mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-25 10:46:06 +00:00

- fixes #132303 - Moves dot2add from a language builtin to a target builtin. - Sets the scaffolding for Sema checks for DX builtins - Setup DirectX backend as able to have target builtins - Adds a DX TargetBuiltins emitter in `clang/lib/CodeGen/TargetBuiltins/DirectX.cpp`
15719 lines
578 KiB
C++
15719 lines
578 KiB
C++
//===- SemaChecking.cpp - Extra Semantic Checking -------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements extra semantic analysis beyond what is enforced
|
|
// by the C type system.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CheckExprLifetime.h"
|
|
#include "clang/AST/APValue.h"
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/Attr.h"
|
|
#include "clang/AST/AttrIterator.h"
|
|
#include "clang/AST/CharUnits.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclBase.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclObjC.h"
|
|
#include "clang/AST/DeclarationName.h"
|
|
#include "clang/AST/EvaluatedExprVisitor.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/ExprCXX.h"
|
|
#include "clang/AST/ExprObjC.h"
|
|
#include "clang/AST/FormatString.h"
|
|
#include "clang/AST/IgnoreExpr.h"
|
|
#include "clang/AST/NSAPI.h"
|
|
#include "clang/AST/NonTrivialTypeVisitor.h"
|
|
#include "clang/AST/OperationKinds.h"
|
|
#include "clang/AST/RecordLayout.h"
|
|
#include "clang/AST/Stmt.h"
|
|
#include "clang/AST/TemplateBase.h"
|
|
#include "clang/AST/Type.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "clang/AST/UnresolvedSet.h"
|
|
#include "clang/Basic/AddressSpaces.h"
|
|
#include "clang/Basic/Diagnostic.h"
|
|
#include "clang/Basic/IdentifierTable.h"
|
|
#include "clang/Basic/LLVM.h"
|
|
#include "clang/Basic/LangOptions.h"
|
|
#include "clang/Basic/OpenCLOptions.h"
|
|
#include "clang/Basic/OperatorKinds.h"
|
|
#include "clang/Basic/PartialDiagnostic.h"
|
|
#include "clang/Basic/SourceLocation.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/Specifiers.h"
|
|
#include "clang/Basic/SyncScope.h"
|
|
#include "clang/Basic/TargetInfo.h"
|
|
#include "clang/Basic/TypeTraits.h"
|
|
#include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
|
|
#include "clang/Sema/Initialization.h"
|
|
#include "clang/Sema/Lookup.h"
|
|
#include "clang/Sema/Ownership.h"
|
|
#include "clang/Sema/Scope.h"
|
|
#include "clang/Sema/ScopeInfo.h"
|
|
#include "clang/Sema/Sema.h"
|
|
#include "clang/Sema/SemaAMDGPU.h"
|
|
#include "clang/Sema/SemaARM.h"
|
|
#include "clang/Sema/SemaBPF.h"
|
|
#include "clang/Sema/SemaDirectX.h"
|
|
#include "clang/Sema/SemaHLSL.h"
|
|
#include "clang/Sema/SemaHexagon.h"
|
|
#include "clang/Sema/SemaLoongArch.h"
|
|
#include "clang/Sema/SemaMIPS.h"
|
|
#include "clang/Sema/SemaNVPTX.h"
|
|
#include "clang/Sema/SemaObjC.h"
|
|
#include "clang/Sema/SemaOpenCL.h"
|
|
#include "clang/Sema/SemaPPC.h"
|
|
#include "clang/Sema/SemaRISCV.h"
|
|
#include "clang/Sema/SemaSPIRV.h"
|
|
#include "clang/Sema/SemaSystemZ.h"
|
|
#include "clang/Sema/SemaWasm.h"
|
|
#include "clang/Sema/SemaX86.h"
|
|
#include "llvm/ADT/APFloat.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/APSInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallBitVector.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/StringSet.h"
