !Literal->isOrdinary()) {
S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg)
<< StrArg->getSourceRange();
return true;
}
TheCall->setType(Ty);
return false;
}
static bool BuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) {
// We need at least one argument.
if (TheCall->getNumArgs() < 1) {
S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
<< 0 << 1 << TheCall->getNumArgs() << /*is non object*/ 0
<< TheCall->getCallee()->getSourceRange();
return true;
}
// All arguments should be wide string literals.
for (Expr *Arg : TheCall->arguments()) {
auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
if (!Literal || !Literal->isWide()) {
S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str)
<< Arg->getSourceRange();
return true;
}
}
return false;
}
/// Check that the argument to __builtin_addressof is a glvalue, and set the
/// result type to the corresponding pointer type.
static bool BuiltinAddressof(Sema &S, CallExpr *TheCall) {
if (S.checkArgCount(TheCall, 1))
return true;
ExprResult Arg(TheCall->getArg(0));
QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc());
if (ResultType.isNull())
return true;
TheCall->setArg(0, Arg.get());
TheCall->setType(ResultType);
return false;
}
/// Check that the argument to __builtin_function_start is a function.
static bool BuiltinFunctionStart(Sema &S, CallExpr *TheCall) {
if (S.checkArgCount(TheCall, 1))
return true;
ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
if (Arg.isInvalid())
return true;
TheCall->setArg(0, Arg.get());
const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(
Arg.get()->getAsBuiltinConstantDeclRef(S.getASTContext()));
if (!FD) {
S.Diag(TheCall->getBeginLoc(), diag::err_function_start_invalid_type)
<< TheCall->getSourceRange();
return true;
}
return !S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
TheCall->getBeginLoc());
}
/// Check the number of arguments and set the result type to
/// the argument type.
static bool BuiltinPreserveAI(Sema &S, CallExpr *TheCall) {
if (S.checkArgCount(TheCall, 1))
return true;
TheCall->setType(TheCall->getArg(0)->getType());
return false;
}
/// Check that the value argument for __builtin_is_aligned(value, alignment) and
/// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer
/// type (but not a function pointer) and that the alignment is a power-of-two.
static bool BuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) {
if (S.checkArgCount(TheCall, 2))
return true;
clang::Expr *Source = TheCall->getArg(0);
bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned;
auto IsValidIntegerType = [](QualType Ty) {
return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType();
};
QualType SrcTy = Source->getType();
// We should also be able to use it with arrays (but not functions!).
if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) {
SrcTy = S.Context.getDecayedType(SrcTy);
}
if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) ||
SrcTy->isFunctionPointerType()) {
// FIXME: this is not quite the right error message since we don't allow
// floating point types, or member pointers.
S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand)
<< SrcTy;
return true;
}
clang::Expr *AlignOp = TheCall->getArg(1);
if (!IsValidIntegerType(AlignOp->getType())) {
S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int)
<< AlignOp->getType();
return true;
}
Expr::EvalResult AlignResult;
unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1;
// We can't check validity of alignment if it is value dependent.
if (!AlignOp->isValueDependent() &&
AlignOp->EvaluateAsInt(AlignResult, S.Context,
Expr::SE_AllowSideEffects)) {
llvm::APSInt AlignValue = AlignResult.Val.getInt();
llvm::APSInt MaxValue(
llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits));
if (AlignValue < 1) {
S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1;
return true;
}
if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) {
S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big)
<< toString(MaxValue, 10);
return true;
}
if (!AlignValue.isPowerOf2()) {
S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two);
return true;
}
if (AlignValue == 1) {
S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless)
<< IsBooleanAlignBuiltin;
}
}
ExprResult SrcArg = S.PerformCopyInitialization(
InitializedEntity::InitializeParameter(S.Context, SrcTy, false),
SourceLocation(), Source);
if (SrcArg.isInvalid())
return true;
TheCall->setArg(0, SrcArg.get());
ExprResult AlignArg =
S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
S.Context, AlignOp->getType(), false),
SourceLocation(), AlignOp);
if (AlignArg.isInvalid())
return true;
TheCall->setArg(1, AlignArg.get());
// For align_up/align_down, the return type is the same as the (potentially
// decayed) argument type including qualifiers. For is_aligned(), the result
// is always bool.
TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy);
return false;
}
static bool BuiltinOverflow(Sema &S, CallExpr *TheCall, unsigned BuiltinID) {
if (S.checkArgCount(TheCall, 3))
return true;
std::pair<unsigned, const char *> Builtins[] = {
{ Builtin::BI__builtin_add_overflow, "ckd_add" },
{ Builtin::BI__builtin_sub_overflow, "ckd_sub" },
{ Builtin::BI__builtin_mul_overflow, "ckd_mul" },
};
bool CkdOperation = llvm::any_of(Builtins, [&](const std::pair<unsigned,
const char *> &P) {
return BuiltinID == P.first && TheCall->getExprLoc().isMacroID() &&
Lexer::getImmediateMacroName(TheCall->getExprLoc(),
S.getSourceManager(), S.getLangOpts()) == P.second;
});
auto ValidCkdIntType = [](QualType QT) {
// A valid checked integer type is an integer type other than a plain char,
// bool, a bit-precise type, or an enumeration type.
if (const auto *BT = QT.getCanonicalType()->getAs<BuiltinType>())
return (BT->getKind() >= BuiltinType::Short &&
BT->getKind() <= BuiltinType::Int128) || (
BT->getKind() >= BuiltinType::UShort &&
BT->getKind() <= BuiltinType::UInt128) ||
BT->getKind() == BuiltinType::UChar ||
BT->getKind() == BuiltinType::SChar;
return false;
};
// First two arguments should be integers.
for (unsigned I = 0; I < 2; ++I) {
ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(I));
if (Arg.isInvalid()) return true;
TheCall->setArg(I, Arg.get());
QualType Ty = Arg.get()->getType();
bool IsValid = CkdOperation ? ValidCkdIntType(Ty) : Ty->isIntegerType();
if (!IsValid) {
S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int)
<< CkdOperation << Ty << Arg.get()->getSourceRange();
return true;
}
}
// Third argument should be a pointer to a non-const integer.
// IRGen correctly handles volatile, restrict, and address spaces, and
// the other qualifiers aren't possible.
{
ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(2));
if (Arg.isInvalid()) return true;
TheCall->setArg(2, Arg.get());
QualType Ty = Arg.get()->getType();
const auto *PtrTy = Ty->getAs<PointerType>();
if (!PtrTy ||
!PtrTy->getPointeeType()->isIntegerType() ||
(!ValidCkdIntType(PtrTy->getPointeeType()) && CkdOperation) ||
PtrTy->getPointeeType().isConstQualified()) {
S.Diag(Arg.get()->getBeginLoc(),
diag::err_overflow_builtin_must_be_ptr_int)
<< CkdOperation << Ty << Arg.get()->getSourceRange();
return true;
}
}
// Disallow signed bit-precise integer args larger than 128 bits to mul
// function until we improve backend support.
if (BuiltinID == Builtin::BI__builtin_mul_overflow) {
for (unsigned I = 0; I < 3; ++I) {
const auto Arg = TheCall->getArg(I);
// Third argument will be a pointer.
auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType();
if (Ty->isBitIntType() && Ty->isSignedIntegerType() &&
S.getASTContext().getIntWidth(Ty) > 128)
return S.Diag(Arg->getBeginLoc(),
diag::err_overflow_builtin_bit_int_max_size)
<< 128;
}
}
return false;
}
namespace {
struct BuiltinDumpStructGenerator {
Sema &S;
CallExpr *TheCall;
SourceLocation Loc = TheCall->getBeginLoc();
SmallVector<Expr *, 32> Actions;
DiagnosticErrorTrap ErrorTracker;
PrintingPolicy Policy;
BuiltinDumpStructGenerator(Sema &S, CallExpr *TheCall)
: S(S), TheCall(TheCall), ErrorTracker(S.getDiagnostics()),
Policy(S.Context.getPrintingPolicy()) {
Policy.AnonymousTagLocations = false;
}
Expr *makeOpaqueValueExpr(Expr *Inner) {
auto *OVE = new (S.Context)
OpaqueValueExpr(Loc, Inner->getType(), Inner->getValueKind(),
Inner->getObjectKind(), Inner);
Actions.push_back(OVE);
return OVE;
}
Expr *getStringLiteral(llvm::StringRef Str) {
Expr *Lit = S.Context.getPredefinedStringLiteralFromCache(Str);
// Wrap the literal in parentheses to attach a source location.
return new (S.Context) ParenExpr(Loc, Loc, Lit);
}
bool callPrintFunction(llvm::StringRef Format,
llvm::ArrayRef<Expr *> Exprs = {}) {
SmallVector<Expr *, 8> Args;
assert(TheCall->getNumArgs() >= 2);
Args.reserve((TheCall->getNumArgs() - 2) + /*Format*/ 1 + Exprs.size());
Args.assign(TheCall->arg_begin() + 2, TheCall->arg_end());
Args.push_back(getStringLiteral(Format));
Args.insert(Args.end(), Exprs.begin(), Exprs.end());
// Register a note to explain why we're performing the call.
Sema::CodeSynthesisContext Ctx;
Ctx.Kind = Sema::CodeSynthesisContext::BuildingBuiltinDumpStructCall;
Ctx.PointOfInstantiation = Loc;
Ctx.CallArgs = Args.data();
Ctx.NumCallArgs = Args.size();
S.pushCodeSynthesisContext(Ctx);
ExprResult RealCall =
S.BuildCallExpr(/*Scope=*/nullptr, TheCall->getArg(1),
TheCall->getBeginLoc(), Args, TheCall->getRParenLoc());
S.popCodeSynthesisContext();
if (!RealCall.isInvalid())
Actions.push_back(RealCall.get());
// Bail out if we've hit any errors, even if we managed to build the
// call. We don't want to produce more than one error.
return RealCall.isInvalid() || ErrorTracker.hasErrorOccurred();
}
Expr *getIndentString(unsigned Depth) {
if (!Depth)
return nullptr;
llvm::SmallString<32> Indent;
Indent.resize(Depth * Policy.Indentation, ' ');
return getStringLiteral(Indent);
}
Expr *getTypeString(QualType T) {
return getStringLiteral(T.getAsString(Policy));
}
bool appendFormatSpecifier(QualType T, llvm::SmallVectorImpl<char> &Str) {
llvm::raw_svector_ostream OS(Str);
// Format 'bool', 'char', 'signed char', 'unsigned char' as numbers, rather
// than trying to print a single character.
if (auto *BT = T->getAs<BuiltinType>()) {
switch (BT->getKind()) {
case BuiltinType::Bool:
OS << "%d";
return true;
case BuiltinType::Char_U:
case BuiltinType::UChar:
OS << "%hhu";
return true;
case BuiltinType::Char_S:
case BuiltinType::SChar:
OS << "%hhd";
return true;
default:
break;
}
}
analyze_printf::PrintfSpecifier Specifier;
if (Specifier.fixType(T, S.getLangOpts(), S.Context, /*IsObjCLiteral=*/false)) {
// We were able to guess how to format this.
if (Specifier.getConversionSpecifier().getKind() ==
analyze_printf::PrintfConversionSpecifier::sArg) {
// Wrap double-quotes around a '%s' specifier and limit its maximum
// length. Ideally we'd also somehow escape special characters in the
// contents but printf doesn't support that.
// FIXME: '%s' formatting is not safe in general.
OS << '"';
Specifier.setPrecision(analyze_printf::OptionalAmount(32u));
Specifier.toString(OS);
OS << '"';
// FIXME: It would be nice to include a '...' if the string doesn't fit
// in the length limit.
} else {
Specifier.toString(OS);
}
return true;
}
if (T->isPointerType()) {
// Format all pointers with '%p'.
OS << "%p";
return true;
}
return false;
}
bool dumpUnnamedRecord(const RecordDecl *RD, Expr *E, unsigned Depth) {
Expr *IndentLit = getIndentString(Depth);
Expr *TypeLit = getTypeString(S.Context.getRecordType(RD));
if (IndentLit ? callPrintFunction("%s%s", {IndentLit, TypeLit})
: callPrintFunction("%s", {TypeLit}))
return true;
return dumpRecordValue(RD, E, IndentLit, Depth);
}
// Dump a record value. E should be a pointer or lvalue referring to an RD.
bool dumpRecordValue(const RecordDecl *RD, Expr *E, Expr *RecordIndent,
unsigned Depth) {
// FIXME: Decide what to do if RD is a union. At least we should probably
// turn off printing `const char*` members with `%s`, because that is very
// likely to crash if that's not the active member. Whatever we decide, we
// should document it.
// Build an OpaqueValueExpr so we can refer to E more than once without
// triggering re-evaluation.
Expr *RecordArg = makeOpaqueValueExpr(E);
bool RecordArgIsPtr = RecordArg->getType()->isPointerType();
if (callPrintFunction(" {\n"))
return true;
// Dump each base class, regardless of whether they're aggregates.
if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
for (const auto &Base : CXXRD->bases()) {
QualType BaseType =
RecordArgIsPtr ? S.Context.getPointerType(Base.getType())
: S.Context.getLValueReferenceType(Base.getType());
ExprResult BasePtr = S.BuildCStyleCastExpr(
Loc, S.Context.getTrivialTypeSourceInfo(BaseType, Loc), Loc,
RecordArg);
if (BasePtr.isInvalid() ||
dumpUnnamedRecord(Base.getType()->getAsRecordDecl(), BasePtr.get(),
Depth + 1))
return true;
}
}
Expr *FieldIndentArg = getIndentString(Depth + 1);
// Dump each field.
for (auto *D : RD->decls()) {
auto *IFD = dyn_cast<IndirectFieldDecl>(D);
auto *FD = IFD ? IFD->getAnonField() : dyn_cast<FieldDecl>(D);
if (!FD || FD->isUnnamedBitField() || FD->isAnonymousStructOrUnion())
continue;
llvm::SmallString<20> Format = llvm::StringRef("%s%s %s ");
llvm::SmallVector<Expr *, 5> Args = {FieldIndentArg,
getTypeString(FD->getType()),
getStringLiteral(FD->getName())};
if (FD->isBitField()) {
Format += ": %zu ";
QualType SizeT = S.Context.getSizeType();
llvm::APInt BitWidth(S.Context.getIntWidth(SizeT),
FD->getBitWidthValue());
Args.push_back(IntegerLiteral::Create(S.Context, BitWidth, SizeT, Loc));
}
Format += "=";
ExprResult Field =
IFD ? S.BuildAnonymousStructUnionMemberReference(
CXXScopeSpec(), Loc, IFD,
DeclAccessPair::make(IFD, AS_public), RecordArg, Loc)
: S.BuildFieldReferenceExpr(
RecordArg, RecordArgIsPtr, Loc, CXXScopeSpec(), FD,
DeclAccessPair::make(FD, AS_public),
DeclarationNameInfo(FD->getDeclName(), Loc));
if (Field.isInvalid())
return true;
auto *InnerRD = FD->getType()->getAsRecordDecl();
auto *InnerCXXRD = dyn_cast_or_null<CXXRecordDecl>(InnerRD);
if (InnerRD && (!InnerCXXRD || InnerCXXRD->isAggregate())) {
// Recursively print the values of members of aggregate record type.
if (callPrintFunction(Format, Args) ||
dumpRecordValue(InnerRD, Field.get(), FieldIndentArg, Depth + 1))
return true;
} else {
Format += " ";
if (appendFormatSpecifier(FD->getType(), Format)) {
// We know how to print this field.
Args.push_back(Field.get());
} else {
// We don't know how to print this field. Print out its address
// with a format specifier that a smart tool will be able to
// recognize and treat specially.
Format += "*%p";
ExprResult FieldAddr =
S.BuildUnaryOp(nullptr, Loc, UO_AddrOf, Field.get());
if (FieldAddr.isInvalid())
return true;
Args.push_back(FieldAddr.get());
}
Format += "\n";
if (callPrintFunction(Format, Args))
return true;
}
}
return RecordIndent ? callPrintFunction("%s}\n", RecordIndent)
: callPrintFunction("}\n");
}
Expr *buildWrapper() {
auto *Wrapper = PseudoObjectExpr::Create(S.Context, TheCall, Actions,
PseudoObjectExpr::NoResult);
TheCall->setType(Wrapper->getType());
TheCall->setValueKind(Wrapper->getValueKind());
return Wrapper;
}
};
} // namespace
static ExprResult BuiltinDumpStruct(Sema &S, CallExpr *TheCall) {
if (S.checkArgCountAtLeast(TheCall, 2))
return ExprError();
ExprResult PtrArgResult = S.DefaultLvalueConversion(TheCall->getArg(0));
if (PtrArgResult.isInvalid())
return ExprError();
TheCall->setArg(0, PtrArgResult.get());
// First argument should be a pointer to a struct.
QualType PtrArgType = PtrArgResult.get()->getType();
if (!PtrArgType->isPointerType() ||
!PtrArgType->getPointeeType()->isRecordType()) {
S.Diag(PtrArgResult.get()->getBeginLoc(),
diag::err_expected_struct_pointer_argument)
<< 1 << TheCall->getDirectCallee() << PtrArgType;
return ExprError();
}
QualType Pointee = PtrArgType->getPointeeType();
const RecordDecl *RD = Pointee->getAsRecordDecl();
// Try to instantiate the class template as appropriate; otherwise, access to
// its data() may lead to a crash.
if (S.RequireCompleteType(PtrArgResult.get()->getBeginLoc(), Pointee,
diag::err_incomplete_type))
return ExprError();
// Second argument is a callable, but we can't fully validate it until we try
// calling it.
QualType FnArgType = TheCall->getArg(1)->getType();
if (!FnArgType->isFunctionType() && !FnArgType->isFunctionPointerType() &&
!FnArgType->isBlockPointerType() &&
!(S.getLangOpts().CPlusPlus && FnArgType->isRecordType())) {
auto *BT = FnArgType->getAs<BuiltinType>();
switch (BT ? BT->getKind() : BuiltinType::Void) {
case BuiltinType::Dependent:
case BuiltinType::Overload:
case BuiltinType::BoundMember:
case BuiltinType::PseudoObject:
case BuiltinType::UnknownAny:
case BuiltinType::BuiltinFn:
// This might be a callable.
break;
default:
S.Diag(TheCall->getArg(1)->getBeginLoc(),
diag::err_expected_callable_argument)
<< 2 << TheCall->getDirectCallee() << FnArgType;
return ExprError();
}
}
BuiltinDumpStructGenerator Generator(S, TheCall);
// Wrap parentheses around the given pointer. This is not necessary for
// correct code generation, but it means that when we pretty-print the call
// arguments in our diagnostics we will produce '(&s)->n' instead of the
// incorrect '&s->n'.
Expr *PtrArg = PtrArgResult.get();
PtrArg = new (S.Context)
ParenExpr(PtrArg->getBeginLoc(),
S.getLocForEndOfToken(PtrArg->getEndLoc()), PtrArg);
if (Generator.dumpUnnamedRecord(RD, PtrArg, 0))
return ExprError();
return Generator.buildWrapper();
}
static bool BuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
if (S.checkArgCount(BuiltinCall, 2))
return true;
SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc();
Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
Expr *Call = BuiltinCall->getArg(0);
Expr *Chain = BuiltinCall->getArg(1);
if (Call->getStmtClass() != Stmt::CallExprClass) {
S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
<< Call->getSourceRange();
return true;
}
auto CE = cast<CallExpr>(Call);
if (CE->getCallee()->getType()->isBlockPointerType()) {
S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
<< Call->getSourceRange();
return true;
}
const Decl *TargetDecl = CE->getCalleeDecl();
if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
if (FD->getBuiltinID()) {
S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
<< Call->getSourceRange();
return true;
}
if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
<< Call->getSourceRange();
return true;
}
ExprResult ChainResult = S.UsualUnaryConversions(Chain);
if (ChainResult.isInvalid())
return true;
if (!ChainResult.get()->getType()->isPointerType()) {
S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
<< Chain->getSourceRange();
return true;
}
QualType ReturnTy = CE->getCallReturnType(S.Context);
QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
QualType BuiltinTy = S.Context.getFunctionType(
ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
Builtin =
S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
BuiltinCall->setType(CE->getType());
BuiltinCall->setValueKind(CE->getValueKind());
BuiltinCall->setObjectKind(CE->getObjectKind());
BuiltinCall->setCallee(Builtin);
BuiltinCall->setArg(1, ChainResult.get());
return false;
}
namespace {
class ScanfDiagnosticFormatHandler
: public analyze_format_string::FormatStringHandler {
// Accepts the argument index (relative to the first destination index) of the
// argument whose size we want.
using ComputeSizeFunction =
llvm::function_ref<std::optional<llvm::APSInt>(unsigned)>;
// Accepts the argument index (relative to the first destination index), the
// destination size, and the source size).
using DiagnoseFunction =
llvm::function_ref<void(unsigned, unsigned, unsigned)>;
ComputeSizeFunction ComputeSizeArgument;
DiagnoseFunction Diagnose;
public:
ScanfDiagnosticFormatHandler(ComputeSizeFunction ComputeSizeArgument,
DiagnoseFunction Diagnose)
: ComputeSizeArgument(ComputeSizeArgument), Diagnose(Diagnose) {}
bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
const char *StartSpecifier,
unsigned specifierLen) override {
if (!FS.consumesDataArgument())
return true;
unsigned NulByte = 0;
switch ((FS.getConversionSpecifier().getKind())) {
default:
return true;
case analyze_format_string::ConversionSpecifier::sArg:
case analyze_format_string::ConversionSpecifier::ScanListArg:
NulByte = 1;
break;
case analyze_format_string::ConversionSpecifier::cArg:
break;
}
analyze_format_string::OptionalAmount FW = FS.getFieldWidth();
if (FW.getHowSpecified() !=
analyze_format_string::OptionalAmount::HowSpecified::Constant)
return true;
unsigned SourceSize = FW.getConstantAmount() + NulByte;
std::optional<llvm::APSInt> DestSizeAPS =
ComputeSizeArgument(FS.getArgIndex());
if (!DestSizeAPS)
return true;
unsigned DestSize = DestSizeAPS->getZExtValue();
if (DestSize < SourceSize)
Diagnose(FS.getArgIndex(), DestSize, SourceSize);
return true;
}
};
class EstimateSizeFormatHandler
: public analyze_format_string::FormatStringHandler {
size_t Size;
/// Whether the format string contains Linux kernel's format specifier
/// extension.
bool IsKernelCompatible = true;
public:
EstimateSizeFormatHandler(StringRef Format)
: Size(std::min(Format.find(0), Format.size()) +
1 /* null byte always written by sprintf */) {}
bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
const char *, unsigned SpecifierLen,
const TargetInfo &) override {
const size_t FieldWidth = computeFieldWidth(FS);
const size_t Precision = computePrecision(FS);
// The actual format.
switch (FS.getConversionSpecifier().getKind()) {
// Just a char.
case analyze_format_string::ConversionSpecifier::cArg:
case analyze_format_string::ConversionSpecifier::CArg:
Size += std::max(FieldWidth, (size_t)1);
break;
// Just an integer.
case analyze_format_string::ConversionSpecifier::dArg:
case analyze_format_string::ConversionSpecifier::DArg:
case analyze_format_string::ConversionSpecifier::iArg:
case analyze_format_string::ConversionSpecifier::oArg:
case analyze_format_string::ConversionSpecifier::OArg:
case analyze_format_string::ConversionSpecifier::uArg:
case analyze_format_string::ConversionSpecifier::UArg:
case analyze_format_string::ConversionSpecifier::xArg:
case analyze_format_string::ConversionSpecifier::XArg:
Size += std::max(FieldWidth, Precision);
break;
// %g style conversion switches between %f or %e style dynamically.
// %g removes trailing zeros, and does not print decimal point if there are
// no digits that follow it. Thus %g can print a single digit.
// FIXME: If it is alternative form:
// For g and G conversions, trailing zeros are not removed from the result.
case analyze_format_string::ConversionSpecifier::gArg:
case analyze_format_string::ConversionSpecifier::GArg:
Size += 1;
break;
// Floating point number in the form '[+]ddd.ddd'.
case analyze_format_string::ConversionSpecifier::fArg:
case analyze_format_string::ConversionSpecifier::FArg:
Size += std::max(FieldWidth, 1 /* integer part */ +
(Precision ? 1 + Precision
: 0) /* period + decimal */);
break;
// Floating point number in the form '[-]d.ddde[+-]dd'.
case analyze_format_string::ConversionSpecifier::eArg:
case analyze_format_string::ConversionSpecifier::EArg:
Size +=
std::max(FieldWidth,
1 /* integer part */ +
(Precision ? 1 + Precision : 0) /* period + decimal */ +
1 /* e or E letter */ + 2 /* exponent */);
break;
// Floating point number in the form '[-]0xh.hhhhp±dd'.
case analyze_format_string::ConversionSpecifier::aArg:
case analyze_format_string::ConversionSpecifier::AArg:
Size +=
std::max(FieldWidth,
2 /* 0x */ + 1 /* integer part */ +
(Precision ? 1 + Precision : 0) /* period + decimal */ +
1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */);
break;
// Just a string.
case analyze_format_string::ConversionSpecifier::sArg:
case analyze_format_string::ConversionSpecifier::SArg:
Size += FieldWidth;
break;
// Just a pointer in the form '0xddd'.
case analyze_format_string::ConversionSpecifier::pArg:
// Linux kernel has its own extesion for `%p` specifier.
// Kernel Document:
// https://docs.kernel.org/core-api/printk-formats.html#pointer-types
IsKernelCompatible = false;
Size += std::max(FieldWidth, 2 /* leading 0x */ + Precision);
break;
// A plain percent.
case analyze_format_string::ConversionSpecifier::PercentArg:
Size += 1;
break;
default:
break;
}
Size += FS.hasPlusPrefix() || FS.hasSpacePrefix();
if (FS.hasAlternativeForm()) {
switch (FS.getConversionSpecifier().getKind()) {
// For o conversion, it increases the precision, if and only if necessary,
// to force the first digit of the result to be a zero
// (if the value and precision are both 0, a single 0 is printed)
case analyze_format_string::ConversionSpecifier::oArg:
// For b conversion, a nonzero result has 0b prefixed to it.
case analyze_format_string::ConversionSpecifier::bArg:
// For x (or X) conversion, a nonzero result has 0x (or 0X) prefixed to
// it.
case analyze_format_string::ConversionSpecifier::xArg:
case analyze_format_string::ConversionSpecifier::XArg:
// Note: even when the prefix is added, if
// (prefix_width <= FieldWidth - formatted_length) holds,
// the prefix does not increase the format
// size. e.g.(("%#3x", 0xf) is "0xf")
// If the result is zero, o, b, x, X adds nothing.
break;
// For a, A, e, E, f, F, g, and G conversions,
// the result of converting a floating-point number always contains a
// decimal-point
case analyze_format_string::ConversionSpecifier::aArg:
case analyze_format_string::ConversionSpecifier::AArg:
case analyze_format_string::ConversionSpecifier::eArg:
case analyze_format_string::ConversionSpecifier::EArg:
case analyze_format_string::ConversionSpecifier::fArg:
case analyze_format_string::ConversionSpecifier::FArg:
case analyze_format_string::ConversionSpecifier::gArg:
case analyze_format_string::ConversionSpecifier::GArg:
Size += (Precision ? 0 : 1);
break;
// For other conversions, the behavior is undefined.
default:
break;
}
}
assert(SpecifierLen <= Size && "no underflow");
Size -= SpecifierLen;
return true;
}
size_t getSizeLowerBound() const { return Size; }
bool isKernelCompatible() const { return IsKernelCompatible; }
private:
static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) {
const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth();
size_t FieldWidth = 0;
if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant)
FieldWidth = FW.getConstantAmount();
return FieldWidth;
}
static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) {
const analyze_format_string::OptionalAmount &FW = FS.getPrecision();
size_t Precision = 0;
// See man 3 printf for default precision value based on the specifier.
switch (FW.getHowSpecified()) {
case analyze_format_string::OptionalAmount::NotSpecified:
switch (FS.getConversionSpecifier().getKind()) {
default:
break;
case analyze_format_string::ConversionSpecifier::dArg: // %d
case analyze_format_string::ConversionSpecifier::DArg: // %D
case analyze_format_string::ConversionSpecifier::iArg: // %i
Precision = 1;
break;
case analyze_format_string::ConversionSpecifier::oArg: // %d
case analyze_format_string::ConversionSpecifier::OArg: // %D
case analyze_format_string::ConversionSpecifier::uArg: // %d
case analyze_format_string::ConversionSpecifier::UArg: // %D
case analyze_format_string::ConversionSpecifier::xArg: // %d
case analyze_format_string::ConversionSpecifier::XArg: // %D
Precision = 1;
break;
case analyze_format_string::ConversionSpecifier::fArg: // %f
case analyze_format_string::ConversionSpecifier::FArg: // %F
case analyze_format_string::ConversionSpecifier::eArg: // %e
case analyze_format_string::ConversionSpecifier::EArg: // %E
case analyze_format_string::ConversionSpecifier::gArg: // %g
case analyze_format_string::ConversionSpecifier::GArg: // %G
Precision = 6;
break;
case analyze_format_string::ConversionSpecifier::pArg: // %d
Precision = 1;
break;
}
break;
case analyze_format_string::OptionalAmount::Constant:
Precision = FW.getConstantAmount();
break;
default:
break;
}
return Precision;
}
};
} // namespace
static bool ProcessFormatStringLiteral(const Expr *FormatExpr,
StringRef &FormatStrRef, size_t &StrLen,
ASTContext &Context) {
if (const auto *Format = dyn_cast<StringLiteral>(FormatExpr);
Format && (Format->isOrdinary() || Format->isUTF8())) {
FormatStrRef = Format->getString();
const ConstantArrayType *T =
Context.getAsConstantArrayType(Format->getType());
assert(T && "String literal not of constant array type!");
size_t TypeSize = T->getZExtSize();
// In case there's a null byte somewhere.
StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0));
return true;
}
return false;
}
void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD,
CallExpr *TheCall) {
if (TheCall->isValueDependent() || TheCall->isTypeDependent() ||
isConstantEvaluatedContext())
return;
bool UseDABAttr = false;
const FunctionDecl *UseDecl = FD;
const auto *DABAttr = FD->getAttr<DiagnoseAsBuiltinAttr>();
if (DABAttr) {
UseDecl = DABAttr->getFunction();
assert(UseDecl && "Missing FunctionDecl in DiagnoseAsBuiltin attribute!");
UseDABAttr = true;
}
unsigned BuiltinID = UseDecl->getBuiltinID(/*ConsiderWrappers=*/true);
if (!BuiltinID)
return;
const TargetInfo &TI = getASTContext().getTargetInfo();
unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType());
auto TranslateIndex = [&](unsigned Index) -> std::optional<unsigned> {
// If we refer to a diagnose_as_builtin attribute, we need to change the
// argument index to refer to the arguments of the called function. Unless
// the index is out of bounds, which presumably means it's a variadic
// function.
if (!UseDABAttr)
return Index;
unsigned DABIndices = DABAttr->argIndices_size();
unsigned NewIndex = Index < DABIndices
? DABAttr->argIndices_begin()[Index]
: Index - DABIndices + FD->getNumParams();
if (NewIndex >= TheCall->getNumArgs())
return std::nullopt;
return NewIndex;
};
auto ComputeExplicitObjectSizeArgument =
[&](unsigned Index) -> std::optional<llvm::APSInt> {
std::optional<unsigned> IndexOptional = TranslateIndex(Index);
if (!IndexOptional)
return std::nullopt;
unsigned NewIndex = *IndexOptional;
Expr::EvalResult Result;
Expr *SizeArg = TheCall->getArg(NewIndex);
if (!SizeArg->EvaluateAsInt(Result, getASTContext()))
return std::nullopt;
llvm::APSInt Integer = Result.Val.getInt();
Integer.setIsUnsigned(true);
return Integer;
};
auto ComputeSizeArgument =
[&](unsigned Index) -> std::optional<llvm::APSInt> {
// If the parameter has a pass_object_size attribute, then we should use its
// (potentially) more strict checking mode. Otherwise, conservatively assume
// type 0.
int BOSType = 0;
// This check can fail for variadic functions.
if (Index < FD->getNumParams()) {
if (const auto *POS =
FD->getParamDecl(Index)->getAttr<PassObjectSizeAttr>())
BOSType = POS->getType();
}
std::optional<unsigned> IndexOptional = TranslateIndex(Index);
if (!IndexOptional)
return std::nullopt;
unsigned NewIndex = *IndexOptional;
if (NewIndex >= TheCall->getNumArgs())
return std::nullopt;
const Expr *ObjArg = TheCall->getArg(NewIndex);
uint64_t Result;
if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType))
return std::nullopt;
// Get the object size in the target's size_t width.
return llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth);
};
auto ComputeStrLenArgument =
[&](unsigned Index) -> std::optional<llvm::APSInt> {
std::optional<unsigned> IndexOptional = TranslateIndex(Index);
if (!IndexOptional)
return std::nullopt;
unsigned NewIndex = *IndexOptional;
const Expr *ObjArg = TheCall->getArg(NewIndex);
uint64_t Result;
if (!ObjArg->tryEvaluateStrLen(Result, getASTContext()))
return std::nullopt;
// Add 1 for null byte.
return llvm::APSInt::getUnsigned(Result + 1).extOrTrunc(SizeTypeWidth);
};
std::optional<llvm::APSInt> SourceSize;
std::optional<llvm::APSInt> DestinationSize;
unsigned DiagID = 0;
bool IsChkVariant = false;
auto GetFunctionName = [&]() {
std::string FunctionNameStr =
getASTContext().BuiltinInfo.getName(BuiltinID);
llvm::StringRef FunctionName = FunctionNameStr;
// Skim off the details of whichever builtin was called to produce a better
// diagnostic, as it's unlikely that the user wrote the __builtin
// explicitly.
if (IsChkVariant) {
FunctionName = FunctionName.drop_front(std::strlen("__builtin___"));
FunctionName = FunctionName.drop_back(std::strlen("_chk"));
} else {
FunctionName.consume_front("__builtin_");
}
return FunctionName.str();
};
switch (BuiltinID) {
default:
return;
case Builtin::BI__builtin_strcpy:
case Builtin::BIstrcpy: {
DiagID = diag::warn_fortify_strlen_overflow;
SourceSize = ComputeStrLenArgument(1);
DestinationSize = ComputeSizeArgument(0);
break;
}
case Builtin::BI__builtin___strcpy_chk: {
DiagID = diag::warn_fortify_strlen_overflow;
SourceSize = ComputeStrLenArgument(1);
DestinationSize = ComputeExplicitObjectSizeArgument(2);
IsChkVariant = true;
break;
}
case Builtin::BIscanf:
case Builtin::BIfscanf:
case Builtin::BIsscanf: {
unsigned FormatIndex = 1;
unsigned DataIndex = 2;
if (BuiltinID == Builtin::BIscanf) {
FormatIndex = 0;
DataIndex = 1;
}
const auto *FormatExpr =
TheCall->getArg(FormatIndex)->IgnoreParenImpCasts();
StringRef FormatStrRef;
size_t StrLen;
if (!ProcessFormatStringLiteral(FormatExpr, FormatStrRef, StrLen, Context))
return;
auto Diagnose = [&](unsigned ArgIndex, unsigned DestSize,
unsigned SourceSize) {
DiagID = diag::warn_fortify_scanf_overflow;
unsigned Index = ArgIndex + DataIndex;
std::string FunctionName = GetFunctionName();
DiagRuntimeBehavior(TheCall->getArg(Index)->getBeginLoc(), TheCall,
PDiag(DiagID) << FunctionName << (Index + 1)
<< DestSize << SourceSize);
};
auto ShiftedComputeSizeArgument = [&](unsigned Index) {
return ComputeSizeArgument(Index + DataIndex);
};
ScanfDiagnosticFormatHandler H(ShiftedComputeSizeArgument, Diagnose);
const char *FormatBytes = FormatStrRef.data();
analyze_format_string::ParseScanfString(H, FormatBytes,
FormatBytes + StrLen, getLangOpts(),
Context.getTargetInfo());
// Unlike the other cases, in this one we have already issued the diagnostic
// here, so no need to continue (because unlike the other cases, here the
// diagnostic refers to the argument number).
return;
}
case Builtin::BIsprintf:
case Builtin::BI__builtin___sprintf_chk: {
size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3;
auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts();
StringRef FormatStrRef;
size_t StrLen;
if (ProcessFormatStringLiteral(FormatExpr, FormatStrRef, StrLen, Context)) {
EstimateSizeFormatHandler H(FormatStrRef);
const char *FormatBytes = FormatStrRef.data();
if (!analyze_format_string::ParsePrintfString(
H, FormatBytes, FormatBytes + StrLen, getLangOpts(),
Context.getTargetInfo(), false)) {
DiagID = H.isKernelCompatible()
? diag::warn_format_overflow
: diag::warn_format_overflow_non_kprintf;
SourceSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound())
.extOrTrunc(SizeTypeWidth);
if (BuiltinID == Builtin::BI__builtin___sprintf_chk) {
DestinationSize = ComputeExplicitObjectSizeArgument(2);
IsChkVariant = true;
} else {
DestinationSize = ComputeSizeArgument(0);
}
break;
}
}
return;
}
case Builtin::BI__builtin___memcpy_chk:
case Builtin::BI__builtin___memmove_chk:
case Builtin::BI__builtin___memset_chk:
case Builtin::BI__builtin___strlcat_chk:
case Builtin::BI__builtin___strlcpy_chk:
case Builtin::BI__builtin___strncat_chk:
case Builtin::BI__builtin___strncpy_chk:
case Builtin::BI__builtin___stpncpy_chk:
case Builtin::BI__builtin___memccpy_chk:
case Builtin::BI__builtin___mempcpy_chk: {
DiagID = diag::warn_builtin_chk_overflow;
SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 2);
DestinationSize =
ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
IsChkVariant = true;
break;
}
case Builtin::BI__builtin___snprintf_chk:
case Builtin::BI__builtin___vsnprintf_chk: {
DiagID = diag::warn_builtin_chk_overflow;
SourceSize = ComputeExplicitObjectSizeArgument(1);
DestinationSize = ComputeExplicitObjectSizeArgument(3);
IsChkVariant = true;
break;
}
case Builtin::BIstrncat:
case Builtin::BI__builtin_strncat:
case Builtin::BIstrncpy:
case Builtin::BI__builtin_strncpy:
case Builtin::BIstpncpy:
case Builtin::BI__builtin_stpncpy: {
// Whether these functions overflow depends on the runtime strlen of the
// string, not just the buffer size, so emitting the "always overflow"
// diagnostic isn't quite right. We should still diagnose passing a buffer
// size larger than the destination buffer though; this is a runtime abort
// in _FORTIFY_SOURCE mode, and is quite suspicious otherwise.
DiagID = diag::warn_fortify_source_size_mismatch;
SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
DestinationSize = ComputeSizeArgument(0);
break;
}
case Builtin::BImemcpy:
case Builtin::BI__builtin_memcpy:
case Builtin::BImemmove:
case Builtin::BI__builtin_memmove:
case Builtin::BImemset:
case Builtin::BI__builtin_memset:
case Builtin::BImempcpy:
case Builtin::BI__builtin_mempcpy: {
DiagID = diag::warn_fortify_source_overflow;
SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
DestinationSize = ComputeSizeArgument(0);
break;
}
case Builtin::BIsnprintf:
case Builtin::BI__builtin_snprintf:
case Builtin::BIvsnprintf:
case Builtin::BI__builtin_vsnprintf: {
DiagID = diag::warn_fortify_source_size_mismatch;
SourceSize = ComputeExplicitObjectSizeArgument(1);
const auto *FormatExpr = TheCall->getArg(2)->IgnoreParenImpCasts();
StringRef FormatStrRef;
size_t StrLen;
if (SourceSize &&
ProcessFormatStringLiteral(FormatExpr, FormatStrRef, StrLen, Context)) {
EstimateSizeFormatHandler H(FormatStrRef);
const char *FormatBytes = FormatStrRef.data();
if (!analyze_format_string::ParsePrintfString(
H, FormatBytes, FormatBytes + StrLen, getLangOpts(),
Context.getTargetInfo(), /*isFreeBSDKPrintf=*/false)) {
llvm::APSInt FormatSize =
llvm::APSInt::getUnsigned(H.getSizeLowerBound())
.extOrTrunc(SizeTypeWidth);
if (FormatSize > *SourceSize && *SourceSize != 0) {
unsigned TruncationDiagID =
H.isKernelCompatible() ? diag::warn_format_truncation
: diag::warn_format_truncation_non_kprintf;
SmallString<16> SpecifiedSizeStr;
SmallString<16> FormatSizeStr;
SourceSize->toString(SpecifiedSizeStr, /*Radix=*/10);
FormatSize.toString(FormatSizeStr, /*Radix=*/10);
DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
PDiag(TruncationDiagID)
<< GetFunctionName() << SpecifiedSizeStr
<< FormatSizeStr);
}
}
}
DestinationSize = ComputeSizeArgument(0);
}
}
if (!SourceSize || !DestinationSize ||
llvm::APSInt::compareValues(*SourceSize, *DestinationSize) <= 0)
return;
std::string FunctionName = GetFunctionName();
SmallString<16> DestinationStr;
SmallString<16> SourceStr;
DestinationSize->toString(DestinationStr, /*Radix=*/10);
SourceSize->toString(SourceStr, /*Radix=*/10);
DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
PDiag(DiagID)
<< FunctionName << DestinationStr << SourceStr);
}
static bool BuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall,
Scope::ScopeFlags NeededScopeFlags,
unsigned DiagID) {
// Scopes aren't available during instantiation. Fortunately, builtin
// functions cannot be template args so they cannot be formed through template
// instantiation. Therefore checking once during the parse is sufficient.
if (SemaRef.inTemplateInstantiation())
return false;
Scope *S = SemaRef.getCurScope();
while (S && !S->isSEHExceptScope())
S = S->getParent();
if (!S || !(S->getFlags() & NeededScopeFlags)) {
auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
SemaRef.Diag(TheCall->getExprLoc(), DiagID)
<< DRE->getDecl()->getIdentifier();
return true;
}
return false;
}
// In OpenCL, __builtin_alloca_* should return a pointer to address space
// that corresponds to the stack address space i.e private address space.
static void builtinAllocaAddrSpace(Sema &S, CallExpr *TheCall) {
QualType RT = TheCall->getType();
assert((RT->isPointerType() && !(RT->getPointeeType().hasAddressSpace())) &&
"__builtin_alloca has invalid address space");
RT = RT->getPointeeType();
RT = S.Context.getAddrSpaceQualType(RT, LangAS::opencl_private);
TheCall->setType(S.Context.getPointerType(RT));
}
namespace {
enum PointerAuthOpKind {
PAO_Strip,
PAO_Sign,
PAO_Auth,
PAO_SignGeneric,
PAO_Discriminator,
PAO_BlendPointer,
PAO_BlendInteger
};
}
bool Sema::checkPointerAuthEnabled(SourceLocation Loc, SourceRange Range) {
if (getLangOpts().PointerAuthIntrinsics)
return false;
Diag(Loc, diag::err_ptrauth_disabled) << Range;
return true;
}
static bool checkPointerAuthEnabled(Sema &S, Expr *E) {
return S.checkPointerAuthEnabled(E->getExprLoc(), E->getSourceRange());
}
static bool checkPointerAuthKey(Sema &S, Expr *&Arg) {
// Convert it to type 'int'.
if (convertArgumentToType(S, Arg, S.Context.IntTy))
return true;
// Value-dependent expressions are okay; wait for template instantiation.
if (Arg->isValueDependent())
return false;
unsigned KeyValue;
return S.checkConstantPointerAuthKey(Arg, KeyValue);
}
bool Sema::checkConstantPointerAuthKey(Expr *Arg, unsigned &Result) {
// Attempt to constant-evaluate the expression.
std::optional<llvm::APSInt> KeyValue = Arg->getIntegerConstantExpr(Context);
if (!KeyValue) {
Diag(Arg->getExprLoc(), diag::err_expr_not_ice)
<< 0 << Arg->getSourceRange();
return true;
}
// Ask the target to validate the key parameter.
if (!Context.getTargetInfo().validatePointerAuthKey(*KeyValue)) {
llvm::SmallString<32> Value;
{
llvm::raw_svector_ostream Str(Value);
Str << *KeyValue;
}
Diag(Arg->getExprLoc(), diag::err_ptrauth_invalid_key)
<< Value << Arg->getSourceRange();
return true;
}
Result = KeyValue->getZExtValue();
return false;
}
static std::pair<const ValueDecl *, CharUnits>
findConstantBaseAndOffset(Sema &S, Expr *E) {
// Must evaluate as a pointer.
Expr::EvalResult Result;
if (!E->EvaluateAsRValue(Result, S.Context) || !Result.Val.isLValue())
return {nullptr, CharUnits()};
const auto *BaseDecl =
Result.Val.getLValueBase().dyn_cast<const ValueDecl *>();
if (!BaseDecl)
return {nullptr, CharUnits()};
return {BaseDecl, Result.Val.getLValueOffset()};
}
static bool checkPointerAuthValue(Sema &S, Expr *&Arg, PointerAuthOpKind OpKind,
bool RequireConstant = false) {
if (Arg->hasPlaceholderType()) {
ExprResult R = S.CheckPlaceholderExpr(Arg);
if (R.isInvalid())
return true;
Arg = R.get();
}
auto AllowsPointer = [](PointerAuthOpKind OpKind) {
return OpKind != PAO_BlendInteger;
};
auto AllowsInteger = [](PointerAuthOpKind OpKind) {
return OpKind == PAO_Discriminator || OpKind == PAO_BlendInteger ||
OpKind == PAO_SignGeneric;
};
// Require the value to have the right range of type.
QualType ExpectedTy;
if (AllowsPointer(OpKind) && Arg->getType()->isPointerType()) {
ExpectedTy = Arg->getType().getUnqualifiedType();
} else if (AllowsPointer(OpKind) && Arg->getType()->isNullPtrType()) {
ExpectedTy = S.Context.VoidPtrTy;
} else if (AllowsInteger(OpKind) &&
Arg->getType()->isIntegralOrUnscopedEnumerationType()) {
ExpectedTy = S.Context.getUIntPtrType();
} else {
// Diagnose the failures.
S.Diag(Arg->getExprLoc(), diag::err_ptrauth_value_bad_type)
<< unsigned(OpKind == PAO_Discriminator ? 1
: OpKind == PAO_BlendPointer ? 2
: OpKind == PAO_BlendInteger ? 3
: 0)
<< unsigned(AllowsInteger(OpKind) ? (AllowsPointer(OpKind) ? 2 : 1) : 0)
<< Arg->getType() << Arg->getSourceRange();
return true;
}
// Convert to that type. This should just be an lvalue-to-rvalue
// conversion.
if (convertArgumentToType(S, Arg, ExpectedTy))
return true;
if (!RequireConstant) {
// Warn about null pointers for non-generic sign and auth operations.
if ((OpKind == PAO_Sign || OpKind == PAO_Auth) &&
Arg->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNull)) {
S.Diag(Arg->getExprLoc(), OpKind == PAO_Sign
? diag::warn_ptrauth_sign_null_pointer
: diag::warn_ptrauth_auth_null_pointer)
<< Arg->getSourceRange();
}
return false;
}
// Perform special checking on the arguments to ptrauth_sign_constant.
// The main argument.
if (OpKind == PAO_Sign) {
// Require the value we're signing to have a special form.
auto [BaseDecl, Offset] = findConstantBaseAndOffset(S, Arg);
bool Invalid;
// Must be rooted in a declaration reference.
if (!BaseDecl)
Invalid = true;
// If it's a function declaration, we can't have an offset.
else if (isa<FunctionDecl>(BaseDecl))
Invalid = !Offset.isZero();
// Otherwise we're fine.
else
Invalid = false;
if (Invalid)
S.Diag(Arg->getExprLoc(), diag::err_ptrauth_bad_constant_pointer);
return Invalid;
}
// The discriminator argument.
assert(OpKind == PAO_Discriminator);
// Must be a pointer or integer or blend thereof.
Expr *Pointer = nullptr;
Expr *Integer = nullptr;
if (auto *Call = dyn_cast<CallExpr>(Arg->IgnoreParens())) {
if (Call->getBuiltinCallee() ==
Builtin::BI__builtin_ptrauth_blend_discriminator) {
Pointer = Call->getArg(0);
Integer = Call->getArg(1);
}
}
if (!Pointer && !Integer) {
if (Arg->getType()->isPointerType())
Pointer = Arg;
else
Integer = Arg;
}
// Check the pointer.
bool Invalid = false;
if (Pointer) {
assert(Pointer->getType()->isPointerType());
// TODO: if we're initializing a global, check that the address is
// somehow related to what we're initializing. This probably will
// never really be feasible and we'll have to catch it at link-time.
auto [BaseDecl, Offset] = findConstantBaseAndOffset(S, Pointer);
if (!BaseDecl || !isa<VarDecl>(BaseDecl))
Invalid = true;
}
// Check the integer.
if (Integer) {
assert(Integer->getType()->isIntegerType());
if (!Integer->isEvaluatable(S.Context))
Invalid = true;
}
if (Invalid)
S.Diag(Arg->getExprLoc(), diag::err_ptrauth_bad_constant_discriminator);
return Invalid;
}
static ExprResult PointerAuthStrip(Sema &S, CallExpr *Call) {
if (S.checkArgCount(Call, 2))
return ExprError();
if (checkPointerAuthEnabled(S, Call))
return ExprError();
if (checkPointerAuthValue(S, Call->getArgs()[0], PAO_Strip) ||
checkPointerAuthKey(S, Call->getArgs()[1]))
return ExprError();
Call->setType(Call->getArgs()[0]->getType());
return Call;
}
static ExprResult PointerAuthBlendDiscriminator(Sema &S, CallExpr *Call) {
if (S.checkArgCount(Call, 2))
return ExprError();
if (checkPointerAuthEnabled(S, Call))
return ExprError();
if (checkPointerAuthValue(S, Call->getArgs()[0], PAO_BlendPointer) ||
checkPointerAuthValue(S, Call->getArgs()[1], PAO_BlendInteger))
return ExprError();
Call->setType(S.Context.getUIntPtrType());
return Call;
}
static ExprResult PointerAuthSignGenericData(Sema &S, CallExpr *Call) {
if (S.checkArgCount(Call, 2))
return ExprError();
if (checkPointerAuthEnabled(S, Call))
return ExprError();
if (checkPointerAuthValue(S, Call->getArgs()[0], PAO_SignGeneric) ||
checkPointerAuthValue(S, Call->getArgs()[1], PAO_Discriminator))
return ExprError();
Call->setType(S.Context.getUIntPtrType());
return Call;
}
static ExprResult PointerAuthSignOrAuth(Sema &S, CallExpr *Call,
PointerAuthOpKind OpKind,
bool RequireConstant) {
if (S.checkArgCount(Call, 3))
return ExprError();
if (checkPointerAuthEnabled(S, Call))
return ExprError();
if (checkPointerAuthValue(S, Call->getArgs()[0], OpKind, RequireConstant) ||
checkPointerAuthKey(S, Call->getArgs()[1]) ||
checkPointerAuthValue(S, Call->getArgs()[2], PAO_Discriminator,
RequireConstant))
return ExprError();
Call->setType(Call->getArgs()[0]->getType());
return Call;
}
static ExprResult PointerAuthAuthAndResign(Sema &S, CallExpr *Call) {
if (S.checkArgCount(Call, 5))
return ExprError();
if (checkPointerAuthEnabled(S, Call))
return ExprError();
if (checkPointerAuthValue(S, Call->getArgs()[0], PAO_Auth) ||
checkPointerAuthKey(S, Call->getArgs()[1]) ||
checkPointerAuthValue(S, Call->getArgs()[2], PAO_Discriminator) ||
checkPointerAuthKey(S, Call->getArgs()[3]) ||
checkPointerAuthValue(S, Call->getArgs()[4], PAO_Discriminator))
return ExprError();
Call->setType(Call->getArgs()[0]->getType());
return Call;
}
static ExprResult PointerAuthStringDiscriminator(Sema &S, CallExpr *Call) {
if (checkPointerAuthEnabled(S, Call))
return ExprError();
// We've already performed normal call type-checking.
const Expr *Arg = Call->getArg(0)->IgnoreParenImpCasts();
// Operand must be an ordinary or UTF-8 string literal.
const auto *Literal = dyn_cast<StringLiteral>(Arg);
if (!Literal || Literal->getCharByteWidth() != 1) {
S.Diag(Arg->getExprLoc(), diag::err_ptrauth_string_not_literal)
<< (Literal ? 1 : 0) << Arg->getSourceRange();
return ExprError();
}
return Call;
}
static ExprResult BuiltinLaunder(Sema &S, CallExpr *TheCall) {
if (S.checkArgCount(TheCall, 1))
return ExprError();
// Compute __builtin_launder's parameter type from the argument.
// The parameter type is:
// * The type of the argument if it's not an array or function type,
// Otherwise,
// * The decayed argument type.
QualType ParamTy = [&]() {
QualType ArgTy = TheCall->getArg(0)->getType();
if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe())
return S.Context.getPointerType(Ty->getElementType());
if (ArgTy->isFunctionType()) {
return S.Context.getPointerType(ArgTy);
}
return ArgTy;
}();
TheCall->setType(ParamTy);
auto DiagSelect = [&]() -> std::optional<unsigned> {
if (!ParamTy->isPointerType())
return 0;
if (ParamTy->isFunctionPointerType())
return 1;
if (ParamTy->isVoidPointerType())
return 2;
return std::optional<unsigned>{};
}();
if (DiagSelect) {
S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg)
<< *DiagSelect << TheCall->getSourceRange();
return ExprError();
}
// We either have an incomplete class type, or we have a class template
// whose instantiation has not been forced. Example:
//
// template <class T> struct Foo { T value; };
// Foo<int> *p = nullptr;
// auto *d = __builtin_launder(p);
if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(),
diag::err_incomplete_type))
return ExprError();
assert(ParamTy->getPointeeType()->isObjectType() &&
"Unhandled non-object pointer case");
InitializedEntity Entity =
InitializedEntity::InitializeParameter(S.Context, ParamTy, false);
ExprResult Arg =
S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0));
if (Arg.isInvalid())
return ExprError();
TheCall->setArg(0, Arg.get());
return TheCall;
}
static ExprResult BuiltinIsWithinLifetime(Sema &S, CallExpr *TheCall) {
if (S.checkArgCount(TheCall, 1))
return ExprError();
ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
if (Arg.isInvalid())
return ExprError();
QualType ParamTy = Arg.get()->getType();
TheCall->setArg(0, Arg.get());
TheCall->setType(S.Context.BoolTy);
// Only accept pointers to objects as arguments, which should have object
// pointer or void pointer types.
if (const auto *PT = ParamTy->getAs<PointerType>()) {
// LWG4138: Function pointer types not allowed
if (PT->getPointeeType()->isFunctionType()) {
S.Diag(TheCall->getArg(0)->getExprLoc(),
diag::err_builtin_is_within_lifetime_invalid_arg)
<< 1;
return ExprError();
}
// Disallow VLAs too since those shouldn't be able to
// be a template parameter for `std::is_within_lifetime`
if (PT->getPointeeType()->isVariableArrayType()) {
S.Diag(TheCall->getArg(0)->getExprLoc(), diag::err_vla_unsupported)
<< 1 << "__builtin_is_within_lifetime";
return ExprError();
}
} else {
S.Diag(TheCall->getArg(0)->getExprLoc(),
diag::err_builtin_is_within_lifetime_invalid_arg)
<< 0;
return ExprError();
}
return TheCall;
}
// Emit an error and return true if the current object format type is in the
// list of unsupported types.
static bool CheckBuiltinTargetNotInUnsupported(
Sema &S, unsigned BuiltinID, CallExpr *TheCall,
ArrayRef<llvm::Triple::ObjectFormatType> UnsupportedObjectFormatTypes) {
llvm::Triple::ObjectFormatType CurObjFormat =
S.getASTContext().getTargetInfo().getTriple().getObjectFormat();
if (llvm::is_contained(UnsupportedObjectFormatTypes, CurObjFormat)) {
S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
<< TheCall->getSourceRange();
return true;
}
return false;
}
// Emit an error and return true if the current architecture is not in the list
// of supported architectures.
static bool
CheckBuiltinTargetInSupported(Sema &S, CallExpr *TheCall,
ArrayRef<llvm::Triple::ArchType> SupportedArchs) {
llvm::Triple::ArchType CurArch =
S.getASTContext().getTargetInfo().getTriple().getArch();
if (llvm::is_contained(SupportedArchs, CurArch))
return false;
S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
<< TheCall->getSourceRange();
return true;
}
static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr,
SourceLocation CallSiteLoc);
bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
CallExpr *TheCall) {
switch (TI.getTriple().getArch()) {
default:
// Some builtins don't require additional checking, so just consider these
// acceptable.
return false;
case llvm::Triple::arm:
case llvm::Triple::armeb:
case llvm::Triple::thumb:
case llvm::Triple::thumbeb:
return ARM().CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall);
case llvm::Triple::aarch64:
case llvm::Triple::aarch64_32:
case llvm::Triple::aarch64_be:
return ARM().CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall);
case llvm::Triple::bpfeb:
case llvm::Triple::bpfel:
return BPF().CheckBPFBuiltinFunctionCall(BuiltinID, TheCall);
case llvm::Triple::dxil:
return DirectX().CheckDirectXBuiltinFunctionCall(BuiltinID, TheCall);
case llvm::Triple::hexagon:
return Hexagon().CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall);
case llvm::Triple::mips:
case llvm::Triple::mipsel:
case llvm::Triple::mips64:
case llvm::Triple::mips64el:
return MIPS().CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall);
case llvm::Triple::spirv:
return SPIRV().CheckSPIRVBuiltinFunctionCall(BuiltinID, TheCall);
case llvm::Triple::systemz:
return SystemZ().CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall);
case llvm::Triple::x86:
case llvm::Triple::x86_64:
return X86().CheckBuiltinFunctionCall(TI, BuiltinID, TheCall);
case llvm::Triple::ppc:
case llvm::Triple::ppcle:
case llvm::Triple::ppc64:
case llvm::Triple::ppc64le:
return PPC().CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall);
case llvm::Triple::amdgcn:
return AMDGPU().CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall);
case llvm::Triple::riscv32:
case llvm::Triple::riscv64:
return RISCV().CheckBuiltinFunctionCall(TI, BuiltinID, TheCall);
case llvm::Triple::loongarch32:
case llvm::Triple::loongarch64:
return LoongArch().CheckLoongArchBuiltinFunctionCall(TI, BuiltinID,
TheCall);
case llvm::Triple::wasm32:
case llvm::Triple::wasm64:
return Wasm().CheckWebAssemblyBuiltinFunctionCall(TI, BuiltinID, TheCall);
case llvm::Triple::nvptx:
case llvm::Triple::nvptx64:
return NVPTX().CheckNVPTXBuiltinFunctionCall(TI, BuiltinID, TheCall);
}
}
// Check if \p Ty is a valid type for the elementwise math builtins. If it is
// not a valid type, emit an error message and return true. Otherwise return
// false.
static bool
checkMathBuiltinElementType(Sema &S, SourceLocation Loc, QualType ArgTy,
Sema::EltwiseBuiltinArgTyRestriction ArgTyRestr,
int ArgOrdinal) {
QualType EltTy = ArgTy;
if (auto *VecTy = EltTy->getAs<VectorType>())
EltTy = VecTy->getElementType();
switch (ArgTyRestr) {
case Sema::EltwiseBuiltinArgTyRestriction::None:
if (!ArgTy->getAs<VectorType>() &&
!ConstantMatrixType::isValidElementType(ArgTy)) {
return S.Diag(Loc, diag::err_builtin_invalid_arg_type)
<< ArgOrdinal << /* vector */ 2 << /* integer */ 1 << /* fp */ 1
<< ArgTy;
}
break;
case Sema::EltwiseBuiltinArgTyRestriction::FloatTy:
if (!EltTy->isRealFloatingType()) {
return S.Diag(Loc, diag::err_builtin_invalid_arg_type)
<< ArgOrdinal << /* scalar or vector */ 5 << /* no int */ 0
<< /* floating-point */ 1 << ArgTy;
}
break;
case Sema::EltwiseBuiltinArgTyRestriction::IntegerTy:
if (!EltTy->isIntegerType()) {
return S.Diag(Loc, diag::err_builtin_invalid_arg_type)
<< ArgOrdinal << /* scalar or vector */ 5 << /* integer */ 1
<< /* no fp */ 0 << ArgTy;
}
break;
case Sema::EltwiseBuiltinArgTyRestriction::SignedIntOrFloatTy:
if (EltTy->isUnsignedIntegerType()) {
return S.Diag(Loc, diag::err_builtin_invalid_arg_type)
<< 1 << /* scalar or vector */ 5 << /* signed int */ 2
<< /* or fp */ 1 << ArgTy;
}
break;
}
return false;
}
/// BuiltinCpu{Supports|Is} - Handle __builtin_cpu_{supports|is}(char *).
/// This checks that the target supports the builtin and that the string
/// argument is constant and valid.
static bool BuiltinCpu(Sema &S, const TargetInfo &TI, CallExpr *TheCall,
const TargetInfo *AuxTI, unsigned BuiltinID) {
assert((BuiltinID == Builtin::BI__builtin_cpu_supports ||
BuiltinID == Builtin::BI__builtin_cpu_is) &&
"Expecting __builtin_cpu_...");
bool IsCPUSupports = BuiltinID == Builtin::BI__builtin_cpu_supports;
const TargetInfo *TheTI = &TI;
auto SupportsBI = [=](const TargetInfo *TInfo) {
return TInfo && ((IsCPUSupports && TInfo->supportsCpuSupports()) ||
(!IsCPUSupports && TInfo->supportsCpuIs()));
};
if (!SupportsBI(&TI) && SupportsBI(AuxTI))
TheTI = AuxTI;
if ((!IsCPUSupports && !TheTI->supportsCpuIs()) ||
(IsCPUSupports && !TheTI->supportsCpuSupports()))
return S.Diag(TheCall->getBeginLoc(),
TI.getTriple().isOSAIX()
? diag::err_builtin_aix_os_unsupported
: diag::err_builtin_target_unsupported)
<< SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
Expr *Arg = TheCall->getArg(0)->IgnoreParenImpCasts();
// Check if the argument is a string literal.
if (!isa<StringLiteral>(Arg))
return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
<< Arg->getSourceRange();
// Check the contents of the string.