|
|
#include "llvm/ADT/StringSwitch.h"
|
|
#include "llvm/Support/AtomicOrdering.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/ConvertUTF.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include "llvm/Support/Locale.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/SaveAndRestore.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/TargetParser/RISCVTargetParser.h"
|
|
#include "llvm/TargetParser/Triple.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cctype>
|
|
#include <cstddef>
|
|
#include <cstdint>
|
|
#include <functional>
|
|
#include <limits>
|
|
#include <optional>
|
|
#include <string>
|
|
#include <tuple>
|
|
#include <utility>
|
|
|
|
using namespace clang;
|
|
using namespace sema;
|
|
|
|
SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
|
|
unsigned ByteNo) const {
|
|
return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
|
|
Context.getTargetInfo());
|
|
}
|
|
|
|
static constexpr unsigned short combineFAPK(Sema::FormatArgumentPassingKind A,
|
|
Sema::FormatArgumentPassingKind B) {
|
|
return (A << 8) | B;
|
|
}
|
|
|
|
bool Sema::checkArgCountAtLeast(CallExpr *Call, unsigned MinArgCount) {
|
|
unsigned ArgCount = Call->getNumArgs();
|
|
if (ArgCount >= MinArgCount)
|
|
return false;
|
|
|
|
return Diag(Call->getEndLoc(), diag::err_typecheck_call_too_few_args)
|
|
<< 0 /*function call*/ << MinArgCount << ArgCount
|
|
<< /*is non object*/ 0 << Call->getSourceRange();
|
|
}
|
|
|
|
bool Sema::checkArgCountAtMost(CallExpr *Call, unsigned MaxArgCount) {
|
|
unsigned ArgCount = Call->getNumArgs();
|
|
if (ArgCount <= MaxArgCount)
|
|
return false;
|
|
return Diag(Call->getEndLoc(), diag::err_typecheck_call_too_many_args_at_most)
|
|
<< 0 /*function call*/ << MaxArgCount << ArgCount
|
|
<< /*is non object*/ 0 << Call->getSourceRange();
|
|
}
|
|
|
|
bool Sema::checkArgCountRange(CallExpr *Call, unsigned MinArgCount,
|
|
unsigned MaxArgCount) {
|
|
return checkArgCountAtLeast(Call, MinArgCount) ||
|
|
checkArgCountAtMost(Call, MaxArgCount);
|
|
}
|
|
|
|
bool Sema::checkArgCount(CallExpr *Call, unsigned DesiredArgCount) {
|
|
unsigned ArgCount = Call->getNumArgs();
|
|
if (ArgCount == DesiredArgCount)
|
|
return false;
|
|
|
|
if (checkArgCountAtLeast(Call, DesiredArgCount))
|
|
return true;
|
|
assert(ArgCount > DesiredArgCount && "should have diagnosed this");
|
|
|
|
// Highlight all the excess arguments.
|
|
SourceRange Range(Call->getArg(DesiredArgCount)->getBeginLoc(),
|
|
Call->getArg(ArgCount - 1)->getEndLoc());
|
|
|
|
return Diag(Range.getBegin(), diag::err_typecheck_call_too_many_args)
|
|
<< 0 /*function call*/ << DesiredArgCount << ArgCount
|
|
<< /*is non object*/ 0 << Call->getArg(1)->getSourceRange();
|
|
}
|
|
|
|
static bool checkBuiltinVerboseTrap(CallExpr *Call, Sema &S) {
|
|
bool HasError = false;
|
|
|
|
for (unsigned I = 0; I < Call->getNumArgs(); ++I) {
|
|
Expr *Arg = Call->getArg(I);
|
|
|
|
if (Arg->isValueDependent())
|
|
continue;
|
|
|
|
std::optional<std::string> ArgString = Arg->tryEvaluateString(S.Context);
|
|
int DiagMsgKind = -1;
|
|
// Arguments must be pointers to constant strings and cannot use '$'.
|
|
if (!ArgString.has_value())
|
|
DiagMsgKind = 0;
|
|
else if (ArgString->find('$') != std::string::npos)
|
|
DiagMsgKind = 1;
|
|
|
|
if (DiagMsgKind >= 0) {
|
|
S.Diag(Arg->getBeginLoc(), diag::err_builtin_verbose_trap_arg)
|
|
<< DiagMsgKind << Arg->getSourceRange();
|
|
HasError = true;
|
|
}
|
|
}
|
|
|
|
return !HasError;
|
|
}
|
|
|
|
static bool convertArgumentToType(Sema &S, Expr *&Value, QualType Ty) {
|
|
if (Value->isTypeDependent())
|
|
return false;
|
|
|
|
InitializedEntity Entity =
|
|
InitializedEntity::InitializeParameter(S.Context, Ty, false);
|
|
ExprResult Result =
|
|
S.PerformCopyInitialization(Entity, SourceLocation(), Value);
|
|
if (Result.isInvalid())
|
|
return true;
|
|
Value = Result.get();
|
|
return false;
|
|
}
|
|
|
|
/// Check that the first argument to __builtin_annotation is an integer
|
|
/// and the second argument is a non-wide string literal.
|
|
static bool BuiltinAnnotation(Sema &S, CallExpr *TheCall) {
|
|
if (S.checkArgCount(TheCall, 2))
|
|
return true;
|
|
|
|
// First argument should be an integer.
|
|
Expr *ValArg = TheCall->getArg(0);
|
|
QualType Ty = ValArg->getType();
|
|
if (!Ty->isIntegerType()) {
|
|
S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg)
|
|
<< ValArg->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
// Second argument should be a constant string.
|
|
Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
|
|
StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
|
|
if (!Literal || !Literal->isOrdinary()) {
|
|
S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg)
|
|
<< StrArg->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
TheCall->setType(Ty);
|
|
return false;
|
|
}
|
|
|
|
static bool BuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) {
|
|
// We need at least one argument.
|
|
if (TheCall->getNumArgs() < 1) {
|
|
S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
|
|
<< 0 << 1 << TheCall->getNumArgs() << /*is non object*/ 0
|
|
<< TheCall->getCallee()->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
// All arguments should be wide string literals.
|
|
for (Expr *Arg : TheCall->arguments()) {
|
|
auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
|
|
if (!Literal || !Literal->isWide()) {
|
|
S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str)
|
|
<< Arg->getSourceRange();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Check that the argument to __builtin_addressof is a glvalue, and set the
|
|
/// result type to the corresponding pointer type.
|
|
static bool BuiltinAddressof(Sema &S, CallExpr *TheCall) {
|
|
if (S.checkArgCount(TheCall, 1))
|
|
return true;
|
|
|
|
ExprResult Arg(TheCall->getArg(0));
|
|
QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc());
|
|
if (ResultType.isNull())
|
|
return true;
|
|
|
|
TheCall->setArg(0, Arg.get());
|
|
TheCall->setType(ResultType);
|
|
return false;
|
|
}
|
|
|
|
/// Check that the argument to __builtin_function_start is a function.
|
|
static bool BuiltinFunctionStart(Sema &S, CallExpr *TheCall) {
|
|
if (S.checkArgCount(TheCall, 1))
|
|
return true;
|
|
|
|
ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
|
|
if (Arg.isInvalid())
|
|
return true;
|
|
|
|
TheCall->setArg(0, Arg.get());
|
|
const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(
|
|
Arg.get()->getAsBuiltinConstantDeclRef(S.getASTContext()));
|
|
|
|
if (!FD) {
|
|
S.Diag(TheCall->getBeginLoc(), diag::err_function_start_invalid_type)
|
|
<< TheCall->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
return !S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
|
|
TheCall->getBeginLoc());
|
|
}
|
|
|
|
/// Check the number of arguments and set the result type to
|
|
/// the argument type.