StringRef Feature = cast<StringLiteral>(Arg)->getString();
if (IsCPUSupports && !TheTI->validateCpuSupports(Feature)) {
S.Diag(TheCall->getBeginLoc(), diag::warn_invalid_cpu_supports)
<< Arg->getSourceRange();
return false;
}
if (!IsCPUSupports && !TheTI->validateCpuIs(Feature))
return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is)
<< Arg->getSourceRange();
return false;
}
/// Checks that __builtin_popcountg was called with a single argument, which is
/// an unsigned integer.
static bool BuiltinPopcountg(Sema &S, CallExpr *TheCall) {
if (S.checkArgCount(TheCall, 1))
return true;
ExprResult ArgRes = S.DefaultLvalueConversion(TheCall->getArg(0));
if (ArgRes.isInvalid())
return true;
Expr *Arg = ArgRes.get();
TheCall->setArg(0, Arg);
QualType ArgTy = Arg->getType();
if (!ArgTy->isUnsignedIntegerType()) {
S.Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
<< 1 << /* scalar */ 1 << /* unsigned integer ty */ 3 << /* no fp */ 0
<< ArgTy;
return true;
}
return false;
}
/// Checks that __builtin_{clzg,ctzg} was called with a first argument, which is
/// an unsigned integer, and an optional second argument, which is promoted to
/// an 'int'.
static bool BuiltinCountZeroBitsGeneric(Sema &S, CallExpr *TheCall) {
if (S.checkArgCountRange(TheCall, 1, 2))
return true;
ExprResult Arg0Res = S.DefaultLvalueConversion(TheCall->getArg(0));
if (Arg0Res.isInvalid())
return true;
Expr *Arg0 = Arg0Res.get();
TheCall->setArg(0, Arg0);
QualType Arg0Ty = Arg0->getType();
if (!Arg0Ty->isUnsignedIntegerType()) {
S.Diag(Arg0->getBeginLoc(), diag::err_builtin_invalid_arg_type)
<< 1 << /* scalar */ 1 << /* unsigned integer ty */ 3 << /* no fp */ 0
<< Arg0Ty;
return true;
}
if (TheCall->getNumArgs() > 1) {
ExprResult Arg1Res = S.UsualUnaryConversions(TheCall->getArg(1));
if (Arg1Res.isInvalid())
return true;
Expr *Arg1 = Arg1Res.get();
TheCall->setArg(1, Arg1);
QualType Arg1Ty = Arg1->getType();
if (!Arg1Ty->isSpecificBuiltinType(BuiltinType::Int)) {
S.Diag(Arg1->getBeginLoc(), diag::err_builtin_invalid_arg_type)
<< 2 << /* scalar */ 1 << /* 'int' ty */ 4 << /* no fp */ 0 << Arg1Ty;
return true;
}
}
return false;
}
ExprResult
Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
CallExpr *TheCall) {
ExprResult TheCallResult(TheCall);
// Find out if any arguments are required to be integer constant expressions.
unsigned ICEArguments = 0;
ASTContext::GetBuiltinTypeError Error;
Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
if (Error != ASTContext::GE_None)
ICEArguments = 0; // Don't diagnose previously diagnosed errors.
// If any arguments are required to be ICE's, check and diagnose.
for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
// Skip arguments not required to be ICE's.
if ((ICEArguments & (1 << ArgNo)) == 0) continue;
llvm::APSInt Result;
// If we don't have enough arguments, continue so we can issue better
// diagnostic in checkArgCount(...)
if (ArgNo < TheCall->getNumArgs() &&
BuiltinConstantArg(TheCall, ArgNo, Result))
return true;
ICEArguments &= ~(1 << ArgNo);
}
FPOptions FPO;
switch (BuiltinID) {
case Builtin::BI__builtin_cpu_supports:
case Builtin::BI__builtin_cpu_is:
if (BuiltinCpu(*this, Context.getTargetInfo(), TheCall,
Context.getAuxTargetInfo(), BuiltinID))
return ExprError();
break;
case Builtin::BI__builtin_cpu_init:
if (!Context.getTargetInfo().supportsCpuInit()) {
Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
<< SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
return ExprError();
}
break;
case Builtin::BI__builtin___CFStringMakeConstantString:
// CFStringMakeConstantString is currently not implemented for GOFF (i.e.,
// on z/OS) and for XCOFF (i.e., on AIX). Emit unsupported
if (CheckBuiltinTargetNotInUnsupported(
*this, BuiltinID, TheCall,
{llvm::Triple::GOFF, llvm::Triple::XCOFF}))
return ExprError();
assert(TheCall->getNumArgs() == 1 &&
"Wrong # arguments to builtin CFStringMakeConstantString");
if (ObjC().CheckObjCString(TheCall->getArg(0)))
return ExprError();
break;
case Builtin::BI__builtin_ms_va_start:
case Builtin::BI__builtin_stdarg_start:
case Builtin::BI__builtin_va_start:
case Builtin::BI__builtin_c23_va_start:
if (BuiltinVAStart(BuiltinID, TheCall))
return ExprError();
break;
case Builtin::BI__va_start: {
switch (Context.getTargetInfo().getTriple().getArch()) {
case llvm::Triple::aarch64:
case llvm::Triple::arm:
case llvm::Triple::thumb:
if (BuiltinVAStartARMMicrosoft(TheCall))
return ExprError();
break;
default:
if (BuiltinVAStart(BuiltinID, TheCall))
return ExprError();
break;
}
break;
}
// The acquire, release, and no fence variants are ARM and AArch64 only.
case Builtin::BI_interlockedbittestandset_acq:
case Builtin::BI_interlockedbittestandset_rel:
case Builtin::BI_interlockedbittestandset_nf:
case Builtin::BI_interlockedbittestandreset_acq:
case Builtin::BI_interlockedbittestandreset_rel:
case Builtin::BI_interlockedbittestandreset_nf:
if (CheckBuiltinTargetInSupported(
*this, TheCall,
{llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64}))
return ExprError();
break;
// The 64-bit bittest variants are x64, ARM, and AArch64 only.
case Builtin::BI_bittest64:
case Builtin::BI_bittestandcomplement64:
case Builtin::BI_bittestandreset64:
case Builtin::BI_bittestandset64:
case Builtin::BI_interlockedbittestandreset64:
case Builtin::BI_interlockedbittestandset64:
if (CheckBuiltinTargetInSupported(
*this, TheCall,
{llvm::Triple::x86_64, llvm::Triple::arm, llvm::Triple::thumb,
llvm::Triple::aarch64, llvm::Triple::amdgcn}))
return ExprError();
break;
case Builtin::BI__builtin_set_flt_rounds:
if (CheckBuiltinTargetInSupported(
*this, TheCall,
{llvm::Triple::x86, llvm::Triple::x86_64, llvm::Triple::arm,
llvm::Triple::thumb, llvm::Triple::aarch64, llvm::Triple::amdgcn,
llvm::Triple::ppc, llvm::Triple::ppc64, llvm::Triple::ppcle,
llvm::Triple::ppc64le}))
return ExprError();
break;
case Builtin::BI__builtin_isgreater:
case Builtin::BI__builtin_isgreaterequal:
case Builtin::BI__builtin_isless:
case Builtin::BI__builtin_islessequal:
case Builtin::BI__builtin_islessgreater:
case Builtin::BI__builtin_isunordered:
if (BuiltinUnorderedCompare(TheCall, BuiltinID))
return ExprError();
break;
case Builtin::BI__builtin_fpclassify:
if (BuiltinFPClassification(TheCall, 6, BuiltinID))
return ExprError();
break;
case Builtin::BI__builtin_isfpclass:
if (BuiltinFPClassification(TheCall, 2, BuiltinID))
return ExprError();
break;
case Builtin::BI__builtin_isfinite:
case Builtin::BI__builtin_isinf:
case Builtin::BI__builtin_isinf_sign:
case Builtin::BI__builtin_isnan:
case Builtin::BI__builtin_issignaling:
case Builtin::BI__builtin_isnormal:
case Builtin::BI__builtin_issubnormal:
case Builtin::BI__builtin_iszero:
case Builtin::BI__builtin_signbit:
case Builtin::BI__builtin_signbitf:
case Builtin::BI__builtin_signbitl:
if (BuiltinFPClassification(TheCall, 1, BuiltinID))
return ExprError();
break;
case Builtin::BI__builtin_shufflevector:
return BuiltinShuffleVector(TheCall);
// TheCall will be freed by the smart pointer here, but that's fine, since
// BuiltinShuffleVector guts it, but then doesn't release it.
case Builtin::BI__builtin_prefetch:
if (BuiltinPrefetch(TheCall))
return ExprError();
break;
case Builtin::BI__builtin_alloca_with_align:
case Builtin::BI__builtin_alloca_with_align_uninitialized:
if (BuiltinAllocaWithAlign(TheCall))
return ExprError();
[[fallthrough]];
case Builtin::BI__builtin_alloca:
case Builtin::BI__builtin_alloca_uninitialized:
Diag(TheCall->getBeginLoc(), diag::warn_alloca)
<< TheCall->getDirectCallee();
if (getLangOpts().OpenCL) {
builtinAllocaAddrSpace(*this, TheCall);
}
break;
case Builtin::BI__arithmetic_fence:
if (BuiltinArithmeticFence(TheCall))
return ExprError();
break;
case Builtin::BI__assume:
case Builtin::BI__builtin_assume:
if (BuiltinAssume(TheCall))
return ExprError();
break;
case Builtin::BI__builtin_assume_aligned:
if (BuiltinAssumeAligned(TheCall))
return ExprError();
break;
case Builtin::BI__builtin_dynamic_object_size:
case Builtin::BI__builtin_object_size:
if (BuiltinConstantArgRange(TheCall, 1, 0, 3))
return ExprError();
break;
case Builtin::BI__builtin_longjmp:
if (BuiltinLongjmp(TheCall))
return ExprError();
break;
case Builtin::BI__builtin_setjmp:
if (BuiltinSetjmp(TheCall))
return ExprError();
break;
case Builtin::BI__builtin_classify_type:
if (checkArgCount(TheCall, 1))
return true;
TheCall->setType(Context.IntTy);
break;
case Builtin::BI__builtin_complex:
if (BuiltinComplex(TheCall))
return ExprError();
break;
case Builtin::BI__builtin_constant_p: {
if (checkArgCount(TheCall, 1))
return true;
ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
if (Arg.isInvalid()) return true;
TheCall->setArg(0, Arg.get());
TheCall->setType(Context.IntTy);
break;
}
case Builtin::BI__builtin_launder:
return BuiltinLaunder(*this, TheCall);
case Builtin::BI__builtin_is_within_lifetime:
return BuiltinIsWithinLifetime(*this, TheCall);
case Builtin::BI__sync_fetch_and_add:
case Builtin::BI__sync_fetch_and_add_1:
case Builtin::BI__sync_fetch_and_add_2:
case Builtin::BI__sync_fetch_and_add_4:
case Builtin::BI__sync_fetch_and_add_8:
case Builtin::BI__sync_fetch_and_add_16:
case Builtin::BI__sync_fetch_and_sub:
case Builtin::BI__sync_fetch_and_sub_1:
case Builtin::BI__sync_fetch_and_sub_2:
case Builtin::BI__sync_fetch_and_sub_4:
case Builtin::BI__sync_fetch_and_sub_8:
case Builtin::BI__sync_fetch_and_sub_16:
case Builtin::BI__sync_fetch_and_or:
case Builtin::BI__sync_fetch_and_or_1:
case Builtin::BI__sync_fetch_and_or_2:
case Builtin::BI__sync_fetch_and_or_4:
case Builtin::BI__sync_fetch_and_or_8:
case Builtin::BI__sync_fetch_and_or_16:
case Builtin::BI__sync_fetch_and_and:
case Builtin::BI__sync_fetch_and_and_1:
case Builtin::BI__sync_fetch_and_and_2:
case Builtin::BI__sync_fetch_and_and_4:
case Builtin::BI__sync_fetch_and_and_8:
case Builtin::BI__sync_fetch_and_and_16:
case Builtin::BI__sync_fetch_and_xor:
case Builtin::BI__sync_fetch_and_xor_1:
case Builtin::BI__sync_fetch_and_xor_2:
case Builtin::BI__sync_fetch_and_xor_4:
case Builtin::BI__sync_fetch_and_xor_8:
case Builtin::BI__sync_fetch_and_xor_16:
case Builtin::BI__sync_fetch_and_nand:
case Builtin::BI__sync_fetch_and_nand_1:
case Builtin::BI__sync_fetch_and_nand_2:
case Builtin::BI__sync_fetch_and_nand_4:
case Builtin::BI__sync_fetch_and_nand_8:
case Builtin::BI__sync_fetch_and_nand_16:
case Builtin::BI__sync_add_and_fetch:
case Builtin::BI__sync_add_and_fetch_1:
case Builtin::BI__sync_add_and_fetch_2:
case Builtin::BI__sync_add_and_fetch_4:
case Builtin::BI__sync_add_and_fetch_8:
case Builtin::BI__sync_add_and_fetch_16:
case Builtin::BI__sync_sub_and_fetch:
case Builtin::BI__sync_sub_and_fetch_1:
case Builtin::BI__sync_sub_and_fetch_2:
case Builtin::BI__sync_sub_and_fetch_4:
case Builtin::BI__sync_sub_and_fetch_8:
case Builtin::BI__sync_sub_and_fetch_16:
case Builtin::BI__sync_and_and_fetch:
case Builtin::BI__sync_and_and_fetch_1:
case Builtin::BI__sync_and_and_fetch_2:
case Builtin::BI__sync_and_and_fetch_4:
case Builtin::BI__sync_and_and_fetch_8:
case Builtin::BI__sync_and_and_fetch_16:
case Builtin::BI__sync_or_and_fetch:
case Builtin::BI__sync_or_and_fetch_1:
case Builtin::BI__sync_or_and_fetch_2:
case Builtin::BI__sync_or_and_fetch_4:
case Builtin::BI__sync_or_and_fetch_8:
case Builtin::BI__sync_or_and_fetch_16:
case Builtin::BI__sync_xor_and_fetch:
case Builtin::BI__sync_xor_and_fetch_1:
case Builtin::BI__sync_xor_and_fetch_2:
case Builtin::BI__sync_xor_and_fetch_4:
case Builtin::BI__sync_xor_and_fetch_8:
case Builtin::BI__sync_xor_and_fetch_16:
case Builtin::BI__sync_nand_and_fetch:
case Builtin::BI__sync_nand_and_fetch_1:
case Builtin::BI__sync_nand_and_fetch_2:
case Builtin::BI__sync_nand_and_fetch_4:
case Builtin::BI__sync_nand_and_fetch_8:
case Builtin::BI__sync_nand_and_fetch_16:
case Builtin::BI__sync_val_compare_and_swap:
case Builtin::BI__sync_val_compare_and_swap_1:
case Builtin::BI__sync_val_compare_and_swap_2:
case Builtin::BI__sync_val_compare_and_swap_4:
case Builtin::BI__sync_val_compare_and_swap_8:
case Builtin::BI__sync_val_compare_and_swap_16:
case Builtin::BI__sync_bool_compare_and_swap:
case Builtin::BI__sync_bool_compare_and_swap_1:
case Builtin::BI__sync_bool_compare_and_swap_2:
case Builtin::BI__sync_bool_compare_and_swap_4:
case Builtin::BI__sync_bool_compare_and_swap_8:
case Builtin::BI__sync_bool_compare_and_swap_16:
case Builtin::BI__sync_lock_test_and_set:
case Builtin::BI__sync_lock_test_and_set_1:
case Builtin::BI__sync_lock_test_and_set_2:
case Builtin::BI__sync_lock_test_and_set_4:
case Builtin::BI__sync_lock_test_and_set_8:
case Builtin::BI__sync_lock_test_and_set_16:
case Builtin::BI__sync_lock_release:
case Builtin::BI__sync_lock_release_1:
case Builtin::BI__sync_lock_release_2:
case Builtin::BI__sync_lock_release_4:
case Builtin::BI__sync_lock_release_8:
case Builtin::BI__sync_lock_release_16:
case Builtin::BI__sync_swap:
case Builtin::BI__sync_swap_1:
case Builtin::BI__sync_swap_2:
case Builtin::BI__sync_swap_4:
case Builtin::BI__sync_swap_8:
case Builtin::BI__sync_swap_16:
return BuiltinAtomicOverloaded(TheCallResult);
case Builtin::BI__sync_synchronize:
Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst)
<< TheCall->getCallee()->getSourceRange();
break;
case Builtin::BI__builtin_nontemporal_load:
case Builtin::BI__builtin_nontemporal_store:
return BuiltinNontemporalOverloaded(TheCallResult);
case Builtin::BI__builtin_memcpy_inline: {
clang::Expr *SizeOp = TheCall->getArg(2);
// We warn about copying to or from `nullptr` pointers when `size` is
// greater than 0. When `size` is value dependent we cannot evaluate its
// value so we bail out.
if (SizeOp->isValueDependent())
break;
if (!SizeOp->EvaluateKnownConstInt(Context).isZero()) {
CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc());
CheckNonNullArgument(*this, TheCall->getArg(1), TheCall->getExprLoc());
}
break;
}
case Builtin::BI__builtin_memset_inline: {
clang::Expr *SizeOp = TheCall->getArg(2);
// We warn about filling to `nullptr` pointers when `size` is greater than
// 0. When `size` is value dependent we cannot evaluate its value so we bail
// out.
if (SizeOp->isValueDependent())
break;
if (!SizeOp->EvaluateKnownConstInt(Context).isZero())
CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc());
break;
}
#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
case Builtin::BI##ID: \
return AtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
#include "clang/Basic/Builtins.inc"
case Builtin::BI__annotation:
if (BuiltinMSVCAnnotation(*this, TheCall))
return ExprError();
break;
case Builtin::BI__builtin_annotation:
if (BuiltinAnnotation(*this, TheCall))
return ExprError();
break;
case Builtin::BI__builtin_addressof:
if (BuiltinAddressof(*this, TheCall))
return ExprError();
break;
case Builtin::BI__builtin_function_start:
if (BuiltinFunctionStart(*this, TheCall))
return ExprError();
break;
case Builtin::BI__builtin_is_aligned:
case Builtin::BI__builtin_align_up:
case Builtin::BI__builtin_align_down:
if (BuiltinAlignment(*this, TheCall, BuiltinID))
return ExprError();
break;
case Builtin::BI__builtin_add_overflow:
case Builtin::BI__builtin_sub_overflow:
case Builtin::BI__builtin_mul_overflow:
if (BuiltinOverflow(*this, TheCall, BuiltinID))
return ExprError();
break;
case Builtin::BI__builtin_operator_new:
case Builtin::BI__builtin_operator_delete: {
bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete;
ExprResult Res =
BuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete);
if (Res.isInvalid())
CorrectDelayedTyposInExpr(TheCallResult.get());
return Res;
}
case Builtin::BI__builtin_dump_struct:
return BuiltinDumpStruct(*this, TheCall);
case Builtin::BI__builtin_expect_with_probability: {
// We first want to ensure we are called with 3 arguments
if (checkArgCount(TheCall, 3))
return ExprError();
// then check probability is constant float in range [0.0, 1.0]
const Expr *ProbArg = TheCall->getArg(2);
SmallVector<PartialDiagnosticAt, 8> Notes;
Expr::EvalResult Eval;
Eval.Diag = &Notes;
if ((!ProbArg->EvaluateAsConstantExpr(Eval, Context)) ||
!Eval.Val.isFloat()) {
Diag(ProbArg->getBeginLoc(), diag::err_probability_not_constant_float)
<< ProbArg->getSourceRange();
for (const PartialDiagnosticAt &PDiag : Notes)
Diag(PDiag.first, PDiag.second);
return ExprError();
}
llvm::APFloat Probability = Eval.Val.getFloat();
bool LoseInfo = false;
Probability.convert(llvm::APFloat::IEEEdouble(),
llvm::RoundingMode::Dynamic, &LoseInfo);
if (!(Probability >= llvm::APFloat(0.0) &&
Probability <= llvm::APFloat(1.0))) {
Diag(ProbArg->getBeginLoc(), diag::err_probability_out_of_range)
<< ProbArg->getSourceRange();
return ExprError();
}
break;
}
case Builtin::BI__builtin_preserve_access_index:
if (BuiltinPreserveAI(*this, TheCall))
return ExprError();
break;
case Builtin::BI__builtin_call_with_static_chain:
if (BuiltinCallWithStaticChain(*this, TheCall))
return ExprError();
break;
case Builtin::BI__exception_code:
case Builtin::BI_exception_code:
if (BuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope,
diag::err_seh___except_block))
return ExprError();
break;
case Builtin::BI__exception_info:
case Builtin::BI_exception_info:
if (BuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope,
diag::err_seh___except_filter))
return ExprError();
break;
case Builtin::BI__GetExceptionInfo:
if (checkArgCount(TheCall, 1))
return ExprError();
if (CheckCXXThrowOperand(
TheCall->getBeginLoc(),
Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()),
TheCall))
return ExprError();
TheCall->setType(Context.VoidPtrTy);
break;
case Builtin::BIaddressof:
case Builtin::BI__addressof:
case Builtin::BIforward:
case Builtin::BIforward_like:
case Builtin::BImove:
case Builtin::BImove_if_noexcept:
case Builtin::BIas_const: {
// These are all expected to be of the form
// T &/&&/* f(U &/&&)
// where T and U only differ in qualification.
if (checkArgCount(TheCall, 1))
return ExprError();
QualType Param = FDecl->getParamDecl(0)->getType();
QualType Result = FDecl->getReturnType();
bool ReturnsPointer = BuiltinID == Builtin::BIaddressof ||
BuiltinID == Builtin::BI__addressof;
if (!(Param->isReferenceType() &&
(ReturnsPointer ? Result->isAnyPointerType()
: Result->isReferenceType()) &&
Context.hasSameUnqualifiedType(Param->getPointeeType(),
Result->getPointeeType()))) {
Diag(TheCall->getBeginLoc(), diag::err_builtin_move_forward_unsupported)
<< FDecl;
return ExprError();
}
break;
}
case Builtin::BI__builtin_ptrauth_strip:
return PointerAuthStrip(*this, TheCall);
case Builtin::BI__builtin_ptrauth_blend_discriminator:
return PointerAuthBlendDiscriminator(*this, TheCall);
case Builtin::BI__builtin_ptrauth_sign_constant:
return PointerAuthSignOrAuth(*this, TheCall, PAO_Sign,
/*RequireConstant=*/true);
case Builtin::BI__builtin_ptrauth_sign_unauthenticated:
return PointerAuthSignOrAuth(*this, TheCall, PAO_Sign,
/*RequireConstant=*/false);
case Builtin::BI__builtin_ptrauth_auth:
return PointerAuthSignOrAuth(*this, TheCall, PAO_Auth,
/*RequireConstant=*/false);
case Builtin::BI__builtin_ptrauth_sign_generic_data:
return PointerAuthSignGenericData(*this, TheCall);
case Builtin::BI__builtin_ptrauth_auth_and_resign:
return PointerAuthAuthAndResign(*this, TheCall);
case Builtin::BI__builtin_ptrauth_string_discriminator:
return PointerAuthStringDiscriminator(*this, TheCall);
// OpenCL v2.0, s6.13.16 - Pipe functions
case Builtin::BIread_pipe:
case Builtin::BIwrite_pipe:
// Since those two functions are declared with var args, we need a semantic
// check for the argument.
if (OpenCL().checkBuiltinRWPipe(TheCall))
return ExprError();
break;
case Builtin::BIreserve_read_pipe:
case Builtin::BIreserve_write_pipe:
case Builtin::BIwork_group_reserve_read_pipe:
case Builtin::BIwork_group_reserve_write_pipe:
if (OpenCL().checkBuiltinReserveRWPipe(TheCall))
return ExprError();
break;
case Builtin::BIsub_group_reserve_read_pipe:
case Builtin::BIsub_group_reserve_write_pipe:
if (OpenCL().checkSubgroupExt(TheCall) ||
OpenCL().checkBuiltinReserveRWPipe(TheCall))
return ExprError();
break;
case Builtin::BIcommit_read_pipe:
case Builtin::BIcommit_write_pipe:
case Builtin::BIwork_group_commit_read_pipe:
case Builtin::BIwork_group_commit_write_pipe:
if (OpenCL().checkBuiltinCommitRWPipe(TheCall))
return ExprError();
break;
case Builtin::BIsub_group_commit_read_pipe:
case Builtin::BIsub_group_commit_write_pipe:
if (OpenCL().checkSubgroupExt(TheCall) ||
OpenCL().checkBuiltinCommitRWPipe(TheCall))
return ExprError();
break;
case Builtin::BIget_pipe_num_packets:
case Builtin::BIget_pipe_max_packets:
if (OpenCL().checkBuiltinPipePackets(TheCall))
return ExprError();
break;
case Builtin::BIto_global:
case Builtin::BIto_local:
case Builtin::BIto_private:
if (OpenCL().checkBuiltinToAddr(BuiltinID, TheCall))
return ExprError();
break;
// OpenCL v2.0, s6.13.17 - Enqueue kernel functions.
case Builtin::BIenqueue_kernel:
if (OpenCL().checkBuiltinEnqueueKernel(TheCall))
return ExprError();
break;
case Builtin::BIget_kernel_work_group_size:
case Builtin::BIget_kernel_preferred_work_group_size_multiple:
if (OpenCL().checkBuiltinKernelWorkGroupSize(TheCall))
return ExprError();
break;
case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
case Builtin::BIget_kernel_sub_group_count_for_ndrange:
if (OpenCL().checkBuiltinNDRangeAndBlock(TheCall))
return ExprError();
break;
case Builtin::BI__builtin_os_log_format:
Cleanup.setExprNeedsCleanups(true);
[[fallthrough]];
case Builtin::BI__builtin_os_log_format_buffer_size:
if (BuiltinOSLogFormat(TheCall))
return ExprError();
break;
case Builtin::BI__builtin_frame_address:
case Builtin::BI__builtin_return_address: {
if (BuiltinConstantArgRange(TheCall, 0, 0, 0xFFFF))
return ExprError();
// -Wframe-address warning if non-zero passed to builtin
// return/frame address.
Expr::EvalResult Result;
if (!TheCall->getArg(0)->isValueDependent() &&
TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) &&
Result.Val.getInt() != 0)
Diag(TheCall->getBeginLoc(), diag::warn_frame_address)
<< ((BuiltinID == Builtin::BI__builtin_return_address)
? "__builtin_return_address"
: "__builtin_frame_address")
<< TheCall->getSourceRange();
break;
}
case Builtin::BI__builtin_nondeterministic_value: {
if (BuiltinNonDeterministicValue(TheCall))
return ExprError();
break;
}
// __builtin_elementwise_abs restricts the element type to signed integers or
// floating point types only.
case Builtin::BI__builtin_elementwise_abs:
if (PrepareBuiltinElementwiseMathOneArgCall(
TheCall, EltwiseBuiltinArgTyRestriction::SignedIntOrFloatTy))
return ExprError();
break;
// These builtins restrict the element type to floating point
// types only.
case Builtin::BI__builtin_elementwise_acos:
case Builtin::BI__builtin_elementwise_asin:
case Builtin::BI__builtin_elementwise_atan:
case Builtin::BI__builtin_elementwise_ceil:
case Builtin::BI__builtin_elementwise_cos:
case Builtin::BI__builtin_elementwise_cosh:
case Builtin::BI__builtin_elementwise_exp:
case Builtin::BI__builtin_elementwise_exp2:
case Builtin::BI__builtin_elementwise_exp10:
case Builtin::BI__builtin_elementwise_floor:
case Builtin::BI__builtin_elementwise_log:
case Builtin::BI__builtin_elementwise_log2:
case Builtin::BI__builtin_elementwise_log10:
case Builtin::BI__builtin_elementwise_roundeven:
case Builtin::BI__builtin_elementwise_round:
case Builtin::BI__builtin_elementwise_rint:
case Builtin::BI__builtin_elementwise_nearbyint:
case Builtin::BI__builtin_elementwise_sin:
case Builtin::BI__builtin_elementwise_sinh:
case Builtin::BI__builtin_elementwise_sqrt:
case Builtin::BI__builtin_elementwise_tan:
case Builtin::BI__builtin_elementwise_tanh:
case Builtin::BI__builtin_elementwise_trunc:
case Builtin::BI__builtin_elementwise_canonicalize:
if (PrepareBuiltinElementwiseMathOneArgCall(
TheCall, EltwiseBuiltinArgTyRestriction::FloatTy))
return ExprError();
break;
case Builtin::BI__builtin_elementwise_fma:
if (BuiltinElementwiseTernaryMath(TheCall))
return ExprError();
break;
// These builtins restrict the element type to floating point
// types only, and take in two arguments.
case Builtin::BI__builtin_elementwise_minimum:
case Builtin::BI__builtin_elementwise_maximum:
case Builtin::BI__builtin_elementwise_atan2:
case Builtin::BI__builtin_elementwise_fmod:
case Builtin::BI__builtin_elementwise_pow:
if (BuiltinElementwiseMath(TheCall,
EltwiseBuiltinArgTyRestriction::FloatTy))
return ExprError();
break;
// These builtins restrict the element type to integer
// types only.
case Builtin::BI__builtin_elementwise_add_sat:
case Builtin::BI__builtin_elementwise_sub_sat:
if (BuiltinElementwiseMath(TheCall,
EltwiseBuiltinArgTyRestriction::IntegerTy))
return ExprError();
break;
case Builtin::BI__builtin_elementwise_min:
case Builtin::BI__builtin_elementwise_max:
if (BuiltinElementwiseMath(TheCall))
return ExprError();
break;
case Builtin::BI__builtin_elementwise_popcount:
case Builtin::BI__builtin_elementwise_bitreverse:
if (PrepareBuiltinElementwiseMathOneArgCall(
TheCall, EltwiseBuiltinArgTyRestriction::IntegerTy))
return ExprError();
break;
case Builtin::BI__builtin_elementwise_copysign: {
if (checkArgCount(TheCall, 2))
return ExprError();
ExprResult Magnitude = UsualUnaryConversions(TheCall->getArg(0));
ExprResult Sign = UsualUnaryConversions(TheCall->getArg(1));
if (Magnitude.isInvalid() || Sign.isInvalid())
return ExprError();
QualType MagnitudeTy = Magnitude.get()->getType();
QualType SignTy = Sign.get()->getType();
if (checkMathBuiltinElementType(
*this, TheCall->getArg(0)->getBeginLoc(), MagnitudeTy,
EltwiseBuiltinArgTyRestriction::FloatTy, 1) ||
checkMathBuiltinElementType(
*this, TheCall->getArg(1)->getBeginLoc(), SignTy,
EltwiseBuiltinArgTyRestriction::FloatTy, 2)) {
return ExprError();
}
if (MagnitudeTy.getCanonicalType() != SignTy.getCanonicalType()) {
return Diag(Sign.get()->getBeginLoc(),
diag::err_typecheck_call_different_arg_types)
<< MagnitudeTy << SignTy;
}
TheCall->setArg(0, Magnitude.get());
TheCall->setArg(1, Sign.get());
TheCall->setType(Magnitude.get()->getType());
break;
}
case Builtin::BI__builtin_reduce_max:
case Builtin::BI__builtin_reduce_min: {
if (PrepareBuiltinReduceMathOneArgCall(TheCall))
return ExprError();
const Expr *Arg = TheCall->getArg(0);
const auto *TyA = Arg->getType()->getAs<VectorType>();
QualType ElTy;
if (TyA)
ElTy = TyA->getElementType();
else if (Arg->getType()->isSizelessVectorType())
ElTy = Arg->getType()->getSizelessVectorEltType(Context);
if (ElTy.isNull()) {
Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
<< 1 << /* vector ty */ 2 << /* no int */ 0 << /* no fp */ 0
<< Arg->getType();
return ExprError();
}
TheCall->setType(ElTy);
break;
}
case Builtin::BI__builtin_reduce_maximum:
case Builtin::BI__builtin_reduce_minimum: {
if (PrepareBuiltinReduceMathOneArgCall(TheCall))
return ExprError();
const Expr *Arg = TheCall->getArg(0);
const auto *TyA = Arg->getType()->getAs<VectorType>();
QualType ElTy;
if (TyA)
ElTy = TyA->getElementType();
else if (Arg->getType()->isSizelessVectorType())
ElTy = Arg->getType()->getSizelessVectorEltType(Context);
if (ElTy.isNull() || !ElTy->isFloatingType()) {
Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
<< 1 << /* vector of */ 4 << /* no int */ 0 << /* fp */ 1
<< Arg->getType();
return ExprError();
}
TheCall->setType(ElTy);
break;
}
// These builtins support vectors of integers only.
// TODO: ADD/MUL should support floating-point types.
case Builtin::BI__builtin_reduce_add:
case Builtin::BI__builtin_reduce_mul:
case Builtin::BI__builtin_reduce_xor:
case Builtin::BI__builtin_reduce_or:
case Builtin::BI__builtin_reduce_and: {
if (PrepareBuiltinReduceMathOneArgCall(TheCall))
return ExprError();
const Expr *Arg = TheCall->getArg(0);
const auto *TyA = Arg->getType()->getAs<VectorType>();
QualType ElTy;
if (TyA)
ElTy = TyA->getElementType();
else if (Arg->getType()->isSizelessVectorType())
ElTy = Arg->getType()->getSizelessVectorEltType(Context);
if (ElTy.isNull() || !ElTy->isIntegerType()) {
Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
<< 1 << /* vector of */ 4 << /* int */ 1 << /* no fp */ 0
<< Arg->getType();
return ExprError();
}
TheCall->setType(ElTy);
break;
}
case Builtin::BI__builtin_matrix_transpose:
return BuiltinMatrixTranspose(TheCall, TheCallResult);
case Builtin::BI__builtin_matrix_column_major_load:
return BuiltinMatrixColumnMajorLoad(TheCall, TheCallResult);
case Builtin::BI__builtin_matrix_column_major_store:
return BuiltinMatrixColumnMajorStore(TheCall, TheCallResult);
case Builtin::BI__builtin_verbose_trap:
if (!checkBuiltinVerboseTrap(TheCall, *this))
return ExprError();
break;
case Builtin::BI__builtin_get_device_side_mangled_name: {
auto Check = [](CallExpr *TheCall) {
if (TheCall->getNumArgs() != 1)
return false;
auto *DRE = dyn_cast<DeclRefExpr>(TheCall->getArg(0)->IgnoreImpCasts());
if (!DRE)
return false;
auto *D = DRE->getDecl();
if (!isa<FunctionDecl>(D) && !isa<VarDecl>(D))
return false;
return D->hasAttr<CUDAGlobalAttr>() || D->hasAttr<CUDADeviceAttr>() ||
D->hasAttr<CUDAConstantAttr>() || D->hasAttr<HIPManagedAttr>();
};
if (!Check(TheCall)) {
Diag(TheCall->getBeginLoc(),
diag::err_hip_invalid_args_builtin_mangled_name);
return ExprError();
}
break;
}
case Builtin::BI__builtin_popcountg:
if (BuiltinPopcountg(*this, TheCall))
return ExprError();
break;
case Builtin::BI__builtin_clzg:
case Builtin::BI__builtin_ctzg:
if (BuiltinCountZeroBitsGeneric(*this, TheCall))
return ExprError();
break;
case Builtin::BI__builtin_allow_runtime_check: {
Expr *Arg = TheCall->getArg(0);
// Check if the argument is a string literal.
if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) {
Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
<< Arg->getSourceRange();
return ExprError();
}
break;
}
case Builtin::BI__builtin_counted_by_ref:
if (BuiltinCountedByRef(TheCall))
return ExprError();
break;
}
if (getLangOpts().HLSL && HLSL().CheckBuiltinFunctionCall(BuiltinID, TheCall))
return ExprError();
// Since the target specific builtins for each arch overlap, only check those
// of the arch we are compiling for.
if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) {
if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
assert(Context.getAuxTargetInfo() &&
"Aux Target Builtin, but not an aux target?");
if (CheckTSBuiltinFunctionCall(
*Context.getAuxTargetInfo(),
Context.BuiltinInfo.getAuxBuiltinID(BuiltinID), TheCall))
return ExprError();
} else {
if (CheckTSBuiltinFunctionCall(Context.getTargetInfo(), BuiltinID,
TheCall))
return ExprError();
}
}
return TheCallResult;
}
bool Sema::ValueIsRunOfOnes(CallExpr *TheCall, unsigned ArgNum) {
llvm::APSInt Result;
// We can't check the value of a dependent argument.
Expr *Arg = TheCall->getArg(ArgNum);
if (Arg->isTypeDependent() || Arg->isValueDependent())
return false;
// Check constant-ness first.
if (BuiltinConstantArg(TheCall, ArgNum, Result))
return true;
// Check contiguous run of 1s, 0xFF0000FF is also a run of 1s.
if (Result.isShiftedMask() || (~Result).isShiftedMask())
return false;
return Diag(TheCall->getBeginLoc(),
diag::err_argument_not_contiguous_bit_field)
<< ArgNum << Arg->getSourceRange();
}
bool Sema::getFormatStringInfo(const Decl *D, unsigned FormatIdx,
unsigned FirstArg, FormatStringInfo *FSI) {
bool IsCXXMember = false;
if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
IsCXXMember = MD->isInstance();
bool IsVariadic = false;
if (const FunctionType *FnTy = D->getFunctionType())
IsVariadic = cast<FunctionProtoType>(FnTy)->isVariadic();
else if (const auto *BD = dyn_cast<BlockDecl>(D))
IsVariadic = BD->isVariadic();
else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(D))
IsVariadic = OMD->isVariadic();
return getFormatStringInfo(FormatIdx, FirstArg, IsCXXMember, IsVariadic, FSI);
}
bool Sema::getFormatStringInfo(unsigned FormatIdx, unsigned FirstArg,
bool IsCXXMember, bool IsVariadic,
FormatStringInfo *FSI) {
if (FirstArg == 0)
FSI->ArgPassingKind = FAPK_VAList;
else if (IsVariadic)
FSI->ArgPassingKind = FAPK_Variadic;
else
FSI->ArgPassingKind = FAPK_Fixed;
FSI->FormatIdx = FormatIdx - 1;
FSI->FirstDataArg = FSI->ArgPassingKind == FAPK_VAList ? 0 : FirstArg - 1;
// The way the format attribute works in GCC, the implicit this argument
// of member functions is counted. However, it doesn't appear in our own
// lists, so decrement format_idx in that case.
if (IsCXXMember) {
if(FSI->FormatIdx == 0)
return false;
--FSI->FormatIdx;
if (FSI->FirstDataArg != 0)
--FSI->FirstDataArg;
}
return true;
}
/// Checks if a the given expression evaluates to null.
///
/// Returns true if the value evaluates to null.
static bool CheckNonNullExpr(Sema &S, const Expr *Expr) {
// Treat (smart) pointers constructed from nullptr as null, whether we can
// const-evaluate them or not.
// This must happen first: the smart pointer expr might have _Nonnull type!
if (isa<CXXNullPtrLiteralExpr>(
IgnoreExprNodes(Expr, IgnoreImplicitAsWrittenSingleStep,
IgnoreElidableImplicitConstructorSingleStep)))
return true;
// If the expression has non-null type, it doesn't evaluate to null.
if (auto nullability = Expr->IgnoreImplicit()->getType()->getNullability()) {
if (*nullability == NullabilityKind::NonNull)
return false;
}
// As a special case, transparent unions initialized with zero are
// considered null for the purposes of the nonnull attribute.
if (const RecordType *UT = Expr->getType()->getAsUnionType();
UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
if (const auto *CLE = dyn_cast<CompoundLiteralExpr>(Expr))
if (const auto *ILE = dyn_cast<InitListExpr>(CLE->getInitializer()))
Expr = ILE->getInit(0);
}
bool Result;
return (!Expr->isValueDependent() &&
Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
!Result);
}
static void CheckNonNullArgument(Sema &S,
const Expr *ArgExpr,
SourceLocation CallSiteLoc) {
if (CheckNonNullExpr(S, ArgExpr))
S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr,
S.PDiag(diag::warn_null_arg)
<< ArgExpr->getSourceRange());
}
/// Determine whether the given type has a non-null nullability annotation.
static bool isNonNullType(QualType type) {
if (auto nullability = type->getNullability())
return *nullability == NullabilityKind::NonNull;
return false;
}
static void CheckNonNullArguments(Sema &S,
const NamedDecl *FDecl,
const FunctionProtoType *Proto,
ArrayRef<const Expr *> Args,
SourceLocation CallSiteLoc) {
assert((FDecl || Proto) && "Need a function declaration or prototype");
// Already checked by constant evaluator.
if (S.isConstantEvaluatedContext())
return;
// Check the attributes attached to the method/function itself.
llvm::SmallBitVector NonNullArgs;
if (FDecl) {
// Handle the nonnull attribute on the function/method declaration itself.
for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
if (!NonNull->args_size()) {
// Easy case: all pointer arguments are nonnull.
for (const auto *Arg : Args)
if (S.isValidPointerAttrType(Arg->getType()))
CheckNonNullArgument(S, Arg, CallSiteLoc);
return;
}
for (const ParamIdx &Idx : NonNull->args()) {
unsigned IdxAST = Idx.getASTIndex();
if (IdxAST >= Args.size())
continue;
if (NonNullArgs.empty())
NonNullArgs.resize(Args.size());
NonNullArgs.set(IdxAST);
}
}
}
if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) {
// Handle the nonnull attribute on the parameters of the
// function/method.
ArrayRef<ParmVarDecl*> parms;
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
parms = FD->parameters();
else
parms = cast<ObjCMethodDecl>(FDecl)->parameters();
unsigned ParamIndex = 0;
for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
I != E; ++I, ++ParamIndex) {
const ParmVarDecl *PVD = *I;
if (PVD->hasAttr<NonNullAttr>() || isNonNullType(PVD->getType())) {
if (NonNullArgs.empty())
NonNullArgs.resize(Args.size());
NonNullArgs.set(ParamIndex);
}
}
} else {
// If we have a non-function, non-method declaration but no
// function prototype, try to dig out the function prototype.
if (!Proto) {
if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) {
QualType type = VD->getType().getNonReferenceType();
if (auto pointerType = type->getAs<PointerType>())
type = pointerType->getPointeeType();
else if (auto blockType = type->getAs<BlockPointerType>())
type = blockType->getPointeeType();
// FIXME: data member pointers?
// Dig out the function prototype, if there is one.
Proto = type->getAs<FunctionProtoType>();
}
}
// Fill in non-null argument information from the nullability
// information on the parameter types (if we have them).
if (Proto) {
unsigned Index = 0;
for (auto paramType : Proto->getParamTypes()) {
if (isNonNullType(paramType)) {
if (NonNullArgs.empty())
NonNullArgs.resize(Args.size());
NonNullArgs.set(Index);
}
++Index;
}
}
}
// Check for non-null arguments.
for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size();
ArgIndex != ArgIndexEnd; ++ArgIndex) {
if (NonNullArgs[ArgIndex])
CheckNonNullArgument(S, Args[ArgIndex], Args[ArgIndex]->getExprLoc());
}
}
void Sema::CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl,
StringRef ParamName, QualType ArgTy,
QualType ParamTy) {
// If a function accepts a pointer or reference type
if (!ParamTy->isPointerType() && !ParamTy->isReferenceType())
return;
// If the parameter is a pointer type, get the pointee type for the
// argument too. If the parameter is a reference type, don't try to get
// the pointee type for the argument.
if (ParamTy->isPointerType())
ArgTy = ArgTy->getPointeeType();
// Remove reference or pointer
ParamTy = ParamTy->getPointeeType();
// Find expected alignment, and the actual alignment of the passed object.
// getTypeAlignInChars requires complete types
if (ArgTy.isNull() || ParamTy->isDependentType() ||
ParamTy->isIncompleteType() || ArgTy->isIncompleteType() ||
ParamTy->isUndeducedType() || ArgTy->isUndeducedType())
return;
CharUnits ParamAlign = Context.getTypeAlignInChars(ParamTy);
CharUnits ArgAlign = Context.getTypeAlignInChars(ArgTy);
// If the argument is less aligned than the parameter, there is a
// potential alignment issue.
if (ArgAlign < ParamAlign)
Diag(Loc, diag::warn_param_mismatched_alignment)
<< (int)ArgAlign.getQuantity() << (int)ParamAlign.getQuantity()
<< ParamName << (FDecl != nullptr) << FDecl;
}
void Sema::checkLifetimeCaptureBy(FunctionDecl *FD, bool IsMemberFunction,
const Expr *ThisArg,
ArrayRef<const Expr *> Args) {
if (!FD || Args.empty())
return;
auto GetArgAt = [&](int Idx) -> const Expr * {
if (Idx == LifetimeCaptureByAttr::GLOBAL ||
Idx == LifetimeCaptureByAttr::UNKNOWN)
return nullptr;
if (IsMemberFunction && Idx == 0)
return ThisArg;
return Args[Idx - IsMemberFunction];
};
auto HandleCaptureByAttr = [&](const LifetimeCaptureByAttr *Attr,
unsigned ArgIdx) {
if (!Attr)
return;
Expr *Captured = const_cast<Expr *>(GetArgAt(ArgIdx));
for (int CapturingParamIdx : Attr->params()) {
// lifetime_capture_by(this) case is handled in the lifetimebound expr
// initialization codepath.
if (CapturingParamIdx == LifetimeCaptureByAttr::THIS &&
isa<CXXConstructorDecl>(FD))
continue;
Expr *Capturing = const_cast<Expr *>(GetArgAt(CapturingParamIdx));
CapturingEntity CE{Capturing};
// Ensure that 'Captured' outlives the 'Capturing' entity.
checkCaptureByLifetime(*this, CE, Captured);
}
};
for (unsigned I = 0; I < FD->getNumParams(); ++I)
HandleCaptureByAttr(FD->getParamDecl(I)->getAttr<LifetimeCaptureByAttr>(),
I + IsMemberFunction);
// Check when the implicit object param is captured.
if (IsMemberFunction) {
TypeSourceInfo *TSI = FD->getTypeSourceInfo();
if (!TSI)
return;
AttributedTypeLoc ATL;
for (TypeLoc TL = TSI->getTypeLoc();
(ATL = TL.getAsAdjusted<AttributedTypeLoc>());
TL = ATL.getModifiedLoc())
HandleCaptureByAttr(ATL.getAttrAs<LifetimeCaptureByAttr>(), 0);
}
}
void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
const Expr *ThisArg, ArrayRef<const Expr *> Args,
bool IsMemberFunction, SourceLocation Loc,
SourceRange Range, VariadicCallType CallType) {
// FIXME: We should check as much as we can in the template definition.
if (CurContext->isDependentContext())
return;
// Printf and scanf checking.
llvm::SmallBitVector CheckedVarArgs;
if (FDecl) {
for (const auto *I : FDecl->specific_attrs<FormatMatchesAttr>()) {
// Only create vector if there are format attributes.
CheckedVarArgs.resize(Args.size());
CheckFormatString(I, Args, IsMemberFunction, CallType, Loc, Range,
CheckedVarArgs);
}
for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
CheckedVarArgs.resize(Args.size());
CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
CheckedVarArgs);
}
}
// Refuse POD arguments that weren't caught by the format string
// checks above.
auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl);
if (CallType != VariadicDoesNotApply &&
(!FD || FD->getBuiltinID() != Builtin::BI__noop)) {
unsigned NumParams = Proto ? Proto->getNumParams()
: isa_and_nonnull<FunctionDecl>(FDecl)
? cast<FunctionDecl>(FDecl)->getNumParams()
: isa_and_nonnull<ObjCMethodDecl>(FDecl)
? cast<ObjCMethodDecl>(FDecl)->param_size()
: 0;
for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
// Args[ArgIdx] can be null in malformed code.
if (const Expr *Arg = Args[ArgIdx]) {
if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
checkVariadicArgument(Arg, CallType);
}
}
}
if (FD)
checkLifetimeCaptureBy(FD, IsMemberFunction, ThisArg, Args);
if (FDecl || Proto) {
CheckNonNullArguments(*this, FDecl, Proto, Args, Loc);
// Type safety checking.
if (FDecl) {
for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
CheckArgumentWithTypeTag(I, Args, Loc);
}
}
// Check that passed arguments match the alignment of original arguments.
// Try to get the missing prototype from the declaration.
if (!Proto && FDecl) {
const auto *FT = FDecl->getFunctionType();
if (isa_and_nonnull<FunctionProtoType>(FT))
Proto = cast<FunctionProtoType>(FDecl->getFunctionType());
}
if (Proto) {
// For variadic functions, we may have more args than parameters.
// For some K&R functions, we may have less args than parameters.
const auto N = std::min<unsigned>(Proto->getNumParams(), Args.size());
bool IsScalableRet = Proto->getReturnType()->isSizelessVectorType();
bool IsScalableArg = false;
for (unsigned ArgIdx = 0; ArgIdx < N; ++ArgIdx) {
// Args[ArgIdx] can be null in malformed code.
if (const Expr *Arg = Args[ArgIdx]) {
if (Arg->containsErrors())
continue;
if (Context.getTargetInfo().getTriple().isOSAIX() && FDecl && Arg &&
FDecl->hasLinkage() &&
FDecl->getFormalLinkage() != Linkage::Internal &&
CallType == VariadicDoesNotApply)
PPC().checkAIXMemberAlignment((Arg->getExprLoc()), Arg);
QualType ParamTy = Proto->getParamType(ArgIdx);
if (ParamTy->isSizelessVectorType())
IsScalableArg = true;
QualType ArgTy = Arg->getType();
CheckArgAlignment(Arg->getExprLoc(), FDecl, std::to_string(ArgIdx + 1),
ArgTy, ParamTy);
}
}
// If the callee has an AArch64 SME attribute to indicate that it is an
// __arm_streaming function, then the caller requires SME to be available.
FunctionProtoType::ExtProtoInfo ExtInfo = Proto->getExtProtoInfo();
if (ExtInfo.AArch64SMEAttributes & FunctionType::SME_PStateSMEnabledMask) {
if (auto *CallerFD = dyn_cast<FunctionDecl>(CurContext)) {
llvm::StringMap<bool> CallerFeatureMap;
Context.getFunctionFeatureMap(CallerFeatureMap, CallerFD);
if (!CallerFeatureMap.contains("sme"))
Diag(Loc, diag::err_sme_call_in_non_sme_target);
} else if (!Context.getTargetInfo().hasFeature("sme")) {
Diag(Loc, diag::err_sme_call_in_non_sme_target);
}
}
// If the call requires a streaming-mode change and has scalable vector
// arguments or return values, then warn the user that the streaming and
// non-streaming vector lengths may be different.
const auto *CallerFD = dyn_cast<FunctionDecl>(CurContext);
if (CallerFD && (!FD || !FD->getBuiltinID()) &&
(IsScalableArg || IsScalableRet)) {
bool IsCalleeStreaming =
ExtInfo.AArch64SMEAttributes & FunctionType::SME_PStateSMEnabledMask;
bool IsCalleeStreamingCompatible =
ExtInfo.AArch64SMEAttributes &
FunctionType::SME_PStateSMCompatibleMask;
SemaARM::ArmStreamingType CallerFnType = getArmStreamingFnType(CallerFD);
if (!IsCalleeStreamingCompatible &&
(CallerFnType == SemaARM::ArmStreamingCompatible ||
((CallerFnType == SemaARM::ArmStreaming) ^ IsCalleeStreaming))) {
if (IsScalableArg)
Diag(Loc, diag::warn_sme_streaming_pass_return_vl_to_non_streaming)
<< /*IsArg=*/true;
if (IsScalableRet)
Diag(Loc, diag::warn_sme_streaming_pass_return_vl_to_non_streaming)
<< /*IsArg=*/false;
}
}
FunctionType::ArmStateValue CalleeArmZAState =
FunctionType::getArmZAState(ExtInfo.AArch64SMEAttributes);
FunctionType::ArmStateValue CalleeArmZT0State =
FunctionType::getArmZT0State(ExtInfo.AArch64SMEAttributes);
if (CalleeArmZAState != FunctionType::ARM_None ||
CalleeArmZT0State != FunctionType::ARM_None) {
bool CallerHasZAState = false;
bool CallerHasZT0State = false;
if (CallerFD) {
auto *Attr = CallerFD->getAttr<ArmNewAttr>();
if (Attr && Attr->isNewZA())
CallerHasZAState = true;
if (Attr && Attr->isNewZT0())
CallerHasZT0State = true;
if (const auto *FPT = CallerFD->getType()->getAs<FunctionProtoType>()) {
CallerHasZAState |=
FunctionType::getArmZAState(
FPT->getExtProtoInfo().AArch64SMEAttributes) !=
FunctionType::ARM_None;
CallerHasZT0State |=
FunctionType::getArmZT0State(
FPT->getExtProtoInfo().AArch64SMEAttributes) !=
FunctionType::ARM_None;
}
}
if (CalleeArmZAState != FunctionType::ARM_None && !CallerHasZAState)
Diag(Loc, diag::err_sme_za_call_no_za_state);
if (CalleeArmZT0State != FunctionType::ARM_None && !CallerHasZT0State)
Diag(Loc, diag::err_sme_zt0_call_no_zt0_state);
if (CallerHasZAState && CalleeArmZAState == FunctionType::ARM_None &&
CalleeArmZT0State != FunctionType::ARM_None) {
Diag(Loc, diag::err_sme_unimplemented_za_save_restore);
Diag(Loc, diag::note_sme_use_preserves_za);
}
}
}
if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) {
auto *AA = FDecl->getAttr<AllocAlignAttr>();
const Expr *Arg = Args[AA->getParamIndex().getASTIndex()];
if (!Arg->isValueDependent()) {
Expr::EvalResult Align;
if (Arg->EvaluateAsInt(Align, Context)) {
const llvm::APSInt &I = Align.Val.getInt();
if (!I.isPowerOf2())
Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two)
<< Arg->getSourceRange();
if (I > Sema::MaximumAlignment)
Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great)
<< Arg->getSourceRange() << Sema::MaximumAlignment;
}
}
}
if (FD)
diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc);
}
void Sema::CheckConstrainedAuto(const AutoType *AutoT, SourceLocation Loc) {
if (ConceptDecl *Decl = AutoT->getTypeConstraintConcept()) {
DiagnoseUseOfDecl(Decl, Loc);
}
}
void Sema::CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType,
ArrayRef<const Expr *> Args,
const FunctionProtoType *Proto,
SourceLocation Loc) {
VariadicCallType CallType =
Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
auto *Ctor = cast<CXXConstructorDecl>(FDecl);
CheckArgAlignment(
Loc, FDecl, "'this'", Context.getPointerType(ThisType),
Context.getPointerType(Ctor->getFunctionObjectParameterType()));
checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true,
Loc, SourceRange(), CallType);
}
bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
const FunctionProtoType *Proto) {
bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
isa<CXXMethodDecl>(FDecl);
bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
IsMemberOperatorCall;
VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
TheCall->getCallee());
Expr** Args = TheCall->getArgs();
unsigned NumArgs = TheCall->getNumArgs();
Expr *ImplicitThis = nullptr;
if (IsMemberOperatorCall && !FDecl->hasCXXExplicitFunctionObjectParameter()) {
// If this is a call to a member operator, hide the first
// argument from checkCall.
// FIXME: Our choice of AST representation here is less than ideal.
ImplicitThis = Args[0];
++Args;
--NumArgs;
} else if (IsMemberFunction && !FDecl->isStatic() &&
!FDecl->hasCXXExplicitFunctionObjectParameter())
ImplicitThis =
cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument();
if (ImplicitThis) {
// ImplicitThis may or may not be a pointer, depending on whether . or -> is
// used.
QualType ThisType = ImplicitThis->getType();
if (!ThisType->isPointerType()) {
assert(!ThisType->isReferenceType());
ThisType = Context.getPointerType(ThisType);
}
QualType ThisTypeFromDecl = Context.getPointerType(
cast<CXXMethodDecl>(FDecl)->getFunctionObjectParameterType());
CheckArgAlignment(TheCall->getRParenLoc(), FDecl, "'this'", ThisType,
ThisTypeFromDecl);
}
checkCall(FDecl, Proto, ImplicitThis, llvm::ArrayRef(Args, NumArgs),
IsMemberFunction, TheCall->getRParenLoc(),
TheCall->getCallee()->getSourceRange(), CallType);
IdentifierInfo *FnInfo = FDecl->getIdentifier();
// None of the checks below are needed for functions that don't have
// simple names (e.g., C++ conversion functions).
if (!FnInfo)
return false;
// Enforce TCB except for builtin calls, which are always allowed.
if (FDecl->getBuiltinID() == 0)
CheckTCBEnforcement(TheCall->getExprLoc(), FDecl);
CheckAbsoluteValueFunction(TheCall, FDecl);
CheckMaxUnsignedZero(TheCall, FDecl);
CheckInfNaNFunction(TheCall, FDecl);
if (getLangOpts().ObjC)
ObjC().DiagnoseCStringFormatDirectiveInCFAPI(FDecl, Args, NumArgs);
unsigned CMId = FDecl->getMemoryFunctionKind();
// Handle memory setting and copying functions.
switch (CMId) {
case 0:
return false;
case Builtin::BIstrlcpy: // fallthrough
case Builtin::BIstrlcat:
CheckStrlcpycatArguments(TheCall, FnInfo);
break;
case Builtin::BIstrncat:
CheckStrncatArguments(TheCall, FnInfo);
break;
case Builtin::BIfree:
CheckFreeArguments(TheCall);
break;
default:
CheckMemaccessArguments(TheCall, CMId, FnInfo);
}
return false;
}
bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
const FunctionProtoType *Proto) {
QualType Ty;
if (const auto *V = dyn_cast<VarDecl>(NDecl))
Ty = V->getType().getNonReferenceType();
else if (const auto *F = dyn_cast<FieldDecl>(NDecl))
Ty = F->getType().getNonReferenceType();
else
return false;
if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() &&
!Ty->isFunctionProtoType())
return false;
VariadicCallType CallType;
if (!Proto || !Proto->isVariadic()) {
CallType = VariadicDoesNotApply;
} else if (Ty->isBlockPointerType()) {
CallType = VariadicBlock;
} else { // Ty->isFunctionPointerType()
CallType = VariadicFunction;
}
checkCall(NDecl, Proto, /*ThisArg=*/nullptr,
llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
/*IsMemberFunction=*/false, TheCall->getRParenLoc(),
TheCall->getCallee()->getSourceRange(), CallType);
return false;
}
bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
TheCall->getCallee());
checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr,
llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
/*IsMemberFunction=*/false, TheCall->getRParenLoc(),
TheCall->getCallee()->getSourceRange(), CallType);
return false;
}
static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
if (!llvm::isValidAtomicOrderingCABI(Ordering))
return false;
auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering;
switch (Op) {
case AtomicExpr::AO__c11_atomic_init:
case AtomicExpr::AO__opencl_atomic_init:
llvm_unreachable("There is no ordering argument for an init");
case AtomicExpr::AO__c11_atomic_load:
case AtomicExpr::AO__opencl_atomic_load:
case AtomicExpr::AO__hip_atomic_load:
case AtomicExpr::AO__atomic_load_n:
case AtomicExpr::AO__atomic_load:
case AtomicExpr::AO__scoped_atomic_load_n:
case AtomicExpr::AO__scoped_atomic_load:
return OrderingCABI != llvm::AtomicOrderingCABI::release &&
OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
case AtomicExpr::AO__c11_atomic_store:
case AtomicExpr::AO__opencl_atomic_store:
case AtomicExpr::AO__hip_atomic_store:
case AtomicExpr::AO__atomic_store:
case AtomicExpr::AO__atomic_store_n:
case AtomicExpr::AO__scoped_atomic_store:
case AtomicExpr::AO__scoped_atomic_store_n:
case AtomicExpr::AO__atomic_clear:
return OrderingCABI != llvm::AtomicOrderingCABI::consume &&
OrderingCABI != llvm::AtomicOrderingCABI::acquire &&
OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
default:
return true;
}
}
ExprResult Sema::AtomicOpsOverloaded(ExprResult TheCallResult,
AtomicExpr::AtomicOp Op) {
CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()};
return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()},
DRE->getSourceRange(), TheCall->getRParenLoc(), Args,
Op);
}
ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
SourceLocation RParenLoc, MultiExprArg Args,
AtomicExpr::AtomicOp Op,
AtomicArgumentOrder ArgOrder) {
// All the non-OpenCL operations take one of the following forms.
// The OpenCL operations take the __c11 forms with one extra argument for
// synchronization scope.
enum {
// C __c11_atomic_init(A *, C)
Init,
// C __c11_atomic_load(A *, int)
Load,
// void __atomic_load(A *, CP, int)
LoadCopy,
// void __atomic_store(A *, CP, int)
Copy,
// C __c11_atomic_add(A *, M, int)
Arithmetic,
// C __atomic_exchange_n(A *, CP, int)
Xchg,
// void __atomic_exchange(A *, C *, CP, int)
GNUXchg,
// bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
C11CmpXchg,
// bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
GNUCmpXchg,
// bool __atomic_test_and_set(A *, int)
TestAndSetByte,
// void __atomic_clear(A *, int)
ClearByte,
} Form = Init;
const unsigned NumForm = ClearByte + 1;
const unsigned NumArgs[] = {2, 2, 3, 3, 3, 3, 4, 5, 6, 2, 2};
const unsigned NumVals[] = {1, 0, 1, 1, 1, 1, 2, 2, 3, 0, 0};
// where:
// C is an appropriate type,
// A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
// CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
// M is C if C is an integer, and ptrdiff_t if C is a pointer, and
// the int parameters are for orderings.
static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm
&& sizeof(NumVals)/sizeof(NumVals[0]) == NumForm,
"need to update code for modified forms");
static_assert(AtomicExpr::AO__atomic_add_fetch == 0 &&
AtomicExpr::AO__atomic_xor_fetch + 1 ==
AtomicExpr::AO__c11_atomic_compare_exchange_strong,
"need to update code for modified C11 atomics");
bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_compare_exchange_strong &&
Op <= AtomicExpr::AO__opencl_atomic_store;
bool IsHIP = Op >= AtomicExpr::AO__hip_atomic_compare_exchange_strong &&
Op <= AtomicExpr::AO__hip_atomic_store;
bool IsScoped = Op >= AtomicExpr::AO__scoped_atomic_add_fetch &&
Op <= AtomicExpr::AO__scoped_atomic_xor_fetch;
bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_compare_exchange_strong &&
Op <= AtomicExpr::AO__c11_atomic_store) ||
IsOpenCL;
bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
Op == AtomicExpr::AO__atomic_store_n ||
Op == AtomicExpr::AO__atomic_exchange_n ||
Op == AtomicExpr::AO__atomic_compare_exchange_n ||
Op == AtomicExpr::AO__scoped_atomic_load_n ||
Op == AtomicExpr::AO__scoped_atomic_store_n ||
Op == AtomicExpr::AO__scoped_atomic_exchange_n ||
Op == AtomicExpr::AO__scoped_atomic_compare_exchange_n;
// Bit mask for extra allowed value types other than integers for atomic
// arithmetic operations. Add/sub allow pointer and floating point. Min/max
// allow floating point.
enum ArithOpExtraValueType {
AOEVT_None = 0,
AOEVT_Pointer = 1,
AOEVT_FP = 2,
};
unsigned ArithAllows = AOEVT_None;
switch (Op) {
case AtomicExpr::AO__c11_atomic_init:
case AtomicExpr::AO__opencl_atomic_init:
Form = Init;
break;
case AtomicExpr::AO__c11_atomic_load:
case AtomicExpr::AO__opencl_atomic_load:
case AtomicExpr::AO__hip_atomic_load:
case AtomicExpr::AO__atomic_load_n:
case AtomicExpr::AO__scoped_atomic_load_n:
Form = Load;
break;
case AtomicExpr::AO__atomic_load:
case AtomicExpr::AO__scoped_atomic_load:
Form = LoadCopy;
break;
case AtomicExpr::AO__c11_atomic_store:
case AtomicExpr::AO__opencl_atomic_store:
case AtomicExpr::AO__hip_atomic_store:
case AtomicExpr::AO__atomic_store:
case AtomicExpr::AO__atomic_store_n:
case AtomicExpr::AO__scoped_atomic_store:
case AtomicExpr::AO__scoped_atomic_store_n:
Form = Copy;
break;
case AtomicExpr::AO__atomic_fetch_add:
case AtomicExpr::AO__atomic_fetch_sub:
case AtomicExpr::AO__atomic_add_fetch:
case AtomicExpr::AO__atomic_sub_fetch:
case AtomicExpr::AO__scoped_atomic_fetch_add:
case AtomicExpr::AO__scoped_atomic_fetch_sub:
case AtomicExpr::AO__scoped_atomic_add_fetch:
case AtomicExpr::AO__scoped_atomic_sub_fetch:
case AtomicExpr::AO__c11_atomic_fetch_add:
case AtomicExpr::AO__c11_atomic_fetch_sub:
case AtomicExpr::AO__opencl_atomic_fetch_add:
case AtomicExpr::AO__opencl_atomic_fetch_sub:
case AtomicExpr::AO__hip_atomic_fetch_add:
case AtomicExpr::AO__hip_atomic_fetch_sub:
ArithAllows = AOEVT_Pointer | AOEVT_FP;
Form = Arithmetic;
break;
case AtomicExpr::AO__atomic_fetch_max:
case AtomicExpr::AO__atomic_fetch_min:
case AtomicExpr::AO__atomic_max_fetch:
case AtomicExpr::AO__atomic_min_fetch:
case AtomicExpr::AO__scoped_atomic_fetch_max:
case AtomicExpr::AO__scoped_atomic_fetch_min:
case AtomicExpr::AO__scoped_atomic_max_fetch:
case AtomicExpr::AO__scoped_atomic_min_fetch:
case AtomicExpr::AO__c11_atomic_fetch_max:
case AtomicExpr::AO__c11_atomic_fetch_min:
case AtomicExpr::AO__opencl_atomic_fetch_max:
case AtomicExpr::AO__opencl_atomic_fetch_min:
case AtomicExpr::AO__hip_atomic_fetch_max:
case AtomicExpr::AO__hip_atomic_fetch_min:
ArithAllows = AOEVT_FP;
Form = Arithmetic;
break;
case AtomicExpr::AO__c11_atomic_fetch_and:
case AtomicExpr::AO__c11_atomic_fetch_or:
case AtomicExpr::AO__c11_atomic_fetch_xor:
case AtomicExpr::AO__hip_atomic_fetch_and:
case AtomicExpr::AO__hip_atomic_fetch_or:
case AtomicExpr::AO__hip_atomic_fetch_xor:
case AtomicExpr::AO__c11_atomic_fetch_nand:
case AtomicExpr::AO__opencl_atomic_fetch_and:
case AtomicExpr::AO__opencl_atomic_fetch_or:
case AtomicExpr::AO__opencl_atomic_fetch_xor:
case AtomicExpr::AO__atomic_fetch_and:
case AtomicExpr::AO__atomic_fetch_or:
case AtomicExpr::AO__atomic_fetch_xor:
case AtomicExpr::AO__atomic_fetch_nand:
case AtomicExpr::AO__atomic_and_fetch:
case AtomicExpr::AO__atomic_or_fetch:
case AtomicExpr::AO__atomic_xor_fetch:
case AtomicExpr::AO__atomic_nand_fetch:
case AtomicExpr::AO__scoped_atomic_fetch_and:
case AtomicExpr::AO__scoped_atomic_fetch_or:
case AtomicExpr::AO__scoped_atomic_fetch_xor:
case AtomicExpr::AO__scoped_atomic_fetch_nand:
case AtomicExpr::AO__scoped_atomic_and_fetch:
case AtomicExpr::AO__scoped_atomic_or_fetch:
case AtomicExpr::AO__scoped_atomic_xor_fetch:
case AtomicExpr::AO__scoped_atomic_nand_fetch:
Form = Arithmetic;
break;
case AtomicExpr::AO__c11_atomic_exchange:
case AtomicExpr::AO__hip_atomic_exchange:
case AtomicExpr::AO__opencl_atomic_exchange:
case AtomicExpr::AO__atomic_exchange_n:
case AtomicExpr::AO__scoped_atomic_exchange_n:
Form = Xchg;
break;
case AtomicExpr::AO__atomic_exchange:
case AtomicExpr::AO__scoped_atomic_exchange:
Form = GNUXchg;
break;
case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
case AtomicExpr::AO__hip_atomic_compare_exchange_strong:
case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
case AtomicExpr::AO__hip_atomic_compare_exchange_weak:
Form = C11CmpXchg;
break;
case AtomicExpr::AO__atomic_compare_exchange:
case AtomicExpr::AO__atomic_compare_exchange_n:
case AtomicExpr::AO__scoped_atomic_compare_exchange:
case AtomicExpr::AO__scoped_atomic_compare_exchange_n:
Form = GNUCmpXchg;
break;
case AtomicExpr::AO__atomic_test_and_set:
Form = TestAndSetByte;
break;
case AtomicExpr::AO__atomic_clear:
Form = ClearByte;
break;
}
unsigned AdjustedNumArgs = NumArgs[Form];
if ((IsOpenCL || IsHIP || IsScoped) &&
Op != AtomicExpr::AO__opencl_atomic_init)
++AdjustedNumArgs;
// Check we have the right number of arguments.
if (Args.size() < AdjustedNumArgs) {
Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args)
<< 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
<< /*is non object*/ 0 << ExprRange;
return ExprError();
} else if (Args.size() > AdjustedNumArgs) {
Diag(Args[AdjustedNumArgs]->getBeginLoc(),
diag::err_typecheck_call_too_many_args)
<< 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
<< /*is non object*/ 0 << ExprRange;
return ExprError();
}
// Inspect the first argument of the atomic operation.
Expr *Ptr = Args[0];
ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr);
if (ConvertedPtr.isInvalid())
return ExprError();
Ptr = ConvertedPtr.get();
const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
if (!pointerType) {
Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer)
<< Ptr->getType() << 0 << Ptr->getSourceRange();
return ExprError();
}
// For a __c11 builtin, this should be a pointer to an _Atomic type.
QualType AtomTy = pointerType->getPointeeType(); // 'A'
QualType ValType = AtomTy; // 'C'
if (IsC11) {
if (!AtomTy->isAtomicType()) {
Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic)
<< Ptr->getType() << Ptr->getSourceRange();
return ExprError();
}
if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) ||
AtomTy.getAddressSpace() == LangAS::opencl_constant) {
Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic)
<< (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType()
<< Ptr->getSourceRange();
return ExprError();
}
ValType = AtomTy->castAs<AtomicType>()->getValueType();
} else if (Form != Load && Form != LoadCopy) {
if (ValType.isConstQualified()) {
Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer)
<< Ptr->getType() << Ptr->getSourceRange();
return ExprError();
}
}
if (Form != TestAndSetByte && Form != ClearByte) {
// Pointer to object of size zero is not allowed.
if (RequireCompleteType(Ptr->getBeginLoc(), AtomTy,
diag::err_incomplete_type))
return ExprError();
if (Context.getTypeInfoInChars(AtomTy).Width.isZero()) {
Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer)
<< Ptr->getType() << 1 << Ptr->getSourceRange();
return ExprError();
}
} else {
// The __atomic_clear and __atomic_test_and_set intrinsics accept any
// non-const pointer type, including void* and pointers to incomplete
// structs, but only access the first byte.
AtomTy = Context.CharTy;
AtomTy = AtomTy.withCVRQualifiers(
pointerType->getPointeeType().getCVRQualifiers());
QualType PointerQT = Context.getPointerType(AtomTy);
pointerType = PointerQT->getAs<PointerType>();
Ptr = ImpCastExprToType(Ptr, PointerQT, CK_BitCast).get();
ValType = AtomTy;
}
// For an arithmetic operation, the implied arithmetic must be well-formed.
if (Form == Arithmetic) {
// GCC does not enforce these rules for GNU atomics, but we do to help catch
// trivial type errors.
auto IsAllowedValueType = [&](QualType ValType,
unsigned AllowedType) -> bool {
if (ValType->isIntegerType())
return true;
if (ValType->isPointerType())
return AllowedType & AOEVT_Pointer;
if (!(ValType->isFloatingType() && (AllowedType & AOEVT_FP)))
return false;
// LLVM Parser does not allow atomicrmw with x86_fp80 type.
if (ValType->isSpecificBuiltinType(BuiltinType::LongDouble) &&
&Context.getTargetInfo().getLongDoubleFormat() ==
&llvm::APFloat::x87DoubleExtended())
return false;
return true;
};
if (!IsAllowedValueType(ValType, ArithAllows)) {
auto DID = ArithAllows & AOEVT_FP
? (ArithAllows & AOEVT_Pointer
? diag::err_atomic_op_needs_atomic_int_ptr_or_fp
: diag::err_atomic_op_needs_atomic_int_or_fp)
: diag::err_atomic_op_needs_atomic_int;
Diag(ExprRange.getBegin(), DID)
<< IsC11 << Ptr->getType() << Ptr->getSourceRange();
return ExprError();
}
if (IsC11 && ValType->isPointerType() &&
RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(),
diag::err_incomplete_type)) {
return ExprError();
}
} else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
// For __atomic_*_n operations, the value type must be a scalar integral or
// pointer type which is 1, 2, 4, 8 or 16 bytes in length.
Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr)
<< IsC11 << Ptr->getType() << Ptr->getSourceRange();
return ExprError();
}
if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
!AtomTy->isScalarType()) {
// For GNU atomics, require a trivially-copyable type. This is not part of
// the GNU atomics specification but we enforce it for consistency with
// other atomics which generally all require a trivially-copyable type. This
// is because atomics just copy bits.
Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy)
<< Ptr->getType() << Ptr->getSourceRange();
return ExprError();
}
switch (ValType.getObjCLifetime()) {
case Qualifiers::OCL_None:
case Qualifiers::OCL_ExplicitNone:
// okay
break;
case Qualifiers::OCL_Weak:
case Qualifiers::OCL_Strong:
case Qualifiers::OCL_Autoreleasing:
// FIXME: Can this happen? By this point, ValType should be known
// to be trivially copyable.
Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership)
<< ValType << Ptr->getSourceRange();
return ExprError();
}
// All atomic operations have an overload which takes a pointer to a volatile
// 'A'. We shouldn't let the volatile-ness of the pointee-type inject itself
// into the result or the other operands. Similarly atomic_load takes a
// pointer to a const 'A'.
ValType.removeLocalVolatile();
ValType.removeLocalConst();
QualType ResultType = ValType;
if (Form == Copy || Form == LoadCopy || Form == GNUXchg || Form == Init ||
Form == ClearByte)
ResultType = Context.VoidTy;
else if (Form == C11CmpXchg || Form == GNUCmpXchg || Form == TestAndSetByte)
ResultType = Context.BoolTy;
// The type of a parameter passed 'by value'. In the GNU atomics, such
// arguments are actually passed as pointers.
QualType ByValType = ValType; // 'CP'
bool IsPassedByAddress = false;
if (!IsC11 && !IsHIP && !IsN) {
ByValType = Ptr->getType();
IsPassedByAddress = true;
}
SmallVector<Expr *, 5> APIOrderedArgs;
if (ArgOrder == Sema::AtomicArgumentOrder::AST) {
APIOrderedArgs.push_back(Args[0]);
switch (Form) {
case Init:
case Load:
APIOrderedArgs.push_back(Args[1]); // Val1/Order
break;
case LoadCopy:
case Copy:
case Arithmetic:
case Xchg:
APIOrderedArgs.push_back(Args[2]); // Val1
APIOrderedArgs.push_back(Args[1]); // Order
break;
case GNUXchg:
APIOrderedArgs.push_back(Args[2]); // Val1
APIOrderedArgs.push_back(Args[3]); // Val2
APIOrderedArgs.push_back(Args[1]); // Order
break;
case C11CmpXchg:
APIOrderedArgs.push_back(Args[2]); // Val1
APIOrderedArgs.push_back(Args[4]); // Val2
APIOrderedArgs.push_back(Args[1]); // Order
APIOrderedArgs.push_back(Args[3]); // OrderFail
break;
case GNUCmpXchg:
APIOrderedArgs.push_back(Args[2]); // Val1
APIOrderedArgs.push_back(Args[4]); // Val2
APIOrderedArgs.push_back(Args[5]); // Weak
APIOrderedArgs.push_back(Args[1]); // Order
APIOrderedArgs.push_back(Args[3]); // OrderFail
break;
case TestAndSetByte:
case ClearByte:
APIOrderedArgs.push_back(Args[1]); // Order
break;
}
} else
APIOrderedArgs.append(Args.begin(), Args.end());
// The first argument's non-CV pointer type is used to deduce the type of
// subsequent arguments, except for:
// - weak flag (always converted to bool)
// - memory order (always converted to int)
// - scope (always converted to int)
for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) {
QualType Ty;
if (i < NumVals[Form] + 1) {
switch (i) {
case 0:
// The first argument is always a pointer. It has a fixed type.
// It is always dereferenced, a nullptr is undefined.
CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
// Nothing else to do: we already know all we want about this pointer.
continue;
case 1:
// The second argument is the non-atomic operand. For arithmetic, this
// is always passed by value, and for a compare_exchange it is always
// passed by address. For the rest, GNU uses by-address and C11 uses
// by-value.
assert(Form != Load);
if (Form == Arithmetic && ValType->isPointerType())
Ty = Context.getPointerDiffType();
else if (Form == Init || Form == Arithmetic)
Ty = ValType;
else if (Form == Copy || Form == Xchg) {
if (IsPassedByAddress) {
// The value pointer is always dereferenced, a nullptr is undefined.
CheckNonNullArgument(*this, APIOrderedArgs[i],
ExprRange.getBegin());
}
Ty = ByValType;
} else {
Expr *ValArg = APIOrderedArgs[i];
// The value pointer is always dereferenced, a nullptr is undefined.
CheckNonNullArgument(*this, ValArg, ExprRange.getBegin());
LangAS AS = LangAS::Default;
// Keep address space of non-atomic pointer type.
if (const PointerType *PtrTy =
ValArg->getType()->getAs<PointerType>()) {
AS = PtrTy->getPointeeType().getAddressSpace();
}
Ty = Context.getPointerType(
Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS));
}
break;
case 2:
// The third argument to compare_exchange / GNU exchange is the desired
// value, either by-value (for the C11 and *_n variant) or as a pointer.
if (IsPassedByAddress)
CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
Ty = ByValType;
break;
case 3:
// The fourth argument to GNU compare_exchange is a 'weak' flag.
Ty = Context.BoolTy;
break;
}
} else {
// The order(s) and scope are always converted to int.
Ty = Context.IntTy;
}
InitializedEntity Entity =
InitializedEntity::InitializeParameter(Context, Ty, false);
ExprResult Arg = APIOrderedArgs[i];
Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
if (Arg.isInvalid())
return true;
APIOrderedArgs[i] = Arg.get();
}
// Permute the arguments into a 'consistent' order.
SmallVector<Expr*, 5> SubExprs;
SubExprs.push_back(Ptr);
switch (Form) {
case Init:
// Note, AtomicExpr::getVal1() has a special case for this atomic.
SubExprs.push_back(APIOrderedArgs[1]); // Val1
break;
case Load:
case TestAndSetByte:
case ClearByte:
SubExprs.push_back(APIOrderedArgs[1]); // Order
break;
case LoadCopy:
case Copy:
case Arithmetic:
case Xchg:
SubExprs.push_back(APIOrderedArgs[2]); // Order
SubExprs.push_back(APIOrderedArgs[1]); // Val1
break;
case GNUXchg:
// Note, AtomicExpr::getVal2() has a special case for this atomic.
SubExprs.push_back(APIOrderedArgs[3]); // Order
SubExprs.push_back(APIOrderedArgs[1]); // Val1
SubExprs.push_back(APIOrderedArgs[2]); // Val2
break;
case C11CmpXchg:
SubExprs.push_back(APIOrderedArgs[3]); // Order
SubExprs.push_back(APIOrderedArgs[1]); // Val1
SubExprs.push_back(APIOrderedArgs[4]); // OrderFail
SubExprs.push_back(APIOrderedArgs[2]); // Val2
break;
case GNUCmpXchg:
SubExprs.push_back(APIOrderedArgs[4]); // Order
SubExprs.push_back(APIOrderedArgs[1]); // Val1
SubExprs.push_back(APIOrderedArgs[5]); // OrderFail
SubExprs.push_back(APIOrderedArgs[2]); // Val2
SubExprs.push_back(APIOrderedArgs[3]); // Weak
break;
}
// If the memory orders are constants, check they are valid.
if (SubExprs.size() >= 2 && Form != Init) {
std::optional<llvm::APSInt> Success =
SubExprs[1]->getIntegerConstantExpr(Context);
if (Success && !isValidOrderingForOp(Success->getSExtValue(), Op)) {
Diag(SubExprs[1]->getBeginLoc(),
diag::warn_atomic_op_has_invalid_memory_order)
<< /*success=*/(Form == C11CmpXchg || Form == GNUCmpXchg)
<< SubExprs[1]->getSourceRange();
}
if (SubExprs.size() >= 5) {
if (std::optional<llvm::APSInt> Failure =
SubExprs[3]->getIntegerConstantExpr(Context)) {
if (!llvm::is_contained(
{llvm::AtomicOrderingCABI::relaxed,
llvm::AtomicOrderingCABI::consume,
llvm::AtomicOrderingCABI::acquire,
llvm::AtomicOrderingCABI::seq_cst},
(llvm::AtomicOrderingCABI)Failure->getSExtValue())) {
Diag(SubExprs[3]->getBeginLoc(),
diag::warn_atomic_op_has_invalid_memory_order)
<< /*failure=*/2 << SubExprs[3]->getSourceRange();
}
}
}
}
if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) {
auto *Scope = Args[Args.size() - 1];
if (std::optional<llvm::APSInt> Result =
Scope->getIntegerConstantExpr(Context)) {
if (!ScopeModel->isValid(Result->getZExtValue()))
Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_sync_scope)
<< Scope->getSourceRange();
}
SubExprs.push_back(Scope);
}
AtomicExpr *AE = new (Context)
AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc);
if ((Op == AtomicExpr::AO__c11_atomic_load ||
Op == AtomicExpr::AO__c11_atomic_store ||
Op == AtomicExpr::AO__opencl_atomic_load ||
Op == AtomicExpr::AO__hip_atomic_load ||
Op == AtomicExpr::AO__opencl_atomic_store ||
Op == AtomicExpr::AO__hip_atomic_store) &&
Context.AtomicUsesUnsupportedLibcall(AE))
Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib)
<< ((Op == AtomicExpr::AO__c11_atomic_load ||
Op == AtomicExpr::AO__opencl_atomic_load ||
Op == AtomicExpr::AO__hip_atomic_load)
? 0
: 1);
if (ValType->isBitIntType()) {
Diag(Ptr->getExprLoc(), diag::err_atomic_builtin_bit_int_prohibit);
return ExprError();
}
return AE;
}
/// checkBuiltinArgument - Given a call to a builtin function, perform
/// normal type-checking on the given argument, updating the call in
/// place. This is useful when a builtin function requires custom
/// type-checking for some of its arguments but not necessarily all of
/// them.
///
/// Returns true on error.
static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
FunctionDecl *Fn = E->getDirectCallee();
assert(Fn && "builtin call without direct callee!");
ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
InitializedEntity Entity =
InitializedEntity::InitializeParameter(S.Context, Param);
ExprResult Arg = E->getArg(ArgIndex);
Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
if (Arg.isInvalid())
return true;
E->setArg(ArgIndex, Arg.get());
return false;
}
ExprResult Sema::BuiltinAtomicOverloaded(ExprResult TheCallResult) {
CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get());
Expr *Callee = TheCall->getCallee();
DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts());
FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
// Ensure that we have at least one argument to do type inference from.
if (TheCall->getNumArgs() < 1) {
Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
<< 0 << 1 << TheCall->getNumArgs() << /*is non object*/ 0
<< Callee->getSourceRange();
return ExprError();
}
// Inspect the first argument of the atomic builtin. This should always be
// a pointer type, whose element is an integral scalar or pointer type.
// Because it is a pointer type, we don't have to worry about any implicit
// casts here.
// FIXME: We don't allow floating point scalars as input.
Expr *FirstArg = TheCall->getArg(0);
ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
if (FirstArgResult.isInvalid())
return ExprError();
FirstArg = FirstArgResult.get();
TheCall->setArg(0, FirstArg);
const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
if (!pointerType) {
Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
<< FirstArg->getType() << 0 << FirstArg->getSourceRange();
return ExprError();
}
QualType ValType = pointerType->getPointeeType();
if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
!ValType->isBlockPointerType()) {
Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr)
<< FirstArg->getType() << 0 << FirstArg->getSourceRange();
return ExprError();
}
if (ValType.isConstQualified()) {
Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const)
<< FirstArg->getType() << FirstArg->getSourceRange();
return ExprError();
}
switch (ValType.getObjCLifetime()) {
case Qualifiers::OCL_None:
case Qualifiers::OCL_ExplicitNone:
// okay
break;
case Qualifiers::OCL_Weak:
case Qualifiers::OCL_Strong:
case Qualifiers::OCL_Autoreleasing:
Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
<< ValType << FirstArg->getSourceRange();
return ExprError();
}
// Strip any qualifiers off ValType.
ValType = ValType.getUnqualifiedType();
// The majority of builtins return a value, but a few have special return
// types, so allow them to override appropriately below.
QualType ResultType = ValType;
// We need to figure out which concrete builtin this maps onto. For example,
// __sync_fetch_and_add with a 2 byte object turns into
// __sync_fetch_and_add_2.
#define BUILTIN_ROW(x) \
{ Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
Builtin::BI##x##_8, Builtin::BI##x##_16 }
static const unsigned BuiltinIndices[][5] = {
BUILTIN_ROW(__sync_fetch_and_add),
BUILTIN_ROW(__sync_fetch_and_sub),
BUILTIN_ROW(__sync_fetch_and_or),
BUILTIN_ROW(__sync_fetch_and_and),
BUILTIN_ROW(__sync_fetch_and_xor),
BUILTIN_ROW(__sync_fetch_and_nand),
BUILTIN_ROW(__sync_add_and_fetch),
BUILTIN_ROW(__sync_sub_and_fetch),
BUILTIN_ROW(__sync_and_and_fetch),
BUILTIN_ROW(__sync_or_and_fetch),
BUILTIN_ROW(__sync_xor_and_fetch),
BUILTIN_ROW(__sync_nand_and_fetch),
BUILTIN_ROW(__sync_val_compare_and_swap),
BUILTIN_ROW(__sync_bool_compare_and_swap),
BUILTIN_ROW(__sync_lock_test_and_set),
BUILTIN_ROW(__sync_lock_release),
BUILTIN_ROW(__sync_swap)
};
#undef BUILTIN_ROW
// Determine the index of the size.
unsigned SizeIndex;
switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
case 1: SizeIndex = 0; break;
case 2: SizeIndex = 1; break;
case 4: SizeIndex = 2; break;
case 8: SizeIndex = 3; break;
case 16: SizeIndex = 4; break;
default:
Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size)
<< FirstArg->getType() << FirstArg->getSourceRange();
return ExprError();
}
// Each of these builtins has one pointer argument, followed by some number of
// values (0, 1 or 2) followed by a potentially empty varags list of stuff
// that we ignore. Find out which row of BuiltinIndices to read from as well
// as the number of fixed args.
unsigned BuiltinID = FDecl->getBuiltinID();
unsigned BuiltinIndex, NumFixed = 1;
bool WarnAboutSemanticsChange = false;
switch (BuiltinID) {
default: llvm_unreachable("Unknown overloaded atomic builtin!");
case Builtin::BI__sync_fetch_and_add:
case Builtin::BI__sync_fetch_and_add_1:
case Builtin::BI__sync_fetch_and_add_2:
case Builtin::BI__sync_fetch_and_add_4:
case Builtin::BI__sync_fetch_and_add_8:
case Builtin::BI__sync_fetch_and_add_16:
BuiltinIndex = 0;
break;
case Builtin::BI__sync_fetch_and_sub:
case Builtin::BI__sync_fetch_and_sub_1:
case Builtin::BI__sync_fetch_and_sub_2:
case Builtin::BI__sync_fetch_and_sub_4:
case Builtin::BI__sync_fetch_and_sub_8:
case Builtin::BI__sync_fetch_and_sub_16:
BuiltinIndex = 1;
break;
case Builtin::BI__sync_fetch_and_or:
case Builtin::BI__sync_fetch_and_or_1:
case Builtin::BI__sync_fetch_and_or_2:
case Builtin::BI__sync_fetch_and_or_4:
case Builtin::BI__sync_fetch_and_or_8:
case Builtin::BI__sync_fetch_and_or_16:
BuiltinIndex = 2;
break;
case Builtin::BI__sync_fetch_and_and:
case Builtin::BI__sync_fetch_and_and_1:
case Builtin::BI__sync_fetch_and_and_2:
case Builtin::BI__sync_fetch_and_and_4:
case Builtin::BI__sync_fetch_and_and_8:
case Builtin::BI__sync_fetch_and_and_16:
BuiltinIndex = 3;
break;
case Builtin::BI__sync_fetch_and_xor:
case Builtin::BI__sync_fetch_and_xor_1:
case Builtin::BI__sync_fetch_and_xor_2:
case Builtin::BI__sync_fetch_and_xor_4:
case Builtin::BI__sync_fetch_and_xor_8:
case Builtin::BI__sync_fetch_and_xor_16:
BuiltinIndex = 4;
break;
case Builtin::BI__sync_fetch_and_nand:
case Builtin::BI__sync_fetch_and_nand_1:
case Builtin::BI__sync_fetch_and_nand_2:
case Builtin::BI__sync_fetch_and_nand_4:
case Builtin::BI__sync_fetch_and_nand_8:
case Builtin::BI__sync_fetch_and_nand_16:
BuiltinIndex = 5;
WarnAboutSemanticsChange = true;
break;
case Builtin::BI__sync_add_and_fetch:
case Builtin::BI__sync_add_and_fetch_1:
case Builtin::BI__sync_add_and_fetch_2:
case Builtin::BI__sync_add_and_fetch_4:
case Builtin::BI__sync_add_and_fetch_8:
case Builtin::BI__sync_add_and_fetch_16:
BuiltinIndex = 6;
break;
case Builtin::BI__sync_sub_and_fetch:
case Builtin::BI__sync_sub_and_fetch_1:
case Builtin::BI__sync_sub_and_fetch_2:
case Builtin::BI__sync_sub_and_fetch_4:
case Builtin::BI__sync_sub_and_fetch_8:
case Builtin::BI__sync_sub_and_fetch_16:
BuiltinIndex = 7;
break;
case Builtin::BI__sync_and_and_fetch:
case Builtin::BI__sync_and_and_fetch_1:
case Builtin::BI__sync_and_and_fetch_2:
case Builtin::BI__sync_and_and_fetch_4:
case Builtin::BI__sync_and_and_fetch_8:
case Builtin::BI__sync_and_and_fetch_16:
BuiltinIndex = 8;
break;
case Builtin::BI__sync_or_and_fetch:
case Builtin::BI__sync_or_and_fetch_1:
case Builtin::BI__sync_or_and_fetch_2:
case Builtin::BI__sync_or_and_fetch_4:
case Builtin::BI__sync_or_and_fetch_8:
case Builtin::BI__sync_or_and_fetch_16:
BuiltinIndex = 9;
break;
case Builtin::BI__sync_xor_and_fetch:
case Builtin::BI__sync_xor_and_fetch_1:
case Builtin::BI__sync_xor_and_fetch_2:
case Builtin::BI__sync_xor_and_fetch_4:
case Builtin::BI__sync_xor_and_fetch_8:
case Builtin::BI__sync_xor_and_fetch_16:
BuiltinIndex = 10;
break;
case Builtin::BI__sync_nand_and_fetch:
case Builtin::BI__sync_nand_and_fetch_1:
case Builtin::BI__sync_nand_and_fetch_2:
case Builtin::BI__sync_nand_and_fetch_4:
case Builtin::BI__sync_nand_and_fetch_8:
case Builtin::BI__sync_nand_and_fetch_16:
BuiltinIndex = 11;
WarnAboutSemanticsChange = true;
break;
case Builtin::BI__sync_val_compare_and_swap:
case Builtin::BI__sync_val_compare_and_swap_1:
case Builtin::BI__sync_val_compare_and_swap_2:
case Builtin::BI__sync_val_compare_and_swap_4:
case Builtin::BI__sync_val_compare_and_swap_8:
case Builtin::BI__sync_val_compare_and_swap_16:
BuiltinIndex = 12;
NumFixed = 2;
break;
case Builtin::BI__sync_bool_compare_and_swap:
case Builtin::BI__sync_bool_compare_and_swap_1:
case Builtin::BI__sync_bool_compare_and_swap_2:
case Builtin::BI__sync_bool_compare_and_swap_4:
case Builtin::BI__sync_bool_compare_and_swap_8:
case Builtin::BI__sync_bool_compare_and_swap_16:
BuiltinIndex = 13;
NumFixed = 2;
ResultType = Context.BoolTy;
break;
case Builtin::BI__sync_lock_test_and_set:
case Builtin::BI__sync_lock_test_and_set_1:
case Builtin::BI__sync_lock_test_and_set_2:
case Builtin::BI__sync_lock_test_and_set_4:
case Builtin::BI__sync_lock_test_and_set_8:
case Builtin::BI__sync_lock_test_and_set_16:
BuiltinIndex = 14;
break;
case Builtin::BI__sync_lock_release:
case Builtin::BI__sync_lock_release_1:
case Builtin::BI__sync_lock_release_2:
case Builtin::BI__sync_lock_release_4:
case Builtin::BI__sync_lock_release_8:
case Builtin::BI__sync_lock_release_16:
BuiltinIndex = 15;
NumFixed = 0;
ResultType = Context.VoidTy;
break;
case Builtin::BI__sync_swap:
case Builtin::BI__sync_swap_1:
case Builtin::BI__sync_swap_2:
case Builtin::BI__sync_swap_4:
case Builtin::BI__sync_swap_8:
case Builtin::BI__sync_swap_16:
BuiltinIndex = 16;
break;
}
// Now that we know how many fixed arguments we expect, first check that we
// have at least that many.
if (TheCall->getNumArgs() < 1+NumFixed) {
Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
<< 0 << 1 + NumFixed << TheCall->getNumArgs() << /*is non object*/ 0
<< Callee->getSourceRange();
return ExprError();
}
Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst)
<< Callee->getSourceRange();
if (WarnAboutSemanticsChange) {
Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change)
<< Callee->getSourceRange();
}
// Get the decl for the concrete builtin from this, we can tell what the
// concrete integer type we should convert to is.
unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
std::string NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID);
FunctionDecl *NewBuiltinDecl;
if (NewBuiltinID == BuiltinID)
NewBuiltinDecl = FDecl;
else {
// Perform builtin lookup to avoid redeclaring it.
DeclarationName DN(&Context.Idents.get(NewBuiltinName));
LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName);
LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
assert(Res.getFoundDecl());
NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
if (!NewBuiltinDecl)
return ExprError();
}
// The first argument --- the pointer --- has a fixed type; we
// deduce the types of the rest of the arguments accordingly. Walk
// the remaining arguments, converting them to the deduced value type.
for (unsigned i = 0; i != NumFixed; ++i) {
ExprResult Arg = TheCall->getArg(i+1);
// GCC does an implicit conversion to the pointer or integer ValType. This
// can fail in some cases (1i -> int**), check for this error case now.
// Initialize the argument.
InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
ValType, /*consume*/ false);
Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
if (Arg.isInvalid())
return ExprError();
// Okay, we have something that *can* be converted to the right type. Check
// to see if there is a potentially weird extension going on here. This can
// happen when you do an atomic operation on something like an char* and
// pass in 42. The 42 gets converted to char. This is even more strange
// for things like 45.123 -> char, etc.
// FIXME: Do this check.
TheCall->setArg(i+1, Arg.get());
}
// Create a new DeclRefExpr to refer to the new decl.
DeclRefExpr *NewDRE = DeclRefExpr::Create(
Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl,
/*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy,
DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse());
// Set the callee in the CallExpr.
// FIXME: This loses syntactic information.
QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
CK_BuiltinFnToFnPtr);
TheCall->setCallee(PromotedCall.get());
// Change the result type of the call to match the original value type. This
// is arbitrary, but the codegen for these builtins ins design to handle it
// gracefully.
TheCall->setType(ResultType);
// Prohibit problematic uses of bit-precise integer types with atomic
// builtins. The arguments would have already been converted to the first
// argument's type, so only need to check the first argument.
const auto *BitIntValType = ValType->getAs<BitIntType>();
if (BitIntValType && !llvm::isPowerOf2_64(BitIntValType->getNumBits())) {
Diag(FirstArg->getExprLoc(), diag::err_atomic_builtin_ext_int_size);
return ExprError();
}
return TheCallResult;
}
ExprResult Sema::BuiltinNontemporalOverloaded(ExprResult TheCallResult) {
CallExpr *TheCall = (CallExpr *)TheCallResult.get();
DeclRefExpr *DRE =
cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
unsigned BuiltinID = FDecl->getBuiltinID();
assert((BuiltinID == Builtin::BI__builtin_nontemporal_store ||
BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
"Unexpected nontemporal load/store builtin!");
bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store;
unsigned numArgs = isStore ? 2 : 1;
// Ensure that we have the proper number of arguments.
if (checkArgCount(TheCall, numArgs))
return ExprError();
// Inspect the last argument of the nontemporal builtin. This should always
// be a pointer type, from which we imply the type of the memory access.
// Because it is a pointer type, we don't have to worry about any implicit
// casts here.
Expr *PointerArg = TheCall->getArg(numArgs - 1);
ExprResult PointerArgResult =
DefaultFunctionArrayLvalueConversion(PointerArg);
if (PointerArgResult.isInvalid())
return ExprError();
PointerArg = PointerArgResult.get();
TheCall->setArg(numArgs - 1, PointerArg);
const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
if (!pointerType) {
Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer)
<< PointerArg->getType() << PointerArg->getSourceRange();
return ExprError();
}
QualType ValType = pointerType->getPointeeType();
// Strip any qualifiers off ValType.
ValType = ValType.getUnqualifiedType();
if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
!ValType->isBlockPointerType() && !ValType->isFloatingType() &&
!ValType->isVectorType()) {
Diag(DRE->getBeginLoc(),
diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector)
<< PointerArg->getType() << PointerArg->getSourceRange();
return ExprError();
}
if (!isStore) {
TheCall->setType(ValType);
return TheCallResult;
}
ExprResult ValArg = TheCall->getArg(0);
InitializedEntity Entity = InitializedEntity::InitializeParameter(
Context, ValType, /*consume*/ false);
ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
if (ValArg.isInvalid())
return ExprError();
TheCall->setArg(0, ValArg.get());
TheCall->setType(Context.VoidTy);
return TheCallResult;
}
/// CheckObjCString - Checks that the format string argument to the os_log()
/// and os_trace() functions is correct, and converts it to const char *.
ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) {
Arg = Arg->IgnoreParenCasts();
auto *Literal = dyn_cast<StringLiteral>(Arg);
if (!Literal) {
if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) {
Literal = ObjcLiteral->getString();
}
}
if (!Literal || (!Literal->isOrdinary() && !Literal->isUTF8())) {
return ExprError(
Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant)
<< Arg->getSourceRange());
}
ExprResult Result(Literal);
QualType ResultTy = Context.getPointerType(Context.CharTy.withConst());
InitializedEntity Entity =
InitializedEntity::InitializeParameter(Context, ResultTy, false);
Result = PerformCopyInitialization(Entity, SourceLocation(), Result);
return Result;
}
/// Check that the user is calling the appropriate va_start builtin for the
/// target and calling convention.
static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) {
const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
bool IsX64 = TT.getArch() == llvm::Triple::x86_64;
bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 ||
TT.getArch() == llvm::Triple::aarch64_32);
bool IsWindows = TT.isOSWindows();
bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start;
if (IsX64 || IsAArch64) {
CallingConv CC = CC_C;
if (const FunctionDecl *FD = S.getCurFunctionDecl())
CC = FD->getType()->castAs<FunctionType>()->getCallConv();
if (IsMSVAStart) {
// Don't allow this in System V ABI functions.
if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64))
return S.Diag(Fn->getBeginLoc(),
diag::err_ms_va_start_used_in_sysv_function);
} else {
// On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions.
// On x64 Windows, don't allow this in System V ABI functions.
// (Yes, that means there's no corresponding way to support variadic
// System V ABI functions on Windows.)
if ((IsWindows && CC == CC_X86_64SysV) ||
(!IsWindows && CC == CC_Win64))
return S.Diag(Fn->getBeginLoc(),
diag::err_va_start_used_in_wrong_abi_function)
<< !IsWindows;
}
return false;
}
if (IsMSVAStart)
return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only);
return false;
}
static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn,
ParmVarDecl **LastParam = nullptr) {
// Determine whether the current function, block, or obj-c method is variadic
// and get its parameter list.
bool IsVariadic = false;
ArrayRef<ParmVarDecl *> Params;
DeclContext *Caller = S.CurContext;
if (auto *Block = dyn_cast<BlockDecl>(Caller)) {
IsVariadic = Block->isVariadic();
Params = Block->parameters();
} else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) {
IsVariadic = FD->isVariadic();
Params = FD->parameters();
} else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) {
IsVariadic = MD->isVariadic();
// FIXME: This isn't correct for methods (results in bogus warning).
Params = MD->parameters();
} else if (isa<CapturedDecl>(Caller)) {
// We don't support va_start in a CapturedDecl.
S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt);
return true;
} else {
// This must be some other declcontext that parses exprs.
S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function);
return true;
}
if (!IsVariadic) {
S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function);
return true;
}
if (LastParam)
*LastParam = Params.empty() ? nullptr : Params.back();
return false;
}
bool Sema::BuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) {
Expr *Fn = TheCall->getCallee();
if (checkVAStartABI(*this, BuiltinID, Fn))
return true;
if (BuiltinID == Builtin::BI__builtin_c23_va_start) {
// This builtin requires one argument (the va_list), allows two arguments,
// but diagnoses more than two arguments. e.g.,
// __builtin_c23_va_start(); // error
// __builtin_c23_va_start(list); // ok
// __builtin_c23_va_start(list, param); // ok
// __builtin_c23_va_start(list, anything, anything); // error
// This differs from the GCC behavior in that they accept the last case
// with a warning, but it doesn't seem like a useful behavior to allow.
if (checkArgCountRange(TheCall, 1, 2))
return true;
} else {
// In C23 mode, va_start only needs one argument. However, the builtin still
// requires two arguments (which matches the behavior of the GCC builtin),
// <stdarg.h> passes `0` as the second argument in C23 mode.
if (checkArgCount(TheCall, 2))
return true;
}
// Type-check the first argument normally.
if (checkBuiltinArgument(*this, TheCall, 0))
return true;
// Check that the current function is variadic, and get its last parameter.
ParmVarDecl *LastParam;
if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam))
return true;
// Verify that the second argument to the builtin is the last non-variadic
// argument of the current function or method. In C23 mode, if the call is
// not to __builtin_c23_va_start, and the second argument is an integer
// constant expression with value 0, then we don't bother with this check.
// For __builtin_c23_va_start, we only perform the check for the second
// argument being the last argument to the current function if there is a
// second argument present.
if (BuiltinID == Builtin::BI__builtin_c23_va_start &&
TheCall->getNumArgs() < 2) {
Diag(TheCall->getExprLoc(), diag::warn_c17_compat_va_start_one_arg);
return false;
}
const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
if (std::optional<llvm::APSInt> Val =
TheCall->getArg(1)->getIntegerConstantExpr(Context);
Val && LangOpts.C23 && *Val == 0 &&
BuiltinID != Builtin::BI__builtin_c23_va_start) {
Diag(TheCall->getExprLoc(), diag::warn_c17_compat_va_start_one_arg);
return false;
}
// These are valid if SecondArgIsLastNonVariadicArgument is false after the
// next block.
QualType Type;
SourceLocation ParamLoc;
bool IsCRegister = false;
bool SecondArgIsLastNonVariadicArgument = false;
if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
SecondArgIsLastNonVariadicArgument = PV == LastParam;
Type = PV->getType();
ParamLoc = PV->getLocation();
IsCRegister =
PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus;
}
}
if (!SecondArgIsLastNonVariadicArgument)
Diag(TheCall->getArg(1)->getBeginLoc(),
diag::warn_second_arg_of_va_start_not_last_non_variadic_param);
else if (IsCRegister || Type->isReferenceType() ||
Type->isSpecificBuiltinType(BuiltinType::Float) || [=] {
// Promotable integers are UB, but enumerations need a bit of
// extra checking to see what their promotable type actually is.
if (!Context.isPromotableIntegerType(Type))
return false;
if (!Type->isEnumeralType())
return true;
const EnumDecl *ED = Type->castAs<EnumType>()->getDecl();
return !(ED &&
Context.typesAreCompatible(ED->getPromotionType(), Type));
}()) {
unsigned Reason = 0;
if (Type->isReferenceType()) Reason = 1;
else if (IsCRegister) Reason = 2;
Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason;
Diag(ParamLoc, diag::note_parameter_type) << Type;
}
return false;
}
bool Sema::BuiltinVAStartARMMicrosoft(CallExpr *Call) {
auto IsSuitablyTypedFormatArgument = [this](const Expr *Arg) -> bool {
const LangOptions &LO = getLangOpts();
if (LO.CPlusPlus)
return Arg->getType()
.getCanonicalType()
.getTypePtr()
->getPointeeType()
.withoutLocalFastQualifiers() == Context.CharTy;
// In C, allow aliasing through `char *`, this is required for AArch64 at
// least.
return true;
};
// void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
// const char *named_addr);
Expr *Func = Call->getCallee();
if (Call->getNumArgs() < 3)
return Diag(Call->getEndLoc(),
diag::err_typecheck_call_too_few_args_at_least)
<< 0 /*function call*/ << 3 << Call->getNumArgs()
<< /*is non object*/ 0;
// Type-check the first argument normally.
if (checkBuiltinArgument(*this, Call, 0))
return true;
// Check that the current function is variadic.
if (checkVAStartIsInVariadicFunction(*this, Func))
return true;
// __va_start on Windows does not validate the parameter qualifiers
const Expr *Arg1 = Call->getArg(1)->IgnoreParens();
const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr();
const Expr *Arg2 = Call->getArg(2)->IgnoreParens();
const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr();
const QualType &ConstCharPtrTy =
Context.getPointerType(Context.CharTy.withConst());
if (!Arg1Ty->isPointerType() || !IsSuitablyTypedFormatArgument(Arg1))
Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible)
<< Arg1->getType() << ConstCharPtrTy << 1 /* different class */
<< 0 /* qualifier difference */
<< 3 /* parameter mismatch */
<< 2 << Arg1->getType() << ConstCharPtrTy;
const QualType SizeTy = Context.getSizeType();
if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy)
Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible)
<< Arg2->getType() << SizeTy << 1 /* different class */
<< 0 /* qualifier difference */
<< 3 /* parameter mismatch */
<< 3 << Arg2->getType() << SizeTy;
return false;
}
bool Sema::BuiltinUnorderedCompare(CallExpr *TheCall, unsigned BuiltinID) {
if (checkArgCount(TheCall, 2))
return true;
if (BuiltinID == Builtin::BI__builtin_isunordered &&
TheCall->getFPFeaturesInEffect(getLangOpts()).getNoHonorNaNs())
Diag(TheCall->getBeginLoc(), diag::warn_fp_nan_inf_when_disabled)
<< 1 << 0 << TheCall->getSourceRange();
ExprResult OrigArg0 = TheCall->getArg(0);
ExprResult OrigArg1 = TheCall->getArg(1);
// Do standard promotions between the two arguments, returning their common
// type.
QualType Res = UsualArithmeticConversions(
OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison);
if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
return true;
// Make sure any conversions are pushed back into the call; this is
// type safe since unordered compare builtins are declared as "_Bool
// foo(...)".
TheCall->setArg(0, OrigArg0.get());
TheCall->setArg(1, OrigArg1.get());
if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
return false;
// If the common type isn't a real floating type, then the arguments were
// invalid for this operation.
if (Res.isNull() || !Res->isRealFloatingType())
return Diag(OrigArg0.get()->getBeginLoc(),
diag::err_typecheck_call_invalid_ordered_compare)
<< OrigArg0.get()->getType() << OrigArg1.get()->getType()
<< SourceRange(OrigArg0.get()->getBeginLoc(),
OrigArg1.get()->getEndLoc());
return false;
}
bool Sema::BuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs,
unsigned BuiltinID) {
if (checkArgCount(TheCall, NumArgs))
return true;
FPOptions FPO = TheCall->getFPFeaturesInEffect(getLangOpts());
if (FPO.getNoHonorInfs() && (BuiltinID == Builtin::BI__builtin_isfinite ||
BuiltinID == Builtin::BI__builtin_isinf ||
BuiltinID == Builtin::BI__builtin_isinf_sign))
Diag(TheCall->getBeginLoc(), diag::warn_fp_nan_inf_when_disabled)
<< 0 << 0 << TheCall->getSourceRange();
if (FPO.getNoHonorNaNs() && (BuiltinID == Builtin::BI__builtin_isnan ||
BuiltinID == Builtin::BI__builtin_isunordered))
Diag(TheCall->getBeginLoc(), diag::warn_fp_nan_inf_when_disabled)
<< 1 << 0 << TheCall->getSourceRange();
bool IsFPClass = NumArgs == 2;
// Find out position of floating-point argument.
unsigned FPArgNo = IsFPClass ? 0 : NumArgs - 1;
// We can count on all parameters preceding the floating-point just being int.
// Try all of those.
for (unsigned i = 0; i < FPArgNo; ++i) {
Expr *Arg = TheCall->getArg(i);
if (Arg->isTypeDependent())
return false;
ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy,
AssignmentAction::Passing);
if (Res.isInvalid())
return true;
TheCall->setArg(i, Res.get());
}
Expr *OrigArg = TheCall->getArg(FPArgNo);
if (OrigArg->isTypeDependent())
return false;
// Usual Unary Conversions will convert half to float, which we want for
// machines that use fp16 conversion intrinsics. Else, we wnat to leave the
// type how it is, but do normal L->Rvalue conversions.
if (Context.getTargetInfo().useFP16ConversionIntrinsics()) {
ExprResult Res = UsualUnaryConversions(OrigArg);
if (!Res.isUsable())
return true;
OrigArg = Res.get();
} else {
ExprResult Res = DefaultFunctionArrayLvalueConversion(OrigArg);
if (!Res.isUsable())
return true;
OrigArg = Res.get();
}
TheCall->setArg(FPArgNo, OrigArg);
QualType VectorResultTy;
QualType ElementTy = OrigArg->getType();
// TODO: When all classification function are implemented with is_fpclass,
// vector argument can be supported in all of them.
if (ElementTy->isVectorType() && IsFPClass) {
VectorResultTy = GetSignedVectorType(ElementTy);
ElementTy = ElementTy->castAs<VectorType>()->getElementType();
}
// This operation requires a non-_Complex floating-point number.
if (!ElementTy->isRealFloatingType())
return Diag(OrigArg->getBeginLoc(),
diag::err_typecheck_call_invalid_unary_fp)
<< OrigArg->getType() << OrigArg->getSourceRange();
// __builtin_isfpclass has integer parameter that specify test mask. It is
// passed in (...), so it should be analyzed completely here.
if (IsFPClass)
if (BuiltinConstantArgRange(TheCall, 1, 0, llvm::fcAllFlags))
return true;
// TODO: enable this code to all classification functions.
if (IsFPClass) {
QualType ResultTy;
if (!VectorResultTy.isNull())
ResultTy = VectorResultTy;
else
ResultTy = Context.IntTy;
TheCall->setType(ResultTy);
}
return false;
}
bool Sema::BuiltinComplex(CallExpr *TheCall) {
if (checkArgCount(TheCall, 2))
return true;
bool Dependent = false;
for (unsigned I = 0; I != 2; ++I) {
Expr *Arg = TheCall->getArg(I);
QualType T = Arg->getType();
if (T->isDependentType()) {
Dependent = true;
continue;
}
// Despite supporting _Complex int, GCC requires a real floating point type
// for the operands of __builtin_complex.
if (!T->isRealFloatingType()) {
return Diag(Arg->getBeginLoc(), diag::err_typecheck_call_requires_real_fp)
<< Arg->getType() << Arg->getSourceRange();
}
ExprResult Converted = DefaultLvalueConversion(Arg);
if (Converted.isInvalid())
return true;
TheCall->setArg(I, Converted.get());
}
if (Dependent) {
TheCall->setType(Context.DependentTy);
return false;
}
Expr *Real = TheCall->getArg(0);
Expr *Imag = TheCall->getArg(1);
if (!Context.hasSameType(Real->getType(), Imag->getType())) {
return Diag(Real->getBeginLoc(),
diag::err_typecheck_call_different_arg_types)
<< Real->getType() << Imag->getType()
<< Real->getSourceRange() << Imag->getSourceRange();
}
// We don't allow _Complex _Float16 nor _Complex __fp16 as type specifiers;
// don't allow this builtin to form those types either.
// FIXME: Should we allow these types?
if (Real->getType()->isFloat16Type())
return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
<< "_Float16";
if (Real->getType()->isHalfType())
return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
<< "half";
TheCall->setType(Context.getComplexType(Real->getType()));
return false;
}
/// BuiltinShuffleVector - Handle __builtin_shufflevector.
// This is declared to take (...), so we have to check everything.
ExprResult Sema::BuiltinShuffleVector(CallExpr *TheCall) {
if (TheCall->getNumArgs() < 2)
return ExprError(Diag(TheCall->getEndLoc(),
diag::err_typecheck_call_too_few_args_at_least)
<< 0 /*function call*/ << 2 << TheCall->getNumArgs()
<< /*is non object*/ 0 << TheCall->getSourceRange());
// Determine which of the following types of shufflevector we're checking:
// 1) unary, vector mask: (lhs, mask)
// 2) binary, scalar mask: (lhs, rhs, index, ..., index)
QualType resType = TheCall->getArg(0)->getType();
unsigned numElements = 0;
if (!TheCall->getArg(0)->isTypeDependent() &&
!TheCall->getArg(1)->isTypeDependent()) {
QualType LHSType = TheCall->getArg(0)->getType();
QualType RHSType = TheCall->getArg(1)->getType();
if (!LHSType->isVectorType() || !RHSType->isVectorType())
return ExprError(
Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector)
<< TheCall->getDirectCallee() << /*isMorethantwoArgs*/ false
<< SourceRange(TheCall->getArg(0)->getBeginLoc(),
TheCall->getArg(1)->getEndLoc()));
numElements = LHSType->castAs<VectorType>()->getNumElements();
unsigned numResElements = TheCall->getNumArgs() - 2;
// Check to see if we have a call with 2 vector arguments, the unary shuffle
// with mask. If so, verify that RHS is an integer vector type with the
// same number of elts as lhs.
if (TheCall->getNumArgs() == 2) {
if (!RHSType->hasIntegerRepresentation() ||
RHSType->castAs<VectorType>()->getNumElements() != numElements)
return ExprError(Diag(TheCall->getBeginLoc(),
diag::err_vec_builtin_incompatible_vector)
<< TheCall->getDirectCallee()
<< /*isMorethantwoArgs*/ false
<< SourceRange(TheCall->getArg(1)->getBeginLoc(),
TheCall->getArg(1)->getEndLoc()));
} else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
return ExprError(Diag(TheCall->getBeginLoc(),
diag::err_vec_builtin_incompatible_vector)
<< TheCall->getDirectCallee()
<< /*isMorethantwoArgs*/ false
<< SourceRange(TheCall->getArg(0)->getBeginLoc(),
TheCall->getArg(1)->getEndLoc()));
} else if (numElements != numResElements) {
QualType eltType = LHSType->castAs<VectorType>()->getElementType();
resType =
Context.getVectorType(eltType, numResElements, VectorKind::Generic);
}
}
for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
if (TheCall->getArg(i)->isTypeDependent() ||
TheCall->getArg(i)->isValueDependent())
continue;
std::optional<llvm::APSInt> Result;
if (!(Result = TheCall->getArg(i)->getIntegerConstantExpr(Context)))
return ExprError(Diag(TheCall->getBeginLoc(),
diag::err_shufflevector_nonconstant_argument)
<< TheCall->getArg(i)->getSourceRange());
// Allow -1 which will be translated to undef in the IR.
if (Result->isSigned() && Result->isAllOnes())
continue;
if (Result->getActiveBits() > 64 ||
Result->getZExtValue() >= numElements * 2)
return ExprError(Diag(TheCall->getBeginLoc(),
diag::err_shufflevector_argument_too_large)
<< TheCall->getArg(i)->getSourceRange());
}
SmallVector<Expr*, 32> exprs;
for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
exprs.push_back(TheCall->getArg(i));
TheCall->setArg(i, nullptr);
}
return new (Context) ShuffleVectorExpr(Context, exprs, resType,
TheCall->getCallee()->getBeginLoc(),
TheCall->getRParenLoc());
}
ExprResult Sema::ConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
SourceLocation BuiltinLoc,
SourceLocation RParenLoc) {
ExprValueKind VK = VK_PRValue;
ExprObjectKind OK = OK_Ordinary;
QualType DstTy = TInfo->getType();
QualType SrcTy = E->getType();
if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
return ExprError(Diag(BuiltinLoc,
diag::err_convertvector_non_vector)
<< E->getSourceRange());
if (!DstTy->isVectorType() && !DstTy->isDependentType())
return ExprError(Diag(BuiltinLoc, diag::err_builtin_non_vector_type)
<< "second"
<< "__builtin_convertvector");
if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements();
unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements();
if (SrcElts != DstElts)
return ExprError(Diag(BuiltinLoc,
diag::err_convertvector_incompatible_vector)
<< E->getSourceRange());
}
return ConvertVectorExpr::Create(Context, E, TInfo, DstTy, VK, OK, BuiltinLoc,
RParenLoc, CurFPFeatureOverrides());
}
bool Sema::BuiltinPrefetch(CallExpr *TheCall) {
unsigned NumArgs = TheCall->getNumArgs();
if (NumArgs > 3)
return Diag(TheCall->getEndLoc(),
diag::err_typecheck_call_too_many_args_at_most)
<< 0 /*function call*/ << 3 << NumArgs << /*is non object*/ 0
<< TheCall->getSourceRange();
// Argument 0 is checked for us and the remaining arguments must be
// constant integers.
for (unsigned i = 1; i != NumArgs; ++i)
if (BuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
return true;
return false;
}
bool Sema::BuiltinArithmeticFence(CallExpr *TheCall) {
if (!Context.getTargetInfo().checkArithmeticFenceSupported())
return Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
<< SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
if (checkArgCount(TheCall, 1))
return true;
Expr *Arg = TheCall->getArg(0);
if (Arg->isInstantiationDependent())
return false;
QualType ArgTy = Arg->getType();
if (!ArgTy->hasFloatingRepresentation())
return Diag(TheCall->getEndLoc(), diag::err_typecheck_expect_flt_or_vector)
<< ArgTy;
if (Arg->isLValue()) {
ExprResult FirstArg = DefaultLvalueConversion(Arg);
TheCall->setArg(0, FirstArg.get());
}
TheCall->setType(TheCall->getArg(0)->getType());
return false;
}
bool Sema::BuiltinAssume(CallExpr *TheCall) {
Expr *Arg = TheCall->getArg(0);
if (Arg->isInstantiationDependent()) return false;
if (Arg->HasSideEffects(Context))
Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects)
<< Arg->getSourceRange()
<< cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
return false;
}
bool Sema::BuiltinAllocaWithAlign(CallExpr *TheCall) {
// The alignment must be a constant integer.
Expr *Arg = TheCall->getArg(1);
// We can't check the value of a dependent argument.
if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
if (const auto *UE =
dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts()))
if (UE->getKind() == UETT_AlignOf ||
UE->getKind() == UETT_PreferredAlignOf)
Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof)
<< Arg->getSourceRange();
llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context);
if (!Result.isPowerOf2())
return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
<< Arg->getSourceRange();
if (Result < Context.getCharWidth())
return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small)
<< (unsigned)Context.getCharWidth() << Arg->getSourceRange();
if (Result > std::numeric_limits<int32_t>::max())
return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big)
<< std::numeric_limits<int32_t>::max() << Arg->getSourceRange();
}
return false;
}
bool Sema::BuiltinAssumeAligned(CallExpr *TheCall) {
if (checkArgCountRange(TheCall, 2, 3))
return true;
unsigned NumArgs = TheCall->getNumArgs();
Expr *FirstArg = TheCall->getArg(0);
{
ExprResult FirstArgResult =
DefaultFunctionArrayLvalueConversion(FirstArg);
if (!FirstArgResult.get()->getType()->isPointerType()) {
Diag(TheCall->getBeginLoc(), diag::err_builtin_assume_aligned_invalid_arg)
<< TheCall->getSourceRange();
return true;
}
TheCall->setArg(0, FirstArgResult.get());
}
// The alignment must be a constant integer.
Expr *SecondArg = TheCall->getArg(1);
// We can't check the value of a dependent argument.
if (!SecondArg->isValueDependent()) {
llvm::APSInt Result;
if (BuiltinConstantArg(TheCall, 1, Result))
return true;
if (!Result.isPowerOf2())
return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
<< SecondArg->getSourceRange();
if (Result > Sema::MaximumAlignment)
Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great)
<< SecondArg->getSourceRange() << Sema::MaximumAlignment;
}
if (NumArgs > 2) {
Expr *ThirdArg = TheCall->getArg(2);
if (convertArgumentToType(*this, ThirdArg, Context.getSizeType()))
return true;
TheCall->setArg(2, ThirdArg);
}
return false;
}
bool Sema::BuiltinOSLogFormat(CallExpr *TheCall) {
unsigned BuiltinID =
cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID();
bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size;
unsigned NumArgs = TheCall->getNumArgs();
unsigned NumRequiredArgs = IsSizeCall ? 1 : 2;
if (NumArgs < NumRequiredArgs) {
return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
<< 0 /* function call */ << NumRequiredArgs << NumArgs
<< /*is non object*/ 0 << TheCall->getSourceRange();
}
if (NumArgs >= NumRequiredArgs + 0x100) {
return Diag(TheCall->getEndLoc(),
diag::err_typecheck_call_too_many_args_at_most)
<< 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs
<< /*is non object*/ 0 << TheCall->getSourceRange();
}
unsigned i = 0;
// For formatting call, check buffer arg.
if (!IsSizeCall) {
ExprResult Arg(TheCall->getArg(i));
InitializedEntity Entity = InitializedEntity::InitializeParameter(
Context, Context.VoidPtrTy, false);
Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
if (Arg.isInvalid())
return true;
TheCall->setArg(i, Arg.get());
i++;
}
// Check string literal arg.
unsigned FormatIdx = i;
{
ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i));
if (Arg.isInvalid())
return true;
TheCall->setArg(i, Arg.get());
i++;
}
// Make sure variadic args are scalar.
unsigned FirstDataArg = i;
while (i < NumArgs) {
ExprResult Arg = DefaultVariadicArgumentPromotion(
TheCall->getArg(i), VariadicFunction, nullptr);
if (Arg.isInvalid())
return true;
CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType());
if (ArgSize.getQuantity() >= 0x100) {
return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big)
<< i << (int)ArgSize.getQuantity() << 0xff
<< TheCall->getSourceRange();
}
TheCall->setArg(i, Arg.get());
i++;
}
// Check formatting specifiers. NOTE: We're only doing this for the non-size
// call to avoid duplicate diagnostics.
if (!IsSizeCall) {
llvm::SmallBitVector CheckedVarArgs(NumArgs, false);
ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs());
bool Success = CheckFormatArguments(
Args, FAPK_Variadic, nullptr, FormatIdx, FirstDataArg, FST_OSLog,
VariadicFunction, TheCall->getBeginLoc(), SourceRange(),
CheckedVarArgs);
if (!Success)
return true;
}
if (IsSizeCall) {
TheCall->setType(Context.getSizeType());
} else {
TheCall->setType(Context.VoidPtrTy);
}
return false;
}
bool Sema::BuiltinConstantArg(CallExpr *TheCall, int ArgNum,
llvm::APSInt &Result) {
Expr *Arg = TheCall->getArg(ArgNum);
DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
std::optional<llvm::APSInt> R;
if (!(R = Arg->getIntegerConstantExpr(Context)))
return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type)
<< FDecl->getDeclName() << Arg->getSourceRange();
Result = *R;
return false;
}
bool Sema::BuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, int Low,
int High, bool RangeIsError) {
if (isConstantEvaluatedContext())
return false;
llvm::APSInt Result;
// We can't check the value of a dependent argument.
Expr *Arg = TheCall->getArg(ArgNum);
if (Arg->isTypeDependent() || Arg->isValueDependent())
return false;
// Check constant-ness first.
if (BuiltinConstantArg(TheCall, ArgNum, Result))
return true;
if (Result.getSExtValue() < Low || Result.getSExtValue() > High) {
if (RangeIsError)
return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range)
<< toString(Result, 10) << Low << High << Arg->getSourceRange();
else
// Defer the warning until we know if the code will be emitted so that
// dead code can ignore this.
DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
PDiag(diag::warn_argument_invalid_range)
<< toString(Result, 10) << Low << High
<< Arg->getSourceRange());
}
return false;
}
bool Sema::BuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
unsigned Num) {
llvm::APSInt Result;
// We can't check the value of a dependent argument.
Expr *Arg = TheCall->getArg(ArgNum);
if (Arg->isTypeDependent() || Arg->isValueDependent())
return false;
// Check constant-ness first.
if (BuiltinConstantArg(TheCall, ArgNum, Result))
return true;
if (Result.getSExtValue() % Num != 0)
return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple)
<< Num << Arg->getSourceRange();
return false;
}
bool Sema::BuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) {
llvm::APSInt Result;
// We can't check the value of a dependent argument.
Expr *Arg = TheCall->getArg(ArgNum);
if (Arg->isTypeDependent() || Arg->isValueDependent())
return false;
// Check constant-ness first.
if (BuiltinConstantArg(TheCall, ArgNum, Result))
return true;
// Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if
// and only if x is a power of 2.
if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0)
return false;
return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2)
<< Arg->getSourceRange();
}
static bool IsShiftedByte(llvm::APSInt Value) {
if (Value.isNegative())
return false;
// Check if it's a shifted byte, by shifting it down
while (true) {
// If the value fits in the bottom byte, the check passes.
if (Value < 0x100)
return true;
// Otherwise, if the value has _any_ bits in the bottom byte, the check
// fails.
if ((Value & 0xFF) != 0)
return false;
// If the bottom 8 bits are all 0, but something above that is nonzero,
// then shifting the value right by 8 bits won't affect whether it's a
// shifted byte or not. So do that, and go round again.