|
|
static bool BuiltinPreserveAI(Sema &S, CallExpr *TheCall) {
|
|
if (S.checkArgCount(TheCall, 1))
|
|
return true;
|
|
|
|
TheCall->setType(TheCall->getArg(0)->getType());
|
|
return false;
|
|
}
|
|
|
|
/// Check that the value argument for __builtin_is_aligned(value, alignment) and
|
|
/// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer
|
|
/// type (but not a function pointer) and that the alignment is a power-of-two.
|
|
static bool BuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) {
|
|
if (S.checkArgCount(TheCall, 2))
|
|
return true;
|
|
|
|
clang::Expr *Source = TheCall->getArg(0);
|
|
bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned;
|
|
|
|
auto IsValidIntegerType = [](QualType Ty) {
|
|
return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType();
|
|
};
|
|
QualType SrcTy = Source->getType();
|
|
// We should also be able to use it with arrays (but not functions!).
|
|
if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) {
|
|
SrcTy = S.Context.getDecayedType(SrcTy);
|
|
}
|
|
if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) ||
|
|
SrcTy->isFunctionPointerType()) {
|
|
// FIXME: this is not quite the right error message since we don't allow
|
|
// floating point types, or member pointers.
|
|
S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand)
|
|
<< SrcTy;
|
|
return true;
|
|
}
|
|
|
|
clang::Expr *AlignOp = TheCall->getArg(1);
|
|
if (!IsValidIntegerType(AlignOp->getType())) {
|
|
S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int)
|
|
<< AlignOp->getType();
|
|
return true;
|
|
}
|
|
Expr::EvalResult AlignResult;
|
|
unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1;
|
|
// We can't check validity of alignment if it is value dependent.
|
|
if (!AlignOp->isValueDependent() &&
|
|
AlignOp->EvaluateAsInt(AlignResult, S.Context,
|
|
Expr::SE_AllowSideEffects)) {
|
|
llvm::APSInt AlignValue = AlignResult.Val.getInt();
|
|
llvm::APSInt MaxValue(
|
|
llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits));
|
|
if (AlignValue < 1) {
|
|
S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1;
|
|
return true;
|
|
}
|
|
if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) {
|
|
S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big)
|
|
<< toString(MaxValue, 10);
|
|
return true;
|
|
}
|
|
if (!AlignValue.isPowerOf2()) {
|
|
S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two);
|
|
return true;
|
|
}
|
|
if (AlignValue == 1) {
|
|
S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless)
|
|
<< IsBooleanAlignBuiltin;
|
|
}
|
|
}
|
|
|
|
ExprResult SrcArg = S.PerformCopyInitialization(
|
|
InitializedEntity::InitializeParameter(S.Context, SrcTy, false),
|
|
SourceLocation(), Source);
|
|
if (SrcArg.isInvalid())
|
|
return true;
|
|
TheCall->setArg(0, SrcArg.get());
|
|
ExprResult AlignArg =
|
|
S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
|
|
S.Context, AlignOp->getType(), false),
|
|
SourceLocation(), AlignOp);
|
|
if (AlignArg.isInvalid())
|
|
return true;
|
|
TheCall->setArg(1, AlignArg.get());
|
|
// For align_up/align_down, the return type is the same as the (potentially
|
|
// decayed) argument type including qualifiers. For is_aligned(), the result
|
|
// is always bool.
|
|
TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy);
|
|
return false;
|
|
}
|
|
|
|
static bool BuiltinOverflow(Sema &S, CallExpr *TheCall, unsigned BuiltinID) {
|
|
if (S.checkArgCount(TheCall, 3))
|
|
return true;
|
|
|
|
std::pair<unsigned, const char *> Builtins[] = {
|
|
{ Builtin::BI__builtin_add_overflow, "ckd_add" },
|
|
{ Builtin::BI__builtin_sub_overflow, "ckd_sub" },
|
|
{ Builtin::BI__builtin_mul_overflow, "ckd_mul" },
|
|
};
|
|
|
|
bool CkdOperation = llvm::any_of(Builtins, [&](const std::pair<unsigned,
|
|
const char *> &P) {
|
|
return BuiltinID == P.first && TheCall->getExprLoc().isMacroID() &&
|
|
Lexer::getImmediateMacroName(TheCall->getExprLoc(),
|
|
S.getSourceManager(), S.getLangOpts()) == P.second;
|
|
});
|
|
|
|
auto ValidCkdIntType = [](QualType QT) {
|
|
// A valid checked integer type is an integer type other than a plain char,
|
|
// bool, a bit-precise type, or an enumeration type.