Value >>= 8;
}
}
bool Sema::BuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum,
unsigned ArgBits) {
llvm::APSInt Result;
// We can't check the value of a dependent argument.
Expr *Arg = TheCall->getArg(ArgNum);
if (Arg->isTypeDependent() || Arg->isValueDependent())
return false;
// Check constant-ness first.
if (BuiltinConstantArg(TheCall, ArgNum, Result))
return true;
// Truncate to the given size.
Result = Result.getLoBits(ArgBits);
Result.setIsUnsigned(true);
if (IsShiftedByte(Result))
return false;
return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte)
<< Arg->getSourceRange();
}
bool Sema::BuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall, int ArgNum,
unsigned ArgBits) {
llvm::APSInt Result;
// We can't check the value of a dependent argument.
Expr *Arg = TheCall->getArg(ArgNum);
if (Arg->isTypeDependent() || Arg->isValueDependent())
return false;
// Check constant-ness first.
if (BuiltinConstantArg(TheCall, ArgNum, Result))
return true;
// Truncate to the given size.
Result = Result.getLoBits(ArgBits);
Result.setIsUnsigned(true);
// Check to see if it's in either of the required forms.
if (IsShiftedByte(Result) ||
(Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF))
return false;
return Diag(TheCall->getBeginLoc(),
diag::err_argument_not_shifted_byte_or_xxff)
<< Arg->getSourceRange();
}
bool Sema::BuiltinLongjmp(CallExpr *TheCall) {
if (!Context.getTargetInfo().hasSjLjLowering())
return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported)
<< SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
Expr *Arg = TheCall->getArg(1);
llvm::APSInt Result;
// TODO: This is less than ideal. Overload this to take a value.
if (BuiltinConstantArg(TheCall, 1, Result))
return true;
if (Result != 1)
return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val)
<< SourceRange(Arg->getBeginLoc(), Arg->getEndLoc());
return false;
}
bool Sema::BuiltinSetjmp(CallExpr *TheCall) {
if (!Context.getTargetInfo().hasSjLjLowering())
return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported)
<< SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
return false;
}
bool Sema::BuiltinCountedByRef(CallExpr *TheCall) {
if (checkArgCount(TheCall, 1))
return true;
ExprResult ArgRes = UsualUnaryConversions(TheCall->getArg(0));
if (ArgRes.isInvalid())
return true;
// For simplicity, we support only limited expressions for the argument.
// Specifically a pointer to a flexible array member:'ptr->array'. This
// allows us to reject arguments with complex casting, which really shouldn't
// be a huge problem.
const Expr *Arg = ArgRes.get()->IgnoreParenImpCasts();
if (!isa<PointerType>(Arg->getType()) && !Arg->getType()->isArrayType())
return Diag(Arg->getBeginLoc(),
diag::err_builtin_counted_by_ref_must_be_flex_array_member)
<< Arg->getSourceRange();
if (Arg->HasSideEffects(Context))
return Diag(Arg->getBeginLoc(),
diag::err_builtin_counted_by_ref_has_side_effects)
<< Arg->getSourceRange();
if (const auto *ME = dyn_cast<MemberExpr>(Arg)) {
if (!ME->isFlexibleArrayMemberLike(
Context, getLangOpts().getStrictFlexArraysLevel()))
return Diag(Arg->getBeginLoc(),
diag::err_builtin_counted_by_ref_must_be_flex_array_member)
<< Arg->getSourceRange();
if (auto *CATy =
ME->getMemberDecl()->getType()->getAs<CountAttributedType>();
CATy && CATy->getKind() == CountAttributedType::CountedBy) {
const auto *FAMDecl = cast<FieldDecl>(ME->getMemberDecl());
if (const FieldDecl *CountFD = FAMDecl->findCountedByField()) {
TheCall->setType(Context.getPointerType(CountFD->getType()));
return false;
}
}
} else {
return Diag(Arg->getBeginLoc(),
diag::err_builtin_counted_by_ref_must_be_flex_array_member)
<< Arg->getSourceRange();
}
TheCall->setType(Context.getPointerType(Context.VoidTy));
return false;
}
/// The result of __builtin_counted_by_ref cannot be assigned to a variable.
/// It allows leaking and modification of bounds safety information.
bool Sema::CheckInvalidBuiltinCountedByRef(const Expr *E,
BuiltinCountedByRefKind K) {
const CallExpr *CE =
E ? dyn_cast<CallExpr>(E->IgnoreParenImpCasts()) : nullptr;
if (!CE || CE->getBuiltinCallee() != Builtin::BI__builtin_counted_by_ref)
return false;
switch (K) {
case AssignmentKind:
case InitializerKind:
Diag(E->getExprLoc(),
diag::err_builtin_counted_by_ref_cannot_leak_reference)
<< 0 << E->getSourceRange();
break;
case FunctionArgKind:
Diag(E->getExprLoc(),
diag::err_builtin_counted_by_ref_cannot_leak_reference)
<< 1 << E->getSourceRange();
break;
case ReturnArgKind:
Diag(E->getExprLoc(),
diag::err_builtin_counted_by_ref_cannot_leak_reference)
<< 2 << E->getSourceRange();
break;
case ArraySubscriptKind:
Diag(E->getExprLoc(), diag::err_builtin_counted_by_ref_invalid_use)
<< 0 << E->getSourceRange();
break;
case BinaryExprKind:
Diag(E->getExprLoc(), diag::err_builtin_counted_by_ref_invalid_use)
<< 1 << E->getSourceRange();
break;
}
return true;
}
namespace {
class UncoveredArgHandler {
enum { Unknown = -1, AllCovered = -2 };
signed FirstUncoveredArg = Unknown;
SmallVector<const Expr *, 4> DiagnosticExprs;
public:
UncoveredArgHandler() = default;
bool hasUncoveredArg() const {
return (FirstUncoveredArg >= 0);
}
unsigned getUncoveredArg() const {
assert(hasUncoveredArg() && "no uncovered argument");
return FirstUncoveredArg;
}
void setAllCovered() {
// A string has been found with all arguments covered, so clear out
// the diagnostics.
DiagnosticExprs.clear();
FirstUncoveredArg = AllCovered;
}
void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) {
assert(NewFirstUncoveredArg >= 0 && "Outside range");
// Don't update if a previous string covers all arguments.
if (FirstUncoveredArg == AllCovered)
return;
// UncoveredArgHandler tracks the highest uncovered argument index
// and with it all the strings that match this index.
if (NewFirstUncoveredArg == FirstUncoveredArg)
DiagnosticExprs.push_back(StrExpr);
else if (NewFirstUncoveredArg > FirstUncoveredArg) {
DiagnosticExprs.clear();
DiagnosticExprs.push_back(StrExpr);
FirstUncoveredArg = NewFirstUncoveredArg;
}
}
void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr);
};
enum StringLiteralCheckType {
SLCT_NotALiteral,
SLCT_UncheckedLiteral,
SLCT_CheckedLiteral
};
} // namespace
static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend,
BinaryOperatorKind BinOpKind,
bool AddendIsRight) {
unsigned BitWidth = Offset.getBitWidth();
unsigned AddendBitWidth = Addend.getBitWidth();
// There might be negative interim results.
if (Addend.isUnsigned()) {
Addend = Addend.zext(++AddendBitWidth);
Addend.setIsSigned(true);
}
// Adjust the bit width of the APSInts.
if (AddendBitWidth > BitWidth) {
Offset = Offset.sext(AddendBitWidth);
BitWidth = AddendBitWidth;
} else if (BitWidth > AddendBitWidth) {
Addend = Addend.sext(BitWidth);
}
bool Ov = false;
llvm::APSInt ResOffset = Offset;
if (BinOpKind == BO_Add)
ResOffset = Offset.sadd_ov(Addend, Ov);
else {
assert(AddendIsRight && BinOpKind == BO_Sub &&
"operator must be add or sub with addend on the right");
ResOffset = Offset.ssub_ov(Addend, Ov);
}
// We add an offset to a pointer here so we should support an offset as big as
// possible.
if (Ov) {
assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 &&
"index (intermediate) result too big");
Offset = Offset.sext(2 * BitWidth);
sumOffsets(Offset, Addend, BinOpKind, AddendIsRight);
return;
}
Offset = ResOffset;
}
namespace {
// This is a wrapper class around StringLiteral to support offsetted string
// literals as format strings. It takes the offset into account when returning
// the string and its length or the source locations to display notes correctly.
class FormatStringLiteral {
const StringLiteral *FExpr;
int64_t Offset;
public:
FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0)
: FExpr(fexpr), Offset(Offset) {}
const StringLiteral *getFormatString() const { return FExpr; }
StringRef getString() const { return FExpr->getString().drop_front(Offset); }
unsigned getByteLength() const {
return FExpr->getByteLength() - getCharByteWidth() * Offset;
}
unsigned getLength() const { return FExpr->getLength() - Offset; }
unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); }
StringLiteralKind getKind() const { return FExpr->getKind(); }
QualType getType() const { return FExpr->getType(); }
bool isAscii() const { return FExpr->isOrdinary(); }
bool isWide() const { return FExpr->isWide(); }
bool isUTF8() const { return FExpr->isUTF8(); }
bool isUTF16() const { return FExpr->isUTF16(); }
bool isUTF32() const { return FExpr->isUTF32(); }
bool isPascal() const { return FExpr->isPascal(); }
SourceLocation getLocationOfByte(
unsigned ByteNo, const SourceManager &SM, const LangOptions &Features,
const TargetInfo &Target, unsigned *StartToken = nullptr,
unsigned *StartTokenByteOffset = nullptr) const {
return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target,
StartToken, StartTokenByteOffset);
}
SourceLocation getBeginLoc() const LLVM_READONLY {
return FExpr->getBeginLoc().getLocWithOffset(Offset);
}
SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); }
};
} // namespace
static void CheckFormatString(
Sema &S, const FormatStringLiteral *FExpr,
const StringLiteral *ReferenceFormatString, const Expr *OrigFormatExpr,
ArrayRef<const Expr *> Args, Sema::FormatArgumentPassingKind APK,
unsigned format_idx, unsigned firstDataArg, Sema::FormatStringType Type,
bool inFunctionCall, Sema::VariadicCallType CallType,
llvm::SmallBitVector &CheckedVarArgs, UncoveredArgHandler &UncoveredArg,
bool IgnoreStringsWithoutSpecifiers);
static const Expr *maybeConstEvalStringLiteral(ASTContext &Context,
const Expr *E);
// Determine if an expression is a string literal or constant string.
// If this function returns false on the arguments to a function expecting a
// format string, we will usually need to emit a warning.
// True string literals are then checked by CheckFormatString.
static StringLiteralCheckType checkFormatStringExpr(
Sema &S, const StringLiteral *ReferenceFormatString, const Expr *E,
ArrayRef<const Expr *> Args, Sema::FormatArgumentPassingKind APK,
unsigned format_idx, unsigned firstDataArg, Sema::FormatStringType Type,
Sema::VariadicCallType CallType, bool InFunctionCall,
llvm::SmallBitVector &CheckedVarArgs, UncoveredArgHandler &UncoveredArg,
llvm::APSInt Offset, bool IgnoreStringsWithoutSpecifiers = false) {
if (S.isConstantEvaluatedContext())
return SLCT_NotALiteral;
tryAgain:
assert(Offset.isSigned() && "invalid offset");
if (E->isTypeDependent() || E->isValueDependent())
return SLCT_NotALiteral;
E = E->IgnoreParenCasts();
if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
// Technically -Wformat-nonliteral does not warn about this case.
// The behavior of printf and friends in this case is implementation
// dependent. Ideally if the format string cannot be null then
// it should have a 'nonnull' attribute in the function prototype.
return SLCT_UncheckedLiteral;
switch (E->getStmtClass()) {
case Stmt::InitListExprClass:
// Handle expressions like {"foobar"}.
if (const clang::Expr *SLE = maybeConstEvalStringLiteral(S.Context, E)) {
return checkFormatStringExpr(
S, ReferenceFormatString, SLE, Args, APK, format_idx, firstDataArg,
Type, CallType, /*InFunctionCall*/ false, CheckedVarArgs,
UncoveredArg, Offset, IgnoreStringsWithoutSpecifiers);
}
return SLCT_NotALiteral;
case Stmt::BinaryConditionalOperatorClass:
case Stmt::ConditionalOperatorClass: {
// The expression is a literal if both sub-expressions were, and it was
// completely checked only if both sub-expressions were checked.
const AbstractConditionalOperator *C =
cast<AbstractConditionalOperator>(E);
// Determine whether it is necessary to check both sub-expressions, for
// example, because the condition expression is a constant that can be
// evaluated at compile time.
bool CheckLeft = true, CheckRight = true;
bool Cond;
if (C->getCond()->EvaluateAsBooleanCondition(
Cond, S.getASTContext(), S.isConstantEvaluatedContext())) {
if (Cond)
CheckRight = false;
else
CheckLeft = false;
}
// We need to maintain the offsets for the right and the left hand side
// separately to check if every possible indexed expression is a valid
// string literal. They might have different offsets for different string
// literals in the end.
StringLiteralCheckType Left;
if (!CheckLeft)
Left = SLCT_UncheckedLiteral;
else {
Left = checkFormatStringExpr(
S, ReferenceFormatString, C->getTrueExpr(), Args, APK, format_idx,
firstDataArg, Type, CallType, InFunctionCall, CheckedVarArgs,
UncoveredArg, Offset, IgnoreStringsWithoutSpecifiers);
if (Left == SLCT_NotALiteral || !CheckRight) {
return Left;
}
}
StringLiteralCheckType Right = checkFormatStringExpr(
S, ReferenceFormatString, C->getFalseExpr(), Args, APK, format_idx,
firstDataArg, Type, CallType, InFunctionCall, CheckedVarArgs,
UncoveredArg, Offset, IgnoreStringsWithoutSpecifiers);
return (CheckLeft && Left < Right) ? Left : Right;
}
case Stmt::ImplicitCastExprClass:
E = cast<ImplicitCastExpr>(E)->getSubExpr();
goto tryAgain;
case Stmt::OpaqueValueExprClass:
if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
E = src;
goto tryAgain;
}
return SLCT_NotALiteral;
case Stmt::PredefinedExprClass:
// While __func__, etc., are technically not string literals, they
// cannot contain format specifiers and thus are not a security
// liability.
return SLCT_UncheckedLiteral;
case Stmt::DeclRefExprClass: {
const DeclRefExpr *DR = cast<DeclRefExpr>(E);
// As an exception, do not flag errors for variables binding to
// const string literals.
if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
bool isConstant = false;
QualType T = DR->getType();
if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
isConstant = AT->getElementType().isConstant(S.Context);
} else if (const PointerType *PT = T->getAs<PointerType>()) {
isConstant = T.isConstant(S.Context) &&
PT->getPointeeType().isConstant(S.Context);
} else if (T->isObjCObjectPointerType()) {
// In ObjC, there is usually no "const ObjectPointer" type,
// so don't check if the pointee type is constant.
isConstant = T.isConstant(S.Context);
}
if (isConstant) {
if (const Expr *Init = VD->getAnyInitializer()) {
// Look through initializers like const char c[] = { "foo" }
if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
if (InitList->isStringLiteralInit())
Init = InitList->getInit(0)->IgnoreParenImpCasts();
}
return checkFormatStringExpr(
S, ReferenceFormatString, Init, Args, APK, format_idx,
firstDataArg, Type, CallType,
/*InFunctionCall*/ false, CheckedVarArgs, UncoveredArg, Offset);
}
}
// When the format argument is an argument of this function, and this
// function also has the format attribute, there are several interactions
// for which there shouldn't be a warning. For instance, when calling
// v*printf from a function that has the printf format attribute, we
// should not emit a warning about using `fmt`, even though it's not
// constant, because the arguments have already been checked for the
// caller of `logmessage`:
//
// __attribute__((format(printf, 1, 2)))
// void logmessage(char const *fmt, ...) {
// va_list ap;
// va_start(ap, fmt);
// vprintf(fmt, ap); /* do not emit a warning about "fmt" */
// ...
// }
//
// Another interaction that we need to support is using a format string
// specified by the format_matches attribute:
//
// __attribute__((format_matches(printf, 1, "%s %d")))
// void logmessage(char const *fmt, const char *a, int b) {
// printf(fmt, a, b); /* do not emit a warning about "fmt" */
// printf(fmt, 123.4); /* emit warnings that "%s %d" is incompatible */
// ...
// }
//
// Yet another interaction that we need to support is calling a variadic
// format function from a format function that has fixed arguments. For
// instance:
//
// __attribute__((format(printf, 1, 2)))
// void logstring(char const *fmt, char const *str) {
// printf(fmt, str); /* do not emit a warning about "fmt" */
// }
//
// Same (and perhaps more relatably) for the variadic template case:
//
// template<typename... Args>
// __attribute__((format(printf, 1, 2)))
// void log(const char *fmt, Args&&... args) {
// printf(fmt, forward<Args>(args)...);
// /* do not emit a warning about "fmt" */
// }
//
// Due to implementation difficulty, we only check the format, not the
// format arguments, in all cases.
//
if (const auto *PV = dyn_cast<ParmVarDecl>(VD)) {
if (const auto *D = dyn_cast<Decl>(PV->getDeclContext())) {
for (const auto *PVFormatMatches :
D->specific_attrs<FormatMatchesAttr>()) {
Sema::FormatStringInfo CalleeFSI;
if (!Sema::getFormatStringInfo(D, PVFormatMatches->getFormatIdx(),
0, &CalleeFSI))
continue;
if (PV->getFunctionScopeIndex() == CalleeFSI.FormatIdx) {
// If using the wrong type of format string, emit a diagnostic
// here and stop checking to avoid irrelevant diagnostics.
if (Type != S.GetFormatStringType(PVFormatMatches)) {
S.Diag(Args[format_idx]->getBeginLoc(),
diag::warn_format_string_type_incompatible)
<< PVFormatMatches->getType()->getName()
<< S.GetFormatStringTypeName(Type);
if (!InFunctionCall) {
S.Diag(PVFormatMatches->getFormatString()->getBeginLoc(),
diag::note_format_string_defined);
}
return SLCT_UncheckedLiteral;
}
return checkFormatStringExpr(
S, ReferenceFormatString, PVFormatMatches->getFormatString(),
Args, APK, format_idx, firstDataArg, Type, CallType,
/*InFunctionCall*/ false, CheckedVarArgs, UncoveredArg,
Offset, IgnoreStringsWithoutSpecifiers);
}
}
for (const auto *PVFormat : D->specific_attrs<FormatAttr>()) {
Sema::FormatStringInfo CallerFSI;
if (!Sema::getFormatStringInfo(D, PVFormat->getFormatIdx(),
PVFormat->getFirstArg(), &CallerFSI))
continue;
if (PV->getFunctionScopeIndex() == CallerFSI.FormatIdx) {
// We also check if the formats are compatible.
// We can't pass a 'scanf' string to a 'printf' function.
if (Type != S.GetFormatStringType(PVFormat)) {
S.Diag(Args[format_idx]->getBeginLoc(),
diag::warn_format_string_type_incompatible)
<< PVFormat->getType()->getName()
<< S.GetFormatStringTypeName(Type);
if (!InFunctionCall) {
S.Diag(E->getBeginLoc(), diag::note_format_string_defined);
}
return SLCT_UncheckedLiteral;
}
// Lastly, check that argument passing kinds transition in a
// way that makes sense:
// from a caller with FAPK_VAList, allow FAPK_VAList
// from a caller with FAPK_Fixed, allow FAPK_Fixed
// from a caller with FAPK_Fixed, allow FAPK_Variadic
// from a caller with FAPK_Variadic, allow FAPK_VAList
switch (combineFAPK(CallerFSI.ArgPassingKind, APK)) {
case combineFAPK(Sema::FAPK_VAList, Sema::FAPK_VAList):
case combineFAPK(Sema::FAPK_Fixed, Sema::FAPK_Fixed):
case combineFAPK(Sema::FAPK_Fixed, Sema::FAPK_Variadic):
case combineFAPK(Sema::FAPK_Variadic, Sema::FAPK_VAList):
return SLCT_UncheckedLiteral;
}
}
}
}
}
}
return SLCT_NotALiteral;
}
case Stmt::CallExprClass:
case Stmt::CXXMemberCallExprClass: {
const CallExpr *CE = cast<CallExpr>(E);
if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
bool IsFirst = true;
StringLiteralCheckType CommonResult;
for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) {
const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex());
StringLiteralCheckType Result = checkFormatStringExpr(
S, ReferenceFormatString, Arg, Args, APK, format_idx, firstDataArg,
Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg,
Offset, IgnoreStringsWithoutSpecifiers);
if (IsFirst) {
CommonResult = Result;
IsFirst = false;
}
}
if (!IsFirst)
return CommonResult;
if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
unsigned BuiltinID = FD->getBuiltinID();
if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
const Expr *Arg = CE->getArg(0);
return checkFormatStringExpr(
S, ReferenceFormatString, Arg, Args, APK, format_idx,
firstDataArg, Type, CallType, InFunctionCall, CheckedVarArgs,
UncoveredArg, Offset, IgnoreStringsWithoutSpecifiers);
}
}
}
if (const Expr *SLE = maybeConstEvalStringLiteral(S.Context, E))
return checkFormatStringExpr(
S, ReferenceFormatString, SLE, Args, APK, format_idx, firstDataArg,
Type, CallType, /*InFunctionCall*/ false, CheckedVarArgs,
UncoveredArg, Offset, IgnoreStringsWithoutSpecifiers);
return SLCT_NotALiteral;
}
case Stmt::ObjCMessageExprClass: {
const auto *ME = cast<ObjCMessageExpr>(E);
if (const auto *MD = ME->getMethodDecl()) {
if (const auto *FA = MD->getAttr<FormatArgAttr>()) {
// As a special case heuristic, if we're using the method -[NSBundle
// localizedStringForKey:value:table:], ignore any key strings that lack
// format specifiers. The idea is that if the key doesn't have any
// format specifiers then its probably just a key to map to the
// localized strings. If it does have format specifiers though, then its
// likely that the text of the key is the format string in the
// programmer's language, and should be checked.
const ObjCInterfaceDecl *IFace;
if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) &&
IFace->getIdentifier()->isStr("NSBundle") &&
MD->getSelector().isKeywordSelector(
{"localizedStringForKey", "value", "table"})) {
IgnoreStringsWithoutSpecifiers = true;
}
const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex());
return checkFormatStringExpr(
S, ReferenceFormatString, Arg, Args, APK, format_idx, firstDataArg,
Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg,
Offset, IgnoreStringsWithoutSpecifiers);
}
}
return SLCT_NotALiteral;
}
case Stmt::ObjCStringLiteralClass:
case Stmt::StringLiteralClass: {
const StringLiteral *StrE = nullptr;
if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
StrE = ObjCFExpr->getString();
else
StrE = cast<StringLiteral>(E);
if (StrE) {
if (Offset.isNegative() || Offset > StrE->getLength()) {
// TODO: It would be better to have an explicit warning for out of
// bounds literals.
return SLCT_NotALiteral;
}
FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue());
CheckFormatString(S, &FStr, ReferenceFormatString, E, Args, APK,
format_idx, firstDataArg, Type, InFunctionCall,
CallType, CheckedVarArgs, UncoveredArg,
IgnoreStringsWithoutSpecifiers);
return SLCT_CheckedLiteral;
}
return SLCT_NotALiteral;
}
case Stmt::BinaryOperatorClass: {
const BinaryOperator *BinOp = cast<BinaryOperator>(E);
// A string literal + an int offset is still a string literal.
if (BinOp->isAdditiveOp()) {
Expr::EvalResult LResult, RResult;
bool LIsInt = BinOp->getLHS()->EvaluateAsInt(
LResult, S.Context, Expr::SE_NoSideEffects,
S.isConstantEvaluatedContext());
bool RIsInt = BinOp->getRHS()->EvaluateAsInt(
RResult, S.Context, Expr::SE_NoSideEffects,
S.isConstantEvaluatedContext());
if (LIsInt != RIsInt) {
BinaryOperatorKind BinOpKind = BinOp->getOpcode();
if (LIsInt) {
if (BinOpKind == BO_Add) {
sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt);
E = BinOp->getRHS();
goto tryAgain;
}
} else {
sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt);
E = BinOp->getLHS();
goto tryAgain;
}
}
}
return SLCT_NotALiteral;
}
case Stmt::UnaryOperatorClass: {
const UnaryOperator *UnaOp = cast<UnaryOperator>(E);
auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr());
if (UnaOp->getOpcode() == UO_AddrOf && ASE) {
Expr::EvalResult IndexResult;
if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context,
Expr::SE_NoSideEffects,
S.isConstantEvaluatedContext())) {
sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add,
/*RHS is int*/ true);
E = ASE->getBase();
goto tryAgain;
}
}
return SLCT_NotALiteral;
}
default:
return SLCT_NotALiteral;
}
}
// If this expression can be evaluated at compile-time,
// check if the result is a StringLiteral and return it
// otherwise return nullptr
static const Expr *maybeConstEvalStringLiteral(ASTContext &Context,
const Expr *E) {
Expr::EvalResult Result;
if (E->EvaluateAsRValue(Result, Context) && Result.Val.isLValue()) {
const auto *LVE = Result.Val.getLValueBase().dyn_cast<const Expr *>();
if (isa_and_nonnull<StringLiteral>(LVE))
return LVE;
}
return nullptr;
}
StringRef Sema::GetFormatStringTypeName(Sema::FormatStringType FST) {
switch (FST) {
case FST_Scanf:
return "scanf";
case FST_Printf:
return "printf";
case FST_NSString:
return "NSString";
case FST_Strftime:
return "strftime";
case FST_Strfmon:
return "strfmon";
case FST_Kprintf:
return "kprintf";
case FST_FreeBSDKPrintf:
return "freebsd_kprintf";
case FST_OSLog:
return "os_log";
default:
return "<unknown>";
}
}
Sema::FormatStringType Sema::GetFormatStringType(StringRef Flavor) {
return llvm::StringSwitch<FormatStringType>(Flavor)
.Case("scanf", FST_Scanf)
.Cases("printf", "printf0", "syslog", FST_Printf)
.Cases("NSString", "CFString", FST_NSString)
.Case("strftime", FST_Strftime)
.Case("strfmon", FST_Strfmon)
.Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
.Case("freebsd_kprintf", FST_FreeBSDKPrintf)
.Case("os_trace", FST_OSLog)
.Case("os_log", FST_OSLog)
.Default(FST_Unknown);
}
Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
return GetFormatStringType(Format->getType()->getName());
}
Sema::FormatStringType
Sema::GetFormatStringType(const FormatMatchesAttr *Format) {
return GetFormatStringType(Format->getType()->getName());
}
bool Sema::CheckFormatArguments(const FormatAttr *Format,
ArrayRef<const Expr *> Args, bool IsCXXMember,
VariadicCallType CallType, SourceLocation Loc,
SourceRange Range,
llvm::SmallBitVector &CheckedVarArgs) {
FormatStringInfo FSI;
if (getFormatStringInfo(Format->getFormatIdx(), Format->getFirstArg(),
IsCXXMember, CallType != VariadicDoesNotApply, &FSI))
return CheckFormatArguments(
Args, FSI.ArgPassingKind, nullptr, FSI.FormatIdx, FSI.FirstDataArg,
GetFormatStringType(Format), CallType, Loc, Range, CheckedVarArgs);
return false;
}
bool Sema::CheckFormatString(const FormatMatchesAttr *Format,
ArrayRef<const Expr *> Args, bool IsCXXMember,
VariadicCallType CallType, SourceLocation Loc,
SourceRange Range,
llvm::SmallBitVector &CheckedVarArgs) {
FormatStringInfo FSI;
if (getFormatStringInfo(Format->getFormatIdx(), 0, IsCXXMember, false,
&FSI)) {
FSI.ArgPassingKind = Sema::FAPK_Elsewhere;
return CheckFormatArguments(Args, FSI.ArgPassingKind,
Format->getFormatString(), FSI.FormatIdx,
FSI.FirstDataArg, GetFormatStringType(Format),
CallType, Loc, Range, CheckedVarArgs);
}
return false;
}
bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
Sema::FormatArgumentPassingKind APK,
const StringLiteral *ReferenceFormatString,
unsigned format_idx, unsigned firstDataArg,
FormatStringType Type,
VariadicCallType CallType, SourceLocation Loc,
SourceRange Range,
llvm::SmallBitVector &CheckedVarArgs) {
// CHECK: printf/scanf-like function is called with no format string.
if (format_idx >= Args.size()) {
Diag(Loc, diag::warn_missing_format_string) << Range;
return false;
}
const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
// CHECK: format string is not a string literal.
//
// Dynamically generated format strings are difficult to
// automatically vet at compile time. Requiring that format strings
// are string literals: (1) permits the checking of format strings by
// the compiler and thereby (2) can practically remove the source of
// many format string exploits.
// Format string can be either ObjC string (e.g. @"%d") or
// C string (e.g. "%d")
// ObjC string uses the same format specifiers as C string, so we can use
// the same format string checking logic for both ObjC and C strings.
UncoveredArgHandler UncoveredArg;
StringLiteralCheckType CT = checkFormatStringExpr(
*this, ReferenceFormatString, OrigFormatExpr, Args, APK, format_idx,
firstDataArg, Type, CallType,
/*IsFunctionCall*/ true, CheckedVarArgs, UncoveredArg,
/*no string offset*/ llvm::APSInt(64, false) = 0);
// Generate a diagnostic where an uncovered argument is detected.
if (UncoveredArg.hasUncoveredArg()) {
unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg;
assert(ArgIdx < Args.size() && "ArgIdx outside bounds");
UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]);
}
if (CT != SLCT_NotALiteral)
// Literal format string found, check done!
return CT == SLCT_CheckedLiteral;
// Strftime is particular as it always uses a single 'time' argument,
// so it is safe to pass a non-literal string.
if (Type == FST_Strftime)
return false;
// Do not emit diag when the string param is a macro expansion and the
// format is either NSString or CFString. This is a hack to prevent
// diag when using the NSLocalizedString and CFCopyLocalizedString macros
// which are usually used in place of NS and CF string literals.
SourceLocation FormatLoc = Args[format_idx]->getBeginLoc();
if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc))
return false;
// If there are no arguments specified, warn with -Wformat-security, otherwise
// warn only with -Wformat-nonliteral.
if (Args.size() == firstDataArg) {
Diag(FormatLoc, diag::warn_format_nonliteral_noargs)
<< OrigFormatExpr->getSourceRange();
switch (Type) {
default:
break;
case FST_Kprintf:
case FST_FreeBSDKPrintf:
case FST_Printf:
case FST_Syslog:
Diag(FormatLoc, diag::note_format_security_fixit)
<< FixItHint::CreateInsertion(FormatLoc, "\"%s\", ");
break;
case FST_NSString:
Diag(FormatLoc, diag::note_format_security_fixit)
<< FixItHint::CreateInsertion(FormatLoc, "@\"%@\", ");
break;
}
} else {
Diag(FormatLoc, diag::warn_format_nonliteral)
<< OrigFormatExpr->getSourceRange();
}
return false;
}
namespace {
class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
protected:
Sema &S;
const FormatStringLiteral *FExpr;
const Expr *OrigFormatExpr;
const Sema::FormatStringType FSType;
const unsigned FirstDataArg;
const unsigned NumDataArgs;
const char *Beg; // Start of format string.
const Sema::FormatArgumentPassingKind ArgPassingKind;
ArrayRef<const Expr *> Args;
unsigned FormatIdx;
llvm::SmallBitVector CoveredArgs;
bool usesPositionalArgs = false;
bool atFirstArg = true;
bool inFunctionCall;
Sema::VariadicCallType CallType;
llvm::SmallBitVector &CheckedVarArgs;
UncoveredArgHandler &UncoveredArg;
public:
CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr,
const Expr *origFormatExpr,
const Sema::FormatStringType type, unsigned firstDataArg,
unsigned numDataArgs, const char *beg,
Sema::FormatArgumentPassingKind APK,
ArrayRef<const Expr *> Args, unsigned formatIdx,
bool inFunctionCall, Sema::VariadicCallType callType,
llvm::SmallBitVector &CheckedVarArgs,
UncoveredArgHandler &UncoveredArg)
: S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type),
FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg),
ArgPassingKind(APK), Args(Args), FormatIdx(formatIdx),
inFunctionCall(inFunctionCall), CallType(callType),
CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) {
CoveredArgs.resize(numDataArgs);
CoveredArgs.reset();
}
bool HasFormatArguments() const {
return ArgPassingKind == Sema::FAPK_Fixed ||
ArgPassingKind == Sema::FAPK_Variadic;
}
void DoneProcessing();
void HandleIncompleteSpecifier(const char *startSpecifier,
unsigned specifierLen) override;
void HandleInvalidLengthModifier(
const analyze_format_string::FormatSpecifier &FS,
const analyze_format_string::ConversionSpecifier &CS,
const char *startSpecifier, unsigned specifierLen,
unsigned DiagID);
void HandleNonStandardLengthModifier(
const analyze_format_string::FormatSpecifier &FS,
const char *startSpecifier, unsigned specifierLen);
void HandleNonStandardConversionSpecifier(
const analyze_format_string::ConversionSpecifier &CS,
const char *startSpecifier, unsigned specifierLen);
void HandlePosition(const char *startPos, unsigned posLen) override;
void HandleInvalidPosition(const char *startSpecifier,
unsigned specifierLen,
analyze_format_string::PositionContext p) override;
void HandleZeroPosition(const char *startPos, unsigned posLen) override;
void HandleNullChar(const char *nullCharacter) override;
template <typename Range>
static void
EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr,
const PartialDiagnostic &PDiag, SourceLocation StringLoc,
bool IsStringLocation, Range StringRange,
ArrayRef<FixItHint> Fixit = {});
protected:
bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
const char *startSpec,
unsigned specifierLen,
const char *csStart, unsigned csLen);
void HandlePositionalNonpositionalArgs(SourceLocation Loc,
const char *startSpec,
unsigned specifierLen);
SourceRange getFormatStringRange();
CharSourceRange getSpecifierRange(const char *startSpecifier,
unsigned specifierLen);
SourceLocation getLocationOfByte(const char *x);
const Expr *getDataArg(unsigned i) const;
bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
const analyze_format_string::ConversionSpecifier &CS,
const char *startSpecifier, unsigned specifierLen,
unsigned argIndex);
template <typename Range>
void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
bool IsStringLocation, Range StringRange,
ArrayRef<FixItHint> Fixit = {});
};
} // namespace
SourceRange CheckFormatHandler::getFormatStringRange() {
return OrigFormatExpr->getSourceRange();
}
CharSourceRange CheckFormatHandler::
getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
SourceLocation Start = getLocationOfByte(startSpecifier);
SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1);
// Advance the end SourceLocation by one due to half-open ranges.
End = End.getLocWithOffset(1);
return CharSourceRange::getCharRange(Start, End);
}
SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(),
S.getLangOpts(), S.Context.getTargetInfo());
}
void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
unsigned specifierLen){
EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
getLocationOfByte(startSpecifier),
/*IsStringLocation*/true,
getSpecifierRange(startSpecifier, specifierLen));
}
void CheckFormatHandler::HandleInvalidLengthModifier(
const analyze_format_string::FormatSpecifier &FS,
const analyze_format_string::ConversionSpecifier &CS,
const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
using namespace analyze_format_string;
const LengthModifier &LM = FS.getLengthModifier();
CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
// See if we know how to fix this length modifier.
std::optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
if (FixedLM) {
EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
getLocationOfByte(LM.getStart()),
/*IsStringLocation*/true,
getSpecifierRange(startSpecifier, specifierLen));
S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
<< FixedLM->toString()
<< FixItHint::CreateReplacement(LMRange, FixedLM->toString());
} else {
FixItHint Hint;
if (DiagID == diag::warn_format_nonsensical_length)
Hint = FixItHint::CreateRemoval(LMRange);
EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
getLocationOfByte(LM.getStart()),
/*IsStringLocation*/true,
getSpecifierRange(startSpecifier, specifierLen),
Hint);
}
}
void CheckFormatHandler::HandleNonStandardLengthModifier(
const analyze_format_string::FormatSpecifier &FS,
const char *startSpecifier, unsigned specifierLen) {
using namespace analyze_format_string;
const LengthModifier &LM = FS.getLengthModifier();
CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
// See if we know how to fix this length modifier.
std::optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
if (FixedLM) {
EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
<< LM.toString() << 0,
getLocationOfByte(LM.getStart()),
/*IsStringLocation*/true,
getSpecifierRange(startSpecifier, specifierLen));
S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
<< FixedLM->toString()
<< FixItHint::CreateReplacement(LMRange, FixedLM->toString());
} else {
EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
<< LM.toString() << 0,
getLocationOfByte(LM.getStart()),
/*IsStringLocation*/true,
getSpecifierRange(startSpecifier, specifierLen));
}
}
void CheckFormatHandler::HandleNonStandardConversionSpecifier(
const analyze_format_string::ConversionSpecifier &CS,
const char *startSpecifier, unsigned specifierLen) {
using namespace analyze_format_string;
// See if we know how to fix this conversion specifier.
std::optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
if (FixedCS) {
EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
<< CS.toString() << /*conversion specifier*/1,
getLocationOfByte(CS.getStart()),
/*IsStringLocation*/true,
getSpecifierRange(startSpecifier, specifierLen));
CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
<< FixedCS->toString()
<< FixItHint::CreateReplacement(CSRange, FixedCS->toString());
} else {
EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
<< CS.toString() << /*conversion specifier*/1,
getLocationOfByte(CS.getStart()),
/*IsStringLocation*/true,
getSpecifierRange(startSpecifier, specifierLen));
}
}
void CheckFormatHandler::HandlePosition(const char *startPos,
unsigned posLen) {
if (!S.getDiagnostics().isIgnored(
diag::warn_format_non_standard_positional_arg, SourceLocation()))
EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
getLocationOfByte(startPos),
/*IsStringLocation*/ true,
getSpecifierRange(startPos, posLen));
}
void CheckFormatHandler::HandleInvalidPosition(
const char *startSpecifier, unsigned specifierLen,
analyze_format_string::PositionContext p) {
if (!S.getDiagnostics().isIgnored(
diag::warn_format_invalid_positional_specifier, SourceLocation()))
EmitFormatDiagnostic(
S.PDiag(diag::warn_format_invalid_positional_specifier) << (unsigned)p,
getLocationOfByte(startSpecifier), /*IsStringLocation*/ true,
getSpecifierRange(startSpecifier, specifierLen));
}
void CheckFormatHandler::HandleZeroPosition(const char *startPos,
unsigned posLen) {
if (!S.getDiagnostics().isIgnored(diag::warn_format_zero_positional_specifier,
SourceLocation()))
EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
getLocationOfByte(startPos),
/*IsStringLocation*/ true,
getSpecifierRange(startPos, posLen));
}
void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
// The presence of a null character is likely an error.
EmitFormatDiagnostic(
S.PDiag(diag::warn_printf_format_string_contains_null_char),
getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
getFormatStringRange());
}
}
// Note that this may return NULL if there was an error parsing or building
// one of the argument expressions.
const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
return Args[FirstDataArg + i];
}
void CheckFormatHandler::DoneProcessing() {
// Does the number of data arguments exceed the number of
// format conversions in the format string?
if (HasFormatArguments()) {
// Find any arguments that weren't covered.
CoveredArgs.flip();
signed notCoveredArg = CoveredArgs.find_first();
if (notCoveredArg >= 0) {
assert((unsigned)notCoveredArg < NumDataArgs);
UncoveredArg.Update(notCoveredArg, OrigFormatExpr);
} else {
UncoveredArg.setAllCovered();
}
}
}
void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall,
const Expr *ArgExpr) {
assert(hasUncoveredArg() && !DiagnosticExprs.empty() &&
"Invalid state");
if (!ArgExpr)
return;
SourceLocation Loc = ArgExpr->getBeginLoc();
if (S.getSourceManager().isInSystemMacro(Loc))
return;
PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used);
for (auto E : DiagnosticExprs)
PDiag << E->getSourceRange();
CheckFormatHandler::EmitFormatDiagnostic(
S, IsFunctionCall, DiagnosticExprs[0],
PDiag, Loc, /*IsStringLocation*/false,
DiagnosticExprs[0]->getSourceRange());
}
bool
CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
SourceLocation Loc,
const char *startSpec,
unsigned specifierLen,
const char *csStart,
unsigned csLen) {
bool keepGoing = true;
if (argIndex < NumDataArgs) {
// Consider the argument coverered, even though the specifier doesn't
// make sense.
CoveredArgs.set(argIndex);
}
else {
// If argIndex exceeds the number of data arguments we
// don't issue a warning because that is just a cascade of warnings (and
// they may have intended '%%' anyway). We don't want to continue processing
// the format string after this point, however, as we will like just get
// gibberish when trying to match arguments.
keepGoing = false;
}
StringRef Specifier(csStart, csLen);
// If the specifier in non-printable, it could be the first byte of a UTF-8
// sequence. In that case, print the UTF-8 code point. If not, print the byte
// hex value.
std::string CodePointStr;
if (!llvm::sys::locale::isPrint(*csStart)) {
llvm::UTF32 CodePoint;
const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart);
const llvm::UTF8 *E =
reinterpret_cast<const llvm::UTF8 *>(csStart + csLen);
llvm::ConversionResult Result =
llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion);
if (Result != llvm::conversionOK) {
unsigned char FirstChar = *csStart;
CodePoint = (llvm::UTF32)FirstChar;
}
llvm::raw_string_ostream OS(CodePointStr);
if (CodePoint < 256)
OS << "\\x" << llvm::format("%02x", CodePoint);
else if (CodePoint <= 0xFFFF)
OS << "\\u" << llvm::format("%04x", CodePoint);
else
OS << "\\U" << llvm::format("%08x", CodePoint);
Specifier = CodePointStr;
}
EmitFormatDiagnostic(
S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc,
/*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen));
return keepGoing;
}
void
CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
const char *startSpec,
unsigned specifierLen) {
EmitFormatDiagnostic(
S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
}
bool
CheckFormatHandler::CheckNumArgs(
const analyze_format_string::FormatSpecifier &FS,
const analyze_format_string::ConversionSpecifier &CS,
const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
if (HasFormatArguments() && argIndex >= NumDataArgs) {
PartialDiagnostic PDiag = FS.usesPositionalArg()
? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
<< (argIndex+1) << NumDataArgs)
: S.PDiag(diag::warn_printf_insufficient_data_args);
EmitFormatDiagnostic(
PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
getSpecifierRange(startSpecifier, specifierLen));
// Since more arguments than conversion tokens are given, by extension
// all arguments are covered, so mark this as so.
UncoveredArg.setAllCovered();
return false;
}
return true;
}
template<typename Range>
void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
SourceLocation Loc,
bool IsStringLocation,
Range StringRange,
ArrayRef<FixItHint> FixIt) {
EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
Loc, IsStringLocation, StringRange, FixIt);
}
/// If the format string is not within the function call, emit a note
/// so that the function call and string are in diagnostic messages.
///
/// \param InFunctionCall if true, the format string is within the function
/// call and only one diagnostic message will be produced. Otherwise, an
/// extra note will be emitted pointing to location of the format string.
///
/// \param ArgumentExpr the expression that is passed as the format string
/// argument in the function call. Used for getting locations when two
/// diagnostics are emitted.
///
/// \param PDiag the callee should already have provided any strings for the
/// diagnostic message. This function only adds locations and fixits
/// to diagnostics.
///
/// \param Loc primary location for diagnostic. If two diagnostics are
/// required, one will be at Loc and a new SourceLocation will be created for
/// the other one.
///
/// \param IsStringLocation if true, Loc points to the format string should be
/// used for the note. Otherwise, Loc points to the argument list and will
/// be used with PDiag.
///
/// \param StringRange some or all of the string to highlight. This is
/// templated so it can accept either a CharSourceRange or a SourceRange.
///
/// \param FixIt optional fix it hint for the format string.
template <typename Range>
void CheckFormatHandler::EmitFormatDiagnostic(
Sema &S, bool InFunctionCall, const Expr *ArgumentExpr,
const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation,
Range StringRange, ArrayRef<FixItHint> FixIt) {
if (InFunctionCall) {
const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
D << StringRange;
D << FixIt;
} else {
S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
<< ArgumentExpr->getSourceRange();
const Sema::SemaDiagnosticBuilder &Note =
S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
diag::note_format_string_defined);
Note << StringRange;
Note << FixIt;
}
}
//===--- CHECK: Printf format string checking -----------------------------===//
namespace {
class CheckPrintfHandler : public CheckFormatHandler {
public:
CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr,
const Expr *origFormatExpr,
const Sema::FormatStringType type, unsigned firstDataArg,
unsigned numDataArgs, bool isObjC, const char *beg,
Sema::FormatArgumentPassingKind APK,
ArrayRef<const Expr *> Args, unsigned formatIdx,
bool inFunctionCall, Sema::VariadicCallType CallType,
llvm::SmallBitVector &CheckedVarArgs,
UncoveredArgHandler &UncoveredArg)
: CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
numDataArgs, beg, APK, Args, formatIdx,
inFunctionCall, CallType, CheckedVarArgs,
UncoveredArg) {}
bool isObjCContext() const { return FSType == Sema::FST_NSString; }
/// Returns true if '%@' specifiers are allowed in the format string.
bool allowsObjCArg() const {
return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog ||
FSType == Sema::FST_OSTrace;
}
bool HandleInvalidPrintfConversionSpecifier(
const analyze_printf::PrintfSpecifier &FS,
const char *startSpecifier,
unsigned specifierLen) override;
void handleInvalidMaskType(StringRef MaskType) override;
bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
const char *startSpecifier, unsigned specifierLen,
const TargetInfo &Target) override;
bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
const char *StartSpecifier,
unsigned SpecifierLen,
const Expr *E);
bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
const char *startSpecifier, unsigned specifierLen);
void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
const analyze_printf::OptionalAmount &Amt,
unsigned type,
const char *startSpecifier, unsigned specifierLen);
void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
const analyze_printf::OptionalFlag &flag,
const char *startSpecifier, unsigned specifierLen);
void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
const analyze_printf::OptionalFlag &ignoredFlag,
const analyze_printf::OptionalFlag &flag,
const char *startSpecifier, unsigned specifierLen);
bool checkForCStrMembers(const analyze_printf::ArgType &AT,
const Expr *E);
void HandleEmptyObjCModifierFlag(const char *startFlag,
unsigned flagLen) override;
void HandleInvalidObjCModifierFlag(const char *startFlag,
unsigned flagLen) override;
void
HandleObjCFlagsWithNonObjCConversion(const char *flagsStart,
const char *flagsEnd,
const char *conversionPosition) override;
};
/// Keeps around the information needed to verify that two specifiers are
/// compatible.
class EquatableFormatArgument {
public:
enum SpecifierSensitivity : unsigned {
SS_None,
SS_Private,
SS_Public,
SS_Sensitive
};
enum FormatArgumentRole : unsigned {
FAR_Data,
FAR_FieldWidth,
FAR_Precision,
FAR_Auxiliary, // FreeBSD kernel %b and %D
};
private:
analyze_format_string::ArgType ArgType;
analyze_format_string::LengthModifier::Kind LengthMod;
StringRef SpecifierLetter;
CharSourceRange Range;
SourceLocation ElementLoc;
FormatArgumentRole Role : 2;
SpecifierSensitivity Sensitivity : 2; // only set for FAR_Data
unsigned Position : 14;
unsigned ModifierFor : 14; // not set for FAR_Data
void EmitDiagnostic(Sema &S, PartialDiagnostic PDiag, const Expr *FmtExpr,
bool InFunctionCall) const;
public:
EquatableFormatArgument(CharSourceRange Range, SourceLocation ElementLoc,
analyze_format_string::LengthModifier::Kind LengthMod,
StringRef SpecifierLetter,
analyze_format_string::ArgType ArgType,
FormatArgumentRole Role,
SpecifierSensitivity Sensitivity, unsigned Position,
unsigned ModifierFor)
: ArgType(ArgType), LengthMod(LengthMod),
SpecifierLetter(SpecifierLetter), Range(Range), ElementLoc(ElementLoc),
Role(Role), Sensitivity(Sensitivity), Position(Position),
ModifierFor(ModifierFor) {}
unsigned getPosition() const { return Position; }
SourceLocation getSourceLocation() const { return ElementLoc; }
CharSourceRange getSourceRange() const { return Range; }
analyze_format_string::LengthModifier getLengthModifier() const {
return analyze_format_string::LengthModifier(nullptr, LengthMod);
}
void setModifierFor(unsigned V) { ModifierFor = V; }
std::string buildFormatSpecifier() const {
std::string result;
llvm::raw_string_ostream(result)
<< getLengthModifier().toString() << SpecifierLetter;
return result;
}
bool VerifyCompatible(Sema &S, const EquatableFormatArgument &Other,
const Expr *FmtExpr, bool InFunctionCall) const;
};
/// Turns format strings into lists of EquatableSpecifier objects.
class DecomposePrintfHandler : public CheckPrintfHandler {
llvm::SmallVectorImpl<EquatableFormatArgument> &Specs;
bool HadError;
DecomposePrintfHandler(
Sema &s, const FormatStringLiteral *fexpr, const Expr *origFormatExpr,
const Sema::FormatStringType type, unsigned firstDataArg,
unsigned numDataArgs, bool isObjC, const char *beg,
Sema::FormatArgumentPassingKind APK, ArrayRef<const Expr *> Args,
unsigned formatIdx, bool inFunctionCall, Sema::VariadicCallType CallType,
llvm::SmallBitVector &CheckedVarArgs, UncoveredArgHandler &UncoveredArg,
llvm::SmallVectorImpl<EquatableFormatArgument> &Specs)
: CheckPrintfHandler(s, fexpr, origFormatExpr, type, firstDataArg,
numDataArgs, isObjC, beg, APK, Args, formatIdx,
inFunctionCall, CallType, CheckedVarArgs,
UncoveredArg),
Specs(Specs), HadError(false) {}
public:
static bool
GetSpecifiers(Sema &S, const FormatStringLiteral *FSL, const Expr *FmtExpr,
Sema::FormatStringType type, bool IsObjC, bool InFunctionCall,
llvm::SmallVectorImpl<EquatableFormatArgument> &Args);
virtual bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
const char *startSpecifier,
unsigned specifierLen,
const TargetInfo &Target) override;
};
} // namespace
bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
const analyze_printf::PrintfSpecifier &FS, const char *startSpecifier,
unsigned specifierLen) {
const analyze_printf::PrintfConversionSpecifier &CS =
FS.getConversionSpecifier();
return HandleInvalidConversionSpecifier(FS.getArgIndex(),
getLocationOfByte(CS.getStart()),
startSpecifier, specifierLen,
CS.getStart(), CS.getLength());
}
void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) {
S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size);
}
bool CheckPrintfHandler::HandleAmount(
const analyze_format_string::OptionalAmount &Amt, unsigned k,
const char *startSpecifier, unsigned specifierLen) {
if (Amt.hasDataArgument()) {
if (HasFormatArguments()) {
unsigned argIndex = Amt.getArgIndex();
if (argIndex >= NumDataArgs) {
EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
<< k,
getLocationOfByte(Amt.getStart()),
/*IsStringLocation*/ true,
getSpecifierRange(startSpecifier, specifierLen));
// Don't do any more checking. We will just emit
// spurious errors.
return false;
}
// Type check the data argument. It should be an 'int'.
// Although not in conformance with C99, we also allow the argument to be
// an 'unsigned int' as that is a reasonably safe case. GCC also
// doesn't emit a warning for that case.
CoveredArgs.set(argIndex);
const Expr *Arg = getDataArg(argIndex);
if (!Arg)
return false;
QualType T = Arg->getType();
const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
assert(AT.isValid());
if (!AT.matchesType(S.Context, T)) {
EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
<< k << AT.getRepresentativeTypeName(S.Context)
<< T << Arg->getSourceRange(),
getLocationOfByte(Amt.getStart()),
/*IsStringLocation*/true,
getSpecifierRange(startSpecifier, specifierLen));
// Don't do any more checking. We will just emit
// spurious errors.
return false;
}
}
}
return true;
}
void CheckPrintfHandler::HandleInvalidAmount(
const analyze_printf::PrintfSpecifier &FS,
const analyze_printf::OptionalAmount &Amt,
unsigned type,
const char *startSpecifier,
unsigned specifierLen) {
const analyze_printf::PrintfConversionSpecifier &CS =
FS.getConversionSpecifier();
FixItHint fixit =
Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
Amt.getConstantLength()))
: FixItHint();
EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
<< type << CS.toString(),
getLocationOfByte(Amt.getStart()),
/*IsStringLocation*/true,
getSpecifierRange(startSpecifier, specifierLen),
fixit);
}
void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
const analyze_printf::OptionalFlag &flag,
const char *startSpecifier,
unsigned specifierLen) {
// Warn about pointless flag with a fixit removal.
const analyze_printf::PrintfConversionSpecifier &CS =
FS.getConversionSpecifier();
EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
<< flag.toString() << CS.toString(),
getLocationOfByte(flag.getPosition()),
/*IsStringLocation*/true,
getSpecifierRange(startSpecifier, specifierLen),
FixItHint::CreateRemoval(
getSpecifierRange(flag.getPosition(), 1)));
}
void CheckPrintfHandler::HandleIgnoredFlag(
const analyze_printf::PrintfSpecifier &FS,
const analyze_printf::OptionalFlag &ignoredFlag,
const analyze_printf::OptionalFlag &flag,
const char *startSpecifier,
unsigned specifierLen) {
// Warn about ignored flag with a fixit removal.
EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
<< ignoredFlag.toString() << flag.toString(),
getLocationOfByte(ignoredFlag.getPosition()),
/*IsStringLocation*/true,
getSpecifierRange(startSpecifier, specifierLen),
FixItHint::CreateRemoval(
getSpecifierRange(ignoredFlag.getPosition(), 1)));
}
void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag,
unsigned flagLen) {
// Warn about an empty flag.
EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag),
getLocationOfByte(startFlag),
/*IsStringLocation*/true,
getSpecifierRange(startFlag, flagLen));
}
void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag,
unsigned flagLen) {
// Warn about an invalid flag.
auto Range = getSpecifierRange(startFlag, flagLen);
StringRef flag(startFlag, flagLen);
EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag,
getLocationOfByte(startFlag),
/*IsStringLocation*/true,
Range, FixItHint::CreateRemoval(Range));
}
void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion(
const char *flagsStart, const char *flagsEnd, const char *conversionPosition) {
// Warn about using '[...]' without a '@' conversion.
auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1);
auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion;
EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1),
getLocationOfByte(conversionPosition),
/*IsStringLocation*/ true, Range,
FixItHint::CreateRemoval(Range));
}
void EquatableFormatArgument::EmitDiagnostic(Sema &S, PartialDiagnostic PDiag,
const Expr *FmtExpr,
bool InFunctionCall) const {
CheckFormatHandler::EmitFormatDiagnostic(S, InFunctionCall, FmtExpr, PDiag,
ElementLoc, true, Range);
}
bool EquatableFormatArgument::VerifyCompatible(
Sema &S, const EquatableFormatArgument &Other, const Expr *FmtExpr,
bool InFunctionCall) const {
using MK = analyze_format_string::ArgType::MatchKind;
if (Role != Other.Role) {
// diagnose and stop
EmitDiagnostic(
S, S.PDiag(diag::warn_format_cmp_role_mismatch) << Role << Other.Role,
FmtExpr, InFunctionCall);
S.Diag(Other.ElementLoc, diag::note_format_cmp_with) << 0 << Other.Range;
return false;
}
if (Role != FAR_Data) {
if (ModifierFor != Other.ModifierFor) {
// diagnose and stop
EmitDiagnostic(S,
S.PDiag(diag::warn_format_cmp_modifierfor_mismatch)
<< (ModifierFor + 1) << (Other.ModifierFor + 1),
FmtExpr, InFunctionCall);
S.Diag(Other.ElementLoc, diag::note_format_cmp_with) << 0 << Other.Range;
return false;
}
return true;
}
bool HadError = false;
if (Sensitivity != Other.Sensitivity) {
// diagnose and continue
EmitDiagnostic(S,
S.PDiag(diag::warn_format_cmp_sensitivity_mismatch)
<< Sensitivity << Other.Sensitivity,
FmtExpr, InFunctionCall);
HadError = S.Diag(Other.ElementLoc, diag::note_format_cmp_with)
<< 0 << Other.Range;
}
switch (ArgType.matchesArgType(S.Context, Other.ArgType)) {
case MK::Match:
break;
case MK::MatchPromotion:
// Per consensus reached at https://discourse.llvm.org/t/-/83076/12,
// MatchPromotion is treated as a failure by format_matches.
case MK::NoMatch:
case MK::NoMatchTypeConfusion:
case MK::NoMatchPromotionTypeConfusion:
EmitDiagnostic(S,
S.PDiag(diag::warn_format_cmp_specifier_mismatch)
<< buildFormatSpecifier()
<< Other.buildFormatSpecifier(),
FmtExpr, InFunctionCall);
HadError = S.Diag(Other.ElementLoc, diag::note_format_cmp_with)
<< 0 << Other.Range;
break;
case MK::NoMatchPedantic:
EmitDiagnostic(S,
S.PDiag(diag::warn_format_cmp_specifier_mismatch_pedantic)
<< buildFormatSpecifier()
<< Other.buildFormatSpecifier(),
FmtExpr, InFunctionCall);
HadError = S.Diag(Other.ElementLoc, diag::note_format_cmp_with)
<< 0 << Other.Range;
break;
case MK::NoMatchSignedness:
if (!S.getDiagnostics().isIgnored(
diag::warn_format_conversion_argument_type_mismatch_signedness,
ElementLoc)) {
EmitDiagnostic(S,
S.PDiag(diag::warn_format_cmp_specifier_sign_mismatch)
<< buildFormatSpecifier()
<< Other.buildFormatSpecifier(),
FmtExpr, InFunctionCall);
HadError = S.Diag(Other.ElementLoc, diag::note_format_cmp_with)
<< 0 << Other.Range;
}
break;
}
return !HadError;
}
bool DecomposePrintfHandler::GetSpecifiers(
Sema &S, const FormatStringLiteral *FSL, const Expr *FmtExpr,
Sema::FormatStringType Type, bool IsObjC, bool InFunctionCall,
llvm::SmallVectorImpl<EquatableFormatArgument> &Args) {
StringRef Data = FSL->getString();
const char *Str = Data.data();
llvm::SmallBitVector BV;
UncoveredArgHandler UA;
const Expr *PrintfArgs[] = {FSL->getFormatString()};
DecomposePrintfHandler H(S, FSL, FSL->getFormatString(), Type, 0, 0, IsObjC,
Str, Sema::FAPK_Elsewhere, PrintfArgs, 0,
InFunctionCall, Sema::VariadicDoesNotApply, BV, UA,
Args);
if (!analyze_format_string::ParsePrintfString(
H, Str, Str + Data.size(), S.getLangOpts(), S.Context.getTargetInfo(),
Type == Sema::FST_FreeBSDKPrintf))
H.DoneProcessing();
if (H.HadError)
return false;
std::stable_sort(
Args.begin(), Args.end(),
[](const EquatableFormatArgument &A, const EquatableFormatArgument &B) {
return A.getPosition() < B.getPosition();
});
return true;
}
bool DecomposePrintfHandler::HandlePrintfSpecifier(
const analyze_printf::PrintfSpecifier &FS, const char *startSpecifier,
unsigned specifierLen, const TargetInfo &Target) {
if (!CheckPrintfHandler::HandlePrintfSpecifier(FS, startSpecifier,
specifierLen, Target)) {
HadError = true;
return false;
}
// Do not add any specifiers to the list for %%. This is possibly incorrect
// if using a precision/width with a data argument, but that combination is
// meaningless and we wouldn't know which format to attach the
// precision/width to.
const auto &CS = FS.getConversionSpecifier();
if (CS.getKind() == analyze_format_string::ConversionSpecifier::PercentArg)
return true;
// have to patch these to have the right ModifierFor if they are used
const unsigned Unset = ~0;
unsigned FieldWidthIndex = Unset;
unsigned PrecisionIndex = Unset;
// field width?
const auto &FieldWidth = FS.getFieldWidth();
if (!FieldWidth.isInvalid() && FieldWidth.hasDataArgument()) {
FieldWidthIndex = Specs.size();
Specs.emplace_back(getSpecifierRange(startSpecifier, specifierLen),
getLocationOfByte(FieldWidth.getStart()),
analyze_format_string::LengthModifier::None, "*",
FieldWidth.getArgType(S.Context),
EquatableFormatArgument::FAR_FieldWidth,
EquatableFormatArgument::SS_None,
FieldWidth.usesPositionalArg()
? FieldWidth.getPositionalArgIndex() - 1
: FieldWidthIndex,
0);
}
// precision?
const auto &Precision = FS.getPrecision();
if (!Precision.isInvalid() && Precision.hasDataArgument()) {
PrecisionIndex = Specs.size();
Specs.emplace_back(
getSpecifierRange(startSpecifier, specifierLen),
getLocationOfByte(Precision.getStart()),
analyze_format_string::LengthModifier::None, ".*",
Precision.getArgType(S.Context), EquatableFormatArgument::FAR_Precision,
EquatableFormatArgument::SS_None,
Precision.usesPositionalArg() ? Precision.getPositionalArgIndex() - 1
: PrecisionIndex,
0);
}
// this specifier
unsigned SpecIndex =
FS.usesPositionalArg() ? FS.getPositionalArgIndex() - 1 : Specs.size();
if (FieldWidthIndex != Unset)
Specs[FieldWidthIndex].setModifierFor(SpecIndex);
if (PrecisionIndex != Unset)
Specs[PrecisionIndex].setModifierFor(SpecIndex);
EquatableFormatArgument::SpecifierSensitivity Sensitivity;
if (FS.isPrivate())
Sensitivity = EquatableFormatArgument::SS_Private;
else if (FS.isPublic())
Sensitivity = EquatableFormatArgument::SS_Public;
else if (FS.isSensitive())
Sensitivity = EquatableFormatArgument::SS_Sensitive;
else
Sensitivity = EquatableFormatArgument::SS_None;
Specs.emplace_back(
getSpecifierRange(startSpecifier, specifierLen),
getLocationOfByte(CS.getStart()), FS.getLengthModifier().getKind(),
CS.getCharacters(), FS.getArgType(S.Context, isObjCContext()),
EquatableFormatArgument::FAR_Data, Sensitivity, SpecIndex, 0);
// auxiliary argument?
if (CS.getKind() == analyze_format_string::ConversionSpecifier::FreeBSDbArg ||
CS.getKind() == analyze_format_string::ConversionSpecifier::FreeBSDDArg) {
Specs.emplace_back(getSpecifierRange(startSpecifier, specifierLen),
getLocationOfByte(CS.getStart()),
analyze_format_string::LengthModifier::None,
CS.getCharacters(),
analyze_format_string::ArgType::CStrTy,
EquatableFormatArgument::FAR_Auxiliary, Sensitivity,
SpecIndex + 1, SpecIndex);
}
return true;
}
// Determines if the specified is a C++ class or struct containing
// a member with the specified name and kind (e.g. a CXXMethodDecl named
// "c_str()").
template<typename MemberKind>
static llvm::SmallPtrSet<MemberKind*, 1>
CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
const RecordType *RT = Ty->getAs<RecordType>();
llvm::SmallPtrSet<MemberKind*, 1> Results;
if (!RT)
return Results;
const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
if (!RD || !RD->getDefinition())
return Results;
LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
Sema::LookupMemberName);
R.suppressDiagnostics();
// We just need to include all members of the right kind turned up by the
// filter, at this point.
if (S.LookupQualifiedName(R, RT->getDecl()))
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
NamedDecl *decl = (*I)->getUnderlyingDecl();
if (MemberKind *FK = dyn_cast<MemberKind>(decl))
Results.insert(FK);
}
return Results;
}
/// Check if we could call '.c_str()' on an object.
///
/// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
/// allow the call, or if it would be ambiguous).
bool Sema::hasCStrMethod(const Expr *E) {
using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
MethodSet Results =
CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
MI != ME; ++MI)
if ((*MI)->getMinRequiredArguments() == 0)
return true;
return false;
}
// Check if a (w)string was passed when a (w)char* was needed, and offer a
// better diagnostic if so. AT is assumed to be valid.
// Returns true when a c_str() conversion method is found.
bool CheckPrintfHandler::checkForCStrMembers(
const analyze_printf::ArgType &AT, const Expr *E) {
using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
MethodSet Results =
CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
MI != ME; ++MI) {
const CXXMethodDecl *Method = *MI;
if (Method->getMinRequiredArguments() == 0 &&
AT.matchesType(S.Context, Method->getReturnType())) {
// FIXME: Suggest parens if the expression needs them.
SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc());
S.Diag(E->getBeginLoc(), diag::note_printf_c_str)
<< "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()");
return true;
}
}
return false;
}
bool CheckPrintfHandler::HandlePrintfSpecifier(
const analyze_printf::PrintfSpecifier &FS, const char *startSpecifier,
unsigned specifierLen, const TargetInfo &Target) {
using namespace analyze_format_string;
using namespace analyze_printf;
const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
if (FS.consumesDataArgument()) {
if (atFirstArg) {
atFirstArg = false;
usesPositionalArgs = FS.usesPositionalArg();
}
else if (usesPositionalArgs != FS.usesPositionalArg()) {
HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
startSpecifier, specifierLen);
return false;
}
}
// First check if the field width, precision, and conversion specifier
// have matching data arguments.
if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
startSpecifier, specifierLen)) {
return false;
}
if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
startSpecifier, specifierLen)) {
return false;
}
if (!CS.consumesDataArgument()) {
// FIXME: Technically specifying a precision or field width here
// makes no sense. Worth issuing a warning at some point.
return true;
}
// Consume the argument.
unsigned argIndex = FS.getArgIndex();
if (argIndex < NumDataArgs) {
// The check to see if the argIndex is valid will come later.
// We set the bit here because we may exit early from this
// function if we encounter some other error.
CoveredArgs.set(argIndex);
}
// FreeBSD kernel extensions.
if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
// We need at least two arguments.
if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
return false;
if (HasFormatArguments()) {
// Claim the second argument.
CoveredArgs.set(argIndex + 1);
// Type check the first argument (int for %b, pointer for %D)
const Expr *Ex = getDataArg(argIndex);
const analyze_printf::ArgType &AT =
(CS.getKind() == ConversionSpecifier::FreeBSDbArg)
? ArgType(S.Context.IntTy)
: ArgType::CPointerTy;
if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
EmitFormatDiagnostic(
S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
<< AT.getRepresentativeTypeName(S.Context) << Ex->getType()
<< false << Ex->getSourceRange(),
Ex->getBeginLoc(), /*IsStringLocation*/ false,
getSpecifierRange(startSpecifier, specifierLen));
// Type check the second argument (char * for both %b and %D)
Ex = getDataArg(argIndex + 1);
const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
EmitFormatDiagnostic(
S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
<< AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
<< false << Ex->getSourceRange(),
Ex->getBeginLoc(), /*IsStringLocation*/ false,
getSpecifierRange(startSpecifier, specifierLen));
}
return true;
}
// Check for using an Objective-C specific conversion specifier
// in a non-ObjC literal.
if (!allowsObjCArg() && CS.isObjCArg()) {
return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
specifierLen);
}
// %P can only be used with os_log.
if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) {
return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
specifierLen);
}
// %n is not allowed with os_log.
if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) {
EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg),
getLocationOfByte(CS.getStart()),
/*IsStringLocation*/ false,
getSpecifierRange(startSpecifier, specifierLen));
return true;
}
// Only scalars are allowed for os_trace.
if (FSType == Sema::FST_OSTrace &&
(CS.getKind() == ConversionSpecifier::PArg ||
CS.getKind() == ConversionSpecifier::sArg ||
CS.getKind() == ConversionSpecifier::ObjCObjArg)) {
return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
specifierLen);
}
// Check for use of public/private annotation outside of os_log().
if (FSType != Sema::FST_OSLog) {
if (FS.isPublic().isSet()) {
EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
<< "public",
getLocationOfByte(FS.isPublic().getPosition()),
/*IsStringLocation*/ false,
getSpecifierRange(startSpecifier, specifierLen));
}
if (FS.isPrivate().isSet()) {
EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
<< "private",
getLocationOfByte(FS.isPrivate().getPosition()),
/*IsStringLocation*/ false,
getSpecifierRange(startSpecifier, specifierLen));
}
}
const llvm::Triple &Triple = Target.getTriple();
if (CS.getKind() == ConversionSpecifier::nArg &&
(Triple.isAndroid() || Triple.isOSFuchsia())) {
EmitFormatDiagnostic(S.PDiag(diag::warn_printf_narg_not_supported),
getLocationOfByte(CS.getStart()),
/*IsStringLocation*/ false,
getSpecifierRange(startSpecifier, specifierLen));
}
// Check for invalid use of field width
if (!FS.hasValidFieldWidth()) {
HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
startSpecifier, specifierLen);
}
// Check for invalid use of precision
if (!FS.hasValidPrecision()) {
HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
startSpecifier, specifierLen);
}
// Precision is mandatory for %P specifier.
if (CS.getKind() == ConversionSpecifier::PArg &&
FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) {
EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision),
getLocationOfByte(startSpecifier),
/*IsStringLocation*/ false,
getSpecifierRange(startSpecifier, specifierLen));
}
// Check each flag does not conflict with any other component.
if (!FS.hasValidThousandsGroupingPrefix())
HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
if (!FS.hasValidLeadingZeros())
HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
if (!FS.hasValidPlusPrefix())
HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
if (!FS.hasValidSpacePrefix())
HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
if (!FS.hasValidAlternativeForm())
HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
if (!FS.hasValidLeftJustified())
HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
// Check that flags are not ignored by another flag
if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
startSpecifier, specifierLen);
if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
startSpecifier, specifierLen);
// Check the length modifier is valid with the given conversion specifier.
if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
S.getLangOpts()))
HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
diag::warn_format_nonsensical_length);
else if (!FS.hasStandardLengthModifier())
HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
else if (!FS.hasStandardLengthConversionCombination())
HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
diag::warn_format_non_standard_conversion_spec);
if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
// The remaining checks depend on the data arguments.
if (!HasFormatArguments())
return true;
if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
return false;
const Expr *Arg = getDataArg(argIndex);
if (!Arg)
return true;
return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
}
static bool requiresParensToAddCast(const Expr *E) {
// FIXME: We should have a general way to reason about operator
// precedence and whether parens are actually needed here.
// Take care of a few common cases where they aren't.
const Expr *Inside = E->IgnoreImpCasts();
if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
Inside = POE->getSyntacticForm()->IgnoreImpCasts();
switch (Inside->getStmtClass()) {
case Stmt::ArraySubscriptExprClass:
case Stmt::CallExprClass:
case Stmt::CharacterLiteralClass:
case Stmt::CXXBoolLiteralExprClass:
case Stmt::DeclRefExprClass:
case Stmt::FloatingLiteralClass:
case Stmt::IntegerLiteralClass:
case Stmt::MemberExprClass:
case Stmt::ObjCArrayLiteralClass:
case Stmt::ObjCBoolLiteralExprClass:
case Stmt::ObjCBoxedExprClass:
case Stmt::ObjCDictionaryLiteralClass:
case Stmt::ObjCEncodeExprClass:
case Stmt::ObjCIvarRefExprClass:
case Stmt::ObjCMessageExprClass:
case Stmt::ObjCPropertyRefExprClass:
case Stmt::ObjCStringLiteralClass:
case Stmt::ObjCSubscriptRefExprClass:
case Stmt::ParenExprClass:
case Stmt::StringLiteralClass:
case Stmt::UnaryOperatorClass:
return false;
default:
return true;
}
}
static std::pair<QualType, StringRef>
shouldNotPrintDirectly(const ASTContext &Context,
QualType IntendedTy,
const Expr *E) {
// Use a 'while' to peel off layers of typedefs.
QualType TyTy = IntendedTy;
while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
StringRef Name = UserTy->getDecl()->getName();
QualType CastTy = llvm::StringSwitch<QualType>(Name)
.Case("CFIndex", Context.getNSIntegerType())
.Case("NSInteger", Context.getNSIntegerType())
.Case("NSUInteger", Context.getNSUIntegerType())
.Case("SInt32", Context.IntTy)
.Case("UInt32", Context.UnsignedIntTy)
.Default(QualType());
if (!CastTy.isNull())
return std::make_pair(CastTy, Name);
TyTy = UserTy->desugar();
}
// Strip parens if necessary.
if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
return shouldNotPrintDirectly(Context,
PE->getSubExpr()->getType(),
PE->getSubExpr());
// If this is a conditional expression, then its result type is constructed
// via usual arithmetic conversions and thus there might be no necessary
// typedef sugar there. Recurse to operands to check for NSInteger &
// Co. usage condition.
if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
QualType TrueTy, FalseTy;
StringRef TrueName, FalseName;
std::tie(TrueTy, TrueName) =
shouldNotPrintDirectly(Context,
CO->getTrueExpr()->getType(),
CO->getTrueExpr());
std::tie(FalseTy, FalseName) =
shouldNotPrintDirectly(Context,
CO->getFalseExpr()->getType(),
CO->getFalseExpr());
if (TrueTy == FalseTy)
return std::make_pair(TrueTy, TrueName);
else if (TrueTy.isNull())
return std::make_pair(FalseTy, FalseName);
else if (FalseTy.isNull())
return std::make_pair(TrueTy, TrueName);
}
return std::make_pair(QualType(), StringRef());
}
/// Return true if \p ICE is an implicit argument promotion of an arithmetic
/// type. Bit-field 'promotions' from a higher ranked type to a lower ranked
/// type do not count.
static bool
isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) {
QualType From = ICE->getSubExpr()->getType();
QualType To = ICE->getType();
// It's an integer promotion if the destination type is the promoted
// source type.
if (ICE->getCastKind() == CK_IntegralCast &&
S.Context.isPromotableIntegerType(From) &&
S.Context.getPromotedIntegerType(From) == To)
return true;
// Look through vector types, since we do default argument promotion for
// those in OpenCL.
if (const auto *VecTy = From->getAs<ExtVectorType>())
From = VecTy->getElementType();
if (const auto *VecTy = To->getAs<ExtVectorType>())
To = VecTy->getElementType();
// It's a floating promotion if the source type is a lower rank.
return ICE->getCastKind() == CK_FloatingCast &&
S.Context.getFloatingTypeOrder(From, To) < 0;
}
static analyze_format_string::ArgType::MatchKind
handleFormatSignedness(analyze_format_string::ArgType::MatchKind Match,
DiagnosticsEngine &Diags, SourceLocation Loc) {
if (Match == analyze_format_string::ArgType::NoMatchSignedness) {
Match =
Diags.isIgnored(
diag::warn_format_conversion_argument_type_mismatch_signedness, Loc)
? analyze_format_string::ArgType::Match
: analyze_format_string::ArgType::NoMatch;
}
return Match;
}
bool
CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
const char *StartSpecifier,
unsigned SpecifierLen,
const Expr *E) {
using namespace analyze_format_string;
using namespace analyze_printf;
// Now type check the data expression that matches the
// format specifier.
const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext());
if (!AT.isValid())
return true;
QualType ExprTy = E->getType();
while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
ExprTy = TET->getUnderlyingExpr()->getType();
}
// When using the format attribute in C++, you can receive a function or an
// array that will necessarily decay to a pointer when passed to the final
// format consumer. Apply decay before type comparison.
if (ExprTy->canDecayToPointerType())
ExprTy = S.Context.getDecayedType(ExprTy);
// Diagnose attempts to print a boolean value as a character. Unlike other
// -Wformat diagnostics, this is fine from a type perspective, but it still
// doesn't make sense.
if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg &&
E->isKnownToHaveBooleanValue()) {
const CharSourceRange &CSR =
getSpecifierRange(StartSpecifier, SpecifierLen);
SmallString<4> FSString;
llvm::raw_svector_ostream os(FSString);
FS.toString(os);
EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character)
<< FSString,
E->getExprLoc(), false, CSR);
return true;
}
// Diagnose attempts to use '%P' with ObjC object types, which will result in
// dumping raw class data (like is-a pointer), not actual data.
if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::PArg &&
ExprTy->isObjCObjectPointerType()) {
const CharSourceRange &CSR =
getSpecifierRange(StartSpecifier, SpecifierLen);
EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_with_objc_pointer),
E->getExprLoc(), false, CSR);
return true;
}
ArgType::MatchKind ImplicitMatch = ArgType::NoMatch;
ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy);
ArgType::MatchKind OrigMatch = Match;
Match = handleFormatSignedness(Match, S.getDiagnostics(), E->getExprLoc());
if (Match == ArgType::Match)
return true;
// NoMatchPromotionTypeConfusion should be only returned in ImplictCastExpr
assert(Match != ArgType::NoMatchPromotionTypeConfusion);
// Look through argument promotions for our error message's reported type.
// This includes the integral and floating promotions, but excludes array
// and function pointer decay (seeing that an argument intended to be a
// string has type 'char [6]' is probably more confusing than 'char *') and
// certain bitfield promotions (bitfields can be 'demoted' to a lesser type).
if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
if (isArithmeticArgumentPromotion(S, ICE)) {
E = ICE->getSubExpr();
ExprTy = E->getType();
// Check if we didn't match because of an implicit cast from a 'char'
// or 'short' to an 'int'. This is done because printf is a varargs
// function.
if (ICE->getType() == S.Context.IntTy ||
ICE->getType() == S.Context.UnsignedIntTy) {
// All further checking is done on the subexpression
ImplicitMatch = AT.matchesType(S.Context, ExprTy);
if (OrigMatch == ArgType::NoMatchSignedness &&
ImplicitMatch != ArgType::NoMatchSignedness)
// If the original match was a signedness match this match on the
// implicit cast type also need to be signedness match otherwise we
// might introduce new unexpected warnings from -Wformat-signedness.
return true;
ImplicitMatch = handleFormatSignedness(
ImplicitMatch, S.getDiagnostics(), E->getExprLoc());
if (ImplicitMatch == ArgType::Match)
return true;
}
}
} else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
// Special case for 'a', which has type 'int' in C.
// Note, however, that we do /not/ want to treat multibyte constants like
// 'MooV' as characters! This form is deprecated but still exists. In
// addition, don't treat expressions as of type 'char' if one byte length
// modifier is provided.
if (ExprTy == S.Context.IntTy &&
FS.getLengthModifier().getKind() != LengthModifier::AsChar)
if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue())) {
ExprTy = S.Context.CharTy;
// To improve check results, we consider a character literal in C
// to be a 'char' rather than an 'int'. 'printf("%hd", 'a');' is
// more likely a type confusion situation, so we will suggest to
// use '%hhd' instead by discarding the MatchPromotion.
if (Match == ArgType::MatchPromotion)
Match = ArgType::NoMatch;
}
}
if (Match == ArgType::MatchPromotion) {
// WG14 N2562 only clarified promotions in *printf
// For NSLog in ObjC, just preserve -Wformat behavior
if (!S.getLangOpts().ObjC &&
ImplicitMatch != ArgType::NoMatchPromotionTypeConfusion &&
ImplicitMatch != ArgType::NoMatchTypeConfusion)
return true;
Match = ArgType::NoMatch;
}
if (ImplicitMatch == ArgType::NoMatchPedantic ||
ImplicitMatch == ArgType::NoMatchTypeConfusion)
Match = ImplicitMatch;
assert(Match != ArgType::MatchPromotion);
// Look through unscoped enums to their underlying type.
bool IsEnum = false;
bool IsScopedEnum = false;
QualType IntendedTy = ExprTy;
if (auto EnumTy = ExprTy->getAs<EnumType>()) {
IntendedTy = EnumTy->getDecl()->getIntegerType();
if (EnumTy->isUnscopedEnumerationType()) {
ExprTy = IntendedTy;
// This controls whether we're talking about the underlying type or not,
// which we only want to do when it's an unscoped enum.
IsEnum = true;
} else {
IsScopedEnum = true;
}
}
// %C in an Objective-C context prints a unichar, not a wchar_t.
// If the argument is an integer of some kind, believe the %C and suggest
// a cast instead of changing the conversion specifier.
if (isObjCContext() &&
FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
!ExprTy->isCharType()) {
// 'unichar' is defined as a typedef of unsigned short, but we should
// prefer using the typedef if it is visible.
IntendedTy = S.Context.UnsignedShortTy;
// While we are here, check if the value is an IntegerLiteral that happens
// to be within the valid range.
if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
const llvm::APInt &V = IL->getValue();
if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
return true;
}
LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(),
Sema::LookupOrdinaryName);
if (S.LookupName(Result, S.getCurScope())) {
NamedDecl *ND = Result.getFoundDecl();
if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
if (TD->getUnderlyingType() == IntendedTy)
IntendedTy = S.Context.getTypedefType(TD);
}
}
}
// Special-case some of Darwin's platform-independence types by suggesting
// casts to primitive types that are known to be large enough.
bool ShouldNotPrintDirectly = false; StringRef CastTyName;
if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
QualType CastTy;
std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
if (!CastTy.isNull()) {
// %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int
// (long in ASTContext). Only complain to pedants or when they're the
// underlying type of a scoped enum (which always needs a cast).
if (!IsScopedEnum &&
(CastTyName == "NSInteger" || CastTyName == "NSUInteger") &&
(AT.isSizeT() || AT.isPtrdiffT()) &&
AT.matchesType(S.Context, CastTy))
Match = ArgType::NoMatchPedantic;
IntendedTy = CastTy;
ShouldNotPrintDirectly = true;
}
}
// We may be able to offer a FixItHint if it is a supported type.
PrintfSpecifier fixedFS = FS;
bool Success =
fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext());
if (Success) {
// Get the fix string from the fixed format specifier
SmallString<16> buf;
llvm::raw_svector_ostream os(buf);
fixedFS.toString(os);
CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
if (IntendedTy == ExprTy && !ShouldNotPrintDirectly && !IsScopedEnum) {
unsigned Diag;
switch (Match) {
case ArgType::Match:
case ArgType::MatchPromotion:
case ArgType::NoMatchPromotionTypeConfusion:
case ArgType::NoMatchSignedness:
llvm_unreachable("expected non-matching");
case ArgType::NoMatchPedantic:
Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
break;
case ArgType::NoMatchTypeConfusion:
Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
break;
case ArgType::NoMatch:
Diag = diag::warn_format_conversion_argument_type_mismatch;
break;
}
// In this case, the specifier is wrong and should be changed to match
// the argument.
EmitFormatDiagnostic(S.PDiag(Diag)
<< AT.getRepresentativeTypeName(S.Context)
<< IntendedTy << IsEnum << E->getSourceRange(),
E->getBeginLoc(),
/*IsStringLocation*/ false, SpecRange,
FixItHint::CreateReplacement(SpecRange, os.str()));
} else {
// The canonical type for formatting this value is different from the
// actual type of the expression. (This occurs, for example, with Darwin's
// NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
// should be printed as 'long' for 64-bit compatibility.)
// Rather than emitting a normal format/argument mismatch, we want to
// add a cast to the recommended type (and correct the format string
// if necessary). We should also do so for scoped enumerations.
SmallString<16> CastBuf;
llvm::raw_svector_ostream CastFix(CastBuf);
CastFix << (S.LangOpts.CPlusPlus ? "static_cast<" : "(");
IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
CastFix << (S.LangOpts.CPlusPlus ? ">" : ")");
SmallVector<FixItHint,4> Hints;
ArgType::MatchKind IntendedMatch = AT.matchesType(S.Context, IntendedTy);
IntendedMatch = handleFormatSignedness(IntendedMatch, S.getDiagnostics(),
E->getExprLoc());
if ((IntendedMatch != ArgType::Match) || ShouldNotPrintDirectly)
Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
// If there's already a cast present, just replace it.
SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
} else if (!requiresParensToAddCast(E) && !S.LangOpts.CPlusPlus) {
// If the expression has high enough precedence,
// just write the C-style cast.
Hints.push_back(
FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
} else {
// Otherwise, add parens around the expression as well as the cast.
CastFix << "(";
Hints.push_back(
FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
// We don't use getLocForEndOfToken because it returns invalid source
// locations for macro expansions (by design).
SourceLocation EndLoc = S.SourceMgr.getSpellingLoc(E->getEndLoc());
SourceLocation After = EndLoc.getLocWithOffset(
Lexer::MeasureTokenLength(EndLoc, S.SourceMgr, S.LangOpts));
Hints.push_back(FixItHint::CreateInsertion(After, ")"));
}
if (ShouldNotPrintDirectly && !IsScopedEnum) {
// The expression has a type that should not be printed directly.
// We extract the name from the typedef because we don't want to show
// the underlying type in the diagnostic.
StringRef Name;
if (const auto *TypedefTy = ExprTy->getAs<TypedefType>())
Name = TypedefTy->getDecl()->getName();
else
Name = CastTyName;
unsigned Diag = Match == ArgType::NoMatchPedantic
? diag::warn_format_argument_needs_cast_pedantic
: diag::warn_format_argument_needs_cast;
EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum
<< E->getSourceRange(),
E->getBeginLoc(), /*IsStringLocation=*/false,
SpecRange, Hints);
} else {
// In this case, the expression could be printed using a different
// specifier, but we've decided that the specifier is probably correct
// and we should cast instead. Just use the normal warning message.
unsigned Diag =
IsScopedEnum
? diag::warn_format_conversion_argument_type_mismatch_pedantic
: diag::warn_format_conversion_argument_type_mismatch;
EmitFormatDiagnostic(
S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
<< IsEnum << E->getSourceRange(),
E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints);
}
}
} else {
const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
SpecifierLen);
// Since the warning for passing non-POD types to variadic functions
// was deferred until now, we emit a warning for non-POD
// arguments here.
bool EmitTypeMismatch = false;
switch (S.isValidVarArgType(ExprTy)) {
case Sema::VAK_Valid:
case Sema::VAK_ValidInCXX11: {
unsigned Diag;
switch (Match) {
case ArgType::Match:
case ArgType::MatchPromotion:
case ArgType::NoMatchPromotionTypeConfusion:
case ArgType::NoMatchSignedness:
llvm_unreachable("expected non-matching");
case ArgType::NoMatchPedantic:
Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
break;
case ArgType::NoMatchTypeConfusion:
Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
break;
case ArgType::NoMatch:
Diag = diag::warn_format_conversion_argument_type_mismatch;
break;
}
EmitFormatDiagnostic(
S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
<< IsEnum << CSR << E->getSourceRange(),
E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
break;
}
case Sema::VAK_Undefined:
case Sema::VAK_MSVCUndefined:
if (CallType == Sema::VariadicDoesNotApply) {
EmitTypeMismatch = true;
} else {
EmitFormatDiagnostic(
S.PDiag(diag::warn_non_pod_vararg_with_format_string)
<< S.getLangOpts().CPlusPlus11 << ExprTy << CallType
<< AT.getRepresentativeTypeName(S.Context) << CSR
<< E->getSourceRange(),
E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
checkForCStrMembers(AT, E);
}
break;
case Sema::VAK_Invalid:
if (CallType == Sema::VariadicDoesNotApply)
EmitTypeMismatch = true;
else if (ExprTy->isObjCObjectType())
EmitFormatDiagnostic(
S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
<< S.getLangOpts().CPlusPlus11 << ExprTy << CallType
<< AT.getRepresentativeTypeName(S.Context) << CSR
<< E->getSourceRange(),
E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
else
// FIXME: If this is an initializer list, suggest removing the braces
// or inserting a cast to the target type.
S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format)
<< isa<InitListExpr>(E) << ExprTy << CallType
<< AT.getRepresentativeTypeName(S.Context) << E->getSourceRange();
break;
}
if (EmitTypeMismatch) {
// The function is not variadic, so we do not generate warnings about
// being allowed to pass that object as a variadic argument. Instead,
// since there are inherently no printf specifiers for types which cannot
// be passed as variadic arguments, emit a plain old specifier mismatch
// argument.
EmitFormatDiagnostic(
S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
<< AT.getRepresentativeTypeName(S.Context) << ExprTy << false
<< E->getSourceRange(),
E->getBeginLoc(), false, CSR);
}
assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
"format string specifier index out of range");
CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
}
return true;
}
//===--- CHECK: Scanf format string checking ------------------------------===//
namespace {
class CheckScanfHandler : public CheckFormatHandler {
public:
CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr,
const Expr *origFormatExpr, Sema::FormatStringType type,
unsigned firstDataArg, unsigned numDataArgs,
const char *beg, Sema::FormatArgumentPassingKind APK,
ArrayRef<const Expr *> Args, unsigned formatIdx,
bool inFunctionCall, Sema::VariadicCallType CallType,
llvm::SmallBitVector &CheckedVarArgs,
UncoveredArgHandler &UncoveredArg)
: CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
numDataArgs, beg, APK, Args, formatIdx,
inFunctionCall, CallType, CheckedVarArgs,
UncoveredArg) {}
bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
const char *startSpecifier,
unsigned specifierLen) override;
bool HandleInvalidScanfConversionSpecifier(
const analyze_scanf::ScanfSpecifier &FS,
const char *startSpecifier,
unsigned specifierLen) override;
void HandleIncompleteScanList(const char *start, const char *end) override;
};
} // namespace
void CheckScanfHandler::HandleIncompleteScanList(const char *start,
const char *end) {
EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
getLocationOfByte(end), /*IsStringLocation*/true,
getSpecifierRange(start, end - start));
}
bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
const analyze_scanf::ScanfSpecifier &FS,
const char *startSpecifier,
unsigned specifierLen) {
const analyze_scanf::ScanfConversionSpecifier &CS =
FS.getConversionSpecifier();
return HandleInvalidConversionSpecifier(FS.getArgIndex(),
getLocationOfByte(CS.getStart()),
startSpecifier, specifierLen,
CS.getStart(), CS.getLength());
}
bool CheckScanfHandler::HandleScanfSpecifier(
const analyze_scanf::ScanfSpecifier &FS,
const char *startSpecifier,
unsigned specifierLen) {
using namespace analyze_scanf;
using namespace analyze_format_string;
const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
// Handle case where '%' and '*' don't consume an argument. These shouldn't
// be used to decide if we are using positional arguments consistently.
if (FS.consumesDataArgument()) {
if (atFirstArg) {
atFirstArg = false;
usesPositionalArgs = FS.usesPositionalArg();
}
else if (usesPositionalArgs != FS.usesPositionalArg()) {
HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
startSpecifier, specifierLen);
return false;
}
}
// Check if the field with is non-zero.
const OptionalAmount &Amt = FS.getFieldWidth();
if (Amt.getHowSpecified() == OptionalAmount::Constant) {
if (Amt.getConstantAmount() == 0) {
const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
Amt.getConstantLength());
EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
getLocationOfByte(Amt.getStart()),
/*IsStringLocation*/true, R,
FixItHint::CreateRemoval(R));
}
}
if (!FS.consumesDataArgument()) {
// FIXME: Technically specifying a precision or field width here
// makes no sense. Worth issuing a warning at some point.
return true;
}
// Consume the argument.
unsigned argIndex = FS.getArgIndex();
if (argIndex < NumDataArgs) {
// The check to see if the argIndex is valid will come later.
// We set the bit here because we may exit early from this
// function if we encounter some other error.
CoveredArgs.set(argIndex);
}
// Check the length modifier is valid with the given conversion specifier.
if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
S.getLangOpts()))
HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
diag::warn_format_nonsensical_length);
else if (!FS.hasStandardLengthModifier())
HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
else if (!FS.hasStandardLengthConversionCombination())
HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
diag::warn_format_non_standard_conversion_spec);
if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
// The remaining checks depend on the data arguments.
if (!HasFormatArguments())
return true;
if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
return false;
// Check that the argument type matches the format specifier.
const Expr *Ex = getDataArg(argIndex);
if (!Ex)
return true;
const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
if (!AT.isValid()) {
return true;
}
analyze_format_string::ArgType::MatchKind Match =
AT.matchesType(S.Context, Ex->getType());
Match = handleFormatSignedness(Match, S.getDiagnostics(), Ex->getExprLoc());
bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic;
if (Match == analyze_format_string::ArgType::Match)
return true;
ScanfSpecifier fixedFS = FS;
bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(),
S.getLangOpts(), S.Context);
unsigned Diag =
Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic
: diag::warn_format_conversion_argument_type_mismatch;
if (Success) {
// Get the fix string from the fixed format specifier.
SmallString<128> buf;
llvm::raw_svector_ostream os(buf);
fixedFS.toString(os);
EmitFormatDiagnostic(
S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context)
<< Ex->getType() << false << Ex->getSourceRange(),
Ex->getBeginLoc(),
/*IsStringLocation*/ false,
getSpecifierRange(startSpecifier, specifierLen),
FixItHint::CreateReplacement(
getSpecifierRange(startSpecifier, specifierLen), os.str()));
} else {
EmitFormatDiagnostic(S.PDiag(Diag)
<< AT.getRepresentativeTypeName(S.Context)
<< Ex->getType() << false << Ex->getSourceRange(),
Ex->getBeginLoc(),
/*IsStringLocation*/ false,
getSpecifierRange(startSpecifier, specifierLen));
}
return true;
}
static bool CompareFormatSpecifiers(Sema &S, const StringLiteral *Ref,
ArrayRef<EquatableFormatArgument> RefArgs,
const StringLiteral *Fmt,
ArrayRef<EquatableFormatArgument> FmtArgs,
const Expr *FmtExpr, bool InFunctionCall) {
bool HadError = false;
auto FmtIter = FmtArgs.begin(), FmtEnd = FmtArgs.end();
auto RefIter = RefArgs.begin(), RefEnd = RefArgs.end();
while (FmtIter < FmtEnd && RefIter < RefEnd) {
// In positional-style format strings, the same specifier can appear
// multiple times (like %2$i %2$d). Specifiers in both RefArgs and FmtArgs
// are sorted by getPosition(), and we process each range of equal
// getPosition() values as one group.
// RefArgs are taken from a string literal that was given to
// attribute(format_matches), and if we got this far, we have already
// verified that if it has positional specifiers that appear in multiple
// locations, then they are all mutually compatible. What's left for us to
// do is verify that all specifiers with the same position in FmtArgs are
// compatible with the RefArgs specifiers. We check each specifier from
// FmtArgs against the first member of the RefArgs group.
for (; FmtIter < FmtEnd; ++FmtIter) {
// Clang does not diagnose missing format specifiers in positional-style
// strings (TODO: which it probably should do, as it is UB to skip over a
// format argument). Skip specifiers if needed.
if (FmtIter->getPosition() < RefIter->getPosition())
continue;
// Delimits a new getPosition() value.
if (FmtIter->getPosition() > RefIter->getPosition())
break;
HadError |=
!FmtIter->VerifyCompatible(S, *RefIter, FmtExpr, InFunctionCall);
}
// Jump RefIter to the start of the next group.
RefIter = std::find_if(RefIter + 1, RefEnd, [=](const auto &Arg) {
return Arg.getPosition() != RefIter->getPosition();
});
}
if (FmtIter < FmtEnd) {
CheckFormatHandler::EmitFormatDiagnostic(
S, InFunctionCall, FmtExpr,
S.PDiag(diag::warn_format_cmp_specifier_arity) << 1,
FmtExpr->getBeginLoc(), false, FmtIter->getSourceRange());
HadError = S.Diag(Ref->getBeginLoc(), diag::note_format_cmp_with) << 1;
} else if (RefIter < RefEnd) {
CheckFormatHandler::EmitFormatDiagnostic(
S, InFunctionCall, FmtExpr,
S.PDiag(diag::warn_format_cmp_specifier_arity) << 0,
FmtExpr->getBeginLoc(), false, Fmt->getSourceRange());
HadError = S.Diag(Ref->getBeginLoc(), diag::note_format_cmp_with)
<< 1 << RefIter->getSourceRange();
}
return !HadError;
}
static void CheckFormatString(
Sema &S, const FormatStringLiteral *FExpr,
const StringLiteral *ReferenceFormatString, const Expr *OrigFormatExpr,
ArrayRef<const Expr *> Args, Sema::FormatArgumentPassingKind APK,
unsigned format_idx, unsigned firstDataArg, Sema::FormatStringType Type,
bool inFunctionCall, Sema::VariadicCallType CallType,
llvm::SmallBitVector &CheckedVarArgs, UncoveredArgHandler &UncoveredArg,
bool IgnoreStringsWithoutSpecifiers) {
// CHECK: is the format string a wide literal?
if (!FExpr->isAscii() && !FExpr->isUTF8()) {
CheckFormatHandler::EmitFormatDiagnostic(
S, inFunctionCall, Args[format_idx],
S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(),
/*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
return;
}
// Str - The format string. NOTE: this is NOT null-terminated!
StringRef StrRef = FExpr->getString();
const char *Str = StrRef.data();
// Account for cases where the string literal is truncated in a declaration.
const ConstantArrayType *T =
S.Context.getAsConstantArrayType(FExpr->getType());
assert(T && "String literal not of constant array type!");
size_t TypeSize = T->getZExtSize();
size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
const unsigned numDataArgs = Args.size() - firstDataArg;
if (IgnoreStringsWithoutSpecifiers &&
!analyze_format_string::parseFormatStringHasFormattingSpecifiers(
Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo()))
return;
// Emit a warning if the string literal is truncated and does not contain an
// embedded null character.
if (TypeSize <= StrRef.size() && !StrRef.substr(0, TypeSize).contains('\0')) {
CheckFormatHandler::EmitFormatDiagnostic(
S, inFunctionCall, Args[format_idx],
S.PDiag(diag::warn_printf_format_string_not_null_terminated),
FExpr->getBeginLoc(),
/*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
return;
}
// CHECK: empty format string?
if (StrLen == 0 && numDataArgs > 0) {
CheckFormatHandler::EmitFormatDiagnostic(
S, inFunctionCall, Args[format_idx],
S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(),
/*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
return;
}
if (Type == Sema::FST_Printf || Type == Sema::FST_NSString ||
Type == Sema::FST_Kprintf || Type == Sema::FST_FreeBSDKPrintf ||
Type == Sema::FST_OSLog || Type == Sema::FST_OSTrace ||
Type == Sema::FST_Syslog) {
bool IsObjC = Type == Sema::FST_NSString || Type == Sema::FST_OSTrace;
if (ReferenceFormatString == nullptr) {
CheckPrintfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg,
numDataArgs, IsObjC, Str, APK, Args, format_idx,
inFunctionCall, CallType, CheckedVarArgs,
UncoveredArg);
if (!analyze_format_string::ParsePrintfString(
H, Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo(),
Type == Sema::FST_Kprintf || Type == Sema::FST_FreeBSDKPrintf))
H.DoneProcessing();
} else {
S.CheckFormatStringsCompatible(
Type, ReferenceFormatString, FExpr->getFormatString(),
inFunctionCall ? nullptr : Args[format_idx]);
}
} else if (Type == Sema::FST_Scanf) {
CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg,
numDataArgs, Str, APK, Args, format_idx, inFunctionCall,
CallType, CheckedVarArgs, UncoveredArg);
if (!analyze_format_string::ParseScanfString(
H, Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo()))
H.DoneProcessing();
} // TODO: handle other formats
}
bool Sema::CheckFormatStringsCompatible(
FormatStringType Type, const StringLiteral *AuthoritativeFormatString,
const StringLiteral *TestedFormatString, const Expr *FunctionCallArg) {
if (Type != Sema::FST_Printf && Type != Sema::FST_NSString &&
Type != Sema::FST_Kprintf && Type != Sema::FST_FreeBSDKPrintf &&
Type != Sema::FST_OSLog && Type != Sema::FST_OSTrace &&
Type != Sema::FST_Syslog)
return true;
bool IsObjC = Type == Sema::FST_NSString || Type == Sema::FST_OSTrace;
llvm::SmallVector<EquatableFormatArgument, 9> RefArgs, FmtArgs;
FormatStringLiteral RefLit = AuthoritativeFormatString;
FormatStringLiteral TestLit = TestedFormatString;
const Expr *Arg;
bool DiagAtStringLiteral;
if (FunctionCallArg) {
Arg = FunctionCallArg;
DiagAtStringLiteral = false;
} else {
Arg = TestedFormatString;
DiagAtStringLiteral = true;
}
if (DecomposePrintfHandler::GetSpecifiers(*this, &RefLit,
AuthoritativeFormatString, Type,
IsObjC, true, RefArgs) &&
DecomposePrintfHandler::GetSpecifiers(*this, &TestLit, Arg, Type, IsObjC,
DiagAtStringLiteral, FmtArgs)) {
return CompareFormatSpecifiers(*this, AuthoritativeFormatString, RefArgs,
TestedFormatString, FmtArgs, Arg,
DiagAtStringLiteral);
}
return false;
}
bool Sema::ValidateFormatString(FormatStringType Type,
const StringLiteral *Str) {
if (Type != Sema::FST_Printf && Type != Sema::FST_NSString &&
Type != Sema::FST_Kprintf && Type != Sema::FST_FreeBSDKPrintf &&
Type != Sema::FST_OSLog && Type != Sema::FST_OSTrace &&
Type != Sema::FST_Syslog)
return true;
FormatStringLiteral RefLit = Str;
llvm::SmallVector<EquatableFormatArgument, 9> Args;
bool IsObjC = Type == Sema::FST_NSString || Type == Sema::FST_OSTrace;
if (!DecomposePrintfHandler::GetSpecifiers(*this, &RefLit, Str, Type, IsObjC,
true, Args))
return false;
// Group arguments by getPosition() value, and check that each member of the
// group is compatible with the first member. This verifies that when
// positional arguments are used multiple times (such as %2$i %2$d), all uses
// are mutually compatible. As an optimization, don't test the first member
// against itself.
bool HadError = false;
auto Iter = Args.begin();
auto End = Args.end();
while (Iter != End) {
const auto &FirstInGroup = *Iter;
for (++Iter;
Iter != End && Iter->getPosition() == FirstInGroup.getPosition();
++Iter) {
HadError |= !Iter->VerifyCompatible(*this, FirstInGroup, Str, true);
}
}
return !HadError;
}
bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
// Str - The format string. NOTE: this is NOT null-terminated!
StringRef StrRef = FExpr->getString();
const char *Str = StrRef.data();
// Account for cases where the string literal is truncated in a declaration.
const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
assert(T && "String literal not of constant array type!");
size_t TypeSize = T->getZExtSize();
size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
getLangOpts(),
Context.getTargetInfo());
}
//===--- CHECK: Warn on use of wrong absolute value function. -------------===//
// Returns the related absolute value function that is larger, of 0 if one
// does not exist.
static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
switch (AbsFunction) {
default:
return 0;
case Builtin::BI__builtin_abs:
return Builtin::BI__builtin_labs;
case Builtin::BI__builtin_labs:
return Builtin::BI__builtin_llabs;
case Builtin::BI__builtin_llabs:
return 0;
case Builtin::BI__builtin_fabsf:
return Builtin::BI__builtin_fabs;
case Builtin::BI__builtin_fabs:
return Builtin::BI__builtin_fabsl;
case Builtin::BI__builtin_fabsl:
return 0;
case Builtin::BI__builtin_cabsf:
return Builtin::BI__builtin_cabs;
case Builtin::BI__builtin_cabs:
return Builtin::BI__builtin_cabsl;
case Builtin::BI__builtin_cabsl:
return 0;
case Builtin::BIabs:
return Builtin::BIlabs;
case Builtin::BIlabs:
return Builtin::BIllabs;
case Builtin::BIllabs:
return 0;
case Builtin::BIfabsf:
return Builtin::BIfabs;
case Builtin::BIfabs:
return Builtin::BIfabsl;
case Builtin::BIfabsl:
return 0;
case Builtin::BIcabsf:
return Builtin::BIcabs;
case Builtin::BIcabs:
return Builtin::BIcabsl;
case Builtin::BIcabsl:
return 0;
}
}
// Returns the argument type of the absolute value function.
static QualType getAbsoluteValueArgumentType(ASTContext &Context,
unsigned AbsType) {
if (AbsType == 0)
return QualType();
ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
if (Error != ASTContext::GE_None)
return QualType();
const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
if (!FT)
return QualType();
if (FT->getNumParams() != 1)
return QualType();
return FT->getParamType(0);
}
// Returns the best absolute value function, or zero, based on type and
// current absolute value function.
static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
unsigned AbsFunctionKind) {
unsigned BestKind = 0;
uint64_t ArgSize = Context.getTypeSize(ArgType);
for (unsigned Kind = AbsFunctionKind; Kind != 0;
Kind = getLargerAbsoluteValueFunction(Kind)) {
QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
if (Context.getTypeSize(ParamType) >= ArgSize) {
if (BestKind == 0)
BestKind = Kind;
else if (Context.hasSameType(ParamType, ArgType)) {
BestKind = Kind;
break;
}
}
}
return BestKind;
}
enum AbsoluteValueKind {
AVK_Integer,
AVK_Floating,
AVK_Complex
};
static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
if (T->isIntegralOrEnumerationType())
return AVK_Integer;
if (T->isRealFloatingType())
return AVK_Floating;
if (T->isAnyComplexType())
return AVK_Complex;
llvm_unreachable("Type not integer, floating, or complex");
}
// Changes the absolute value function to a different type. Preserves whether
// the function is a builtin.
static unsigned changeAbsFunction(unsigned AbsKind,
AbsoluteValueKind ValueKind) {
switch (ValueKind) {
case AVK_Integer:
switch (AbsKind) {
default:
return 0;
case Builtin::BI__builtin_fabsf:
case Builtin::BI__builtin_fabs:
case Builtin::BI__builtin_fabsl:
case Builtin::BI__builtin_cabsf:
case Builtin::BI__builtin_cabs:
case Builtin::BI__builtin_cabsl:
return Builtin::BI__builtin_abs;
case Builtin::BIfabsf:
case Builtin::BIfabs:
case Builtin::BIfabsl:
case Builtin::BIcabsf:
case Builtin::BIcabs:
case Builtin::BIcabsl:
return Builtin::BIabs;
}
case AVK_Floating:
switch (AbsKind) {
default:
return 0;
case Builtin::BI__builtin_abs:
case Builtin::BI__builtin_labs:
case Builtin::BI__builtin_llabs:
case Builtin::BI__builtin_cabsf:
case Builtin::BI__builtin_cabs:
case Builtin::BI__builtin_cabsl:
return Builtin::BI__builtin_fabsf;
case Builtin::BIabs:
case Builtin::BIlabs:
case Builtin::BIllabs:
case Builtin::BIcabsf:
case Builtin::BIcabs:
case Builtin::BIcabsl:
return Builtin::BIfabsf;
}
case AVK_Complex:
switch (AbsKind) {
default:
return 0;
case Builtin::BI__builtin_abs:
case Builtin::BI__builtin_labs:
case Builtin::BI__builtin_llabs:
case Builtin::BI__builtin_fabsf:
case Builtin::BI__builtin_fabs:
case Builtin::BI__builtin_fabsl:
return Builtin::BI__builtin_cabsf;
case Builtin::BIabs:
case Builtin::BIlabs:
case Builtin::BIllabs:
case Builtin::BIfabsf:
case Builtin::BIfabs:
case Builtin::BIfabsl:
return Builtin::BIcabsf;
}
}
llvm_unreachable("Unable to convert function");
}
static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
const IdentifierInfo *FnInfo = FDecl->getIdentifier();
if (!FnInfo)
return 0;
switch (FDecl->getBuiltinID()) {
default:
return 0;
case Builtin::BI__builtin_abs:
case Builtin::BI__builtin_fabs:
case Builtin::BI__builtin_fabsf:
case Builtin::BI__builtin_fabsl:
case Builtin::BI__builtin_labs:
case Builtin::BI__builtin_llabs:
case Builtin::BI__builtin_cabs:
case Builtin::BI__builtin_cabsf:
case Builtin::BI__builtin_cabsl:
case Builtin::BIabs:
case Builtin::BIlabs:
case Builtin::BIllabs:
case Builtin::BIfabs:
case Builtin::BIfabsf:
case Builtin::BIfabsl:
case Builtin::BIcabs:
case Builtin::BIcabsf:
case Builtin::BIcabsl:
return FDecl->getBuiltinID();
}
llvm_unreachable("Unknown Builtin type");
}
// If the replacement is valid, emit a note with replacement function.
// Additionally, suggest including the proper header if not already included.
static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
unsigned AbsKind, QualType ArgType) {
bool EmitHeaderHint = true;
const char *HeaderName = nullptr;
std::string FunctionName;
if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
FunctionName = "std::abs";
if (ArgType->isIntegralOrEnumerationType()) {
HeaderName = "cstdlib";
} else if (ArgType->isRealFloatingType()) {
HeaderName = "cmath";
} else {
llvm_unreachable("Invalid Type");
}
// Lookup all std::abs
if (NamespaceDecl *Std = S.getStdNamespace()) {
LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
R.suppressDiagnostics();
S.LookupQualifiedName(R, Std);
for (const auto *I : R) {
const FunctionDecl *FDecl = nullptr;
if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
} else {
FDecl = dyn_cast<FunctionDecl>(I);
}
if (!FDecl)
continue;
// Found std::abs(), check that they are the right ones.
if (FDecl->getNumParams() != 1)
continue;
// Check that the parameter type can handle the argument.
QualType ParamType = FDecl->getParamDecl(0)->getType();
if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
S.Context.getTypeSize(ArgType) <=
S.Context.getTypeSize(ParamType)) {
// Found a function, don't need the header hint.
EmitHeaderHint = false;
break;
}
}
}
} else {
FunctionName = S.Context.BuiltinInfo.getName(AbsKind);
HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
if (HeaderName) {
DeclarationName DN(&S.Context.Idents.get(FunctionName));
LookupResult R(S, DN, Loc, Sema::LookupAnyName);
R.suppressDiagnostics();
S.LookupName(R, S.getCurScope());
if (R.isSingleResult()) {
FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
if (FD && FD->getBuiltinID() == AbsKind) {
EmitHeaderHint = false;
} else {
return;
}
} else if (!R.empty()) {
return;
}
}
}
S.Diag(Loc, diag::note_replace_abs_function)
<< FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
if (!HeaderName)
return;
if (!EmitHeaderHint)
return;
S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
<< FunctionName;
}
template <std::size_t StrLen>
static bool IsStdFunction(const FunctionDecl *FDecl,
const char (&Str)[StrLen]) {
if (!FDecl)
return false;
if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str))
return false;
if (!FDecl->isInStdNamespace())
return false;
return true;
}
enum class MathCheck { NaN, Inf };
static bool IsInfOrNanFunction(StringRef calleeName, MathCheck Check) {
auto MatchesAny = [&](std::initializer_list<llvm::StringRef> names) {
return std::any_of(names.begin(), names.end(), [&](llvm::StringRef name) {
return calleeName == name;
});
};
switch (Check) {
case MathCheck::NaN:
return MatchesAny({"__builtin_nan", "__builtin_nanf", "__builtin_nanl",
"__builtin_nanf16", "__builtin_nanf128"});
case MathCheck::Inf:
return MatchesAny({"__builtin_inf", "__builtin_inff", "__builtin_infl",
"__builtin_inff16", "__builtin_inff128"});
}
llvm_unreachable("unknown MathCheck");
}
static bool IsInfinityFunction(const FunctionDecl *FDecl) {
if (FDecl->getName() != "infinity")
return false;
if (const CXXMethodDecl *MDecl = dyn_cast<CXXMethodDecl>(FDecl)) {
const CXXRecordDecl *RDecl = MDecl->getParent();
if (RDecl->getName() != "numeric_limits")
return false;
if (const NamespaceDecl *NSDecl =
dyn_cast<NamespaceDecl>(RDecl->getDeclContext()))
return NSDecl->isStdNamespace();
}
return false;
}
void Sema::CheckInfNaNFunction(const CallExpr *Call,
const FunctionDecl *FDecl) {
if (!FDecl->getIdentifier())
return;
FPOptions FPO = Call->getFPFeaturesInEffect(getLangOpts());
if (FPO.getNoHonorNaNs() &&
(IsStdFunction(FDecl, "isnan") || IsStdFunction(FDecl, "isunordered") ||
IsInfOrNanFunction(FDecl->getName(), MathCheck::NaN))) {
Diag(Call->getBeginLoc(), diag::warn_fp_nan_inf_when_disabled)
<< 1 << 0 << Call->getSourceRange();
return;
}
if (FPO.getNoHonorInfs() &&
(IsStdFunction(FDecl, "isinf") || IsStdFunction(FDecl, "isfinite") ||
IsInfinityFunction(FDecl) ||
IsInfOrNanFunction(FDecl->getName(), MathCheck::Inf))) {
Diag(Call->getBeginLoc(), diag::warn_fp_nan_inf_when_disabled)
<< 0 << 0 << Call->getSourceRange();
}
}
void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
const FunctionDecl *FDecl) {
if (Call->getNumArgs() != 1)
return;
unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
bool IsStdAbs = IsStdFunction(FDecl, "abs");
if (AbsKind == 0 && !IsStdAbs)
return;
QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
QualType ParamType = Call->getArg(0)->getType();
// Unsigned types cannot be negative. Suggest removing the absolute value
// function call.
if (ArgType->isUnsignedIntegerType()) {
std::string FunctionName =
IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind);
Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
Diag(Call->getExprLoc(), diag::note_remove_abs)
<< FunctionName
<< FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
return;
}
// Taking the absolute value of a pointer is very suspicious, they probably
// wanted to index into an array, dereference a pointer, call a function, etc.
if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) {
unsigned DiagType = 0;
if (ArgType->isFunctionType())
DiagType = 1;
else if (ArgType->isArrayType())
DiagType = 2;
Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType;
return;
}
// std::abs has overloads which prevent most of the absolute value problems
// from occurring.
if (IsStdAbs)
return;
AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
// The argument and parameter are the same kind. Check if they are the right
// size.
if (ArgValueKind == ParamValueKind) {
if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
return;
unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
Diag(Call->getExprLoc(), diag::warn_abs_too_small)
<< FDecl << ArgType << ParamType;
if (NewAbsKind == 0)
return;
emitReplacement(*this, Call->getExprLoc(),
Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
return;
}
// ArgValueKind != ParamValueKind
// The wrong type of absolute value function was used. Attempt to find the
// proper one.
unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
if (NewAbsKind == 0)
return;
Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
<< FDecl << ParamValueKind << ArgValueKind;
emitReplacement(*this, Call->getExprLoc(),
Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
}
//===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===//
void Sema::CheckMaxUnsignedZero(const CallExpr *Call,
const FunctionDecl *FDecl) {
if (!Call || !FDecl) return;
// Ignore template specializations and macros.
if (inTemplateInstantiation()) return;
if (Call->getExprLoc().isMacroID()) return;
// Only care about the one template argument, two function parameter std::max
if (Call->getNumArgs() != 2) return;
if (!IsStdFunction(FDecl, "max")) return;
const auto * ArgList = FDecl->getTemplateSpecializationArgs();
if (!ArgList) return;
if (ArgList->size() != 1) return;
// Check that template type argument is unsigned integer.
const auto& TA = ArgList->get(0);
if (TA.getKind() != TemplateArgument::Type) return;
QualType ArgType = TA.getAsType();
if (!ArgType->isUnsignedIntegerType()) return;
// See if either argument is a literal zero.
auto IsLiteralZeroArg = [](const Expr* E) -> bool {
const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E);
if (!MTE) return false;
const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr());
if (!Num) return false;
if (Num->getValue() != 0) return false;
return true;
};
const Expr *FirstArg = Call->getArg(0);
const Expr *SecondArg = Call->getArg(1);
const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg);
const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg);
// Only warn when exactly one argument is zero.
if (IsFirstArgZero == IsSecondArgZero) return;
SourceRange FirstRange = FirstArg->getSourceRange();
SourceRange SecondRange = SecondArg->getSourceRange();
SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange;
Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero)
<< IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange;
// Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)".
SourceRange RemovalRange;
if (IsFirstArgZero) {
RemovalRange = SourceRange(FirstRange.getBegin(),
SecondRange.getBegin().getLocWithOffset(-1));
} else {
RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()),
SecondRange.getEnd());
}
Diag(Call->getExprLoc(), diag::note_remove_max_call)
<< FixItHint::CreateRemoval(Call->getCallee()->getSourceRange())
<< FixItHint::CreateRemoval(RemovalRange);
}
//===--- CHECK: Standard memory functions ---------------------------------===//
/// Takes the expression passed to the size_t parameter of functions
/// such as memcmp, strncat, etc and warns if it's a comparison.
///
/// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
IdentifierInfo *FnName,
SourceLocation FnLoc,
SourceLocation RParenLoc) {
const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
if (!Size)
return false;
// if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||:
if (!Size->isComparisonOp() && !Size->isLogicalOp())
return false;
SourceRange SizeRange = Size->getSourceRange();
S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
<< SizeRange << FnName;
S.Diag(FnLoc, diag::note_memsize_comparison_paren)
<< FnName
<< FixItHint::CreateInsertion(
S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")")
<< FixItHint::CreateRemoval(RParenLoc);
S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
<< FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
<< FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
")");
return true;
}
/// Determine whether the given type is or contains a dynamic class type
/// (e.g., whether it has a vtable).
static const CXXRecordDecl *getContainedDynamicClass(QualType T,
bool &IsContained) {
// Look through array types while ignoring qualifiers.
const Type *Ty = T->getBaseElementTypeUnsafe();
IsContained = false;
const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
RD = RD ? RD->getDefinition() : nullptr;
if (!RD || RD->isInvalidDecl())
return nullptr;
if (RD->isDynamicClass())
return RD;
// Check all the fields. If any bases were dynamic, the class is dynamic.
// It's impossible for a class to transitively contain itself by value, so
// infinite recursion is impossible.
for (auto *FD : RD->fields()) {
bool SubContained;
if (const CXXRecordDecl *ContainedRD =
getContainedDynamicClass(FD->getType(), SubContained)) {
IsContained = true;
return ContainedRD;
}
}
return nullptr;
}
static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) {
if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E))
if (Unary->getKind() == UETT_SizeOf)
return Unary;
return nullptr;
}
/// If E is a sizeof expression, returns its argument expression,
/// otherwise returns NULL.
static const Expr *getSizeOfExprArg(const Expr *E) {
if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
if (!SizeOf->isArgumentType())
return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
return nullptr;
}
/// If E is a sizeof expression, returns its argument type.
static QualType getSizeOfArgType(const Expr *E) {
if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
return SizeOf->getTypeOfArgument();
return QualType();
}
namespace {
struct SearchNonTrivialToInitializeField
: DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> {
using Super =
DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>;
SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {}
void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT,
SourceLocation SL) {
if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
asDerived().visitArray(PDIK, AT, SL);
return;
}
Super::visitWithKind(PDIK, FT, SL);
}
void visitARCStrong(QualType FT, SourceLocation SL) {
S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
}
void visitARCWeak(QualType FT, SourceLocation SL) {
S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
}
void visitStruct(QualType FT, SourceLocation SL) {
for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
visit(FD->getType(), FD->getLocation());
}
void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK,
const ArrayType *AT, SourceLocation SL) {
visit(getContext().getBaseElementType(AT), SL);
}
void visitTrivial(QualType FT, SourceLocation SL) {}
static void diag(QualType RT, const Expr *E, Sema &S) {
SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation());
}
ASTContext &getContext() { return S.getASTContext(); }
const Expr *E;
Sema &S;
};
struct SearchNonTrivialToCopyField
: CopiedTypeVisitor<SearchNonTrivialToCopyField, false> {
using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>;
SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {}
void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT,
SourceLocation SL) {
if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
asDerived().visitArray(PCK, AT, SL);
return;
}
Super::visitWithKind(PCK, FT, SL);
}
void visitARCStrong(QualType FT, SourceLocation SL) {
S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
}
void visitARCWeak(QualType FT, SourceLocation SL) {
S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
}
void visitStruct(QualType FT, SourceLocation SL) {
for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
visit(FD->getType(), FD->getLocation());
}
void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT,
SourceLocation SL) {
visit(getContext().getBaseElementType(AT), SL);
}
void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT,
SourceLocation SL) {}
void visitTrivial(QualType FT, SourceLocation SL) {}
void visitVolatileTrivial(QualType FT, SourceLocation SL) {}
static void diag(QualType RT, const Expr *E, Sema &S) {
SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation());
}
ASTContext &getContext() { return S.getASTContext(); }
const Expr *E;
Sema &S;
};
}
/// Detect if \c SizeofExpr is likely to calculate the sizeof an object.
static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) {
SizeofExpr = SizeofExpr->IgnoreParenImpCasts();
if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) {
if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add)
return false;
return doesExprLikelyComputeSize(BO->getLHS()) ||
doesExprLikelyComputeSize(BO->getRHS());
}
return getAsSizeOfExpr(SizeofExpr) != nullptr;
}
/// Check if the ArgLoc originated from a macro passed to the call at CallLoc.
///
/// \code
/// #define MACRO 0
/// foo(MACRO);
/// foo(0);
/// \endcode
///
/// This should return true for the first call to foo, but not for the second
/// (regardless of whether foo is a macro or function).
static bool isArgumentExpandedFromMacro(SourceManager &SM,
SourceLocation CallLoc,
SourceLocation ArgLoc) {
if (!CallLoc.isMacroID())
return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc);
return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) !=
SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc));
}
/// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the
/// last two arguments transposed.
static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) {
if (BId != Builtin::BImemset && BId != Builtin::BIbzero)
return;
const Expr *SizeArg =
Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts();
auto isLiteralZero = [](const Expr *E) {
return (isa<IntegerLiteral>(E) &&
cast<IntegerLiteral>(E)->getValue() == 0) ||
(isa<CharacterLiteral>(E) &&
cast<CharacterLiteral>(E)->getValue() == 0);
};
// If we're memsetting or bzeroing 0 bytes, then this is likely an error.
SourceLocation CallLoc = Call->getRParenLoc();
SourceManager &SM = S.getSourceManager();
if (isLiteralZero(SizeArg) &&
!isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) {
SourceLocation DiagLoc = SizeArg->getExprLoc();
// Some platforms #define bzero to __builtin_memset. See if this is the
// case, and if so, emit a better diagnostic.
if (BId == Builtin::BIbzero ||
(CallLoc.isMacroID() && Lexer::getImmediateMacroName(
CallLoc, SM, S.getLangOpts()) == "bzero")) {
S.Diag(DiagLoc, diag::warn_suspicious_bzero_size);
S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence);
} else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) {
S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0;
S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0;
}
return;
}
// If the second argument to a memset is a sizeof expression and the third
// isn't, this is also likely an error. This should catch
// 'memset(buf, sizeof(buf), 0xff)'.
if (BId == Builtin::BImemset &&
doesExprLikelyComputeSize(Call->getArg(1)) &&
!doesExprLikelyComputeSize(Call->getArg(2))) {
SourceLocation DiagLoc = Call->getArg(1)->getExprLoc();
S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1;
S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1;
return;
}
}
void Sema::CheckMemaccessArguments(const CallExpr *Call,
unsigned BId,
IdentifierInfo *FnName) {
assert(BId != 0);
// It is possible to have a non-standard definition of memset. Validate
// we have enough arguments, and if not, abort further checking.
unsigned ExpectedNumArgs =
(BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3);
if (Call->getNumArgs() < ExpectedNumArgs)
return;
unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero ||
BId == Builtin::BIstrndup ? 1 : 2);
unsigned LenArg =
(BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2);
const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
Call->getBeginLoc(), Call->getRParenLoc()))
return;
// Catch cases like 'memset(buf, sizeof(buf), 0)'.
CheckMemaccessSize(*this, BId, Call);
// We have special checking when the length is a sizeof expression.
QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
llvm::FoldingSetNodeID SizeOfArgID;
// Although widely used, 'bzero' is not a standard function. Be more strict
// with the argument types before allowing diagnostics and only allow the
// form bzero(ptr, sizeof(...)).
QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType();
if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>())
return;
for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
QualType DestTy = Dest->getType();
QualType PointeeTy;
if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
PointeeTy = DestPtrTy->getPointeeType();
// Never warn about void type pointers. This can be used to suppress
// false positives.
if (PointeeTy->isVoidType())
continue;
// Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
// actually comparing the expressions for equality. Because computing the
// expression IDs can be expensive, we only do this if the diagnostic is
// enabled.
if (SizeOfArg &&
!Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
SizeOfArg->getExprLoc())) {
// We only compute IDs for expressions if the warning is enabled, and
// cache the sizeof arg's ID.
if (SizeOfArgID == llvm::FoldingSetNodeID())
SizeOfArg->Profile(SizeOfArgID, Context, true);
llvm::FoldingSetNodeID DestID;
Dest->Profile(DestID, Context, true);
if (DestID == SizeOfArgID) {
// TODO: For strncpy() and friends, this could suggest sizeof(dst)
// over sizeof(src) as well.
unsigned ActionIdx = 0; // Default is to suggest dereferencing.
StringRef ReadableName = FnName->getName();
if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
if (UnaryOp->getOpcode() == UO_AddrOf)
ActionIdx = 1; // If its an address-of operator, just remove it.
if (!PointeeTy->isIncompleteType() &&
(Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
ActionIdx = 2; // If the pointee's size is sizeof(char),
// suggest an explicit length.
// If the function is defined as a builtin macro, do not show macro
// expansion.
SourceLocation SL = SizeOfArg->getExprLoc();
SourceRange DSR = Dest->getSourceRange();
SourceRange SSR = SizeOfArg->getSourceRange();
SourceManager &SM = getSourceManager();
if (SM.isMacroArgExpansion(SL)) {
ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
SL = SM.getSpellingLoc(SL);
DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
SM.getSpellingLoc(DSR.getEnd()));
SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
SM.getSpellingLoc(SSR.getEnd()));
}
DiagRuntimeBehavior(SL, SizeOfArg,
PDiag(diag::warn_sizeof_pointer_expr_memaccess)
<< ReadableName
<< PointeeTy
<< DestTy
<< DSR
<< SSR);
DiagRuntimeBehavior(SL, SizeOfArg,
PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
<< ActionIdx
<< SSR);
break;
}
}
// Also check for cases where the sizeof argument is the exact same
// type as the memory argument, and where it points to a user-defined
// record type.
if (SizeOfArgTy != QualType()) {
if (PointeeTy->isRecordType() &&
Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
PDiag(diag::warn_sizeof_pointer_type_memaccess)
<< FnName << SizeOfArgTy << ArgIdx
<< PointeeTy << Dest->getSourceRange()
<< LenExpr->getSourceRange());
break;
}
}
} else if (DestTy->isArrayType()) {
PointeeTy = DestTy;
}
if (PointeeTy == QualType())
continue;
// Always complain about dynamic classes.
bool IsContained;
if (const CXXRecordDecl *ContainedRD =
getContainedDynamicClass(PointeeTy, IsContained)) {
unsigned OperationType = 0;
const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp;
// "overwritten" if we're warning about the destination for any call
// but memcmp; otherwise a verb appropriate to the call.
if (ArgIdx != 0 || IsCmp) {
if (BId == Builtin::BImemcpy)
OperationType = 1;
else if(BId == Builtin::BImemmove)
OperationType = 2;
else if (IsCmp)
OperationType = 3;
}
DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
PDiag(diag::warn_dyn_class_memaccess)
<< (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName
<< IsContained << ContainedRD << OperationType
<< Call->getCallee()->getSourceRange());
} else if (PointeeTy.hasNonTrivialObjCLifetime() &&
BId != Builtin::BImemset)
DiagRuntimeBehavior(
Dest->getExprLoc(), Dest,
PDiag(diag::warn_arc_object_memaccess)
<< ArgIdx << FnName << PointeeTy
<< Call->getCallee()->getSourceRange());
else if (const auto *RT = PointeeTy->getAs<RecordType>()) {
// FIXME: Do not consider incomplete types even though they may be
// completed later. GCC does not diagnose such code, but we may want to
// consider diagnosing it in the future, perhaps under a different, but
// related, diagnostic group.
bool MayBeTriviallyCopyableCXXRecord =
RT->isIncompleteType() ||
RT->desugar().isTriviallyCopyableType(Context);
if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) &&
RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) {
DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
PDiag(diag::warn_cstruct_memaccess)
<< ArgIdx << FnName << PointeeTy << 0);
SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this);
} else if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) &&
!MayBeTriviallyCopyableCXXRecord && ArgIdx == 0) {
// FIXME: Limiting this warning to dest argument until we decide
// whether it's valid for source argument too.
DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
PDiag(diag::warn_cxxstruct_memaccess)
<< FnName << PointeeTy);
} else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) &&
RT->getDecl()->isNonTrivialToPrimitiveCopy()) {
DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
PDiag(diag::warn_cstruct_memaccess)
<< ArgIdx << FnName << PointeeTy << 1);
SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this);
} else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) &&
!MayBeTriviallyCopyableCXXRecord && ArgIdx == 0) {
// FIXME: Limiting this warning to dest argument until we decide
// whether it's valid for source argument too.
DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
PDiag(diag::warn_cxxstruct_memaccess)
<< FnName << PointeeTy);
} else {
continue;
}
} else
continue;
DiagRuntimeBehavior(
Dest->getExprLoc(), Dest,
PDiag(diag::note_bad_memaccess_silence)
<< FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
break;
}
}
// A little helper routine: ignore addition and subtraction of integer literals.
// This intentionally does not ignore all integer constant expressions because
// we don't want to remove sizeof().
static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
Ex = Ex->IgnoreParenCasts();
while (true) {
const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
if (!BO || !BO->isAdditiveOp())
break;
const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
if (isa<IntegerLiteral>(RHS))
Ex = LHS;
else if (isa<IntegerLiteral>(LHS))
Ex = RHS;
else
break;
}
return Ex;
}
static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
ASTContext &Context) {
// Only handle constant-sized or VLAs, but not flexible members.
if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
// Only issue the FIXIT for arrays of size > 1.
if (CAT->getZExtSize() <= 1)
return false;
} else if (!Ty->isVariableArrayType()) {
return false;
}
return true;
}
void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
IdentifierInfo *FnName) {
// Don't crash if the user has the wrong number of arguments
unsigned NumArgs = Call->getNumArgs();
if ((NumArgs != 3) && (NumArgs != 4))
return;
const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
const Expr *CompareWithSrc = nullptr;
if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
Call->getBeginLoc(), Call->getRParenLoc()))
return;
// Look for 'strlcpy(dst, x, sizeof(x))'
if (const Expr *Ex = getSizeOfExprArg(SizeArg))
CompareWithSrc = Ex;
else {
// Look for 'strlcpy(dst, x, strlen(x))'
if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
SizeCall->getNumArgs() == 1)
CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
}
}
if (!CompareWithSrc)
return;
// Determine if the argument to sizeof/strlen is equal to the source
// argument. In principle there's all kinds of things you could do
// here, for instance creating an == expression and evaluating it with
// EvaluateAsBooleanCondition, but this uses a more direct technique:
const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
if (!SrcArgDRE)
return;
const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
if (!CompareWithSrcDRE ||
SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
return;
const Expr *OriginalSizeArg = Call->getArg(2);
Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size)
<< OriginalSizeArg->getSourceRange() << FnName;
// Output a FIXIT hint if the destination is an array (rather than a
// pointer to an array). This could be enhanced to handle some
// pointers if we know the actual size, like if DstArg is 'array+2'
// we could say 'sizeof(array)-2'.
const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
return;
SmallString<128> sizeString;
llvm::raw_svector_ostream OS(sizeString);
OS << "sizeof(";
DstArg->printPretty(OS, nullptr, getPrintingPolicy());
OS << ")";
Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size)
<< FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
OS.str());
}
/// Check if two expressions refer to the same declaration.
static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
return D1->getDecl() == D2->getDecl();
return false;
}
static const Expr *getStrlenExprArg(const Expr *E) {
if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
const FunctionDecl *FD = CE->getDirectCallee();
if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
return nullptr;
return CE->getArg(0)->IgnoreParenCasts();
}
return nullptr;
}
void Sema::CheckStrncatArguments(const CallExpr *CE,
IdentifierInfo *FnName) {
// Don't crash if the user has the wrong number of arguments.
if (CE->getNumArgs() < 3)
return;
const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(),
CE->getRParenLoc()))
return;
// Identify common expressions, which are wrongly used as the size argument
// to strncat and may lead to buffer overflows.
unsigned PatternType = 0;
if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
// - sizeof(dst)
if (referToTheSameDecl(SizeOfArg, DstArg))
PatternType = 1;
// - sizeof(src)
else if (referToTheSameDecl(SizeOfArg, SrcArg))
PatternType = 2;
} else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
if (BE->getOpcode() == BO_Sub) {
const Expr *L = BE->getLHS()->IgnoreParenCasts();
const Expr *R = BE->getRHS()->IgnoreParenCasts();
// - sizeof(dst) - strlen(dst)
if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
referToTheSameDecl(DstArg, getStrlenExprArg(R)))
PatternType = 1;
// - sizeof(src) - (anything)
else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
PatternType = 2;
}
}
if (PatternType == 0)
return;
// Generate the diagnostic.
SourceLocation SL = LenArg->getBeginLoc();
SourceRange SR = LenArg->getSourceRange();
SourceManager &SM = getSourceManager();
// If the function is defined as a builtin macro, do not show macro expansion.
if (SM.isMacroArgExpansion(SL)) {
SL = SM.getSpellingLoc(SL);
SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
SM.getSpellingLoc(SR.getEnd()));
}
// Check if the destination is an array (rather than a pointer to an array).
QualType DstTy = DstArg->getType();
bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
Context);
if (!isKnownSizeArray) {
if (PatternType == 1)
Diag(SL, diag::warn_strncat_wrong_size) << SR;
else
Diag(SL, diag::warn_strncat_src_size) << SR;
return;
}
if (PatternType == 1)
Diag(SL, diag::warn_strncat_large_size) << SR;
else
Diag(SL, diag::warn_strncat_src_size) << SR;
SmallString<128> sizeString;
llvm::raw_svector_ostream OS(sizeString);
OS << "sizeof(";
DstArg->printPretty(OS, nullptr, getPrintingPolicy());
OS << ") - ";
OS << "strlen(";
DstArg->printPretty(OS, nullptr, getPrintingPolicy());
OS << ") - 1";
Diag(SL, diag::note_strncat_wrong_size)
<< FixItHint::CreateReplacement(SR, OS.str());
}
namespace {
void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName,
const UnaryOperator *UnaryExpr, const Decl *D) {
if (isa<FieldDecl, FunctionDecl, VarDecl>(D)) {
S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object)
<< CalleeName << 0 /*object: */ << cast<NamedDecl>(D);
return;
}
}
void CheckFreeArgumentsAddressof(Sema &S, const std::string &CalleeName,
const UnaryOperator *UnaryExpr) {
if (const auto *Lvalue = dyn_cast<DeclRefExpr>(UnaryExpr->getSubExpr())) {
const Decl *D = Lvalue->getDecl();
if (isa<DeclaratorDecl>(D))
if (!dyn_cast<DeclaratorDecl>(D)->getType()->isReferenceType())
return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, D);
}
if (const auto *Lvalue = dyn_cast<MemberExpr>(UnaryExpr->getSubExpr()))
return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr,
Lvalue->getMemberDecl());
}
void CheckFreeArgumentsPlus(Sema &S, const std::string &CalleeName,
const UnaryOperator *UnaryExpr) {
const auto *Lambda = dyn_cast<LambdaExpr>(
UnaryExpr->getSubExpr()->IgnoreImplicitAsWritten()->IgnoreParens());
if (!Lambda)
return;
S.Diag(Lambda->getBeginLoc(), diag::warn_free_nonheap_object)
<< CalleeName << 2 /*object: lambda expression*/;
}
void CheckFreeArgumentsStackArray(Sema &S, const std::string &CalleeName,
const DeclRefExpr *Lvalue) {
const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl());
if (Var == nullptr)
return;
S.Diag(Lvalue->getBeginLoc(), diag::warn_free_nonheap_object)
<< CalleeName << 0 /*object: */ << Var;
}
void CheckFreeArgumentsCast(Sema &S, const std::string &CalleeName,
const CastExpr *Cast) {
SmallString<128> SizeString;
llvm::raw_svector_ostream OS(SizeString);
clang::CastKind Kind = Cast->getCastKind();
if (Kind == clang::CK_BitCast &&
!Cast->getSubExpr()->getType()->isFunctionPointerType())
return;
if (Kind == clang::CK_IntegralToPointer &&
!isa<IntegerLiteral>(
Cast->getSubExpr()->IgnoreParenImpCasts()->IgnoreParens()))
return;
switch (Cast->getCastKind()) {
case clang::CK_BitCast:
case clang::CK_IntegralToPointer:
case clang::CK_FunctionToPointerDecay:
OS << '\'';
Cast->printPretty(OS, nullptr, S.getPrintingPolicy());
OS << '\'';
break;
default:
return;
}
S.Diag(Cast->getBeginLoc(), diag::warn_free_nonheap_object)
<< CalleeName << 0 /*object: */ << OS.str();
}
} // namespace
void Sema::CheckFreeArguments(const CallExpr *E) {
const std::string CalleeName =
cast<FunctionDecl>(E->getCalleeDecl())->getQualifiedNameAsString();
{ // Prefer something that doesn't involve a cast to make things simpler.
const Expr *Arg = E->getArg(0)->IgnoreParenCasts();
if (const auto *UnaryExpr = dyn_cast<UnaryOperator>(Arg))
switch (UnaryExpr->getOpcode()) {
case UnaryOperator::Opcode::UO_AddrOf:
return CheckFreeArgumentsAddressof(*this, CalleeName, UnaryExpr);
case UnaryOperator::Opcode::UO_Plus:
return CheckFreeArgumentsPlus(*this, CalleeName, UnaryExpr);
default:
break;
}
if (const auto *Lvalue = dyn_cast<DeclRefExpr>(Arg))
if (Lvalue->getType()->isArrayType())
return CheckFreeArgumentsStackArray(*this, CalleeName, Lvalue);
if (const auto *Label = dyn_cast<AddrLabelExpr>(Arg)) {
Diag(Label->getBeginLoc(), diag::warn_free_nonheap_object)
<< CalleeName << 0 /*object: */ << Label->getLabel()->getIdentifier();
return;
}
if (isa<BlockExpr>(Arg)) {
Diag(Arg->getBeginLoc(), diag::warn_free_nonheap_object)
<< CalleeName << 1 /*object: block*/;
return;
}
}
// Maybe the cast was important, check after the other cases.
if (const auto *Cast = dyn_cast<CastExpr>(E->getArg(0)))
return CheckFreeArgumentsCast(*this, CalleeName, Cast);
}
void
Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
SourceLocation ReturnLoc,
bool isObjCMethod,
const AttrVec *Attrs,
const FunctionDecl *FD) {
// Check if the return value is null but should not be.
if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) ||
(!isObjCMethod && isNonNullType(lhsType))) &&
CheckNonNullExpr(*this, RetValExp))
Diag(ReturnLoc, diag::warn_null_ret)
<< (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
// C++11 [basic.stc.dynamic.allocation]p4:
// If an allocation function declared with a non-throwing
// exception-specification fails to allocate storage, it shall return
// a null pointer. Any other allocation function that fails to allocate
// storage shall indicate failure only by throwing an exception [...]
if (FD) {
OverloadedOperatorKind Op = FD->getOverloadedOperator();
if (Op == OO_New || Op == OO_Array_New) {
const FunctionProtoType *Proto
= FD->getType()->castAs<FunctionProtoType>();
if (!Proto->isNothrow(/*ResultIfDependent*/true) &&
CheckNonNullExpr(*this, RetValExp))
Diag(ReturnLoc, diag::warn_operator_new_returns_null)
<< FD << getLangOpts().CPlusPlus11;
}
}
if (RetValExp && RetValExp->getType()->isWebAssemblyTableType()) {
Diag(ReturnLoc, diag::err_wasm_table_art) << 1;
}
// PPC MMA non-pointer types are not allowed as return type. Checking the type
// here prevent the user from using a PPC MMA type as trailing return type.
if (Context.getTargetInfo().getTriple().isPPC64())
PPC().CheckPPCMMAType(RetValExp->getType(), ReturnLoc);
}
void Sema::CheckFloatComparison(SourceLocation Loc, Expr *LHS, Expr *RHS,
BinaryOperatorKind Opcode) {
if (!BinaryOperator::isEqualityOp(Opcode))
return;
// Match and capture subexpressions such as "(float) X == 0.1".
FloatingLiteral *FPLiteral;
CastExpr *FPCast;
auto getCastAndLiteral = [&FPLiteral, &FPCast](Expr *L, Expr *R) {
FPLiteral = dyn_cast<FloatingLiteral>(L->IgnoreParens());
FPCast = dyn_cast<CastExpr>(R->IgnoreParens());
return FPLiteral && FPCast;
};
if (getCastAndLiteral(LHS, RHS) || getCastAndLiteral(RHS, LHS)) {
auto *SourceTy = FPCast->getSubExpr()->getType()->getAs<BuiltinType>();
auto *TargetTy = FPLiteral->getType()->getAs<BuiltinType>();
if (SourceTy && TargetTy && SourceTy->isFloatingPoint() &&
TargetTy->isFloatingPoint()) {
bool Lossy;
llvm::APFloat TargetC = FPLiteral->getValue();
TargetC.convert(Context.getFloatTypeSemantics(QualType(SourceTy, 0)),
llvm::APFloat::rmNearestTiesToEven, &Lossy);
if (Lossy) {
// If the literal cannot be represented in the source type, then a
// check for == is always false and check for != is always true.
Diag(Loc, diag::warn_float_compare_literal)
<< (Opcode == BO_EQ) << QualType(SourceTy, 0)
<< LHS->getSourceRange() << RHS->getSourceRange();
return;
}
}
}
// Match a more general floating-point equality comparison (-Wfloat-equal).
Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
// Special case: check for x == x (which is OK).
// Do not emit warnings for such cases.
if (auto *DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
if (auto *DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
if (DRL->getDecl() == DRR->getDecl())
return;
// Special case: check for comparisons against literals that can be exactly
// represented by APFloat. In such cases, do not emit a warning. This
// is a heuristic: often comparison against such literals are used to
// detect if a value in a variable has not changed. This clearly can
// lead to false negatives.
if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
if (FLL->isExact())
return;
} else
if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
if (FLR->isExact())
return;
// Check for comparisons with builtin types.
if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
if (CL->getBuiltinCallee())
return;
if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
if (CR->getBuiltinCallee())
return;
// Emit the diagnostic.
Diag(Loc, diag::warn_floatingpoint_eq)
<< LHS->getSourceRange() << RHS->getSourceRange();
}
//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
namespace {
/// Structure recording the 'active' range of an integer-valued
/// expression.
struct IntRange {
/// The number of bits active in the int. Note that this includes exactly one
/// sign bit if !NonNegative.
unsigned Width;
/// True if the int is known not to have negative values. If so, all leading
/// bits before Width are known zero, otherwise they are known to be the
/// same as the MSB within Width.
bool NonNegative;
IntRange(unsigned Width, bool NonNegative)
: Width(Width), NonNegative(NonNegative) {}
/// Number of bits excluding the sign bit.
unsigned valueBits() const {
return NonNegative ? Width : Width - 1;
}
/// Returns the range of the bool type.
static IntRange forBoolType() {
return IntRange(1, true);
}
/// Returns the range of an opaque value of the given integral type.
static IntRange forValueOfType(ASTContext &C, QualType T) {
return forValueOfCanonicalType(C,
T->getCanonicalTypeInternal().getTypePtr());
}
/// Returns the range of an opaque value of a canonical integral type.
static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
assert(T->isCanonicalUnqualified());
if (const VectorType *VT = dyn_cast<VectorType>(T))
T = VT->getElementType().getTypePtr();
if (const ComplexType *CT = dyn_cast<ComplexType>(T))
T = CT->getElementType().getTypePtr();
if (const AtomicType *AT = dyn_cast<AtomicType>(T))
T = AT->getValueType().getTypePtr();
if (!C.getLangOpts().CPlusPlus) {
// For enum types in C code, use the underlying datatype.
if (const EnumType *ET = dyn_cast<EnumType>(T))
T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr();
} else if (const EnumType *ET = dyn_cast<EnumType>(T)) {
// For enum types in C++, use the known bit width of the enumerators.
EnumDecl *Enum = ET->getDecl();
// In C++11, enums can have a fixed underlying type. Use this type to
// compute the range.
if (Enum->isFixed()) {
return IntRange(C.getIntWidth(QualType(T, 0)),
!ET->isSignedIntegerOrEnumerationType());
}
unsigned NumPositive = Enum->getNumPositiveBits();
unsigned NumNegative = Enum->getNumNegativeBits();
if (NumNegative == 0)
return IntRange(NumPositive, true/*NonNegative*/);
else
return IntRange(std::max(NumPositive + 1, NumNegative),
false/*NonNegative*/);
}
if (const auto *EIT = dyn_cast<BitIntType>(T))
return IntRange(EIT->getNumBits(), EIT->isUnsigned());
const BuiltinType *BT = cast<BuiltinType>(T);
assert(BT->isInteger());
return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
}
/// Returns the "target" range of a canonical integral type, i.e.
/// the range of values expressible in the type.
///
/// This matches forValueOfCanonicalType except that enums have the
/// full range of their type, not the range of their enumerators.
static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
assert(T->isCanonicalUnqualified());
if (const VectorType *VT = dyn_cast<VectorType>(T))
T = VT->getElementType().getTypePtr();
if (const ComplexType *CT = dyn_cast<ComplexType>(T))
T = CT->getElementType().getTypePtr();
if (const AtomicType *AT = dyn_cast<AtomicType>(T))
T = AT->getValueType().getTypePtr();
if (const EnumType *ET = dyn_cast<EnumType>(T))
T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
if (const auto *EIT = dyn_cast<BitIntType>(T))
return IntRange(EIT->getNumBits(), EIT->isUnsigned());
const BuiltinType *BT = cast<BuiltinType>(T);
assert(BT->isInteger());
return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
}
/// Returns the supremum of two ranges: i.e. their conservative merge.
static IntRange join(IntRange L, IntRange R) {
bool Unsigned = L.NonNegative && R.NonNegative;
return IntRange(std::max(L.valueBits(), R.valueBits()) + !Unsigned,
L.NonNegative && R.NonNegative);
}
/// Return the range of a bitwise-AND of the two ranges.
static IntRange bit_and(IntRange L, IntRange R) {
unsigned Bits = std::max(L.Width, R.Width);
bool NonNegative = false;
if (L.NonNegative) {
Bits = std::min(Bits, L.Width);
NonNegative = true;
}
if (R.NonNegative) {
Bits = std::min(Bits, R.Width);
NonNegative = true;
}
return IntRange(Bits, NonNegative);
}
/// Return the range of a sum of the two ranges.
static IntRange sum(IntRange L, IntRange R) {
bool Unsigned = L.NonNegative && R.NonNegative;
return IntRange(std::max(L.valueBits(), R.valueBits()) + 1 + !Unsigned,
Unsigned);
}
/// Return the range of a difference of the two ranges.
static IntRange difference(IntRange L, IntRange R) {
// We need a 1-bit-wider range if:
// 1) LHS can be negative: least value can be reduced.
// 2) RHS can be negative: greatest value can be increased.
bool CanWiden = !L.NonNegative || !R.NonNegative;
bool Unsigned = L.NonNegative && R.Width == 0;
return IntRange(std::max(L.valueBits(), R.valueBits()) + CanWiden +
!Unsigned,
Unsigned);
}
/// Return the range of a product of the two ranges.
static IntRange product(IntRange L, IntRange R) {
// If both LHS and RHS can be negative, we can form
// -2^L * -2^R = 2^(L + R)
// which requires L + R + 1 value bits to represent.
bool CanWiden = !L.NonNegative && !R.NonNegative;
bool Unsigned = L.NonNegative && R.NonNegative;
return IntRange(L.valueBits() + R.valueBits() + CanWiden + !Unsigned,
Unsigned);
}
/// Return the range of a remainder operation between the two ranges.
static IntRange rem(IntRange L, IntRange R) {
// The result of a remainder can't be larger than the result of
// either side. The sign of the result is the sign of the LHS.
bool Unsigned = L.NonNegative;
return IntRange(std::min(L.valueBits(), R.valueBits()) + !Unsigned,
Unsigned);
}
};
} // namespace
static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
unsigned MaxWidth) {
if (value.isSigned() && value.isNegative())
return IntRange(value.getSignificantBits(), false);
if (value.getBitWidth() > MaxWidth)
value = value.trunc(MaxWidth);
// isNonNegative() just checks the sign bit without considering
// signedness.
return IntRange(value.getActiveBits(), true);
}
static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
unsigned MaxWidth) {
if (result.isInt())
return GetValueRange(C, result.getInt(), MaxWidth);
if (result.isVector()) {
IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
R = IntRange::join(R, El);
}
return R;
}
if (result.isComplexInt()) {
IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
return IntRange::join(R, I);
}
// This can happen with lossless casts to intptr_t of "based" lvalues.
// Assume it might use arbitrary bits.
// FIXME: The only reason we need to pass the type in here is to get
// the sign right on this one case. It would be nice if APValue
// preserved this.
assert(result.isLValue() || result.isAddrLabelDiff());
return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
}
static QualType GetExprType(const Expr *E) {
QualType Ty = E->getType();
if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
Ty = AtomicRHS->getValueType();
return Ty;
}
/// Attempts to estimate an approximate range for the given integer expression.
/// Returns a range if successful, otherwise it returns \c std::nullopt if a
/// reliable estimation cannot be determined.
///
/// \param MaxWidth The width to which the value will be truncated.
/// \param InConstantContext If \c true, interpret the expression within a
/// constant context.
/// \param Approximate If \c true, provide a likely range of values by assuming
/// that arithmetic on narrower types remains within those types.
/// If \c false, return a range that includes all possible values
/// resulting from the expression.
/// \returns A range of values that the expression might take, or
/// std::nullopt if a reliable estimation cannot be determined.
static std::optional<IntRange> TryGetExprRange(ASTContext &C, const Expr *E,
unsigned MaxWidth,
bool InConstantContext,
bool Approximate) {
E = E->IgnoreParens();
// Try a full evaluation first.
Expr::EvalResult result;
if (E->EvaluateAsRValue(result, C, InConstantContext))
return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
// I think we only want to look through implicit casts here; if the
// user has an explicit widening cast, we should treat the value as
// being of the new, wider type.
if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) {
if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
return TryGetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext,
Approximate);
IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
bool isIntegerCast = CE->getCastKind() == CK_IntegralCast ||
CE->getCastKind() == CK_BooleanToSignedIntegral;
// Assume that non-integer casts can span the full range of the type.
if (!isIntegerCast)
return OutputTypeRange;
std::optional<IntRange> SubRange = TryGetExprRange(
C, CE->getSubExpr(), std::min(MaxWidth, OutputTypeRange.Width),
InConstantContext, Approximate);
if (!SubRange)
return std::nullopt;
// Bail out if the subexpr's range is as wide as the cast type.
if (SubRange->Width >= OutputTypeRange.Width)
return OutputTypeRange;
// Otherwise, we take the smaller width, and we're non-negative if
// either the output type or the subexpr is.
return IntRange(SubRange->Width,
SubRange->NonNegative || OutputTypeRange.NonNegative);
}
if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
// If we can fold the condition, just take that operand.
bool CondResult;
if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
return TryGetExprRange(
C, CondResult ? CO->getTrueExpr() : CO->getFalseExpr(), MaxWidth,
InConstantContext, Approximate);
// Otherwise, conservatively merge.
// TryGetExprRange requires an integer expression, but a throw expression
// results in a void type.
Expr *TrueExpr = CO->getTrueExpr();
if (TrueExpr->getType()->isVoidType())
return std::nullopt;
std::optional<IntRange> L =
TryGetExprRange(C, TrueExpr, MaxWidth, InConstantContext, Approximate);
if (!L)
return std::nullopt;
Expr *FalseExpr = CO->getFalseExpr();
if (FalseExpr->getType()->isVoidType())
return std::nullopt;
std::optional<IntRange> R =
TryGetExprRange(C, FalseExpr, MaxWidth, InConstantContext, Approximate);
if (!R)
return std::nullopt;
return IntRange::join(*L, *R);
}
if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
IntRange (*Combine)(IntRange, IntRange) = IntRange::join;
switch (BO->getOpcode()) {
case BO_Cmp:
llvm_unreachable("builtin <=> should have class type");
// Boolean-valued operations are single-bit and positive.
case BO_LAnd:
case BO_LOr:
case BO_LT:
case BO_GT:
case BO_LE:
case BO_GE:
case BO_EQ:
case BO_NE:
return IntRange::forBoolType();
// The type of the assignments is the type of the LHS, so the RHS
// is not necessarily the same type.
case BO_MulAssign:
case BO_DivAssign:
case BO_RemAssign:
case BO_AddAssign:
case BO_SubAssign:
case BO_XorAssign:
case BO_OrAssign:
// TODO: bitfields?
return IntRange::forValueOfType(C, GetExprType(E));
// Simple assignments just pass through the RHS, which will have
// been coerced to the LHS type.
case BO_Assign:
// TODO: bitfields?
return TryGetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
Approximate);
// Operations with opaque sources are black-listed.
case BO_PtrMemD:
case BO_PtrMemI:
return IntRange::forValueOfType(C, GetExprType(E));
// Bitwise-and uses the *infinum* of the two source ranges.
case BO_And:
case BO_AndAssign:
Combine = IntRange::bit_and;
break;
// Left shift gets black-listed based on a judgement call.
case BO_Shl:
// ...except that we want to treat '1 << (blah)' as logically
// positive. It's an important idiom.
if (IntegerLiteral *I
= dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
if (I->getValue() == 1) {
IntRange R = IntRange::forValueOfType(C, GetExprType(E));
return IntRange(R.Width, /*NonNegative*/ true);
}
}
[[fallthrough]];
case BO_ShlAssign:
return IntRange::forValueOfType(C, GetExprType(E));
// Right shift by a constant can narrow its left argument.
case BO_Shr:
case BO_ShrAssign: {
std::optional<IntRange> L = TryGetExprRange(
C, BO->getLHS(), MaxWidth, InConstantContext, Approximate);
if (!L)
return std::nullopt;
// If the shift amount is a positive constant, drop the width by
// that much.
if (std::optional<llvm::APSInt> shift =
BO->getRHS()->getIntegerConstantExpr(C)) {
if (shift->isNonNegative()) {
if (shift->uge(L->Width))
L->Width = (L->NonNegative ? 0 : 1);
else
L->Width -= shift->getZExtValue();
}
}
return L;
}
// Comma acts as its right operand.
case BO_Comma:
return TryGetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
Approximate);
case BO_Add:
if (!Approximate)
Combine = IntRange::sum;
break;
case BO_Sub:
if (BO->getLHS()->getType()->isPointerType())
return IntRange::forValueOfType(C, GetExprType(E));
if (!Approximate)
Combine = IntRange::difference;
break;
case BO_Mul:
if (!Approximate)
Combine = IntRange::product;
break;
// The width of a division result is mostly determined by the size
// of the LHS.
case BO_Div: {
// Don't 'pre-truncate' the operands.
unsigned opWidth = C.getIntWidth(GetExprType(E));
std::optional<IntRange> L = TryGetExprRange(
C, BO->getLHS(), opWidth, InConstantContext, Approximate);
if (!L)
return std::nullopt;
// If the divisor is constant, use that.
if (std::optional<llvm::APSInt> divisor =
BO->getRHS()->getIntegerConstantExpr(C)) {
unsigned log2 = divisor->logBase2(); // floor(log_2(divisor))
if (log2 >= L->Width)
L->Width = (L->NonNegative ? 0 : 1);
else
L->Width = std::min(L->Width - log2, MaxWidth);
return L;
}
// Otherwise, just use the LHS's width.
// FIXME: This is wrong if the LHS could be its minimal value and the RHS
// could be -1.
std::optional<IntRange> R = TryGetExprRange(
C, BO->getRHS(), opWidth, InConstantContext, Approximate);
if (!R)
return std::nullopt;
return IntRange(L->Width, L->NonNegative && R->NonNegative);
}
case BO_Rem:
Combine = IntRange::rem;
break;
// The default behavior is okay for these.
case BO_Xor:
case BO_Or:
break;
}
// Combine the two ranges, but limit the result to the type in which we
// performed the computation.
QualType T = GetExprType(E);
unsigned opWidth = C.getIntWidth(T);
std::optional<IntRange> L = TryGetExprRange(C, BO->getLHS(), opWidth,
InConstantContext, Approximate);
if (!L)
return std::nullopt;
std::optional<IntRange> R = TryGetExprRange(C, BO->getRHS(), opWidth,
InConstantContext, Approximate);
if (!R)
return std::nullopt;
IntRange C = Combine(*L, *R);
C.NonNegative |= T->isUnsignedIntegerOrEnumerationType();
C.Width = std::min(C.Width, MaxWidth);
return C;
}
if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
switch (UO->getOpcode()) {
// Boolean-valued operations are white-listed.
case UO_LNot:
return IntRange::forBoolType();
// Operations with opaque sources are black-listed.
case UO_Deref:
case UO_AddrOf: // should be impossible
return IntRange::forValueOfType(C, GetExprType(E));
case UO_Minus: {
if (E->getType()->isUnsignedIntegerType()) {
return TryGetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext,
Approximate);
}
std::optional<IntRange> SubRange = TryGetExprRange(
C, UO->getSubExpr(), MaxWidth, InConstantContext, Approximate);
if (!SubRange)
return std::nullopt;
// If the range was previously non-negative, we need an extra bit for the
// sign bit. If the range was not non-negative, we need an extra bit
// because the negation of the most-negative value is one bit wider than
// that value.
return IntRange(SubRange->Width + 1, false);
}
case UO_Not: {
if (E->getType()->isUnsignedIntegerType()) {
return TryGetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext,
Approximate);
}
std::optional<IntRange> SubRange = TryGetExprRange(
C, UO->getSubExpr(), MaxWidth, InConstantContext, Approximate);
if (!SubRange)
return std::nullopt;
// The width increments by 1 if the sub-expression cannot be negative
// since it now can be.
return IntRange(SubRange->Width + (int)SubRange->NonNegative, false);
}
default:
return TryGetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext,
Approximate);
}
}
if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
return TryGetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext,
Approximate);
if (const auto *BitField = E->getSourceBitField())
return IntRange(BitField->getBitWidthValue(),
BitField->getType()->isUnsignedIntegerOrEnumerationType());
if (GetExprType(E)->isVoidType())
return std::nullopt;
return IntRange::forValueOfType(C, GetExprType(E));
}
static std::optional<IntRange> TryGetExprRange(ASTContext &C, const Expr *E,
bool InConstantContext,
bool Approximate) {
return TryGetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext,
Approximate);
}
/// Checks whether the given value, which currently has the given
/// source semantics, has the same value when coerced through the
/// target semantics.
static bool IsSameFloatAfterCast(const llvm::APFloat &value,
const llvm::fltSemantics &Src,
const llvm::fltSemantics &Tgt) {
llvm::APFloat truncated = value;
bool ignored;
truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
return truncated.bitwiseIsEqual(value);
}
/// Checks whether the given value, which currently has the given
/// source semantics, has the same value when coerced through the
/// target semantics.
///
/// The value might be a vector of floats (or a complex number).
static bool IsSameFloatAfterCast(const APValue &value,
const llvm::fltSemantics &Src,
const llvm::fltSemantics &Tgt) {
if (value.isFloat())
return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
if (value.isVector()) {
for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
return false;
return true;
}
assert(value.isComplexFloat());
return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
}
static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC,
bool IsListInit = false);
static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) {
// Suppress cases where we are comparing against an enum constant.
if (const DeclRefExpr *DR =
dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
if (isa<EnumConstantDecl>(DR->getDecl()))
return true;
// Suppress cases where the value is expanded from a macro, unless that macro
// is how a language represents a boolean literal. This is the case in both C
// and Objective-C.
SourceLocation BeginLoc = E->getBeginLoc();
if (BeginLoc.isMacroID()) {
StringRef MacroName = Lexer::getImmediateMacroName(
BeginLoc, S.getSourceManager(), S.getLangOpts());
return MacroName != "YES" && MacroName != "NO" &&
MacroName != "true" && MacroName != "false";
}
return false;
}
static bool isKnownToHaveUnsignedValue(Expr *E) {
return E->getType()->isIntegerType() &&
(!E->getType()->isSignedIntegerType() ||
!E->IgnoreParenImpCasts()->getType()->isSignedIntegerType());
}
namespace {
/// The promoted range of values of a type. In general this has the
/// following structure:
///
/// |-----------| . . . |-----------|
/// ^ ^ ^ ^
/// Min HoleMin HoleMax Max
///
/// ... where there is only a hole if a signed type is promoted to unsigned
/// (in which case Min and Max are the smallest and largest representable
/// values).
struct PromotedRange {
// Min, or HoleMax if there is a hole.
llvm::APSInt PromotedMin;
// Max, or HoleMin if there is a hole.
llvm::APSInt PromotedMax;
PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) {
if (R.Width == 0)
PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned);
else if (R.Width >= BitWidth && !Unsigned) {
// Promotion made the type *narrower*. This happens when promoting
// a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'.
// Treat all values of 'signed int' as being in range for now.
PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned);
PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned);
} else {
PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative)
.extOrTrunc(BitWidth);
PromotedMin.setIsUnsigned(Unsigned);
PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative)
.extOrTrunc(BitWidth);
PromotedMax.setIsUnsigned(Unsigned);
}
}
// Determine whether this range is contiguous (has no hole).
bool isContiguous() const { return PromotedMin <= PromotedMax; }
// Where a constant value is within the range.
enum ComparisonResult {
LT = 0x1,
LE = 0x2,
GT = 0x4,
GE = 0x8,
EQ = 0x10,
NE = 0x20,
InRangeFlag = 0x40,
Less = LE | LT | NE,
Min = LE | InRangeFlag,
InRange = InRangeFlag,
Max = GE | InRangeFlag,
Greater = GE | GT | NE,
OnlyValue = LE | GE | EQ | InRangeFlag,
InHole = NE
};
ComparisonResult compare(const llvm::APSInt &Value) const {
assert(Value.getBitWidth() == PromotedMin.getBitWidth() &&
Value.isUnsigned() == PromotedMin.isUnsigned());
if (!isContiguous()) {
assert(Value.isUnsigned() && "discontiguous range for signed compare");
if (Value.isMinValue()) return Min;
if (Value.isMaxValue()) return Max;
if (Value >= PromotedMin) return InRange;
if (Value <= PromotedMax) return InRange;
return InHole;
}
switch (llvm::APSInt::compareValues(Value, PromotedMin)) {
case -1: return Less;
case 0: return PromotedMin == PromotedMax ? OnlyValue : Min;
case 1:
switch (llvm::APSInt::compareValues(Value, PromotedMax)) {
case -1: return InRange;
case 0: return Max;
case 1: return Greater;
}
}
llvm_unreachable("impossible compare result");
}
static std::optional<StringRef>
constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) {
if (Op == BO_Cmp) {
ComparisonResult LTFlag = LT, GTFlag = GT;
if (ConstantOnRHS) std::swap(LTFlag, GTFlag);
if (R & EQ) return StringRef("'std::strong_ordering::equal'");
if (R & LTFlag) return StringRef("'std::strong_ordering::less'");
if (R & GTFlag) return StringRef("'std::strong_ordering::greater'");
return std::nullopt;
}
ComparisonResult TrueFlag, FalseFlag;
if (Op == BO_EQ) {
TrueFlag = EQ;
FalseFlag = NE;
} else if (Op == BO_NE) {
TrueFlag = NE;
FalseFlag = EQ;
} else {
if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) {
TrueFlag = LT;
FalseFlag = GE;
} else {
TrueFlag = GT;
FalseFlag = LE;
}
if (Op == BO_GE || Op == BO_LE)
std::swap(TrueFlag, FalseFlag);
}
if (R & TrueFlag)
return StringRef("true");
if (R & FalseFlag)
return StringRef("false");
return std::nullopt;
}
};
}
static bool HasEnumType(Expr *E) {
// Strip off implicit integral promotions.
while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
if (ICE->getCastKind() != CK_IntegralCast &&
ICE->getCastKind() != CK_NoOp)
break;
E = ICE->getSubExpr();
}
return E->getType()->isEnumeralType();
}
static int classifyConstantValue(Expr *Constant) {
// The values of this enumeration are used in the diagnostics
// diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare.
enum ConstantValueKind {
Miscellaneous = 0,
LiteralTrue,
LiteralFalse
};
if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant))
return BL->getValue() ? ConstantValueKind::LiteralTrue
: ConstantValueKind::LiteralFalse;
return ConstantValueKind::Miscellaneous;
}
static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E,
Expr *Constant, Expr *Other,
const llvm::APSInt &Value,
bool RhsConstant) {
if (S.inTemplateInstantiation())
return false;
Expr *OriginalOther = Other;
Constant = Constant->IgnoreParenImpCasts();
Other = Other->IgnoreParenImpCasts();
// Suppress warnings on tautological comparisons between values of the same
// enumeration type. There are only two ways we could warn on this:
// - If the constant is outside the range of representable values of
// the enumeration. In such a case, we should warn about the cast
// to enumeration type, not about the comparison.
// - If the constant is the maximum / minimum in-range value. For an
// enumeratin type, such comparisons can be meaningful and useful.
if (Constant->getType()->isEnumeralType() &&
S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType()))
return false;
std::optional<IntRange> OtherValueRange = TryGetExprRange(
S.Context, Other, S.isConstantEvaluatedContext(), /*Approximate=*/false);
if (!OtherValueRange)
return false;
QualType OtherT = Other->getType();
if (const auto *AT = OtherT->getAs<AtomicType>())
OtherT = AT->getValueType();
IntRange OtherTypeRange = IntRange::forValueOfType(S.Context, OtherT);
// Special case for ObjC BOOL on targets where its a typedef for a signed char
// (Namely, macOS). FIXME: IntRange::forValueOfType should do this.
bool IsObjCSignedCharBool = S.getLangOpts().ObjC &&
S.ObjC().NSAPIObj->isObjCBOOLType(OtherT) &&
OtherT->isSpecificBuiltinType(BuiltinType::SChar);
// Whether we're treating Other as being a bool because of the form of
// expression despite it having another type (typically 'int' in C).
bool OtherIsBooleanDespiteType =
!OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue();
if (OtherIsBooleanDespiteType || IsObjCSignedCharBool)
OtherTypeRange = *OtherValueRange = IntRange::forBoolType();
// Check if all values in the range of possible values of this expression
// lead to the same comparison outcome.
PromotedRange OtherPromotedValueRange(*OtherValueRange, Value.getBitWidth(),
Value.isUnsigned());
auto Cmp = OtherPromotedValueRange.compare(Value);
auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant);
if (!Result)
return false;
// Also consider the range determined by the type alone. This allows us to
// classify the warning under the proper diagnostic group.
bool TautologicalTypeCompare = false;
{
PromotedRange OtherPromotedTypeRange(OtherTypeRange, Value.getBitWidth(),
Value.isUnsigned());
auto TypeCmp = OtherPromotedTypeRange.compare(Value);
if (auto TypeResult = PromotedRange::constantValue(E->getOpcode(), TypeCmp,
RhsConstant)) {
TautologicalTypeCompare = true;
Cmp = TypeCmp;
Result = TypeResult;
}
}
// Don't warn if the non-constant operand actually always evaluates to the
// same value.
if (!TautologicalTypeCompare && OtherValueRange->Width == 0)
return false;
// Suppress the diagnostic for an in-range comparison if the constant comes
// from a macro or enumerator. We don't want to diagnose
//
// some_long_value <= INT_MAX
//
// when sizeof(int) == sizeof(long).
bool InRange = Cmp & PromotedRange::InRangeFlag;
if (InRange && IsEnumConstOrFromMacro(S, Constant))
return false;
// A comparison of an unsigned bit-field against 0 is really a type problem,
// even though at the type level the bit-field might promote to 'signed int'.
if (Other->refersToBitField() && InRange && Value == 0 &&
Other->getType()->isUnsignedIntegerOrEnumerationType())
TautologicalTypeCompare = true;
// If this is a comparison to an enum constant, include that
// constant in the diagnostic.
const EnumConstantDecl *ED = nullptr;
if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
// Should be enough for uint128 (39 decimal digits)
SmallString<64> PrettySourceValue;
llvm::raw_svector_ostream OS(PrettySourceValue);
if (ED) {
OS << '\'' << *ED << "' (" << Value << ")";
} else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>(
Constant->IgnoreParenImpCasts())) {
OS << (BL->getValue() ? "YES" : "NO");
} else {
OS << Value;
}
if (!TautologicalTypeCompare) {
S.Diag(E->getOperatorLoc(), diag::warn_tautological_compare_value_range)
<< RhsConstant << OtherValueRange->Width << OtherValueRange->NonNegative
<< E->getOpcodeStr() << OS.str() << *Result
<< E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
return true;
}
if (IsObjCSignedCharBool) {
S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
S.PDiag(diag::warn_tautological_compare_objc_bool)
<< OS.str() << *Result);
return true;
}
// FIXME: We use a somewhat different formatting for the in-range cases and
// cases involving boolean values for historical reasons. We should pick a
// consistent way of presenting these diagnostics.
if (!InRange || Other->isKnownToHaveBooleanValue()) {
S.DiagRuntimeBehavior(
E->getOperatorLoc(), E,
S.PDiag(!InRange ? diag::warn_out_of_range_compare
: diag::warn_tautological_bool_compare)
<< OS.str() << classifyConstantValue(Constant) << OtherT
<< OtherIsBooleanDespiteType << *Result
<< E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
} else {
bool IsCharTy = OtherT.withoutLocalFastQualifiers() == S.Context.CharTy;
unsigned Diag =
(isKnownToHaveUnsignedValue(OriginalOther) && Value == 0)
? (HasEnumType(OriginalOther)
? diag::warn_unsigned_enum_always_true_comparison
: IsCharTy ? diag::warn_unsigned_char_always_true_comparison
: diag::warn_unsigned_always_true_comparison)
: diag::warn_tautological_constant_compare;
S.Diag(E->getOperatorLoc(), Diag)
<< RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result
<< E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
}
return true;
}
/// Analyze the operands of the given comparison. Implements the
/// fallback case from AnalyzeComparison.
static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
}
/// Implements -Wsign-compare.
///
/// \param E the binary operator to check for warnings
static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
// The type the comparison is being performed in.
QualType T = E->getLHS()->getType();
// Only analyze comparison operators where both sides have been converted to
// the same type.
if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
return AnalyzeImpConvsInComparison(S, E);
// Don't analyze value-dependent comparisons directly.
if (E->isValueDependent())
return AnalyzeImpConvsInComparison(S, E);
Expr *LHS = E->getLHS();
Expr *RHS = E->getRHS();
if (T->isIntegralType(S.Context)) {
std::optional<llvm::APSInt> RHSValue =
RHS->getIntegerConstantExpr(S.Context);
std::optional<llvm::APSInt> LHSValue =
LHS->getIntegerConstantExpr(S.Context);
// We don't care about expressions whose result is a constant.
if (RHSValue && LHSValue)
return AnalyzeImpConvsInComparison(S, E);
// We only care about expressions where just one side is literal
if ((bool)RHSValue ^ (bool)LHSValue) {
// Is the constant on the RHS or LHS?
const bool RhsConstant = (bool)RHSValue;
Expr *Const = RhsConstant ? RHS : LHS;
Expr *Other = RhsConstant ? LHS : RHS;
const llvm::APSInt &Value = RhsConstant ? *RHSValue : *LHSValue;
// Check whether an integer constant comparison results in a value
// of 'true' or 'false'.
if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant))
return AnalyzeImpConvsInComparison(S, E);
}
}
if (!T->hasUnsignedIntegerRepresentation()) {
// We don't do anything special if this isn't an unsigned integral
// comparison: we're only interested in integral comparisons, and
// signed comparisons only happen in cases we don't care to warn about.
return AnalyzeImpConvsInComparison(S, E);
}
LHS = LHS->IgnoreParenImpCasts();
RHS = RHS->IgnoreParenImpCasts();
if (!S.getLangOpts().CPlusPlus) {
// Avoid warning about comparison of integers with different signs when
// RHS/LHS has a `typeof(E)` type whose sign is different from the sign of
// the type of `E`.
if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType()))
LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType()))
RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
}
// Check to see if one of the (unmodified) operands is of different
// signedness.
Expr *signedOperand, *unsignedOperand;
if (LHS->getType()->hasSignedIntegerRepresentation()) {
assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
"unsigned comparison between two signed integer expressions?");
signedOperand = LHS;
unsignedOperand = RHS;
} else if (RHS->getType()->hasSignedIntegerRepresentation()) {
signedOperand = RHS;
unsignedOperand = LHS;
} else {
return AnalyzeImpConvsInComparison(S, E);
}
// Otherwise, calculate the effective range of the signed operand.
std::optional<IntRange> signedRange =
TryGetExprRange(S.Context, signedOperand, S.isConstantEvaluatedContext(),
/*Approximate=*/true);
if (!signedRange)
return;
// Go ahead and analyze implicit conversions in the operands. Note
// that we skip the implicit conversions on both sides.
AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
// If the signed range is non-negative, -Wsign-compare won't fire.
if (signedRange->NonNegative)
return;
// For (in)equality comparisons, if the unsigned operand is a
// constant which cannot collide with a overflowed signed operand,
// then reinterpreting the signed operand as unsigned will not
// change the result of the comparison.
if (E->isEqualityOp()) {
unsigned comparisonWidth = S.Context.getIntWidth(T);
std::optional<IntRange> unsignedRange = TryGetExprRange(
S.Context, unsignedOperand, S.isConstantEvaluatedContext(),
/*Approximate=*/true);
if (!unsignedRange)
return;
// We should never be unable to prove that the unsigned operand is
// non-negative.
assert(unsignedRange->NonNegative && "unsigned range includes negative?");
if (unsignedRange->Width < comparisonWidth)
return;
}
S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
S.PDiag(diag::warn_mixed_sign_comparison)
<< LHS->getType() << RHS->getType()
<< LHS->getSourceRange() << RHS->getSourceRange());
}
/// Analyzes an attempt to assign the given value to a bitfield.
///
/// Returns true if there was something fishy about the attempt.
static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
SourceLocation InitLoc) {
assert(Bitfield->isBitField());
if (Bitfield->isInvalidDecl())
return false;
// White-list bool bitfields.
QualType BitfieldType = Bitfield->getType();
if (BitfieldType->isBooleanType())
return false;
if (BitfieldType->isEnumeralType()) {
EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl();
// If the underlying enum type was not explicitly specified as an unsigned
// type and the enum contain only positive values, MSVC++ will cause an
// inconsistency by storing this as a signed type.
if (S.getLangOpts().CPlusPlus11 &&
!BitfieldEnumDecl->getIntegerTypeSourceInfo() &&
BitfieldEnumDecl->getNumPositiveBits() > 0 &&
BitfieldEnumDecl->getNumNegativeBits() == 0) {
S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield)
<< BitfieldEnumDecl;
}
}
// Ignore value- or type-dependent expressions.
if (Bitfield->getBitWidth()->isValueDependent() ||
Bitfield->getBitWidth()->isTypeDependent() ||
Init->isValueDependent() ||
Init->isTypeDependent())
return false;
Expr *OriginalInit = Init->IgnoreParenImpCasts();
unsigned FieldWidth = Bitfield->getBitWidthValue();
Expr::EvalResult Result;
if (!OriginalInit->EvaluateAsInt(Result, S.Context,
Expr::SE_AllowSideEffects)) {
// The RHS is not constant. If the RHS has an enum type, make sure the
// bitfield is wide enough to hold all the values of the enum without
// truncation.
if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) {
EnumDecl *ED = EnumTy->getDecl();
bool SignedBitfield = BitfieldType->isSignedIntegerType();
// Enum types are implicitly signed on Windows, so check if there are any
// negative enumerators to see if the enum was intended to be signed or
// not.
bool SignedEnum = ED->getNumNegativeBits() > 0;
// Check for surprising sign changes when assigning enum values to a
// bitfield of different signedness. If the bitfield is signed and we
// have exactly the right number of bits to store this unsigned enum,
// suggest changing the enum to an unsigned type. This typically happens
// on Windows where unfixed enums always use an underlying type of 'int'.
unsigned DiagID = 0;
if (SignedEnum && !SignedBitfield) {
DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum;
} else if (SignedBitfield && !SignedEnum &&
ED->getNumPositiveBits() == FieldWidth) {
DiagID = diag::warn_signed_bitfield_enum_conversion;
}
if (DiagID) {
S.Diag(InitLoc, DiagID) << Bitfield << ED;
TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo();
SourceRange TypeRange =
TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange();
S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign)
<< SignedEnum << TypeRange;
}
// Compute the required bitwidth. If the enum has negative values, we need
// one more bit than the normal number of positive bits to represent the
// sign bit.
unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1,
ED->getNumNegativeBits())
: ED->getNumPositiveBits();
// Check the bitwidth.
if (BitsNeeded > FieldWidth) {
Expr *WidthExpr = Bitfield->getBitWidth();
S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum)
<< Bitfield << ED;
S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield)
<< BitsNeeded << ED << WidthExpr->getSourceRange();
}
}
return false;
}
llvm::APSInt Value = Result.Val.getInt();
unsigned OriginalWidth = Value.getBitWidth();
// In C, the macro 'true' from stdbool.h will evaluate to '1'; To reduce
// false positives where the user is demonstrating they intend to use the
// bit-field as a Boolean, check to see if the value is 1 and we're assigning
// to a one-bit bit-field to see if the value came from a macro named 'true'.
bool OneAssignedToOneBitBitfield = FieldWidth == 1 && Value == 1;
if (OneAssignedToOneBitBitfield && !S.LangOpts.CPlusPlus) {
SourceLocation MaybeMacroLoc = OriginalInit->getBeginLoc();
if (S.SourceMgr.isInSystemMacro(MaybeMacroLoc) &&
S.findMacroSpelling(MaybeMacroLoc, "true"))
return false;
}
if (!Value.isSigned() || Value.isNegative())
if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit))
if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not)
OriginalWidth = Value.getSignificantBits();
if (OriginalWidth <= FieldWidth)
return false;
// Compute the value which the bitfield will contain.
llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType());
// Check whether the stored value is equal to the original value.
TruncatedValue = TruncatedValue.extend(OriginalWidth);
if (llvm::APSInt::isSameValue(Value, TruncatedValue))
return false;
std::string PrettyValue = toString(Value, 10);
std::string PrettyTrunc = toString(TruncatedValue, 10);
S.Diag(InitLoc, OneAssignedToOneBitBitfield
? diag::warn_impcast_single_bit_bitield_precision_constant
: diag::warn_impcast_bitfield_precision_constant)
<< PrettyValue << PrettyTrunc << OriginalInit->getType()
<< Init->getSourceRange();
return true;
}
/// Analyze the given simple or compound assignment for warning-worthy
/// operations.
static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
// Just recurse on the LHS.
AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
// We want to recurse on the RHS as normal unless we're assigning to
// a bitfield.
if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
E->getOperatorLoc())) {
// Recurse, ignoring any implicit conversions on the RHS.
return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
E->getOperatorLoc());
}
}
AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
// Diagnose implicitly sequentially-consistent atomic assignment.
if (E->getLHS()->getType()->isAtomicType())
S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
}
/// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
SourceLocation CContext, unsigned diag,
bool pruneControlFlow = false) {
if (pruneControlFlow) {
S.DiagRuntimeBehavior(E->getExprLoc(), E,
S.PDiag(diag)
<< SourceType << T << E->getSourceRange()
<< SourceRange(CContext));
return;
}
S.Diag(E->getExprLoc(), diag)
<< SourceType << T << E->getSourceRange() << SourceRange(CContext);
}
/// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
SourceLocation CContext,
unsigned diag, bool pruneControlFlow = false) {
DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
}
/// Diagnose an implicit cast from a floating point value to an integer value.
static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T,
SourceLocation CContext) {
const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool);
const bool PruneWarnings = S.inTemplateInstantiation();
Expr *InnerE = E->IgnoreParenImpCasts();
// We also want to warn on, e.g., "int i = -1.234"
if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
const bool IsLiteral =
isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE);
llvm::APFloat Value(0.0);
bool IsConstant =
E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects);
if (!IsConstant) {
if (S.ObjC().isSignedCharBool(T)) {
return S.ObjC().adornBoolConversionDiagWithTernaryFixit(
E, S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool)
<< E->getType());
}
return DiagnoseImpCast(S, E, T, CContext,
diag::warn_impcast_float_integer, PruneWarnings);
}
bool isExact = false;
llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
T->hasUnsignedIntegerRepresentation());
llvm::APFloat::opStatus Result = Value.convertToInteger(
IntegerValue, llvm::APFloat::rmTowardZero, &isExact);
// FIXME: Force the precision of the source value down so we don't print
// digits which are usually useless (we don't really care here if we
// truncate a digit by accident in edge cases). Ideally, APFloat::toString
// would automatically print the shortest representation, but it's a bit
// tricky to implement.
SmallString<16> PrettySourceValue;
unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
precision = (precision * 59 + 195) / 196;
Value.toString(PrettySourceValue, precision);
if (S.ObjC().isSignedCharBool(T) && IntegerValue != 0 && IntegerValue != 1) {
return S.ObjC().adornBoolConversionDiagWithTernaryFixit(
E, S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool)
<< PrettySourceValue);
}
if (Result == llvm::APFloat::opOK && isExact) {
if (IsLiteral) return;
return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer,
PruneWarnings);
}
// Conversion of a floating-point value to a non-bool integer where the
// integral part cannot be represented by the integer type is undefined.
if (!IsBool && Result == llvm::APFloat::opInvalidOp)
return DiagnoseImpCast(
S, E, T, CContext,
IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range
: diag::warn_impcast_float_to_integer_out_of_range,
PruneWarnings);
unsigned DiagID = 0;
if (IsLiteral) {
// Warn on floating point literal to integer.
DiagID = diag::warn_impcast_literal_float_to_integer;
} else if (IntegerValue == 0) {
if (Value.isZero()) { // Skip -0.0 to 0 conversion.
return DiagnoseImpCast(S, E, T, CContext,
diag::warn_impcast_float_integer, PruneWarnings);
}
// Warn on non-zero to zero conversion.
DiagID = diag::warn_impcast_float_to_integer_zero;
} else {
if (IntegerValue.isUnsigned()) {
if (!IntegerValue.isMaxValue()) {
return DiagnoseImpCast(S, E, T, CContext,
diag::warn_impcast_float_integer, PruneWarnings);
}
} else { // IntegerValue.isSigned()
if (!IntegerValue.isMaxSignedValue() &&
!IntegerValue.isMinSignedValue()) {
return DiagnoseImpCast(S, E, T, CContext,
diag::warn_impcast_float_integer, PruneWarnings);
}
}
// Warn on evaluatable floating point expression to integer conversion.
DiagID = diag::warn_impcast_float_to_integer;
}
SmallString<16> PrettyTargetValue;
if (IsBool)
PrettyTargetValue = Value.isZero() ? "false" : "true";
else
IntegerValue.toString(PrettyTargetValue);
if (PruneWarnings) {
S.DiagRuntimeBehavior(E->getExprLoc(), E,
S.PDiag(DiagID)
<< E->getType() << T.getUnqualifiedType()
<< PrettySourceValue << PrettyTargetValue
<< E->getSourceRange() << SourceRange(CContext));
} else {
S.Diag(E->getExprLoc(), DiagID)
<< E->getType() << T.getUnqualifiedType() << PrettySourceValue
<< PrettyTargetValue << E->getSourceRange() << SourceRange(CContext);
}
}
/// Analyze the given compound assignment for the possible losing of
/// floating-point precision.
static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) {
assert(isa<CompoundAssignOperator>(E) &&
"Must be compound assignment operation");
// Recurse on the LHS and RHS in here
AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
if (E->getLHS()->getType()->isAtomicType())
S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst);
// Now check the outermost expression
const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>();
const auto *RBT = cast<CompoundAssignOperator>(E)
->getComputationResultType()
->getAs<BuiltinType>();
// The below checks assume source is floating point.
if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return;
// If source is floating point but target is an integer.
if (ResultBT->isInteger())
return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(),
E->getExprLoc(), diag::warn_impcast_float_integer);
if (!ResultBT->isFloatingPoint())
return;
// If both source and target are floating points, warn about losing precision.
int Order = S.getASTContext().getFloatingTypeSemanticOrder(
QualType(ResultBT, 0), QualType(RBT, 0));
if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc()))
// warn about dropping FP rank.
DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(),
diag::warn_impcast_float_result_precision);
}
static std::string PrettyPrintInRange(const llvm::APSInt &Value,
IntRange Range) {
if (!Range.Width) return "0";
llvm::APSInt ValueInRange = Value;
ValueInRange.setIsSigned(!Range.NonNegative);
ValueInRange = ValueInRange.trunc(Range.Width);
return toString(ValueInRange, 10);
}
static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
if (!isa<ImplicitCastExpr>(Ex))
return false;
Expr *InnerE = Ex->IgnoreParenImpCasts();
const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
const Type *Source =
S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
if (Target->isDependentType())
return false;
const BuiltinType *FloatCandidateBT =
dyn_cast<BuiltinType>(ToBool ? Source : Target);
const Type *BoolCandidateType = ToBool ? Target : Source;
return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
}
static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
SourceLocation CC) {
unsigned NumArgs = TheCall->getNumArgs();
for (unsigned i = 0; i < NumArgs; ++i) {
Expr *CurrA = TheCall->getArg(i);
if (!IsImplicitBoolFloatConversion(S, CurrA, true))
continue;
bool IsSwapped = ((i > 0) &&
IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
IsSwapped |= ((i < (NumArgs - 1)) &&
IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
if (IsSwapped) {
// Warn on this floating-point to bool conversion.
DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
CurrA->getType(), CC,
diag::warn_impcast_floating_point_to_bool);
}
}
}
static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T,
SourceLocation CC) {
if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
E->getExprLoc()))
return;
// Don't warn on functions which have return type nullptr_t.
if (isa<CallExpr>(E))
return;
// Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
const Expr *NewE = E->IgnoreParenImpCasts();
bool IsGNUNullExpr = isa<GNUNullExpr>(NewE);
bool HasNullPtrType = NewE->getType()->isNullPtrType();
if (!IsGNUNullExpr && !HasNullPtrType)
return;
// Return if target type is a safe conversion.
if (T->isAnyPointerType() || T->isBlockPointerType() ||
T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
return;
SourceLocation Loc = E->getSourceRange().getBegin();
// Venture through the macro stacks to get to the source of macro arguments.
// The new location is a better location than the complete location that was
// passed in.
Loc = S.SourceMgr.getTopMacroCallerLoc(Loc);
CC = S.SourceMgr.getTopMacroCallerLoc(CC);
// __null is usually wrapped in a macro. Go up a macro if that is the case.
if (IsGNUNullExpr && Loc.isMacroID()) {
StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
Loc, S.SourceMgr, S.getLangOpts());
if (MacroName == "NULL")
Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin();
}
// Only warn if the null and context location are in the same macro expansion.
if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
return;
S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
<< HasNullPtrType << T << SourceRange(CC)
<< FixItHint::CreateReplacement(Loc,
S.getFixItZeroLiteralForType(T, Loc));
}
// Helper function to filter out cases for constant width constant conversion.
// Don't warn on char array initialization or for non-decimal values.
static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T,
SourceLocation CC) {
// If initializing from a constant, and the constant starts with '0',
// then it is a binary, octal, or hexadecimal. Allow these constants
// to fill all the bits, even if there is a sign change.
if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) {
const char FirstLiteralCharacter =
S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0];
if (FirstLiteralCharacter == '0')
return false;
}
// If the CC location points to a '{', and the type is char, then assume
// assume it is an array initialization.
if (CC.isValid() && T->isCharType()) {
const char FirstContextCharacter =
S.getSourceManager().getCharacterData(CC)[0];
if (FirstContextCharacter == '{')
return false;
}
return true;
}
static const IntegerLiteral *getIntegerLiteral(Expr *E) {
const auto *IL = dyn_cast<IntegerLiteral>(E);
if (!IL) {
if (auto *UO = dyn_cast<UnaryOperator>(E)) {
if (UO->getOpcode() == UO_Minus)
return dyn_cast<IntegerLiteral>(UO->getSubExpr());
}
}
return IL;
}
static void DiagnoseIntInBoolContext(Sema &S, Expr *E) {
E = E->IgnoreParenImpCasts();
SourceLocation ExprLoc = E->getExprLoc();
if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
BinaryOperator::Opcode Opc = BO->getOpcode();
Expr::EvalResult Result;
// Do not diagnose unsigned shifts.
if (Opc == BO_Shl) {
const auto *LHS = getIntegerLiteral(BO->getLHS());
const auto *RHS = getIntegerLiteral(BO->getRHS());
if (LHS && LHS->getValue() == 0)
S.Diag(ExprLoc, diag::warn_left_shift_always) << 0;
else if (!E->isValueDependent() && LHS && RHS &&
RHS->getValue().isNonNegative() &&
E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects))
S.Diag(ExprLoc, diag::warn_left_shift_always)
<< (Result.Val.getInt() != 0);
else if (E->getType()->isSignedIntegerType())
S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E;
}
}
if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
const auto *LHS = getIntegerLiteral(CO->getTrueExpr());
const auto *RHS = getIntegerLiteral(CO->getFalseExpr());
if (!LHS || !RHS)
return;
if ((LHS->getValue() == 0 || LHS->getValue() == 1) &&
(RHS->getValue() == 0 || RHS->getValue() == 1))
// Do not diagnose common idioms.
return;
if (LHS->getValue() != 0 && RHS->getValue() != 0)
S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true);
}
}
void Sema::CheckImplicitConversion(Expr *E, QualType T, SourceLocation CC,
bool *ICContext, bool IsListInit) {
if (E->isTypeDependent() || E->isValueDependent()) return;
const Type *Source = Context.getCanonicalType(E->getType()).getTypePtr();
const Type *Target = Context.getCanonicalType(T).getTypePtr();
if (Source == Target) return;
if (Target->isDependentType()) return;
// If the conversion context location is invalid don't complain. We also
// don't want to emit a warning if the issue occurs from the expansion of
// a system macro. The problem is that 'getSpellingLoc()' is slow, so we
// delay this check as long as possible. Once we detect we are in that
// scenario, we just return.
if (CC.isInvalid())
return;
if (Source->isAtomicType())
Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst);
// Diagnose implicit casts to bool.
if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
if (isa<StringLiteral>(E))
// Warn on string literal to bool. Checks for string literals in logical
// and expressions, for instance, assert(0 && "error here"), are
// prevented by a check in AnalyzeImplicitConversions().
return DiagnoseImpCast(*this, E, T, CC,
diag::warn_impcast_string_literal_to_bool);
if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
// This covers the literal expressions that evaluate to Objective-C
// objects.
return DiagnoseImpCast(*this, E, T, CC,
diag::warn_impcast_objective_c_literal_to_bool);
}
if (Source->isPointerType() || Source->canDecayToPointerType()) {
// Warn on pointer to bool conversion that is always true.
DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
SourceRange(CC));
}
}
// If the we're converting a constant to an ObjC BOOL on a platform where BOOL
// is a typedef for signed char (macOS), then that constant value has to be 1
// or 0.
if (ObjC().isSignedCharBool(T) && Source->isIntegralType(Context)) {
Expr::EvalResult Result;
if (E->EvaluateAsInt(Result, getASTContext(), Expr::SE_AllowSideEffects)) {
if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) {
ObjC().adornBoolConversionDiagWithTernaryFixit(
E, Diag(CC, diag::warn_impcast_constant_value_to_objc_bool)
<< toString(Result.Val.getInt(), 10));
}
return;
}
}
// Check implicit casts from Objective-C collection literals to specialized
// collection types, e.g., NSArray<NSString *> *.
if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E))
ObjC().checkArrayLiteral(QualType(Target, 0), ArrayLiteral);
else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E))
ObjC().checkDictionaryLiteral(QualType(Target, 0), DictionaryLiteral);
// Strip vector types.
if (isa<VectorType>(Source)) {
if (Target->isSveVLSBuiltinType() &&
(Context.areCompatibleSveTypes(QualType(Target, 0),
QualType(Source, 0)) ||
Context.areLaxCompatibleSveTypes(QualType(Target, 0),
QualType(Source, 0))))
return;
if (Target->isRVVVLSBuiltinType() &&
(Context.areCompatibleRVVTypes(QualType(Target, 0),
QualType(Source, 0)) ||
Context.areLaxCompatibleRVVTypes(QualType(Target, 0),
QualType(Source, 0))))
return;
if (!isa<VectorType>(Target)) {
if (SourceMgr.isInSystemMacro(CC))
return;
return DiagnoseImpCast(*this, E, T, CC, diag::warn_impcast_vector_scalar);
} else if (getLangOpts().HLSL &&
Target->castAs<VectorType>()->getNumElements() <
Source->castAs<VectorType>()->getNumElements()) {
// Diagnose vector truncation but don't return. We may also want to
// diagnose an element conversion.
DiagnoseImpCast(*this, E, T, CC,
diag::warn_hlsl_impcast_vector_truncation);
}
// If the vector cast is cast between two vectors of the same size, it is
// a bitcast, not a conversion, except under HLSL where it is a conversion.
if (!getLangOpts().HLSL &&
Context.getTypeSize(Source) == Context.getTypeSize(Target))
return;
Source = cast<VectorType>(Source)->getElementType().getTypePtr();
Target = cast<VectorType>(Target)->getElementType().getTypePtr();
}
if (auto VecTy = dyn_cast<VectorType>(Target))
Target = VecTy->getElementType().getTypePtr();
// Strip complex types.
if (isa<ComplexType>(Source)) {
if (!isa<ComplexType>(Target)) {
if (SourceMgr.isInSystemMacro(CC) || Target->isBooleanType())
return;
return DiagnoseImpCast(*this, E, T, CC,
getLangOpts().CPlusPlus
? diag::err_impcast_complex_scalar
: diag::warn_impcast_complex_scalar);
}
Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
}
const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
// Strip SVE vector types
if (SourceBT && SourceBT->isSveVLSBuiltinType()) {
// Need the original target type for vector type checks
const Type *OriginalTarget = Context.getCanonicalType(T).getTypePtr();
// Handle conversion from scalable to fixed when msve-vector-bits is
// specified
if (Context.areCompatibleSveTypes(QualType(OriginalTarget, 0),
QualType(Source, 0)) ||
Context.areLaxCompatibleSveTypes(QualType(OriginalTarget, 0),
QualType(Source, 0)))
return;
// If the vector cast is cast between two vectors of the same size, it is
// a bitcast, not a conversion.
if (Context.getTypeSize(Source) == Context.getTypeSize(Target))
return;
Source = SourceBT->getSveEltType(Context).getTypePtr();
}
if (TargetBT && TargetBT->isSveVLSBuiltinType())
Target = TargetBT->getSveEltType(Context).getTypePtr();
// If the source is floating point...
if (SourceBT && SourceBT->isFloatingPoint()) {
// ...and the target is floating point...
if (TargetBT && TargetBT->isFloatingPoint()) {
// ...then warn if we're dropping FP rank.
int Order = getASTContext().getFloatingTypeSemanticOrder(
QualType(SourceBT, 0), QualType(TargetBT, 0));
if (Order > 0) {
// Don't warn about float constants that are precisely
// representable in the target type.
Expr::EvalResult result;
if (E->EvaluateAsRValue(result, Context)) {
// Value might be a float, a float vector, or a float complex.
if (IsSameFloatAfterCast(
result.Val,
Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
return;
}
if (SourceMgr.isInSystemMacro(CC))
return;
DiagnoseImpCast(*this, E, T, CC, diag::warn_impcast_float_precision);
}
// ... or possibly if we're increasing rank, too
else if (Order < 0) {
if (SourceMgr.isInSystemMacro(CC))
return;
DiagnoseImpCast(*this, E, T, CC, diag::warn_impcast_double_promotion);
}
return;
}
// If the target is integral, always warn.
if (TargetBT && TargetBT->isInteger()) {
if (SourceMgr.isInSystemMacro(CC))
return;
DiagnoseFloatingImpCast(*this, E, T, CC);
}
// Detect the case where a call result is converted from floating-point to
// to bool, and the final argument to the call is converted from bool, to
// discover this typo:
//
// bool b = fabs(x < 1.0); // should be "bool b = fabs(x) < 1.0;"
//
// FIXME: This is an incredibly special case; is there some more general
// way to detect this class of misplaced-parentheses bug?
if (Target->isBooleanType() && isa<CallExpr>(E)) {
// Check last argument of function call to see if it is an
// implicit cast from a type matching the type the result
// is being cast to.
CallExpr *CEx = cast<CallExpr>(E);
if (unsigned NumArgs = CEx->getNumArgs()) {
Expr *LastA = CEx->getArg(NumArgs - 1);
Expr *InnerE = LastA->IgnoreParenImpCasts();
if (isa<ImplicitCastExpr>(LastA) &&
InnerE->getType()->isBooleanType()) {
// Warn on this floating-point to bool conversion
DiagnoseImpCast(*this, E, T, CC,
diag::warn_impcast_floating_point_to_bool);
}
}
}
return;
}
// Valid casts involving fixed point types should be accounted for here.
if (Source->isFixedPointType()) {
if (Target->isUnsaturatedFixedPointType()) {
Expr::EvalResult Result;
if (E->EvaluateAsFixedPoint(Result, Context, Expr::SE_AllowSideEffects,
isConstantEvaluatedContext())) {
llvm::APFixedPoint Value = Result.Val.getFixedPoint();
llvm::APFixedPoint MaxVal = Context.getFixedPointMax(T);
llvm::APFixedPoint MinVal = Context.getFixedPointMin(T);
if (Value > MaxVal || Value < MinVal) {
DiagRuntimeBehavior(E->getExprLoc(), E,
PDiag(diag::warn_impcast_fixed_point_range)
<< Value.toString() << T
<< E->getSourceRange()
<< clang::SourceRange(CC));
return;
}
}
} else if (Target->isIntegerType()) {
Expr::EvalResult Result;
if (!isConstantEvaluatedContext() &&
E->EvaluateAsFixedPoint(Result, Context, Expr::SE_AllowSideEffects)) {
llvm::APFixedPoint FXResult = Result.Val.getFixedPoint();
bool Overflowed;
llvm::APSInt IntResult = FXResult.convertToInt(
Context.getIntWidth(T), Target->isSignedIntegerOrEnumerationType(),
&Overflowed);
if (Overflowed) {
DiagRuntimeBehavior(E->getExprLoc(), E,
PDiag(diag::warn_impcast_fixed_point_range)
<< FXResult.toString() << T
<< E->getSourceRange()
<< clang::SourceRange(CC));
return;
}
}
}
} else if (Target->isUnsaturatedFixedPointType()) {
if (Source->isIntegerType()) {
Expr::EvalResult Result;
if (!isConstantEvaluatedContext() &&
E->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects)) {
llvm::APSInt Value = Result.Val.getInt();
bool Overflowed;
llvm::APFixedPoint IntResult = llvm::APFixedPoint::getFromIntValue(
Value, Context.getFixedPointSemantics(T), &Overflowed);
if (Overflowed) {
DiagRuntimeBehavior(E->getExprLoc(), E,
PDiag(diag::warn_impcast_fixed_point_range)
<< toString(Value, /*Radix=*/10) << T
<< E->getSourceRange()
<< clang::SourceRange(CC));
return;
}
}
}
}
// If we are casting an integer type to a floating point type without
// initialization-list syntax, we might lose accuracy if the floating
// point type has a narrower significand than the integer type.
if (SourceBT && TargetBT && SourceBT->isIntegerType() &&
TargetBT->isFloatingType() && !IsListInit) {
// Determine the number of precision bits in the source integer type.
std::optional<IntRange> SourceRange =
TryGetExprRange(Context, E, isConstantEvaluatedContext(),
/*Approximate=*/true);
if (!SourceRange)
return;
unsigned int SourcePrecision = SourceRange->Width;
// Determine the number of precision bits in the
// target floating point type.
unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision(
Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
if (SourcePrecision > 0 && TargetPrecision > 0 &&
SourcePrecision > TargetPrecision) {
if (std::optional<llvm::APSInt> SourceInt =
E->getIntegerConstantExpr(Context)) {
// If the source integer is a constant, convert it to the target
// floating point type. Issue a warning if the value changes
// during the whole conversion.
llvm::APFloat TargetFloatValue(
Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
llvm::APFloat::opStatus ConversionStatus =
TargetFloatValue.convertFromAPInt(
*SourceInt, SourceBT->isSignedInteger(),
llvm::APFloat::rmNearestTiesToEven);
if (ConversionStatus != llvm::APFloat::opOK) {
SmallString<32> PrettySourceValue;
SourceInt->toString(PrettySourceValue, 10);
SmallString<32> PrettyTargetValue;
TargetFloatValue.toString(PrettyTargetValue, TargetPrecision);
DiagRuntimeBehavior(
E->getExprLoc(), E,
PDiag(diag::warn_impcast_integer_float_precision_constant)
<< PrettySourceValue << PrettyTargetValue << E->getType() << T
<< E->getSourceRange() << clang::SourceRange(CC));
}
} else {
// Otherwise, the implicit conversion may lose precision.
DiagnoseImpCast(*this, E, T, CC,
diag::warn_impcast_integer_float_precision);
}
}
}
DiagnoseNullConversion(*this, E, T, CC);
DiscardMisalignedMemberAddress(Target, E);
if (Target->isBooleanType())
DiagnoseIntInBoolContext(*this, E);
if (!Source->isIntegerType() || !Target->isIntegerType())
return;
// TODO: remove this early return once the false positives for constant->bool
// in templates, macros, etc, are reduced or removed.
if (Target->isSpecificBuiltinType(BuiltinType::Bool))
return;
if (ObjC().isSignedCharBool(T) && !Source->isCharType() &&
!E->isKnownToHaveBooleanValue(/*Semantic=*/false)) {
return ObjC().adornBoolConversionDiagWithTernaryFixit(
E, Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool)
<< E->getType());
}
std::optional<IntRange> LikelySourceRange = TryGetExprRange(
Context, E, isConstantEvaluatedContext(), /*Approximate=*/true);
if (!LikelySourceRange)
return;
IntRange SourceTypeRange =
IntRange::forTargetOfCanonicalType(Context, Source);
IntRange TargetRange = IntRange::forTargetOfCanonicalType(Context, Target);
if (LikelySourceRange->Width > TargetRange.Width) {
// If the source is a constant, use a default-on diagnostic.
// TODO: this should happen for bitfield stores, too.
Expr::EvalResult Result;
if (E->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects,
isConstantEvaluatedContext())) {
llvm::APSInt Value(32);
Value = Result.Val.getInt();
if (SourceMgr.isInSystemMacro(CC))
return;
std::string PrettySourceValue = toString(Value, 10);
std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
DiagRuntimeBehavior(E->getExprLoc(), E,
PDiag(diag::warn_impcast_integer_precision_constant)
<< PrettySourceValue << PrettyTargetValue
<< E->getType() << T << E->getSourceRange()
<< SourceRange(CC));
return;
}
// People want to build with -Wshorten-64-to-32 and not -Wconversion.
if (SourceMgr.isInSystemMacro(CC))
return;
if (TargetRange.Width == 32 && Context.getIntWidth(E->getType()) == 64)
return DiagnoseImpCast(*this, E, T, CC, diag::warn_impcast_integer_64_32,
/* pruneControlFlow */ true);
return DiagnoseImpCast(*this, E, T, CC,
diag::warn_impcast_integer_precision);
}
if (TargetRange.Width > SourceTypeRange.Width) {
if (auto *UO = dyn_cast<UnaryOperator>(E))
if (UO->getOpcode() == UO_Minus)
if (Source->isUnsignedIntegerType()) {
if (Target->isUnsignedIntegerType())
return DiagnoseImpCast(*this, E, T, CC,
diag::warn_impcast_high_order_zero_bits);
if (Target->isSignedIntegerType())
return DiagnoseImpCast(*this, E, T, CC,
diag::warn_impcast_nonnegative_result);
}
}
if (TargetRange.Width == LikelySourceRange->Width &&
!TargetRange.NonNegative && LikelySourceRange->NonNegative &&
Source->isSignedIntegerType()) {
// Warn when doing a signed to signed conversion, warn if the positive
// source value is exactly the width of the target type, which will
// cause a negative value to be stored.
Expr::EvalResult Result;
if (E->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects) &&
!SourceMgr.isInSystemMacro(CC)) {
llvm::APSInt Value = Result.Val.getInt();
if (isSameWidthConstantConversion(*this, E, T, CC)) {
std::string PrettySourceValue = toString(Value, 10);
std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
Diag(E->getExprLoc(),
PDiag(diag::warn_impcast_integer_precision_constant)
<< PrettySourceValue << PrettyTargetValue << E->getType() << T
<< E->getSourceRange() << SourceRange(CC));
return;
}
}
// Fall through for non-constants to give a sign conversion warning.
}
if ((!isa<EnumType>(Target) || !isa<EnumType>(Source)) &&
((TargetRange.NonNegative && !LikelySourceRange->NonNegative) ||
(!TargetRange.NonNegative && LikelySourceRange->NonNegative &&
LikelySourceRange->Width == TargetRange.Width))) {
if (SourceMgr.isInSystemMacro(CC))
return;
if (SourceBT && SourceBT->isInteger() && TargetBT &&
TargetBT->isInteger() &&
Source->isSignedIntegerType() == Target->isSignedIntegerType()) {
return;
}
unsigned DiagID = diag::warn_impcast_integer_sign;
// Traditionally, gcc has warned about this under -Wsign-compare.
// We also want to warn about it in -Wconversion.
// So if -Wconversion is off, use a completely identical diagnostic
// in the sign-compare group.
// The conditional-checking code will
if (ICContext) {
DiagID = diag::warn_impcast_integer_sign_conditional;
*ICContext = true;
}
return DiagnoseImpCast(*this, E, T, CC, DiagID);
}
// Diagnose conversions between different enumeration types.
// In C, we pretend that the type of an EnumConstantDecl is its enumeration
// type, to give us better diagnostics.
QualType SourceType = E->getEnumCoercedType(Context);
Source = Context.getCanonicalType(SourceType).getTypePtr();
if (const EnumType *SourceEnum = Source->getAs<EnumType>())
if (const EnumType *TargetEnum = Target->getAs<EnumType>())
if (SourceEnum->getDecl()->hasNameForLinkage() &&
TargetEnum->getDecl()->hasNameForLinkage() &&
SourceEnum != TargetEnum) {
if (SourceMgr.isInSystemMacro(CC))
return;
return DiagnoseImpCast(*this, E, SourceType, T, CC,
diag::warn_impcast_different_enum_types);
}
}
static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
SourceLocation CC, QualType T);
static void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
SourceLocation CC, bool &ICContext) {
E = E->IgnoreParenImpCasts();
// Diagnose incomplete type for second or third operand in C.
if (!S.getLangOpts().CPlusPlus && E->getType()->isRecordType())
S.RequireCompleteExprType(E, diag::err_incomplete_type);
if (auto *CO = dyn_cast<AbstractConditionalOperator>(E))
return CheckConditionalOperator(S, CO, CC, T);
AnalyzeImplicitConversions(S, E, CC);
if (E->getType() != T)
return S.CheckImplicitConversion(E, T, CC, &ICContext);
}
static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
SourceLocation CC, QualType T) {
AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
Expr *TrueExpr = E->getTrueExpr();
if (auto *BCO = dyn_cast<BinaryConditionalOperator>(E))
TrueExpr = BCO->getCommon();
bool Suspicious = false;
CheckConditionalOperand(S, TrueExpr, T, CC, Suspicious);
CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
if (T->isBooleanType())
DiagnoseIntInBoolContext(S, E);
// If -Wconversion would have warned about either of the candidates
// for a signedness conversion to the context type...
if (!Suspicious) return;
// ...but it's currently ignored...
if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
return;
// ...then check whether it would have warned about either of the
// candidates for a signedness conversion to the condition type.
if (E->getType() == T) return;
Suspicious = false;
S.CheckImplicitConversion(TrueExpr->IgnoreParenImpCasts(), E->getType(), CC,
&Suspicious);
if (!Suspicious)
S.CheckImplicitConversion(E->getFalseExpr()->IgnoreParenImpCasts(),
E->getType(), CC, &Suspicious);
}
/// Check conversion of given expression to boolean.
/// Input argument E is a logical expression.
static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
// Run the bool-like conversion checks only for C since there bools are
// still not used as the return type from "boolean" operators or as the input
// type for conditional operators.
if (S.getLangOpts().CPlusPlus)
return;
if (E->IgnoreParenImpCasts()->getType()->isAtomicType())
return;
S.CheckImplicitConversion(E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
}
namespace {
struct AnalyzeImplicitConversionsWorkItem {
Expr *E;
SourceLocation CC;
bool IsListInit;
};
}
/// Data recursive variant of AnalyzeImplicitConversions. Subexpressions
/// that should be visited are added to WorkList.
static void AnalyzeImplicitConversions(
Sema &S, AnalyzeImplicitConversionsWorkItem Item,
llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) {
Expr *OrigE = Item.E;
SourceLocation CC = Item.CC;
QualType T = OrigE->getType();
Expr *E = OrigE->IgnoreParenImpCasts();
// Propagate whether we are in a C++ list initialization expression.
// If so, we do not issue warnings for implicit int-float conversion
// precision loss, because C++11 narrowing already handles it.
//
// HLSL's initialization lists are special, so they shouldn't observe the C++
// behavior here.
bool IsListInit =
Item.IsListInit || (isa<InitListExpr>(OrigE) &&
S.getLangOpts().CPlusPlus && !S.getLangOpts().HLSL);
if (E->isTypeDependent() || E->isValueDependent())
return;
Expr *SourceExpr = E;
// Examine, but don't traverse into the source expression of an
// OpaqueValueExpr, since it may have multiple parents and we don't want to
// emit duplicate diagnostics. Its fine to examine the form or attempt to
// evaluate it in the context of checking the specific conversion to T though.
if (auto *OVE = dyn_cast<OpaqueValueExpr>(E))
if (auto *Src = OVE->getSourceExpr())
SourceExpr = Src;
if (const auto *UO = dyn_cast<UnaryOperator>(SourceExpr))
if (UO->getOpcode() == UO_Not &&
UO->getSubExpr()->isKnownToHaveBooleanValue())
S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool)
<< OrigE->getSourceRange() << T->isBooleanType()
<< FixItHint::CreateReplacement(UO->getBeginLoc(), "!");
if (const auto *BO = dyn_cast<BinaryOperator>(SourceExpr))
if ((BO->getOpcode() == BO_And || BO->getOpcode() == BO_Or) &&
BO->getLHS()->isKnownToHaveBooleanValue() &&
BO->getRHS()->isKnownToHaveBooleanValue() &&
BO->getLHS()->HasSideEffects(S.Context) &&
BO->getRHS()->HasSideEffects(S.Context)) {
SourceManager &SM = S.getSourceManager();
const LangOptions &LO = S.getLangOpts();
SourceLocation BLoc = BO->getOperatorLoc();
SourceLocation ELoc = Lexer::getLocForEndOfToken(BLoc, 0, SM, LO);
StringRef SR = clang::Lexer::getSourceText(
clang::CharSourceRange::getTokenRange(BLoc, ELoc), SM, LO);
// To reduce false positives, only issue the diagnostic if the operator
// is explicitly spelled as a punctuator. This suppresses the diagnostic
// when using 'bitand' or 'bitor' either as keywords in C++ or as macros
// in C, along with other macro spellings the user might invent.
if (SR.str() == "&" || SR.str() == "|") {
S.Diag(BO->getBeginLoc(), diag::warn_bitwise_instead_of_logical)
<< (BO->getOpcode() == BO_And ? "&" : "|")
<< OrigE->getSourceRange()
<< FixItHint::CreateReplacement(
BO->getOperatorLoc(),
(BO->getOpcode() == BO_And ? "&&" : "||"));
S.Diag(BO->getBeginLoc(), diag::note_cast_operand_to_int);
}
}
// For conditional operators, we analyze the arguments as if they
// were being fed directly into the output.
if (auto *CO = dyn_cast<AbstractConditionalOperator>(SourceExpr)) {
CheckConditionalOperator(S, CO, CC, T);
return;
}
// Check implicit argument conversions for function calls.
if (CallExpr *Call = dyn_cast<CallExpr>(SourceExpr))
CheckImplicitArgumentConversions(S, Call, CC);
// Go ahead and check any implicit conversions we might have skipped.
// The non-canonical typecheck is just an optimization;
// CheckImplicitConversion will filter out dead implicit conversions.
if (SourceExpr->getType() != T)
S.CheckImplicitConversion(SourceExpr, T, CC, nullptr, IsListInit);
// Now continue drilling into this expression.
if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
// The bound subexpressions in a PseudoObjectExpr are not reachable
// as transitive children.
// FIXME: Use a more uniform representation for this.
for (auto *SE : POE->semantics())
if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE))
WorkList.push_back({OVE->getSourceExpr(), CC, IsListInit});
}
// Skip past explicit casts.
if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) {
E = CE->getSubExpr()->IgnoreParenImpCasts();
if (!CE->getType()->isVoidType() && E->getType()->isAtomicType())
S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
WorkList.push_back({E, CC, IsListInit});
return;
}
if (auto *OutArgE = dyn_cast<HLSLOutArgExpr>(E)) {
WorkList.push_back({OutArgE->getArgLValue(), CC, IsListInit});
// The base expression is only used to initialize the parameter for
// arguments to `inout` parameters, so we only traverse down the base
// expression for `inout` cases.
if (OutArgE->isInOut())
WorkList.push_back(
{OutArgE->getCastedTemporary()->getSourceExpr(), CC, IsListInit});
WorkList.push_back({OutArgE->getWritebackCast(), CC, IsListInit});
return;
}
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
// Do a somewhat different check with comparison operators.
if (BO->isComparisonOp())
return AnalyzeComparison(S, BO);
// And with simple assignments.
if (BO->getOpcode() == BO_Assign)
return AnalyzeAssignment(S, BO);
// And with compound assignments.
if (BO->isAssignmentOp())
return AnalyzeCompoundAssignment(S, BO);
}
// These break the otherwise-useful invariant below. Fortunately,
// we don't really need to recurse into them, because any internal
// expressions should have been analyzed already when they were
// built into statements.
if (isa<StmtExpr>(E)) return;
// Don't descend into unevaluated contexts.
if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
// Now just recurse over the expression's children.
CC = E->getExprLoc();
BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
for (Stmt *SubStmt : E->children()) {
Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt);
if (!ChildExpr)
continue;
if (auto *CSE = dyn_cast<CoroutineSuspendExpr>(E))
if (ChildExpr == CSE->getOperand())
// Do not recurse over a CoroutineSuspendExpr's operand.
// The operand is also a subexpression of getCommonExpr(), and
// recursing into it directly would produce duplicate diagnostics.
continue;
if (IsLogicalAndOperator &&
isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
// Ignore checking string literals that are in logical and operators.
// This is a common pattern for asserts.
continue;
WorkList.push_back({ChildExpr, CC, IsListInit});
}
if (BO && BO->isLogicalOp()) {
Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
SubExpr = BO->getRHS()->IgnoreParenImpCasts();
if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
}
if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) {
if (U->getOpcode() == UO_LNot) {
::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
} else if (U->getOpcode() != UO_AddrOf) {
if (U->getSubExpr()->getType()->isAtomicType())
S.Diag(U->getSubExpr()->getBeginLoc(),
diag::warn_atomic_implicit_seq_cst);
}
}
}
/// AnalyzeImplicitConversions - Find and report any interesting
/// implicit conversions in the given expression. There are a couple
/// of competing diagnostics here, -Wconversion and -Wsign-compare.
static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC,
bool IsListInit/*= false*/) {
llvm::SmallVector<AnalyzeImplicitConversionsWorkItem, 16> WorkList;
WorkList.push_back({OrigE, CC, IsListInit});
while (!WorkList.empty())
AnalyzeImplicitConversions(S, WorkList.pop_back_val(), WorkList);
}
// Helper function for Sema::DiagnoseAlwaysNonNullPointer.
// Returns true when emitting a warning about taking the address of a reference.
static bool CheckForReference(Sema &SemaRef, const Expr *E,
const PartialDiagnostic &PD) {
E = E->IgnoreParenImpCasts();
const FunctionDecl *FD = nullptr;
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
if (!DRE->getDecl()->getType()->isReferenceType())
return false;
} else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
if (!M->getMemberDecl()->getType()->isReferenceType())
return false;
} else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType())
return false;
FD = Call->getDirectCallee();
} else {
return false;
}
SemaRef.Diag(E->getExprLoc(), PD);
// If possible, point to location of function.
if (FD) {
SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
}
return true;
}
// Returns true if the SourceLocation is expanded from any macro body.
// Returns false if the SourceLocation is invalid, is from not in a macro
// expansion, or is from expanded from a top-level macro argument.
static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
if (Loc.isInvalid())
return false;
while (Loc.isMacroID()) {
if (SM.isMacroBodyExpansion(Loc))
return true;
Loc = SM.getImmediateMacroCallerLoc(Loc);
}
return false;
}
void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
Expr::NullPointerConstantKind NullKind,
bool IsEqual, SourceRange Range) {
if (!E)
return;
// Don't warn inside macros.
if (E->getExprLoc().isMacroID()) {
const SourceManager &SM = getSourceManager();
if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
IsInAnyMacroBody(SM, Range.getBegin()))
return;
}
E = E->IgnoreImpCasts();
const bool IsCompare = NullKind != Expr::NPCK_NotNull;
if (isa<CXXThisExpr>(E)) {
unsigned DiagID = IsCompare ? diag::warn_this_null_compare
: diag::warn_this_bool_conversion;
Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
return;
}
bool IsAddressOf = false;
if (auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) {
if (UO->getOpcode() != UO_AddrOf)
return;
IsAddressOf = true;
E = UO->getSubExpr();
}
if (IsAddressOf) {
unsigned DiagID = IsCompare
? diag::warn_address_of_reference_null_compare
: diag::warn_address_of_reference_bool_conversion;
PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
<< IsEqual;
if (CheckForReference(*this, E, PD)) {
return;
}
}
auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) {
bool IsParam = isa<NonNullAttr>(NonnullAttr);
std::string Str;
llvm::raw_string_ostream S(Str);
E->printPretty(S, nullptr, getPrintingPolicy());
unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare
: diag::warn_cast_nonnull_to_bool;
Diag(E->getExprLoc(), DiagID) << IsParam << S.str()
<< E->getSourceRange() << Range << IsEqual;
Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam;
};
// If we have a CallExpr that is tagged with returns_nonnull, we can complain.
if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) {
if (auto *Callee = Call->getDirectCallee()) {
if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) {
ComplainAboutNonnullParamOrCall(A);
return;
}
}
}
// Complain if we are converting a lambda expression to a boolean value
// outside of instantiation.
if (!inTemplateInstantiation()) {
if (const auto *MCallExpr = dyn_cast<CXXMemberCallExpr>(E)) {
if (const auto *MRecordDecl = MCallExpr->getRecordDecl();
MRecordDecl && MRecordDecl->isLambda()) {
Diag(E->getExprLoc(), diag::warn_impcast_pointer_to_bool)
<< /*LambdaPointerConversionOperatorType=*/3
<< MRecordDecl->getSourceRange() << Range << IsEqual;
return;
}
}
}
// Expect to find a single Decl. Skip anything more complicated.
ValueDecl *D = nullptr;
if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
D = R->getDecl();
} else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
D = M->getMemberDecl();
}
// Weak Decls can be null.
if (!D || D->isWeak())
return;
// Check for parameter decl with nonnull attribute
if (const auto* PV = dyn_cast<ParmVarDecl>(D)) {
if (getCurFunction() &&
!getCurFunction()->ModifiedNonNullParams.count(PV)) {
if (const Attr *A = PV->getAttr<NonNullAttr>()) {
ComplainAboutNonnullParamOrCall(A);
return;
}
if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
// Skip function template not specialized yet.
if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
return;
auto ParamIter = llvm::find(FD->parameters(), PV);
assert(ParamIter != FD->param_end());
unsigned ParamNo = std::distance(FD->param_begin(), ParamIter);
for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
if (!NonNull->args_size()) {
ComplainAboutNonnullParamOrCall(NonNull);
return;
}
for (const ParamIdx &ArgNo : NonNull->args()) {
if (ArgNo.getASTIndex() == ParamNo) {
ComplainAboutNonnullParamOrCall(NonNull);
return;
}
}
}
}
}
}
QualType T = D->getType();
const bool IsArray = T->isArrayType();
const bool IsFunction = T->isFunctionType();
// Address of function is used to silence the function warning.
if (IsAddressOf && IsFunction) {
return;
}
// Found nothing.
if (!IsAddressOf && !IsFunction && !IsArray)
return;
// Pretty print the expression for the diagnostic.
std::string Str;
llvm::raw_string_ostream S(Str);
E->printPretty(S, nullptr, getPrintingPolicy());
unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
: diag::warn_impcast_pointer_to_bool;
enum {
AddressOf,
FunctionPointer,
ArrayPointer
} DiagType;
if (IsAddressOf)
DiagType = AddressOf;
else if (IsFunction)
DiagType = FunctionPointer;
else if (IsArray)
DiagType = ArrayPointer;
else
llvm_unreachable("Could not determine diagnostic.");
Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
<< Range << IsEqual;
if (!IsFunction)
return;
// Suggest '&' to silence the function warning.
Diag(E->getExprLoc(), diag::note_function_warning_silence)
<< FixItHint::CreateInsertion(E->getBeginLoc(), "&");
// Check to see if '()' fixit should be emitted.
QualType ReturnType;
UnresolvedSet<4> NonTemplateOverloads;
tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
if (ReturnType.isNull())
return;
if (IsCompare) {
// There are two cases here. If there is null constant, the only suggest
// for a pointer return type. If the null is 0, then suggest if the return
// type is a pointer or an integer type.
if (!ReturnType->isPointerType()) {
if (NullKind == Expr::NPCK_ZeroExpression ||
NullKind == Expr::NPCK_ZeroLiteral) {
if (!ReturnType->isIntegerType())
return;
} else {
return;
}
}
} else { // !IsCompare
// For function to bool, only suggest if the function pointer has bool
// return type.
if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
return;
}
Diag(E->getExprLoc(), diag::note_function_to_function_call)
<< FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()");
}
void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
// Don't diagnose in unevaluated contexts.
if (isUnevaluatedContext())
return;
// Don't diagnose for value- or type-dependent expressions.
if (E->isTypeDependent() || E->isValueDependent())
return;
// Check for array bounds violations in cases where the check isn't triggered
// elsewhere for other Expr types (like BinaryOperators), e.g. when an
// ArraySubscriptExpr is on the RHS of a variable initialization.
CheckArrayAccess(E);
// This is not the right CC for (e.g.) a variable initialization.
AnalyzeImplicitConversions(*this, E, CC);
}
void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
::CheckBoolLikeConversion(*this, E, CC);
}
void Sema::CheckForIntOverflow (const Expr *E) {
// Use a work list to deal with nested struct initializers.
SmallVector<const Expr *, 2> Exprs(1, E);
do {
const Expr *OriginalE = Exprs.pop_back_val();
const Expr *E = OriginalE->IgnoreParenCasts();
if (isa<BinaryOperator, UnaryOperator>(E)) {
E->EvaluateForOverflow(Context);
continue;
}
if (const auto *InitList = dyn_cast<InitListExpr>(OriginalE))
Exprs.append(InitList->inits().begin(), InitList->inits().end());
else if (isa<ObjCBoxedExpr>(OriginalE))
E->EvaluateForOverflow(Context);
else if (const auto *Call = dyn_cast<CallExpr>(E))
Exprs.append(Call->arg_begin(), Call->arg_end());
else if (const auto *Message = dyn_cast<ObjCMessageExpr>(E))
Exprs.append(Message->arg_begin(), Message->arg_end());
else if (const auto *Construct = dyn_cast<CXXConstructExpr>(E))
Exprs.append(Construct->arg_begin(), Construct->arg_end());
else if (const auto *Temporary = dyn_cast<CXXBindTemporaryExpr>(E))
Exprs.push_back(Temporary->getSubExpr());
else if (const auto *Array = dyn_cast<ArraySubscriptExpr>(E))
Exprs.push_back(Array->getIdx());
else if (const auto *Compound = dyn_cast<CompoundLiteralExpr>(E))
Exprs.push_back(Compound->getInitializer());
else if (const auto *New = dyn_cast<CXXNewExpr>(E);
New && New->isArray()) {
if (auto ArraySize = New->getArraySize())
Exprs.push_back(*ArraySize);
} else if (const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(OriginalE))
Exprs.push_back(MTE->getSubExpr());
} while (!Exprs.empty());
}
namespace {
/// Visitor for expressions which looks for unsequenced operations on the
/// same object.
class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> {
using Base = ConstEvaluatedExprVisitor<SequenceChecker>;
/// A tree of sequenced regions within an expression. Two regions are
/// unsequenced if one is an ancestor or a descendent of the other. When we
/// finish processing an expression with sequencing, such as a comma
/// expression, we fold its tree nodes into its parent, since they are
/// unsequenced with respect to nodes we will visit later.
class SequenceTree {
struct Value {
explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
unsigned Parent : 31;
LLVM_PREFERRED_TYPE(bool)
unsigned Merged : 1;
};
SmallVector<Value, 8> Values;
public:
/// A region within an expression which may be sequenced with respect
/// to some other region.
class Seq {
friend class SequenceTree;
unsigned Index;
explicit Seq(unsigned N) : Index(N) {}
public:
Seq() : Index(0) {}
};
SequenceTree() { Values.push_back(Value(0)); }
Seq root() const { return Seq(0); }
/// Create a new sequence of operations, which is an unsequenced
/// subset of \p Parent. This sequence of operations is sequenced with
/// respect to other children of \p Parent.
Seq allocate(Seq Parent) {
Values.push_back(Value(Parent.Index));
return Seq(Values.size() - 1);
}
/// Merge a sequence of operations into its parent.
void merge(Seq S) {
Values[S.Index].Merged = true;
}
/// Determine whether two operations are unsequenced. This operation
/// is asymmetric: \p Cur should be the more recent sequence, and \p Old
/// should have been merged into its parent as appropriate.
bool isUnsequenced(Seq Cur, Seq Old) {
unsigned C = representative(Cur.Index);
unsigned Target = representative(Old.Index);
while (C >= Target) {
if (C == Target)
return true;
C = Values[C].Parent;
}
return false;
}
private:
/// Pick a representative for a sequence.
unsigned representative(unsigned K) {
if (Values[K].Merged)
// Perform path compression as we go.
return Values[K].Parent = representative(Values[K].Parent);
return K;
}
};
/// An object for which we can track unsequenced uses.
using Object = const NamedDecl *;
/// Different flavors of object usage which we track. We only track the
/// least-sequenced usage of each kind.
enum UsageKind {
/// A read of an object. Multiple unsequenced reads are OK.
UK_Use,
/// A modification of an object which is sequenced before the value
/// computation of the expression, such as ++n in C++.
UK_ModAsValue,
/// A modification of an object which is not sequenced before the value
/// computation of the expression, such as n++.
UK_ModAsSideEffect,
UK_Count = UK_ModAsSideEffect + 1
};
/// Bundle together a sequencing region and the expression corresponding
/// to a specific usage. One Usage is stored for each usage kind in UsageInfo.
struct Usage {
const Expr *UsageExpr = nullptr;
SequenceTree::Seq Seq;
Usage() = default;
};
struct UsageInfo {
Usage Uses[UK_Count];
/// Have we issued a diagnostic for this object already?
bool Diagnosed = false;
UsageInfo();
};
using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>;
Sema &SemaRef;
/// Sequenced regions within the expression.
SequenceTree Tree;
/// Declaration modifications and references which we have seen.
UsageInfoMap UsageMap;
/// The region we are currently within.
SequenceTree::Seq Region;
/// Filled in with declarations which were modified as a side-effect
/// (that is, post-increment operations).
SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr;
/// Expressions to check later. We defer checking these to reduce
/// stack usage.
SmallVectorImpl<const Expr *> &WorkList;
/// RAII object wrapping the visitation of a sequenced subexpression of an
/// expression. At the end of this process, the side-effects of the evaluation
/// become sequenced with respect to the value computation of the result, so
/// we downgrade any UK_ModAsSideEffect within the evaluation to
/// UK_ModAsValue.
struct SequencedSubexpression {
SequencedSubexpression(SequenceChecker &Self)
: Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
Self.ModAsSideEffect = &ModAsSideEffect;
}
~SequencedSubexpression() {
for (const std::pair<Object, Usage> &M : llvm::reverse(ModAsSideEffect)) {
// Add a new usage with usage kind UK_ModAsValue, and then restore
// the previous usage with UK_ModAsSideEffect (thus clearing it if
// the previous one was empty).
UsageInfo &UI = Self.UsageMap[M.first];
auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect];
Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue);
SideEffectUsage = M.second;
}
Self.ModAsSideEffect = OldModAsSideEffect;
}
SequenceChecker &Self;
SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect;
};
/// RAII object wrapping the visitation of a subexpression which we might
/// choose to evaluate as a constant. If any subexpression is evaluated and
/// found to be non-constant, this allows us to suppress the evaluation of
/// the outer expression.
class EvaluationTracker {
public:
EvaluationTracker(SequenceChecker &Self)
: Self(Self), Prev(Self.EvalTracker) {
Self.EvalTracker = this;
}
~EvaluationTracker() {
Self.EvalTracker = Prev;
if (Prev)
Prev->EvalOK &= EvalOK;
}
bool evaluate(const Expr *E, bool &Result) {
if (!EvalOK || E->isValueDependent())
return false;
EvalOK = E->EvaluateAsBooleanCondition(
Result, Self.SemaRef.Context,
Self.SemaRef.isConstantEvaluatedContext());
return EvalOK;
}
private:
SequenceChecker &Self;
EvaluationTracker *Prev;
bool EvalOK = true;
} *EvalTracker = nullptr;
/// Find the object which is produced by the specified expression,
/// if any.
Object getObject(const Expr *E, bool Mod) const {
E = E->IgnoreParenCasts();
if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
return getObject(UO->getSubExpr(), Mod);
} else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
if (BO->getOpcode() == BO_Comma)
return getObject(BO->getRHS(), Mod);
if (Mod && BO->isAssignmentOp())
return getObject(BO->getLHS(), Mod);
} else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
// FIXME: Check for more interesting cases, like "x.n = ++x.n".
if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
return ME->getMemberDecl();
} else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
// FIXME: If this is a reference, map through to its value.
return DRE->getDecl();
return nullptr;
}
/// Note that an object \p O was modified or used by an expression
/// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for
/// the object \p O as obtained via the \p UsageMap.
void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) {
// Get the old usage for the given object and usage kind.
Usage &U = UI.Uses[UK];
if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) {
// If we have a modification as side effect and are in a sequenced
// subexpression, save the old Usage so that we can restore it later
// in SequencedSubexpression::~SequencedSubexpression.
if (UK == UK_ModAsSideEffect && ModAsSideEffect)
ModAsSideEffect->push_back(std::make_pair(O, U));
// Then record the new usage with the current sequencing region.
U.UsageExpr = UsageExpr;
U.Seq = Region;
}
}
/// Check whether a modification or use of an object \p O in an expression
/// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is
/// the \p UsageInfo for the object \p O as obtained via the \p UsageMap.
/// \p IsModMod is true when we are checking for a mod-mod unsequenced
/// usage and false we are checking for a mod-use unsequenced usage.
void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr,
UsageKind OtherKind, bool IsModMod) {
if (UI.Diagnosed)
return;
const Usage &U = UI.Uses[OtherKind];
if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq))
return;
const Expr *Mod = U.UsageExpr;
const Expr *ModOrUse = UsageExpr;
if (OtherKind == UK_Use)
std::swap(Mod, ModOrUse);
SemaRef.DiagRuntimeBehavior(
Mod->getExprLoc(), {Mod, ModOrUse},
SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod
: diag::warn_unsequenced_mod_use)
<< O << SourceRange(ModOrUse->getExprLoc()));
UI.Diagnosed = true;
}
// A note on note{Pre, Post}{Use, Mod}:
//
// (It helps to follow the algorithm with an expression such as
// "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced
// operations before C++17 and both are well-defined in C++17).
//
// When visiting a node which uses/modify an object we first call notePreUse
// or notePreMod before visiting its sub-expression(s). At this point the
// children of the current node have not yet been visited and so the eventual
// uses/modifications resulting from the children of the current node have not
// been recorded yet.
//
// We then visit the children of the current node. After that notePostUse or
// notePostMod is called. These will 1) detect an unsequenced modification
// as side effect (as in "k++ + k") and 2) add a new usage with the
// appropriate usage kind.
//
// We also have to be careful that some operation sequences modification as
// side effect as well (for example: || or ,). To account for this we wrap
// the visitation of such a sub-expression (for example: the LHS of || or ,)
// with SequencedSubexpression. SequencedSubexpression is an RAII object
// which record usages which are modifications as side effect, and then
// downgrade them (or more accurately restore the previous usage which was a
// modification as side effect) when exiting the scope of the sequenced
// subexpression.
void notePreUse(Object O, const Expr *UseExpr) {
UsageInfo &UI = UsageMap[O];
// Uses conflict with other modifications.
checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false);
}
void notePostUse(Object O, const Expr *UseExpr) {
UsageInfo &UI = UsageMap[O];
checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect,
/*IsModMod=*/false);
addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use);
}
void notePreMod(Object O, const Expr *ModExpr) {
UsageInfo &UI = UsageMap[O];
// Modifications conflict with other modifications and with uses.
checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true);
checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false);
}
void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) {
UsageInfo &UI = UsageMap[O];
checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect,
/*IsModMod=*/true);
addUsage(O, UI, ModExpr, /*UsageKind=*/UK);
}
public:
SequenceChecker(Sema &S, const Expr *E,
SmallVectorImpl<const Expr *> &WorkList)
: Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) {
Visit(E);
// Silence a -Wunused-private-field since WorkList is now unused.
// TODO: Evaluate if it can be used, and if not remove it.
(void)this->WorkList;
}
void VisitStmt(const Stmt *S) {
// Skip all statements which aren't expressions for now.
}
void VisitExpr(const Expr *E) {
// By default, just recurse to evaluated subexpressions.
Base::VisitStmt(E);
}
void VisitCoroutineSuspendExpr(const CoroutineSuspendExpr *CSE) {
for (auto *Sub : CSE->children()) {
const Expr *ChildExpr = dyn_cast_or_null<Expr>(Sub);
if (!ChildExpr)
continue;
if (ChildExpr == CSE->getOperand())
// Do not recurse over a CoroutineSuspendExpr's operand.
// The operand is also a subexpression of getCommonExpr(), and
// recursing into it directly could confuse object management
// for the sake of sequence tracking.
continue;
Visit(Sub);
}
}
void VisitCastExpr(const CastExpr *E) {
Object O = Object();
if (E->getCastKind() == CK_LValueToRValue)
O = getObject(E->getSubExpr(), false);
if (O)
notePreUse(O, E);
VisitExpr(E);
if (O)
notePostUse(O, E);
}
void VisitSequencedExpressions(const Expr *SequencedBefore,
const Expr *SequencedAfter) {
SequenceTree::Seq BeforeRegion = Tree.allocate(Region);
SequenceTree::Seq AfterRegion = Tree.allocate(Region);
SequenceTree::Seq OldRegion = Region;
{
SequencedSubexpression SeqBefore(*this);
Region = BeforeRegion;
Visit(SequencedBefore);
}
Region = AfterRegion;
Visit(SequencedAfter);
Region = OldRegion;
Tree.merge(BeforeRegion);
Tree.merge(AfterRegion);
}
void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) {
// C++17 [expr.sub]p1:
// The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The
// expression E1 is sequenced before the expression E2.
if (SemaRef.getLangOpts().CPlusPlus17)
VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS());
else {
Visit(ASE->getLHS());
Visit(ASE->getRHS());
}
}
void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
void VisitBinPtrMem(const BinaryOperator *BO) {
// C++17 [expr.mptr.oper]p4:
// Abbreviating pm-expression.*cast-expression as E1.*E2, [...]
// the expression E1 is sequenced before the expression E2.
if (SemaRef.getLangOpts().CPlusPlus17)
VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
else {
Visit(BO->getLHS());
Visit(BO->getRHS());
}
}
void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); }
void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); }
void VisitBinShlShr(const BinaryOperator *BO) {
// C++17 [expr.shift]p4:
// The expression E1 is sequenced before the expression E2.
if (SemaRef.getLangOpts().CPlusPlus17)
VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
else {
Visit(BO->getLHS());
Visit(BO->getRHS());
}
}
void VisitBinComma(const BinaryOperator *BO) {
// C++11 [expr.comma]p1:
// Every value computation and side effect associated with the left
// expression is sequenced before every value computation and side
// effect associated with the right expression.
VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
}
void VisitBinAssign(const BinaryOperator *BO) {
SequenceTree::Seq RHSRegion;
SequenceTree::Seq LHSRegion;
if (SemaRef.getLangOpts().CPlusPlus17) {
RHSRegion = Tree.allocate(Region);
LHSRegion = Tree.allocate(Region);
} else {
RHSRegion = Region;
LHSRegion = Region;
}
SequenceTree::Seq OldRegion = Region;
// C++11 [expr.ass]p1:
// [...] the assignment is sequenced after the value computation
// of the right and left operands, [...]
//
// so check it before inspecting the operands and update the
// map afterwards.
Object O = getObject(BO->getLHS(), /*Mod=*/true);
if (O)
notePreMod(O, BO);
if (SemaRef.getLangOpts().CPlusPlus17) {
// C++17 [expr.ass]p1:
// [...] The right operand is sequenced before the left operand. [...]
{
SequencedSubexpression SeqBefore(*this);
Region = RHSRegion;
Visit(BO->getRHS());
}
Region = LHSRegion;
Visit(BO->getLHS());
if (O && isa<CompoundAssignOperator>(BO))
notePostUse(O, BO);
} else {
// C++11 does not specify any sequencing between the LHS and RHS.
Region = LHSRegion;
Visit(BO->getLHS());
if (O && isa<CompoundAssignOperator>(BO))
notePostUse(O, BO);
Region = RHSRegion;
Visit(BO->getRHS());
}
// C++11 [expr.ass]p1:
// the assignment is sequenced [...] before the value computation of the
// assignment expression.
// C11 6.5.16/3 has no such rule.
Region = OldRegion;
if (O)
notePostMod(O, BO,
SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
: UK_ModAsSideEffect);
if (SemaRef.getLangOpts().CPlusPlus17) {
Tree.merge(RHSRegion);
Tree.merge(LHSRegion);
}
}
void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) {
VisitBinAssign(CAO);
}
void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
void VisitUnaryPreIncDec(const UnaryOperator *UO) {
Object O = getObject(UO->getSubExpr(), true);
if (!O)
return VisitExpr(UO);
notePreMod(O, UO);
Visit(UO->getSubExpr());
// C++11 [expr.pre.incr]p1:
// the expression ++x is equivalent to x+=1
notePostMod(O, UO,
SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
: UK_ModAsSideEffect);
}
void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
void VisitUnaryPostIncDec(const UnaryOperator *UO) {
Object O = getObject(UO->getSubExpr(), true);
if (!O)
return VisitExpr(UO);
notePreMod(O, UO);
Visit(UO->getSubExpr());
notePostMod(O, UO, UK_ModAsSideEffect);
}
void VisitBinLOr(const BinaryOperator *BO) {
// C++11 [expr.log.or]p2:
// If the second expression is evaluated, every value computation and
// side effect associated with the first expression is sequenced before
// every value computation and side effect associated with the
// second expression.
SequenceTree::Seq LHSRegion = Tree.allocate(Region);
SequenceTree::Seq RHSRegion = Tree.allocate(Region);
SequenceTree::Seq OldRegion = Region;
EvaluationTracker Eval(*this);
{
SequencedSubexpression Sequenced(*this);
Region = LHSRegion;
Visit(BO->getLHS());
}
// C++11 [expr.log.or]p1:
// [...] the second operand is not evaluated if the first operand
// evaluates to true.
bool EvalResult = false;
bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
bool ShouldVisitRHS = !EvalOK || !EvalResult;
if (ShouldVisitRHS) {
Region = RHSRegion;
Visit(BO->getRHS());
}
Region = OldRegion;
Tree.merge(LHSRegion);
Tree.merge(RHSRegion);
}
void VisitBinLAnd(const BinaryOperator *BO) {
// C++11 [expr.log.and]p2:
// If the second expression is evaluated, every value computation and
// side effect associated with the first expression is sequenced before
// every value computation and side effect associated with the
// second expression.
SequenceTree::Seq LHSRegion = Tree.allocate(Region);
SequenceTree::Seq RHSRegion = Tree.allocate(Region);
SequenceTree::Seq OldRegion = Region;
EvaluationTracker Eval(*this);
{
SequencedSubexpression Sequenced(*this);
Region = LHSRegion;
Visit(BO->getLHS());
}
// C++11 [expr.log.and]p1:
// [...] the second operand is not evaluated if the first operand is false.
bool EvalResult = false;
bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
bool ShouldVisitRHS = !EvalOK || EvalResult;
if (ShouldVisitRHS) {
Region = RHSRegion;
Visit(BO->getRHS());
}
Region = OldRegion;
Tree.merge(LHSRegion);
Tree.merge(RHSRegion);
}
void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) {
// C++11 [expr.cond]p1:
// [...] Every value computation and side effect associated with the first
// expression is sequenced before every value computation and side effect
// associated with the second or third expression.
SequenceTree::Seq ConditionRegion = Tree.allocate(Region);
// No sequencing is specified between the true and false expression.
// However since exactly one of both is going to be evaluated we can
// consider them to be sequenced. This is needed to avoid warning on
// something like "x ? y+= 1 : y += 2;" in the case where we will visit
// both the true and false expressions because we can't evaluate x.
// This will still allow us to detect an expression like (pre C++17)
// "(x ? y += 1 : y += 2) = y".
//
// We don't wrap the visitation of the true and false expression with
// SequencedSubexpression because we don't want to downgrade modifications
// as side effect in the true and false expressions after the visition
// is done. (for example in the expression "(x ? y++ : y++) + y" we should
// not warn between the two "y++", but we should warn between the "y++"
// and the "y".
SequenceTree::Seq TrueRegion = Tree.allocate(Region);
SequenceTree::Seq FalseRegion = Tree.allocate(Region);
SequenceTree::Seq OldRegion = Region;
EvaluationTracker Eval(*this);
{
SequencedSubexpression Sequenced(*this);
Region = ConditionRegion;
Visit(CO->getCond());
}
// C++11 [expr.cond]p1:
// [...] The first expression is contextually converted to bool (Clause 4).
// It is evaluated and if it is true, the result of the conditional
// expression is the value of the second expression, otherwise that of the
// third expression. Only one of the second and third expressions is
// evaluated. [...]
bool EvalResult = false;
bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult);
bool ShouldVisitTrueExpr = !EvalOK || EvalResult;
bool ShouldVisitFalseExpr = !EvalOK || !EvalResult;
if (ShouldVisitTrueExpr) {
Region = TrueRegion;
Visit(CO->getTrueExpr());
}
if (ShouldVisitFalseExpr) {
Region = FalseRegion;
Visit(CO->getFalseExpr());
}
Region = OldRegion;
Tree.merge(ConditionRegion);
Tree.merge(TrueRegion);
Tree.merge(FalseRegion);
}
void VisitCallExpr(const CallExpr *CE) {
// FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
if (CE->isUnevaluatedBuiltinCall(Context))
return;
// C++11 [intro.execution]p15:
// When calling a function [...], every value computation and side effect
// associated with any argument expression, or with the postfix expression
// designating the called function, is sequenced before execution of every
// expression or statement in the body of the function [and thus before
// the value computation of its result].
SequencedSubexpression Sequenced(*this);
SemaRef.runWithSufficientStackSpace(CE->getExprLoc(), [&] {
// C++17 [expr.call]p5
// The postfix-expression is sequenced before each expression in the
// expression-list and any default argument. [...]
SequenceTree::Seq CalleeRegion;
SequenceTree::Seq OtherRegion;
if (SemaRef.getLangOpts().CPlusPlus17) {
CalleeRegion = Tree.allocate(Region);
OtherRegion = Tree.allocate(Region);
} else {
CalleeRegion = Region;
OtherRegion = Region;
}
SequenceTree::Seq OldRegion = Region;
// Visit the callee expression first.
Region = CalleeRegion;
if (SemaRef.getLangOpts().CPlusPlus17) {
SequencedSubexpression Sequenced(*this);
Visit(CE->getCallee());
} else {
Visit(CE->getCallee());
}
// Then visit the argument expressions.
Region = OtherRegion;
for (const Expr *Argument : CE->arguments())
Visit(Argument);
Region = OldRegion;
if (SemaRef.getLangOpts().CPlusPlus17) {
Tree.merge(CalleeRegion);
Tree.merge(OtherRegion);
}
});
}
void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CXXOCE) {
// C++17 [over.match.oper]p2:
// [...] the operator notation is first transformed to the equivalent
// function-call notation as summarized in Table 12 (where @ denotes one
// of the operators covered in the specified subclause). However, the
// operands are sequenced in the order prescribed for the built-in
// operator (Clause 8).
//
// From the above only overloaded binary operators and overloaded call
// operators have sequencing rules in C++17 that we need to handle
// separately.
if (!SemaRef.getLangOpts().CPlusPlus17 ||
(CXXOCE->getNumArgs() != 2 && CXXOCE->getOperator() != OO_Call))
return VisitCallExpr(CXXOCE);
enum {
NoSequencing,
LHSBeforeRHS,
RHSBeforeLHS,
LHSBeforeRest
} SequencingKind;
switch (CXXOCE->getOperator()) {
case OO_Equal:
case OO_PlusEqual:
case OO_MinusEqual:
case OO_StarEqual:
case OO_SlashEqual:
case OO_PercentEqual:
case OO_CaretEqual:
case OO_AmpEqual:
case OO_PipeEqual:
case OO_LessLessEqual:
case OO_GreaterGreaterEqual:
SequencingKind = RHSBeforeLHS;
break;
case OO_LessLess:
case OO_GreaterGreater:
case OO_AmpAmp:
case OO_PipePipe:
case OO_Comma:
case OO_ArrowStar:
case OO_Subscript:
SequencingKind = LHSBeforeRHS;
break;
case OO_Call:
SequencingKind = LHSBeforeRest;
break;
default:
SequencingKind = NoSequencing;
break;
}
if (SequencingKind == NoSequencing)
return VisitCallExpr(CXXOCE);
// This is a call, so all subexpressions are sequenced before the result.
SequencedSubexpression Sequenced(*this);
SemaRef.runWithSufficientStackSpace(CXXOCE->getExprLoc(), [&] {
assert(SemaRef.getLangOpts().CPlusPlus17 &&
"Should only get there with C++17 and above!");
assert((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) &&
"Should only get there with an overloaded binary operator"
" or an overloaded call operator!");
if (SequencingKind == LHSBeforeRest) {
assert(CXXOCE->getOperator() == OO_Call &&
"We should only have an overloaded call operator here!");
// This is very similar to VisitCallExpr, except that we only have the
// C++17 case. The postfix-expression is the first argument of the
// CXXOperatorCallExpr. The expressions in the expression-list, if any,
// are in the following arguments.
//
// Note that we intentionally do not visit the callee expression since
// it is just a decayed reference to a function.
SequenceTree::Seq PostfixExprRegion = Tree.allocate(Region);
SequenceTree::Seq ArgsRegion = Tree.allocate(Region);
SequenceTree::Seq OldRegion = Region;
assert(CXXOCE->getNumArgs() >= 1 &&
"An overloaded call operator must have at least one argument"
" for the postfix-expression!");
const Expr *PostfixExpr = CXXOCE->getArgs()[0];
llvm::ArrayRef<const Expr *> Args(CXXOCE->getArgs() + 1,
CXXOCE->getNumArgs() - 1);
// Visit the postfix-expression first.
{
Region = PostfixExprRegion;
SequencedSubexpression Sequenced(*this);
Visit(PostfixExpr);
}
// Then visit the argument expressions.
Region = ArgsRegion;
for (const Expr *Arg : Args)
Visit(Arg);
Region = OldRegion;
Tree.merge(PostfixExprRegion);
Tree.merge(ArgsRegion);
} else {
assert(CXXOCE->getNumArgs() == 2 &&
"Should only have two arguments here!");
assert((SequencingKind == LHSBeforeRHS ||
SequencingKind == RHSBeforeLHS) &&
"Unexpected sequencing kind!");
// We do not visit the callee expression since it is just a decayed
// reference to a function.
const Expr *E1 = CXXOCE->getArg(0);
const Expr *E2 = CXXOCE->getArg(1);
if (SequencingKind == RHSBeforeLHS)
std::swap(E1, E2);
return VisitSequencedExpressions(E1, E2);
}
});
}
void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
// This is a call, so all subexpressions are sequenced before the result.
SequencedSubexpression Sequenced(*this);
if (!CCE->isListInitialization())
return VisitExpr(CCE);
// In C++11, list initializations are sequenced.
SequenceExpressionsInOrder(
llvm::ArrayRef(CCE->getArgs(), CCE->getNumArgs()));
}
void VisitInitListExpr(const InitListExpr *ILE) {
if (!SemaRef.getLangOpts().CPlusPlus11)
return VisitExpr(ILE);
// In C++11, list initializations are sequenced.
SequenceExpressionsInOrder(ILE->inits());
}
void VisitCXXParenListInitExpr(const CXXParenListInitExpr *PLIE) {
// C++20 parenthesized list initializations are sequenced. See C++20
// [decl.init.general]p16.5 and [decl.init.general]p16.6.2.2.
SequenceExpressionsInOrder(PLIE->getInitExprs());
}
private:
void SequenceExpressionsInOrder(ArrayRef<const Expr *> ExpressionList) {
SmallVector<SequenceTree::Seq, 32> Elts;
SequenceTree::Seq Parent = Region;
for (const Expr *E : ExpressionList) {
if (!E)
continue;
Region = Tree.allocate(Parent);
Elts.push_back(Region);
Visit(E);
}
// Forget that the initializers are sequenced.
Region = Parent;
for (unsigned I = 0; I < Elts.size(); ++I)
Tree.merge(Elts[I]);
}
};
SequenceChecker::UsageInfo::UsageInfo() = default;
} // namespace
void Sema::CheckUnsequencedOperations(const Expr *E) {
SmallVector<const Expr *, 8> WorkList;
WorkList.push_back(E);
while (!WorkList.empty()) {
const Expr *Item = WorkList.pop_back_val();
SequenceChecker(*this, Item, WorkList);
}
}
void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
bool IsConstexpr) {
llvm::SaveAndRestore ConstantContext(isConstantEvaluatedOverride,
IsConstexpr || isa<ConstantExpr>(E));
CheckImplicitConversions(E, CheckLoc);
if (!E->isInstantiationDependent())
CheckUnsequencedOperations(E);
if (!IsConstexpr && !E->isValueDependent())
CheckForIntOverflow(E);
DiagnoseMisalignedMembers();
}
void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
FieldDecl *BitField,
Expr *Init) {
(void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
}
static void diagnoseArrayStarInParamType(Sema &S, QualType PType,
SourceLocation Loc) {
if (!PType->isVariablyModifiedType())
return;
if (const auto *PointerTy = dyn_cast<PointerType>(PType)) {
diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc);
return;
}
if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) {
diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc);
return;
}
if (const auto *ParenTy = dyn_cast<ParenType>(PType)) {
diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc);
return;
}
const ArrayType *AT = S.Context.getAsArrayType(PType);
if (!AT)
return;
if (AT->getSizeModifier() != ArraySizeModifier::Star) {
diagnoseArrayStarInParamType(S, AT->getElementType(), Loc);
return;
}
S.Diag(Loc, diag::err_array_star_in_function_definition);
}
bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
bool CheckParameterNames) {
bool HasInvalidParm = false;
for (ParmVarDecl *Param : Parameters) {
assert(Param && "null in a parameter list");
// C99 6.7.5.3p4: the parameters in a parameter type list in a
// function declarator that is part of a function definition of
// that function shall not have incomplete type.
//
// C++23 [dcl.fct.def.general]/p2
// The type of a parameter [...] for a function definition
// shall not be a (possibly cv-qualified) class type that is incomplete
// or abstract within the function body unless the function is deleted.
if (!Param->isInvalidDecl() &&
(RequireCompleteType(Param->getLocation(), Param->getType(),
diag::err_typecheck_decl_incomplete_type) ||
RequireNonAbstractType(Param->getBeginLoc(), Param->getOriginalType(),
diag::err_abstract_type_in_decl,
AbstractParamType))) {
Param->setInvalidDecl();
HasInvalidParm = true;
}
// C99 6.9.1p5: If the declarator includes a parameter type list, the
// declaration of each parameter shall include an identifier.
if (CheckParameterNames && Param->getIdentifier() == nullptr &&
!Param->isImplicit() && !getLangOpts().CPlusPlus) {
// Diagnose this as an extension in C17 and earlier.
if (!getLangOpts().C23)
Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c23);
}
// C99 6.7.5.3p12:
// If the function declarator is not part of a definition of that
// function, parameters may have incomplete type and may use the [*]
// notation in their sequences of declarator specifiers to specify
// variable length array types.
QualType PType = Param->getOriginalType();
// FIXME: This diagnostic should point the '[*]' if source-location
// information is added for it.
diagnoseArrayStarInParamType(*this, PType, Param->getLocation());
// If the parameter is a c++ class type and it has to be destructed in the
// callee function, declare the destructor so that it can be called by the
// callee function. Do not perform any direct access check on the dtor here.
if (!Param->isInvalidDecl()) {
if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) {
if (!ClassDecl->isInvalidDecl() &&
!ClassDecl->hasIrrelevantDestructor() &&
!ClassDecl->isDependentContext() &&
ClassDecl->isParamDestroyedInCallee()) {
CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
MarkFunctionReferenced(Param->getLocation(), Destructor);
DiagnoseUseOfDecl(Destructor, Param->getLocation());
}
}
}
// Parameters with the pass_object_size attribute only need to be marked
// constant at function definitions. Because we lack information about
// whether we're on a declaration or definition when we're instantiating the
// attribute, we need to check for constness here.
if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>())
if (!Param->getType().isConstQualified())
Diag(Param->getLocation(), diag::err_attribute_pointers_only)
<< Attr->getSpelling() << 1;
// Check for parameter names shadowing fields from the class.
if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) {
// The owning context for the parameter should be the function, but we
// want to see if this function's declaration context is a record.
DeclContext *DC = Param->getDeclContext();
if (DC && DC->isFunctionOrMethod()) {
if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(),
RD, /*DeclIsField*/ false);
}
}
if (!Param->isInvalidDecl() &&
Param->getOriginalType()->isWebAssemblyTableType()) {
Param->setInvalidDecl();
HasInvalidParm = true;
Diag(Param->getLocation(), diag::err_wasm_table_as_function_parameter);
}
}
return HasInvalidParm;
}
std::optional<std::pair<
CharUnits, CharUnits>> static getBaseAlignmentAndOffsetFromPtr(const Expr
*E,
ASTContext
&Ctx);
/// Compute the alignment and offset of the base class object given the
/// derived-to-base cast expression and the alignment and offset of the derived
/// class object.
static std::pair<CharUnits, CharUnits>
getDerivedToBaseAlignmentAndOffset(const CastExpr *CE, QualType DerivedType,
CharUnits BaseAlignment, CharUnits Offset,
ASTContext &Ctx) {
for (auto PathI = CE->path_begin(), PathE = CE->path_end(); PathI != PathE;
++PathI) {
const CXXBaseSpecifier *Base = *PathI;
const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
if (Base->isVirtual()) {
// The complete object may have a lower alignment than the non-virtual
// alignment of the base, in which case the base may be misaligned. Choose
// the smaller of the non-virtual alignment and BaseAlignment, which is a
// conservative lower bound of the complete object alignment.
CharUnits NonVirtualAlignment =
Ctx.getASTRecordLayout(BaseDecl).getNonVirtualAlignment();
BaseAlignment = std::min(BaseAlignment, NonVirtualAlignment);
Offset = CharUnits::Zero();
} else {
const ASTRecordLayout &RL =
Ctx.getASTRecordLayout(DerivedType->getAsCXXRecordDecl());
Offset += RL.getBaseClassOffset(BaseDecl);
}
DerivedType = Base->getType();
}
return std::make_pair(BaseAlignment, Offset);
}
/// Compute the alignment and offset of a binary additive operator.
static std::optional<std::pair<CharUnits, CharUnits>>
getAlignmentAndOffsetFromBinAddOrSub(const Expr *PtrE, const Expr *IntE,
bool IsSub, ASTContext &Ctx) {
QualType PointeeType = PtrE->getType()->getPointeeType();
if (!PointeeType->isConstantSizeType())
return std::nullopt;
auto P = getBaseAlignmentAndOffsetFromPtr(PtrE, Ctx);
if (!P)
return std::nullopt;
CharUnits EltSize = Ctx.getTypeSizeInChars(PointeeType);
if (std::optional<llvm::APSInt> IdxRes = IntE->getIntegerConstantExpr(Ctx)) {
CharUnits Offset = EltSize * IdxRes->getExtValue();
if (IsSub)
Offset = -Offset;
return std::make_pair(P->first, P->second + Offset);
}
// If the integer expression isn't a constant expression, compute the lower
// bound of the alignment using the alignment and offset of the pointer
// expression and the element size.
return std::make_pair(
P->first.alignmentAtOffset(P->second).alignmentAtOffset(EltSize),
CharUnits::Zero());
}
/// This helper function takes an lvalue expression and returns the alignment of
/// a VarDecl and a constant offset from the VarDecl.
std::optional<std::pair<
CharUnits,
CharUnits>> static getBaseAlignmentAndOffsetFromLValue(const Expr *E,
ASTContext &Ctx) {
E = E->IgnoreParens();
switch (E->getStmtClass()) {
default:
break;
case Stmt::CStyleCastExprClass:
case Stmt::CXXStaticCastExprClass:
case Stmt::ImplicitCastExprClass: {
auto *CE = cast<CastExpr>(E);
const Expr *From = CE->getSubExpr();
switch (CE->getCastKind()) {
default:
break;
case CK_NoOp:
return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
case CK_UncheckedDerivedToBase:
case CK_DerivedToBase: {
auto P = getBaseAlignmentAndOffsetFromLValue(From, Ctx);
if (!P)
break;
return getDerivedToBaseAlignmentAndOffset(CE, From->getType(), P->first,
P->second, Ctx);
}
}
break;
}
case Stmt::ArraySubscriptExprClass: {
auto *ASE = cast<ArraySubscriptExpr>(E);
return getAlignmentAndOffsetFromBinAddOrSub(ASE->getBase(), ASE->getIdx(),
false, Ctx);
}
case Stmt::DeclRefExprClass: {
if (auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
// FIXME: If VD is captured by copy or is an escaping __block variable,
// use the alignment of VD's type.
if (!VD->getType()->isReferenceType()) {
// Dependent alignment cannot be resolved -> bail out.
if (VD->hasDependentAlignment())
break;
return std::make_pair(Ctx.getDeclAlign(VD), CharUnits::Zero());
}
if (VD->hasInit())
return getBaseAlignmentAndOffsetFromLValue(VD->getInit(), Ctx);
}
break;
}
case Stmt::MemberExprClass: {
auto *ME = cast<MemberExpr>(E);
auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
if (!FD || FD->getType()->isReferenceType() ||
FD->getParent()->isInvalidDecl())
break;
std::optional<std::pair<CharUnits, CharUnits>> P;
if (ME->isArrow())
P = getBaseAlignmentAndOffsetFromPtr(ME->getBase(), Ctx);
else
P = getBaseAlignmentAndOffsetFromLValue(ME->getBase(), Ctx);
if (!P)
break;
const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent());
uint64_t Offset = Layout.getFieldOffset(FD->getFieldIndex());
return std::make_pair(P->first,
P->second + CharUnits::fromQuantity(Offset));
}
case Stmt::UnaryOperatorClass: {
auto *UO = cast<UnaryOperator>(E);
switch (UO->getOpcode()) {
default:
break;
case UO_Deref:
return getBaseAlignmentAndOffsetFromPtr(UO->getSubExpr(), Ctx);
}
break;
}
case Stmt::BinaryOperatorClass: {
auto *BO = cast<BinaryOperator>(E);
auto Opcode = BO->getOpcode();
switch (Opcode) {
default:
break;
case BO_Comma:
return getBaseAlignmentAndOffsetFromLValue(BO->getRHS(), Ctx);
}
break;
}
}
return std::nullopt;
}
/// This helper function takes a pointer expression and returns the alignment of
/// a VarDecl and a constant offset from the VarDecl.
std::optional<std::pair<
CharUnits, CharUnits>> static getBaseAlignmentAndOffsetFromPtr(const Expr
*E,
ASTContext
&Ctx) {
E = E->IgnoreParens();
switch (E->getStmtClass()) {
default:
break;
case Stmt::CStyleCastExprClass:
case Stmt::CXXStaticCastExprClass:
case Stmt::ImplicitCastExprClass: {
auto *CE = cast<CastExpr>(E);
const Expr *From = CE->getSubExpr();
switch (CE->getCastKind()) {
default:
break;
case CK_NoOp:
return getBaseAlignmentAndOffsetFromPtr(From, Ctx);
case CK_ArrayToPointerDecay:
return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
case CK_UncheckedDerivedToBase:
case CK_DerivedToBase: {
auto P = getBaseAlignmentAndOffsetFromPtr(From, Ctx);
if (!P)
break;
return getDerivedToBaseAlignmentAndOffset(
CE, From->getType()->getPointeeType(), P->first, P->second, Ctx);
}
}
break;
}
case Stmt::CXXThisExprClass: {
auto *RD = E->getType()->getPointeeType()->getAsCXXRecordDecl();
CharUnits Alignment = Ctx.getASTRecordLayout(RD).getNonVirtualAlignment();
return std::make_pair(Alignment, CharUnits::Zero());
}
case Stmt::UnaryOperatorClass: {
auto *UO = cast<UnaryOperator>(E);
if (UO->getOpcode() == UO_AddrOf)
return getBaseAlignmentAndOffsetFromLValue(UO->getSubExpr(), Ctx);
break;
}
case Stmt::BinaryOperatorClass: {
auto *BO = cast<BinaryOperator>(E);
auto Opcode = BO->getOpcode();
switch (Opcode) {
default:
break;
case BO_Add:
case BO_Sub: {
const Expr *LHS = BO->getLHS(), *RHS = BO->getRHS();
if (Opcode == BO_Add && !RHS->getType()->isIntegralOrEnumerationType())
std::swap(LHS, RHS);
return getAlignmentAndOffsetFromBinAddOrSub(LHS, RHS, Opcode == BO_Sub,
Ctx);
}
case BO_Comma:
return getBaseAlignmentAndOffsetFromPtr(BO->getRHS(), Ctx);
}
break;
}
}
return std::nullopt;
}
static CharUnits getPresumedAlignmentOfPointer(const Expr *E, Sema &S) {
// See if we can compute the alignment of a VarDecl and an offset from it.
std::optional<std::pair<CharUnits, CharUnits>> P =
getBaseAlignmentAndOffsetFromPtr(E, S.Context);
if (P)
return P->first.alignmentAtOffset(P->second);
// If that failed, return the type's alignment.
return S.Context.getTypeAlignInChars(E->getType()->getPointeeType());
}
void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
// This is actually a lot of work to potentially be doing on every
// cast; don't do it if we're ignoring -Wcast_align (as is the default).
if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
return;
// Ignore dependent types.
if (T->isDependentType() || Op->getType()->isDependentType())
return;
// Require that the destination be a pointer type.
const PointerType *DestPtr = T->getAs<PointerType>();
if (!DestPtr) return;
// If the destination has alignment 1, we're done.
QualType DestPointee = DestPtr->getPointeeType();
if (DestPointee->isIncompleteType()) return;
CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
if (DestAlign.isOne()) return;
// Require that the source be a pointer type.
const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
if (!SrcPtr) return;
QualType SrcPointee = SrcPtr->getPointeeType();
// Explicitly allow casts from cv void*. We already implicitly
// allowed casts to cv void*, since they have alignment 1.
// Also allow casts involving incomplete types, which implicitly
// includes 'void'.
if (SrcPointee->isIncompleteType()) return;
CharUnits SrcAlign = getPresumedAlignmentOfPointer(Op, *this);
if (SrcAlign >= DestAlign) return;
Diag(TRange.getBegin(), diag::warn_cast_align)
<< Op->getType() << T
<< static_cast<unsigned>(SrcAlign.getQuantity())
<< static_cast<unsigned>(DestAlign.getQuantity())
<< TRange << Op->getSourceRange();
}
void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
const ArraySubscriptExpr *ASE,
bool AllowOnePastEnd, bool IndexNegated) {
// Already diagnosed by the constant evaluator.
if (isConstantEvaluatedContext())
return;
IndexExpr = IndexExpr->IgnoreParenImpCasts();
if (IndexExpr->isValueDependent())
return;
const Type *EffectiveType =
BaseExpr->getType()->getPointeeOrArrayElementType();
BaseExpr = BaseExpr->IgnoreParenCasts();
const ConstantArrayType *ArrayTy =
Context.getAsConstantArrayType(BaseExpr->getType());
LangOptions::StrictFlexArraysLevelKind
StrictFlexArraysLevel = getLangOpts().getStrictFlexArraysLevel();
const Type *BaseType =
ArrayTy == nullptr ? nullptr : ArrayTy->getElementType().getTypePtr();
bool IsUnboundedArray =
BaseType == nullptr || BaseExpr->isFlexibleArrayMemberLike(
Context, StrictFlexArraysLevel,
/*IgnoreTemplateOrMacroSubstitution=*/true);
if (EffectiveType->isDependentType() ||
(!IsUnboundedArray && BaseType->isDependentType()))
return;
Expr::EvalResult Result;
if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects))
return;
llvm::APSInt index = Result.Val.getInt();
if (IndexNegated) {
index.setIsUnsigned(false);
index = -index;
}
if (IsUnboundedArray) {
if (EffectiveType->isFunctionType())
return;
if (index.isUnsigned() || !index.isNegative()) {
const auto &ASTC = getASTContext();
unsigned AddrBits = ASTC.getTargetInfo().getPointerWidth(
EffectiveType->getCanonicalTypeInternal().getAddressSpace());
if (index.getBitWidth() < AddrBits)
index = index.zext(AddrBits);
std::optional<CharUnits> ElemCharUnits =
ASTC.getTypeSizeInCharsIfKnown(EffectiveType);
// PR50741 - If EffectiveType has unknown size (e.g., if it's a void
// pointer) bounds-checking isn't meaningful.
if (!ElemCharUnits || ElemCharUnits->isZero())
return;
llvm::APInt ElemBytes(index.getBitWidth(), ElemCharUnits->getQuantity());
// If index has more active bits than address space, we already know
// we have a bounds violation to warn about. Otherwise, compute
// address of (index + 1)th element, and warn about bounds violation
// only if that address exceeds address space.
if (index.getActiveBits() <= AddrBits) {
bool Overflow;
llvm::APInt Product(index);
Product += 1;
Product = Product.umul_ov(ElemBytes, Overflow);
if (!Overflow && Product.getActiveBits() <= AddrBits)
return;
}
// Need to compute max possible elements in address space, since that
// is included in diag message.
llvm::APInt MaxElems = llvm::APInt::getMaxValue(AddrBits);
MaxElems = MaxElems.zext(std::max(AddrBits + 1, ElemBytes.getBitWidth()));
MaxElems += 1;
ElemBytes = ElemBytes.zextOrTrunc(MaxElems.getBitWidth());
MaxElems = MaxElems.udiv(ElemBytes);
unsigned DiagID =
ASE ? diag::warn_array_index_exceeds_max_addressable_bounds
: diag::warn_ptr_arith_exceeds_max_addressable_bounds;
// Diag message shows element size in bits and in "bytes" (platform-
// dependent CharUnits)
DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
PDiag(DiagID)
<< toString(index, 10, true) << AddrBits
<< (unsigned)ASTC.toBits(*ElemCharUnits)
<< toString(ElemBytes, 10, false)
<< toString(MaxElems, 10, false)
<< (unsigned)MaxElems.getLimitedValue(~0U)
<< IndexExpr->getSourceRange());
const NamedDecl *ND = nullptr;
// Try harder to find a NamedDecl to point at in the note.
while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr))
BaseExpr = ASE->getBase()->IgnoreParenCasts();
if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
ND = DRE->getDecl();
if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr))
ND = ME->getMemberDecl();
if (ND)
DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
PDiag(diag::note_array_declared_here) << ND);
}
return;
}
if (index.isUnsigned() || !index.isNegative()) {
// It is possible that the type of the base expression after
// IgnoreParenCasts is incomplete, even though the type of the base
// expression before IgnoreParenCasts is complete (see PR39746 for an
// example). In this case we have no information about whether the array
// access exceeds the array bounds. However we can still diagnose an array
// access which precedes the array bounds.
if (BaseType->isIncompleteType())
return;
llvm::APInt size = ArrayTy->getSize();
if (BaseType != EffectiveType) {
// Make sure we're comparing apples to apples when comparing index to
// size.
uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
uint64_t array_typesize = Context.getTypeSize(BaseType);
// Handle ptrarith_typesize being zero, such as when casting to void*.
// Use the size in bits (what "getTypeSize()" returns) rather than bytes.
if (!ptrarith_typesize)
ptrarith_typesize = Context.getCharWidth();
if (ptrarith_typesize != array_typesize) {
// There's a cast to a different size type involved.
uint64_t ratio = array_typesize / ptrarith_typesize;
// TODO: Be smarter about handling cases where array_typesize is not a
// multiple of ptrarith_typesize.
if (ptrarith_typesize * ratio == array_typesize)
size *= llvm::APInt(size.getBitWidth(), ratio);
}
}
if (size.getBitWidth() > index.getBitWidth())
index = index.zext(size.getBitWidth());
else if (size.getBitWidth() < index.getBitWidth())
size = size.zext(index.getBitWidth());
// For array subscripting the index must be less than size, but for pointer
// arithmetic also allow the index (offset) to be equal to size since
// computing the next address after the end of the array is legal and
// commonly done e.g. in C++ iterators and range-based for loops.
if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
return;
// Suppress the warning if the subscript expression (as identified by the
// ']' location) and the index expression are both from macro expansions
// within a system header.
if (ASE) {
SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
ASE->getRBracketLoc());
if (SourceMgr.isInSystemHeader(RBracketLoc)) {
SourceLocation IndexLoc =
SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc());
if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
return;
}
}
unsigned DiagID = ASE ? diag::warn_array_index_exceeds_bounds
: diag::warn_ptr_arith_exceeds_bounds;
unsigned CastMsg = (!ASE || BaseType == EffectiveType) ? 0 : 1;
QualType CastMsgTy = ASE ? ASE->getLHS()->getType() : QualType();
DiagRuntimeBehavior(
BaseExpr->getBeginLoc(), BaseExpr,
PDiag(DiagID) << toString(index, 10, true) << ArrayTy->desugar()
<< CastMsg << CastMsgTy << IndexExpr->getSourceRange());
} else {
unsigned DiagID = diag::warn_array_index_precedes_bounds;
if (!ASE) {
DiagID = diag::warn_ptr_arith_precedes_bounds;
if (index.isNegative()) index = -index;
}
DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
PDiag(DiagID) << toString(index, 10, true)
<< IndexExpr->getSourceRange());
}
const NamedDecl *ND = nullptr;
// Try harder to find a NamedDecl to point at in the note.
while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr))
BaseExpr = ASE->getBase()->IgnoreParenCasts();
if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
ND = DRE->getDecl();
if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr))
ND = ME->getMemberDecl();
if (ND)
DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
PDiag(diag::note_array_declared_here) << ND);
}
void Sema::CheckArrayAccess(const Expr *expr) {
int AllowOnePastEnd = 0;
while (expr) {
expr = expr->IgnoreParenImpCasts();
switch (expr->getStmtClass()) {
case Stmt::ArraySubscriptExprClass: {
const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
AllowOnePastEnd > 0);
expr = ASE->getBase();
break;
}
case Stmt::MemberExprClass: {
expr = cast<MemberExpr>(expr)->getBase();
break;
}
case Stmt::ArraySectionExprClass: {
const ArraySectionExpr *ASE = cast<ArraySectionExpr>(expr);
// FIXME: We should probably be checking all of the elements to the
// 'length' here as well.
if (ASE->getLowerBound())
CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(),
/*ASE=*/nullptr, AllowOnePastEnd > 0);
return;
}
case Stmt::UnaryOperatorClass: {
// Only unwrap the * and & unary operators
const UnaryOperator *UO = cast<UnaryOperator>(expr);
expr = UO->getSubExpr();
switch (UO->getOpcode()) {
case UO_AddrOf:
AllowOnePastEnd++;
break;
case UO_Deref:
AllowOnePastEnd--;
break;
default:
return;
}
break;
}
case Stmt::ConditionalOperatorClass: {
const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
if (const Expr *lhs = cond->getLHS())
CheckArrayAccess(lhs);
if (const Expr *rhs = cond->getRHS())
CheckArrayAccess(rhs);
return;
}
case Stmt::CXXOperatorCallExprClass: {
const auto *OCE = cast<CXXOperatorCallExpr>(expr);
for (const auto *Arg : OCE->arguments())
CheckArrayAccess(Arg);
return;
}
default:
return;
}
}
}
static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
Expr *RHS, bool isProperty) {
// Check if RHS is an Objective-C object literal, which also can get
// immediately zapped in a weak reference. Note that we explicitly
// allow ObjCStringLiterals, since those are designed to never really die.
RHS = RHS->IgnoreParenImpCasts();
// This enum needs to match with the 'select' in
// warn_objc_arc_literal_assign (off-by-1).
SemaObjC::ObjCLiteralKind Kind = S.ObjC().CheckLiteralKind(RHS);
if (Kind == SemaObjC::LK_String || Kind == SemaObjC::LK_None)
return false;
S.Diag(Loc, diag::warn_arc_literal_assign)
<< (unsigned) Kind
<< (isProperty ? 0 : 1)
<< RHS->getSourceRange();
return true;
}
static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
Qualifiers::ObjCLifetime LT,
Expr *RHS, bool isProperty) {
// Strip off any implicit cast added to get to the one ARC-specific.
while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
if (cast->getCastKind() == CK_ARCConsumeObject) {
S.Diag(Loc, diag::warn_arc_retained_assign)
<< (LT == Qualifiers::OCL_ExplicitNone)
<< (isProperty ? 0 : 1)
<< RHS->getSourceRange();
return true;
}
RHS = cast->getSubExpr();
}
if (LT == Qualifiers::OCL_Weak &&
checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
return true;
return false;
}
bool Sema::checkUnsafeAssigns(SourceLocation Loc,
QualType LHS, Expr *RHS) {
Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
return false;
if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
return true;
return false;
}
void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
Expr *LHS, Expr *RHS) {
QualType LHSType;
// PropertyRef on LHS type need be directly obtained from
// its declaration as it has a PseudoType.
ObjCPropertyRefExpr *PRE
= dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
if (PRE && !PRE->isImplicitProperty()) {
const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
if (PD)
LHSType = PD->getType();
}
if (LHSType.isNull())
LHSType = LHS->getType();
Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
if (LT == Qualifiers::OCL_Weak) {
if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
getCurFunction()->markSafeWeakUse(LHS);
}
if (checkUnsafeAssigns(Loc, LHSType, RHS))
return;
// FIXME. Check for other life times.
if (LT != Qualifiers::OCL_None)
return;
if (PRE) {
if (PRE->isImplicitProperty())
return;
const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
if (!PD)
return;
unsigned Attributes = PD->getPropertyAttributes();
if (Attributes & ObjCPropertyAttribute::kind_assign) {
// when 'assign' attribute was not explicitly specified
// by user, ignore it and rely on property type itself
// for lifetime info.
unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) &&
LHSType->isObjCRetainableType())
return;
while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
if (cast->getCastKind() == CK_ARCConsumeObject) {
Diag(Loc, diag::warn_arc_retained_property_assign)
<< RHS->getSourceRange();
return;
}
RHS = cast->getSubExpr();
}
} else if (Attributes & ObjCPropertyAttribute::kind_weak) {
if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
return;
}
}
}
//===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
SourceLocation StmtLoc,
const NullStmt *Body) {
// Do not warn if the body is a macro that expands to nothing, e.g:
//
// #define CALL(x)
// if (condition)
// CALL(0);
if (Body->hasLeadingEmptyMacro())
return false;
// Get line numbers of statement and body.
bool StmtLineInvalid;
unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc,
&StmtLineInvalid);
if (StmtLineInvalid)
return false;
bool BodyLineInvalid;
unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
&BodyLineInvalid);
if (BodyLineInvalid)
return false;
// Warn if null statement and body are on the same line.
if (StmtLine != BodyLine)
return false;
return true;
}
void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
const Stmt *Body,
unsigned DiagID) {
// Since this is a syntactic check, don't emit diagnostic for template
// instantiations, this just adds noise.
if (CurrentInstantiationScope)
return;
// The body should be a null statement.
const NullStmt *NBody = dyn_cast<NullStmt>(Body);
if (!NBody)
return;
// Do the usual checks.
if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
return;
Diag(NBody->getSemiLoc(), DiagID);
Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
}
void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
const Stmt *PossibleBody) {
assert(!CurrentInstantiationScope); // Ensured by caller
SourceLocation StmtLoc;
const Stmt *Body;
unsigned DiagID;
if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
StmtLoc = FS->getRParenLoc();
Body = FS->getBody();
DiagID = diag::warn_empty_for_body;
} else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
StmtLoc = WS->getRParenLoc();
Body = WS->getBody();
DiagID = diag::warn_empty_while_body;
} else
return; // Neither `for' nor `while'.
// The body should be a null statement.
const NullStmt *NBody = dyn_cast<NullStmt>(Body);
if (!NBody)
return;
// Skip expensive checks if diagnostic is disabled.
if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
return;
// Do the usual checks.
if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
return;
// `for(...);' and `while(...);' are popular idioms, so in order to keep
// noise level low, emit diagnostics only if for/while is followed by a
// CompoundStmt, e.g.:
// for (int i = 0; i < n; i++);
// {
// a(i);
// }
// or if for/while is followed by a statement with more indentation
// than for/while itself:
// for (int i = 0; i < n; i++);
// a(i);
bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
if (!ProbableTypo) {
bool BodyColInvalid;
unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
PossibleBody->getBeginLoc(), &BodyColInvalid);
if (BodyColInvalid)
return;
bool StmtColInvalid;
unsigned StmtCol =
SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid);
if (StmtColInvalid)
return;
if (BodyCol > StmtCol)
ProbableTypo = true;
}
if (ProbableTypo) {
Diag(NBody->getSemiLoc(), DiagID);
Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
}
}
//===--- CHECK: Warn on self move with std::move. -------------------------===//
void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
SourceLocation OpLoc) {
if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
return;
if (inTemplateInstantiation())
return;
// Strip parens and casts away.
LHSExpr = LHSExpr->IgnoreParenImpCasts();
RHSExpr = RHSExpr->IgnoreParenImpCasts();
// Check for a call to std::move or for a static_cast<T&&>(..) to an xvalue
// which we can treat as an inlined std::move
if (const auto *CE = dyn_cast<CallExpr>(RHSExpr);
CE && CE->getNumArgs() == 1 && CE->isCallToStdMove())
RHSExpr = CE->getArg(0);
else if (const auto *CXXSCE = dyn_cast<CXXStaticCastExpr>(RHSExpr);
CXXSCE && CXXSCE->isXValue())
RHSExpr = CXXSCE->getSubExpr();
else
return;
const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
// Two DeclRefExpr's, check that the decls are the same.
if (LHSDeclRef && RHSDeclRef) {
if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
return;
if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
RHSDeclRef->getDecl()->getCanonicalDecl())
return;
auto D = Diag(OpLoc, diag::warn_self_move)
<< LHSExpr->getType() << LHSExpr->getSourceRange()
<< RHSExpr->getSourceRange();
if (const FieldDecl *F =
getSelfAssignmentClassMemberCandidate(RHSDeclRef->getDecl()))
D << 1 << F
<< FixItHint::CreateInsertion(LHSDeclRef->getBeginLoc(), "this->");
else
D << 0;
return;
}
// Member variables require a different approach to check for self moves.
// MemberExpr's are the same if every nested MemberExpr refers to the same
// Decl and that the base Expr's are DeclRefExpr's with the same Decl or
// the base Expr's are CXXThisExpr's.
const Expr *LHSBase = LHSExpr;
const Expr *RHSBase = RHSExpr;
const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
if (!LHSME || !RHSME)
return;
while (LHSME && RHSME) {
if (LHSME->getMemberDecl()->getCanonicalDecl() !=
RHSME->getMemberDecl()->getCanonicalDecl())
return;
LHSBase = LHSME->getBase();
RHSBase = RHSME->getBase();
LHSME = dyn_cast<MemberExpr>(LHSBase);
RHSME = dyn_cast<MemberExpr>(RHSBase);
}
LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
if (LHSDeclRef && RHSDeclRef) {
if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
return;
if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
RHSDeclRef->getDecl()->getCanonicalDecl())
return;
Diag(OpLoc, diag::warn_self_move)
<< LHSExpr->getType() << 0 << LHSExpr->getSourceRange()
<< RHSExpr->getSourceRange();
return;
}
if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
Diag(OpLoc, diag::warn_self_move)
<< LHSExpr->getType() << 0 << LHSExpr->getSourceRange()
<< RHSExpr->getSourceRange();
}
//===--- Layout compatibility ----------------------------------------------//
static bool isLayoutCompatible(const ASTContext &C, QualType T1, QualType T2);
/// Check if two enumeration types are layout-compatible.
static bool isLayoutCompatible(const ASTContext &C, const EnumDecl *ED1,
const EnumDecl *ED2) {
// C++11 [dcl.enum] p8:
// Two enumeration types are layout-compatible if they have the same
// underlying type.
return ED1->isComplete() && ED2->isComplete() &&
C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
}
/// Check if two fields are layout-compatible.
/// Can be used on union members, which are exempt from alignment requirement
/// of common initial sequence.
static bool isLayoutCompatible(const ASTContext &C, const FieldDecl *Field1,
const FieldDecl *Field2,
bool AreUnionMembers = false) {
[[maybe_unused]] const Type *Field1Parent =
Field1->getParent()->getTypeForDecl();
[[maybe_unused]] const Type *Field2Parent =
Field2->getParent()->getTypeForDecl();
assert(((Field1Parent->isStructureOrClassType() &&
Field2Parent->isStructureOrClassType()) ||
(Field1Parent->isUnionType() && Field2Parent->isUnionType())) &&
"Can't evaluate layout compatibility between a struct field and a "
"union field.");
assert(((!AreUnionMembers && Field1Parent->isStructureOrClassType()) ||
(AreUnionMembers && Field1Parent->isUnionType())) &&
"AreUnionMembers should be 'true' for union fields (only).");
if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
return false;
if (Field1->isBitField() != Field2->isBitField())
return false;
if (Field1->isBitField()) {
// Make sure that the bit-fields are the same length.
unsigned Bits1 = Field1->getBitWidthValue();
unsigned Bits2 = Field2->getBitWidthValue();
if (Bits1 != Bits2)
return false;
}
if (Field1->hasAttr<clang::NoUniqueAddressAttr>() ||
Field2->hasAttr<clang::NoUniqueAddressAttr>())
return false;
if (!AreUnionMembers &&
Field1->getMaxAlignment() != Field2->getMaxAlignment())
return false;
return true;
}
/// Check if two standard-layout structs are layout-compatible.
/// (C++11 [class.mem] p17)
static bool isLayoutCompatibleStruct(const ASTContext &C, const RecordDecl *RD1,
const RecordDecl *RD2) {
// Get to the class where the fields are declared
if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1))
RD1 = D1CXX->getStandardLayoutBaseWithFields();
if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2))
RD2 = D2CXX->getStandardLayoutBaseWithFields();
// Check the fields.
return llvm::equal(RD1->fields(), RD2->fields(),
[&C](const FieldDecl *F1, const FieldDecl *F2) -> bool {
return isLayoutCompatible(C, F1, F2);
});
}
/// Check if two standard-layout unions are layout-compatible.
/// (C++11 [class.mem] p18)
static bool isLayoutCompatibleUnion(const ASTContext &C, const RecordDecl *RD1,
const RecordDecl *RD2) {
llvm::SmallPtrSet<const FieldDecl *, 8> UnmatchedFields(llvm::from_range,
RD2->fields());
for (auto *Field1 : RD1->fields()) {
auto I = UnmatchedFields.begin();
auto E = UnmatchedFields.end();
for ( ; I != E; ++I) {
if (isLayoutCompatible(C, Field1, *I, /*IsUnionMember=*/true)) {
bool Result = UnmatchedFields.erase(*I);
(void) Result;
assert(Result);
break;
}
}
if (I == E)
return false;
}
return UnmatchedFields.empty();
}
static bool isLayoutCompatible(const ASTContext &C, const RecordDecl *RD1,
const RecordDecl *RD2) {
if (RD1->isUnion() != RD2->isUnion())
return false;
if (RD1->isUnion())
return isLayoutCompatibleUnion(C, RD1, RD2);
else
return isLayoutCompatibleStruct(C, RD1, RD2);
}
/// Check if two types are layout-compatible in C++11 sense.
static bool isLayoutCompatible(const ASTContext &C, QualType T1, QualType T2) {
if (T1.isNull() || T2.isNull())
return false;
// C++20 [basic.types] p11:
// Two types cv1 T1 and cv2 T2 are layout-compatible types
// if T1 and T2 are the same type, layout-compatible enumerations (9.7.1),
// or layout-compatible standard-layout class types (11.4).
T1 = T1.getCanonicalType().getUnqualifiedType();
T2 = T2.getCanonicalType().getUnqualifiedType();
if (C.hasSameType(T1, T2))
return true;
const Type::TypeClass TC1 = T1->getTypeClass();
const Type::TypeClass TC2 = T2->getTypeClass();
if (TC1 != TC2)
return false;
if (TC1 == Type::Enum) {
return isLayoutCompatible(C,
cast<EnumType>(T1)->getDecl(),
cast<EnumType>(T2)->getDecl());
} else if (TC1 == Type::Record) {
if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
return false;
return isLayoutCompatible(C,
cast<RecordType>(T1)->getDecl(),
cast<RecordType>(T2)->getDecl());
}
return false;
}
bool Sema::IsLayoutCompatible(QualType T1, QualType T2) const {
return isLayoutCompatible(getASTContext(), T1, T2);
}
//===-------------- Pointer interconvertibility ----------------------------//
bool Sema::IsPointerInterconvertibleBaseOf(const TypeSourceInfo *Base,
const TypeSourceInfo *Derived) {
QualType BaseT = Base->getType()->getCanonicalTypeUnqualified();
QualType DerivedT = Derived->getType()->getCanonicalTypeUnqualified();
if (BaseT->isStructureOrClassType() && DerivedT->isStructureOrClassType() &&
getASTContext().hasSameType(BaseT, DerivedT))
return true;
if (!IsDerivedFrom(Derived->getTypeLoc().getBeginLoc(), DerivedT, BaseT))
return false;
// Per [basic.compound]/4.3, containing object has to be standard-layout.
if (DerivedT->getAsCXXRecordDecl()->isStandardLayout())
return true;
return false;
}
//===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
/// Given a type tag expression find the type tag itself.
///
/// \param TypeExpr Type tag expression, as it appears in user's code.
///
/// \param VD Declaration of an identifier that appears in a type tag.
///
/// \param MagicValue Type tag magic value.
///
/// \param isConstantEvaluated whether the evalaution should be performed in
/// constant context.
static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
const ValueDecl **VD, uint64_t *MagicValue,
bool isConstantEvaluated) {
while(true) {
if (!TypeExpr)
return false;
TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
switch (TypeExpr->getStmtClass()) {
case Stmt::UnaryOperatorClass: {
const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
TypeExpr = UO->getSubExpr();
continue;
}
return false;
}
case Stmt::DeclRefExprClass: {
const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
*VD = DRE->getDecl();
return true;
}
case Stmt::IntegerLiteralClass: {
const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
llvm::APInt MagicValueAPInt = IL->getValue();
if (MagicValueAPInt.getActiveBits() <= 64) {
*MagicValue = MagicValueAPInt.getZExtValue();
return true;
} else
return false;
}
case Stmt::BinaryConditionalOperatorClass:
case Stmt::ConditionalOperatorClass: {
const AbstractConditionalOperator *ACO =
cast<AbstractConditionalOperator>(TypeExpr);
bool Result;
if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx,
isConstantEvaluated)) {
if (Result)
TypeExpr = ACO->getTrueExpr();
else
TypeExpr = ACO->getFalseExpr();
continue;
}
return false;
}
case Stmt::BinaryOperatorClass: {
const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
if (BO->getOpcode() == BO_Comma) {
TypeExpr = BO->getRHS();
continue;
}
return false;
}
default:
return false;
}
}
}
/// Retrieve the C type corresponding to type tag TypeExpr.
///
/// \param TypeExpr Expression that specifies a type tag.
///
/// \param MagicValues Registered magic values.
///
/// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
/// kind.
///
/// \param TypeInfo Information about the corresponding C type.
///
/// \param isConstantEvaluated whether the evalaution should be performed in
/// constant context.
///
/// \returns true if the corresponding C type was found.
static bool GetMatchingCType(
const IdentifierInfo *ArgumentKind, const Expr *TypeExpr,
const ASTContext &Ctx,
const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData>
*MagicValues,
bool &FoundWrongKind, Sema::TypeTagData &TypeInfo,
bool isConstantEvaluated) {
FoundWrongKind = false;
// Variable declaration that has type_tag_for_datatype attribute.
const ValueDecl *VD = nullptr;
uint64_t MagicValue;
if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated))
return false;
if (VD) {
if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
if (I->getArgumentKind() != ArgumentKind) {
FoundWrongKind = true;
return false;
}
TypeInfo.Type = I->getMatchingCType();
TypeInfo.LayoutCompatible = I->getLayoutCompatible();
TypeInfo.MustBeNull = I->getMustBeNull();
return true;
}
return false;
}
if (!MagicValues)
return false;
llvm::DenseMap<Sema::TypeTagMagicValue,
Sema::TypeTagData>::const_iterator I =
MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
if (I == MagicValues->end())
return false;
TypeInfo = I->second;
return true;
}
void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
uint64_t MagicValue, QualType Type,
bool LayoutCompatible,
bool MustBeNull) {
if (!TypeTagForDatatypeMagicValues)
TypeTagForDatatypeMagicValues.reset(
new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
TypeTagMagicValue Magic(ArgumentKind, MagicValue);
(*TypeTagForDatatypeMagicValues)[Magic] =
TypeTagData(Type, LayoutCompatible, MustBeNull);
}
static bool IsSameCharType(QualType T1, QualType T2) {
const BuiltinType *BT1 = T1->getAs<BuiltinType>();
if (!BT1)
return false;
const BuiltinType *BT2 = T2->getAs<BuiltinType>();
if (!BT2)
return false;
BuiltinType::Kind T1Kind = BT1->getKind();
BuiltinType::Kind T2Kind = BT2->getKind();
return (T1Kind == BuiltinType::SChar && T2Kind == BuiltinType::Char_S) ||
(T1Kind == BuiltinType::UChar && T2Kind == BuiltinType::Char_U) ||
(T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
(T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
}
void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
const ArrayRef<const Expr *> ExprArgs,
SourceLocation CallSiteLoc) {
const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
bool IsPointerAttr = Attr->getIsPointer();
// Retrieve the argument representing the 'type_tag'.
unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex();
if (TypeTagIdxAST >= ExprArgs.size()) {
Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
<< 0 << Attr->getTypeTagIdx().getSourceIndex();
return;
}
const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST];
bool FoundWrongKind;
TypeTagData TypeInfo;
if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
TypeTagForDatatypeMagicValues.get(), FoundWrongKind,
TypeInfo, isConstantEvaluatedContext())) {
if (FoundWrongKind)
Diag(TypeTagExpr->getExprLoc(),
diag::warn_type_tag_for_datatype_wrong_kind)
<< TypeTagExpr->getSourceRange();
return;
}
// Retrieve the argument representing the 'arg_idx'.
unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex();
if (ArgumentIdxAST >= ExprArgs.size()) {
Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
<< 1 << Attr->getArgumentIdx().getSourceIndex();
return;
}
const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST];
if (IsPointerAttr) {
// Skip implicit cast of pointer to `void *' (as a function argument).
if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
if (ICE->getType()->isVoidPointerType() &&
ICE->getCastKind() == CK_BitCast)
ArgumentExpr = ICE->getSubExpr();
}
QualType ArgumentType = ArgumentExpr->getType();
// Passing a `void*' pointer shouldn't trigger a warning.
if (IsPointerAttr && ArgumentType->isVoidPointerType())
return;
if (TypeInfo.MustBeNull) {
// Type tag with matching void type requires a null pointer.
if (!ArgumentExpr->isNullPointerConstant(Context,
Expr::NPC_ValueDependentIsNotNull)) {
Diag(ArgumentExpr->getExprLoc(),
diag::warn_type_safety_null_pointer_required)
<< ArgumentKind->getName()
<< ArgumentExpr->getSourceRange()
<< TypeTagExpr->getSourceRange();
}
return;
}
QualType RequiredType = TypeInfo.Type;
if (IsPointerAttr)
RequiredType = Context.getPointerType(RequiredType);
bool mismatch = false;
if (!TypeInfo.LayoutCompatible) {
mismatch = !Context.hasSameType(ArgumentType, RequiredType);
// C++11 [basic.fundamental] p1:
// Plain char, signed char, and unsigned char are three distinct types.
//
// But we treat plain `char' as equivalent to `signed char' or `unsigned
// char' depending on the current char signedness mode.
if (mismatch)
if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
RequiredType->getPointeeType())) ||
(!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
mismatch = false;
} else
if (IsPointerAttr)
mismatch = !isLayoutCompatible(Context,
ArgumentType->getPointeeType(),
RequiredType->getPointeeType());
else
mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
if (mismatch)
Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
<< ArgumentType << ArgumentKind
<< TypeInfo.LayoutCompatible << RequiredType
<< ArgumentExpr->getSourceRange()
<< TypeTagExpr->getSourceRange();
}
void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
CharUnits Alignment) {
MisalignedMembers.emplace_back(E, RD, MD, Alignment);
}
void Sema::DiagnoseMisalignedMembers() {
for (MisalignedMember &m : MisalignedMembers) {
const NamedDecl *ND = m.RD;
if (ND->getName().empty()) {
if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl())
ND = TD;
}
Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member)
<< m.MD << ND << m.E->getSourceRange();
}
MisalignedMembers.clear();
}
void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) {
E = E->IgnoreParens();
if (!T->isPointerType() && !T->isIntegerType() && !T->isDependentType())
return;
if (isa<UnaryOperator>(E) &&
cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) {
auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
if (isa<MemberExpr>(Op)) {
auto *MA = llvm::find(MisalignedMembers, MisalignedMember(Op));
if (MA != MisalignedMembers.end() &&
(T->isDependentType() || T->isIntegerType() ||
(T->isPointerType() && (T->getPointeeType()->isIncompleteType() ||
Context.getTypeAlignInChars(
T->getPointeeType()) <= MA->Alignment))))
MisalignedMembers.erase(MA);
}
}
}
void Sema::RefersToMemberWithReducedAlignment(
Expr *E,
llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
Action) {
const auto *ME = dyn_cast<MemberExpr>(E);
if (!ME)
return;
// No need to check expressions with an __unaligned-qualified type.
if (E->getType().getQualifiers().hasUnaligned())
return;
// For a chain of MemberExpr like "a.b.c.d" this list
// will keep FieldDecl's like [d, c, b].
SmallVector<FieldDecl *, 4> ReverseMemberChain;
const MemberExpr *TopME = nullptr;
bool AnyIsPacked = false;
do {
QualType BaseType = ME->getBase()->getType();
if (BaseType->isDependentType())
return;
if (ME->isArrow())
BaseType = BaseType->getPointeeType();
RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl();
if (RD->isInvalidDecl())
return;
ValueDecl *MD = ME->getMemberDecl();
auto *FD = dyn_cast<FieldDecl>(MD);
// We do not care about non-data members.
if (!FD || FD->isInvalidDecl())
return;
AnyIsPacked =
AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>());
ReverseMemberChain.push_back(FD);
TopME = ME;
ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens());
} while (ME);
assert(TopME && "We did not compute a topmost MemberExpr!");
// Not the scope of this diagnostic.
if (!AnyIsPacked)
return;
const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts();
const auto *DRE = dyn_cast<DeclRefExpr>(TopBase);
// TODO: The innermost base of the member expression may be too complicated.
// For now, just disregard these cases. This is left for future
// improvement.
if (!DRE && !isa<CXXThisExpr>(TopBase))
return;
// Alignment expected by the whole expression.
CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType());
// No need to do anything else with this case.
if (ExpectedAlignment.isOne())
return;
// Synthesize offset of the whole access.
CharUnits Offset;
for (const FieldDecl *FD : llvm::reverse(ReverseMemberChain))
Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(FD));
// Compute the CompleteObjectAlignment as the alignment of the whole chain.
CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars(
ReverseMemberChain.back()->getParent()->getTypeForDecl());
// The base expression of the innermost MemberExpr may give
// stronger guarantees than the class containing the member.
if (DRE && !TopME->isArrow()) {
const ValueDecl *VD = DRE->getDecl();
if (!VD->getType()->isReferenceType())
CompleteObjectAlignment =
std::max(CompleteObjectAlignment, Context.getDeclAlign(VD));
}
// Check if the synthesized offset fulfills the alignment.
if (Offset % ExpectedAlignment != 0 ||
// It may fulfill the offset it but the effective alignment may still be
// lower than the expected expression alignment.
CompleteObjectAlignment < ExpectedAlignment) {
// If this happens, we want to determine a sensible culprit of this.
// Intuitively, watching the chain of member expressions from right to
// left, we start with the required alignment (as required by the field
// type) but some packed attribute in that chain has reduced the alignment.
// It may happen that another packed structure increases it again. But if
// we are here such increase has not been enough. So pointing the first
// FieldDecl that either is packed or else its RecordDecl is,
// seems reasonable.
FieldDecl *FD = nullptr;
CharUnits Alignment;
for (FieldDecl *FDI : ReverseMemberChain) {
if (FDI->hasAttr<PackedAttr>() ||
FDI->getParent()->hasAttr<PackedAttr>()) {
FD = FDI;
Alignment = std::min(
Context.getTypeAlignInChars(FD->getType()),
Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl()));
break;
}
}
assert(FD && "We did not find a packed FieldDecl!");
Action(E, FD->getParent(), FD, Alignment);
}
}
void Sema::CheckAddressOfPackedMember(Expr *rhs) {
using namespace std::placeholders;
RefersToMemberWithReducedAlignment(
rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1,
_2, _3, _4));
}
// Performs a similar job to Sema::UsualUnaryConversions, but without any
// implicit promotion of integral/enumeration types.
static ExprResult BuiltinVectorMathConversions(Sema &S, Expr *E) {
// First, convert to an r-value.
ExprResult Res = S.DefaultFunctionArrayLvalueConversion(E);
if (Res.isInvalid())
return ExprError();
// Promote floating-point types.
return S.UsualUnaryFPConversions(Res.get());
}
bool Sema::PrepareBuiltinElementwiseMathOneArgCall(
CallExpr *TheCall, EltwiseBuiltinArgTyRestriction ArgTyRestr) {
if (checkArgCount(TheCall, 1))
return true;
ExprResult A = BuiltinVectorMathConversions(*this, TheCall->getArg(0));
if (A.isInvalid())
return true;
TheCall->setArg(0, A.get());
QualType TyA = A.get()->getType();
if (checkMathBuiltinElementType(*this, A.get()->getBeginLoc(), TyA,
ArgTyRestr, 1))
return true;
TheCall->setType(TyA);
return false;
}
bool Sema::BuiltinElementwiseMath(CallExpr *TheCall,
EltwiseBuiltinArgTyRestriction ArgTyRestr) {
if (auto Res = BuiltinVectorMath(TheCall, ArgTyRestr); Res.has_value()) {
TheCall->setType(*Res);
return false;
}
return true;
}
bool Sema::BuiltinVectorToScalarMath(CallExpr *TheCall) {
std::optional<QualType> Res = BuiltinVectorMath(TheCall);
if (!Res)
return true;
if (auto *VecTy0 = (*Res)->getAs<VectorType>())
TheCall->setType(VecTy0->getElementType());
else
TheCall->setType(*Res);
return false;
}
static bool checkBuiltinVectorMathMixedEnums(Sema &S, Expr *LHS, Expr *RHS,
SourceLocation Loc) {
QualType L = LHS->getEnumCoercedType(S.Context),
R = RHS->getEnumCoercedType(S.Context);
if (L->isUnscopedEnumerationType() && R->isUnscopedEnumerationType() &&
!S.Context.hasSameUnqualifiedType(L, R)) {
return S.Diag(Loc, diag::err_conv_mixed_enum_types)
<< LHS->getSourceRange() << RHS->getSourceRange()
<< /*Arithmetic Between*/ 0 << L << R;
}
return false;
}
std::optional<QualType>
Sema::BuiltinVectorMath(CallExpr *TheCall,
EltwiseBuiltinArgTyRestriction ArgTyRestr) {
if (checkArgCount(TheCall, 2))
return std::nullopt;
if (checkBuiltinVectorMathMixedEnums(
*this, TheCall->getArg(0), TheCall->getArg(1), TheCall->getExprLoc()))
return std::nullopt;
Expr *Args[2];
for (int I = 0; I < 2; ++I) {
ExprResult Converted =
BuiltinVectorMathConversions(*this, TheCall->getArg(I));
if (Converted.isInvalid())
return std::nullopt;
Args[I] = Converted.get();
}
SourceLocation LocA = Args[0]->getBeginLoc();
QualType TyA = Args[0]->getType();
QualType TyB = Args[1]->getType();
if (checkMathBuiltinElementType(*this, LocA, TyA, ArgTyRestr, 1))
return std::nullopt;
if (TyA.getCanonicalType() != TyB.getCanonicalType()) {
Diag(LocA, diag::err_typecheck_call_different_arg_types) << TyA << TyB;
return std::nullopt;
}
TheCall->setArg(0, Args[0]);
TheCall->setArg(1, Args[1]);
return TyA;
}
bool Sema::BuiltinElementwiseTernaryMath(
CallExpr *TheCall, EltwiseBuiltinArgTyRestriction ArgTyRestr) {
if (checkArgCount(TheCall, 3))
return true;
SourceLocation Loc = TheCall->getExprLoc();
if (checkBuiltinVectorMathMixedEnums(*this, TheCall->getArg(0),
TheCall->getArg(1), Loc) ||
checkBuiltinVectorMathMixedEnums(*this, TheCall->getArg(1),
TheCall->getArg(2), Loc))
return true;
Expr *Args[3];
for (int I = 0; I < 3; ++I) {
ExprResult Converted =
BuiltinVectorMathConversions(*this, TheCall->getArg(I));
if (Converted.isInvalid())
return true;
Args[I] = Converted.get();
}
int ArgOrdinal = 1;
for (Expr *Arg : Args) {
if (checkMathBuiltinElementType(*this, Arg->getBeginLoc(), Arg->getType(),
ArgTyRestr, ArgOrdinal++))
return true;
}
for (int I = 1; I < 3; ++I) {
if (Args[0]->getType().getCanonicalType() !=
Args[I]->getType().getCanonicalType()) {
return Diag(Args[0]->getBeginLoc(),
diag::err_typecheck_call_different_arg_types)
<< Args[0]->getType() << Args[I]->getType();
}
TheCall->setArg(I, Args[I]);
}
TheCall->setType(Args[0]->getType());
return false;
}
bool Sema::PrepareBuiltinReduceMathOneArgCall(CallExpr *TheCall) {
if (checkArgCount(TheCall, 1))
return true;
ExprResult A = UsualUnaryConversions(TheCall->getArg(0));
if (A.isInvalid())
return true;
TheCall->setArg(0, A.get());
return false;
}
bool Sema::BuiltinNonDeterministicValue(CallExpr *TheCall) {
if (checkArgCount(TheCall, 1))
return true;
ExprResult Arg = TheCall->getArg(0);
QualType TyArg = Arg.get()->getType();
if (!TyArg->isBuiltinType() && !TyArg->isVectorType())
return Diag(TheCall->getArg(0)->getBeginLoc(),
diag::err_builtin_invalid_arg_type)
<< 1 << /* vector */ 2 << /* integer */ 1 << /* fp */ 1 << TyArg;
TheCall->setType(TyArg);
return false;
}
ExprResult Sema::BuiltinMatrixTranspose(CallExpr *TheCall,
ExprResult CallResult) {
if (checkArgCount(TheCall, 1))
return ExprError();
ExprResult MatrixArg = DefaultLvalueConversion(TheCall->getArg(0));
if (MatrixArg.isInvalid())
return MatrixArg;
Expr *Matrix = MatrixArg.get();
auto *MType = Matrix->getType()->getAs<ConstantMatrixType>();
if (!MType) {
Diag(Matrix->getBeginLoc(), diag::err_builtin_invalid_arg_type)
<< 1 << /* matrix */ 3 << /* no int */ 0 << /* no fp */ 0
<< Matrix->getType();
return ExprError();
}
// Create returned matrix type by swapping rows and columns of the argument
// matrix type.
QualType ResultType = Context.getConstantMatrixType(
MType->getElementType(), MType->getNumColumns(), MType->getNumRows());
// Change the return type to the type of the returned matrix.
TheCall->setType(ResultType);
// Update call argument to use the possibly converted matrix argument.
TheCall->setArg(0, Matrix);
return CallResult;
}
// Get and verify the matrix dimensions.
static std::optional<unsigned>
getAndVerifyMatrixDimension(Expr *Expr, StringRef Name, Sema &S) {
SourceLocation ErrorPos;
std::optional<llvm::APSInt> Value =
Expr->getIntegerConstantExpr(S.Context, &ErrorPos);
if (!Value) {
S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_scalar_unsigned_arg)
<< Name;
return {};
}
uint64_t Dim = Value->getZExtValue();
if (!ConstantMatrixType::isDimensionValid(Dim)) {
S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_invalid_dimension)
<< Name << ConstantMatrixType::getMaxElementsPerDimension();
return {};
}
return Dim;
}
ExprResult Sema::BuiltinMatrixColumnMajorLoad(CallExpr *TheCall,
ExprResult CallResult) {
if (!getLangOpts().MatrixTypes) {
Diag(TheCall->getBeginLoc(), diag::err_builtin_matrix_disabled);
return ExprError();
}
if (checkArgCount(TheCall, 4))
return ExprError();
unsigned PtrArgIdx = 0;
Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
Expr *RowsExpr = TheCall->getArg(1);
Expr *ColumnsExpr = TheCall->getArg(2);
Expr *StrideExpr = TheCall->getArg(3);
bool ArgError = false;
// Check pointer argument.
{
ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
if (PtrConv.isInvalid())
return PtrConv;
PtrExpr = PtrConv.get();
TheCall->setArg(0, PtrExpr);
if (PtrExpr->isTypeDependent()) {
TheCall->setType(Context.DependentTy);
return TheCall;
}
}
auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
QualType ElementTy;
if (!PtrTy) {
Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
<< PtrArgIdx + 1 << 0 << /* pointer to element ty */ 5 << /* no fp */ 0
<< PtrExpr->getType();
ArgError = true;
} else {
ElementTy = PtrTy->getPointeeType().getUnqualifiedType();
if (!ConstantMatrixType::isValidElementType(ElementTy)) {
Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
<< PtrArgIdx + 1 << 0 << /* pointer to element ty */ 5
<< /* no fp */ 0 << PtrExpr->getType();
ArgError = true;
}
}
// Apply default Lvalue conversions and convert the expression to size_t.
auto ApplyArgumentConversions = [this](Expr *E) {
ExprResult Conv = DefaultLvalueConversion(E);
if (Conv.isInvalid())
return Conv;
return tryConvertExprToType(Conv.get(), Context.getSizeType());
};
// Apply conversion to row and column expressions.
ExprResult RowsConv = ApplyArgumentConversions(RowsExpr);
if (!RowsConv.isInvalid()) {
RowsExpr = RowsConv.get();
TheCall->setArg(1, RowsExpr);
} else
RowsExpr = nullptr;
ExprResult ColumnsConv = ApplyArgumentConversions(ColumnsExpr);
if (!ColumnsConv.isInvalid()) {
ColumnsExpr = ColumnsConv.get();
TheCall->setArg(2, ColumnsExpr);
} else
ColumnsExpr = nullptr;
// If any part of the result matrix type is still pending, just use
// Context.DependentTy, until all parts are resolved.
if ((RowsExpr && RowsExpr->isTypeDependent()) ||
(ColumnsExpr && ColumnsExpr->isTypeDependent())) {
TheCall->setType(Context.DependentTy);
return CallResult;
}
// Check row and column dimensions.
std::optional<unsigned> MaybeRows;
if (RowsExpr)
MaybeRows = getAndVerifyMatrixDimension(RowsExpr, "row", *this);
std::optional<unsigned> MaybeColumns;
if (ColumnsExpr)
MaybeColumns = getAndVerifyMatrixDimension(ColumnsExpr, "column", *this);
// Check stride argument.
ExprResult StrideConv = ApplyArgumentConversions(StrideExpr);
if (StrideConv.isInvalid())
return ExprError();
StrideExpr = StrideConv.get();
TheCall->setArg(3, StrideExpr);
if (MaybeRows) {
if (std::optional<llvm::APSInt> Value =
StrideExpr->getIntegerConstantExpr(Context)) {
uint64_t Stride = Value->getZExtValue();
if (Stride < *MaybeRows) {
Diag(StrideExpr->getBeginLoc(),
diag::err_builtin_matrix_stride_too_small);
ArgError = true;
}
}
}
if (ArgError || !MaybeRows || !MaybeColumns)
return ExprError();
TheCall->setType(
Context.getConstantMatrixType(ElementTy, *MaybeRows, *MaybeColumns));
return CallResult;
}
ExprResult Sema::BuiltinMatrixColumnMajorStore(CallExpr *TheCall,
ExprResult CallResult) {
if (checkArgCount(TheCall, 3))
return ExprError();
unsigned PtrArgIdx = 1;
Expr *MatrixExpr = TheCall->getArg(0);
Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
Expr *StrideExpr = TheCall->getArg(2);
bool ArgError = false;
{
ExprResult MatrixConv = DefaultLvalueConversion(MatrixExpr);
if (MatrixConv.isInvalid())
return MatrixConv;
MatrixExpr = MatrixConv.get();
TheCall->setArg(0, MatrixExpr);
}
if (MatrixExpr->isTypeDependent()) {
TheCall->setType(Context.DependentTy);
return TheCall;
}
auto *MatrixTy = MatrixExpr->getType()->getAs<ConstantMatrixType>();
if (!MatrixTy) {
Diag(MatrixExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
<< 1 << /* matrix ty */ 3 << 0 << 0 << MatrixExpr->getType();
ArgError = true;
}
{
ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
if (PtrConv.isInvalid())
return PtrConv;
PtrExpr = PtrConv.get();
TheCall->setArg(1, PtrExpr);
if (PtrExpr->isTypeDependent()) {
TheCall->setType(Context.DependentTy);
return TheCall;
}
}
// Check pointer argument.
auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
if (!PtrTy) {
Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
<< PtrArgIdx + 1 << 0 << /* pointer to element ty */ 5 << 0
<< PtrExpr->getType();
ArgError = true;
} else {
QualType ElementTy = PtrTy->getPointeeType();
if (ElementTy.isConstQualified()) {
Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_store_to_const);
ArgError = true;
}
ElementTy = ElementTy.getUnqualifiedType().getCanonicalType();
if (MatrixTy &&
!Context.hasSameType(ElementTy, MatrixTy->getElementType())) {
Diag(PtrExpr->getBeginLoc(),
diag::err_builtin_matrix_pointer_arg_mismatch)
<< ElementTy << MatrixTy->getElementType();
ArgError = true;
}
}
// Apply default Lvalue conversions and convert the stride expression to
// size_t.
{
ExprResult StrideConv = DefaultLvalueConversion(StrideExpr);
if (StrideConv.isInvalid())
return StrideConv;
StrideConv = tryConvertExprToType(StrideConv.get(), Context.getSizeType());
if (StrideConv.isInvalid())
return StrideConv;
StrideExpr = StrideConv.get();
TheCall->setArg(2, StrideExpr);
}
// Check stride argument.
if (MatrixTy) {
if (std::optional<llvm::APSInt> Value =
StrideExpr->getIntegerConstantExpr(Context)) {
uint64_t Stride = Value->getZExtValue();
if (Stride < MatrixTy->getNumRows()) {
Diag(StrideExpr->getBeginLoc(),
diag::err_builtin_matrix_stride_too_small);
ArgError = true;
}
}
}
if (ArgError)
return ExprError();
return CallResult;
}
void Sema::CheckTCBEnforcement(const SourceLocation CallExprLoc,
const NamedDecl *Callee) {
// This warning does not make sense in code that has no runtime behavior.
if (isUnevaluatedContext())
return;
const NamedDecl *Caller = getCurFunctionOrMethodDecl();
if (!Caller || !Caller->hasAttr<EnforceTCBAttr>())
return;
// Search through the enforce_tcb and enforce_tcb_leaf attributes to find
// all TCBs the callee is a part of.
llvm::StringSet<> CalleeTCBs;
for (const auto *A : Callee->specific_attrs<EnforceTCBAttr>())
CalleeTCBs.insert(A->getTCBName());
for (const auto *A : Callee->specific_attrs<EnforceTCBLeafAttr>())
CalleeTCBs.insert(A->getTCBName());
// Go through the TCBs the caller is a part of and emit warnings if Caller
// is in a TCB that the Callee is not.
for (const auto *A : Caller->specific_attrs<EnforceTCBAttr>()) {
StringRef CallerTCB = A->getTCBName();
if (CalleeTCBs.count(CallerTCB) == 0) {
this->Diag(CallExprLoc, diag::warn_tcb_enforcement_violation)
<< Callee << CallerTCB;
}
}
}