|
|
if (const auto *BT = QT.getCanonicalType()->getAs<BuiltinType>())
|
|
return (BT->getKind() >= BuiltinType::Short &&
|
|
BT->getKind() <= BuiltinType::Int128) || (
|
|
BT->getKind() >= BuiltinType::UShort &&
|
|
BT->getKind() <= BuiltinType::UInt128) ||
|
|
BT->getKind() == BuiltinType::UChar ||
|
|
BT->getKind() == BuiltinType::SChar;
|
|
return false;
|
|
};
|
|
|
|
// First two arguments should be integers.
|
|
for (unsigned I = 0; I < 2; ++I) {
|
|
ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(I));
|
|
if (Arg.isInvalid()) return true;
|
|
TheCall->setArg(I, Arg.get());
|
|
|
|
QualType Ty = Arg.get()->getType();
|
|
bool IsValid = CkdOperation ? ValidCkdIntType(Ty) : Ty->isIntegerType();
|
|
if (!IsValid) {
|
|
S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int)
|
|
<< CkdOperation << Ty << Arg.get()->getSourceRange();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Third argument should be a pointer to a non-const integer.
|
|
// IRGen correctly handles volatile, restrict, and address spaces, and
|
|
// the other qualifiers aren't possible.
|
|
{
|
|
ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(2));
|
|
if (Arg.isInvalid()) return true;
|
|
TheCall->setArg(2, Arg.get());
|
|
|
|
QualType Ty = Arg.get()->getType();
|
|
const auto *PtrTy = Ty->getAs<PointerType>();
|
|
if (!PtrTy ||
|
|
!PtrTy->getPointeeType()->isIntegerType() ||
|
|
(!ValidCkdIntType(PtrTy->getPointeeType()) && CkdOperation) ||
|
|
PtrTy->getPointeeType().isConstQualified()) {
|
|
S.Diag(Arg.get()->getBeginLoc(),
|
|
diag::err_overflow_builtin_must_be_ptr_int)
|
|
<< CkdOperation << Ty << Arg.get()->getSourceRange();
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Disallow signed bit-precise integer args larger than 128 bits to mul
|
|
// function until we improve backend support.
|
|
if (BuiltinID == Builtin::BI__builtin_mul_overflow) {
|
|
for (unsigned I = 0; I < 3; ++I) {
|
|
const auto Arg = TheCall->getArg(I);
|
|
// Third argument will be a pointer.
|
|
auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType();
|
|
if (Ty->isBitIntType() && Ty->isSignedIntegerType() &&
|
|
S.getASTContext().getIntWidth(Ty) > 128)
|
|
return S.Diag(Arg->getBeginLoc(),
|
|
diag::err_overflow_builtin_bit_int_max_size)
|
|
<< 128;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
struct BuiltinDumpStructGenerator {
|
|
Sema &S;
|
|
CallExpr *TheCall;
|
|
SourceLocation Loc = TheCall->getBeginLoc();
|
|
SmallVector<Expr *, 32> Actions;
|
|
DiagnosticErrorTrap ErrorTracker;
|
|
PrintingPolicy Policy;
|
|
|
|
BuiltinDumpStructGenerator(Sema &S, CallExpr *TheCall)
|
|
: S(S), TheCall(TheCall), ErrorTracker(S.getDiagnostics()),
|
|
Policy(S.Context.getPrintingPolicy()) {
|
|
Policy.AnonymousTagLocations = false;
|
|
}
|
|
|
|
Expr *makeOpaqueValueExpr(Expr *Inner) {
|
|
auto *OVE = new (S.Context)
|
|
OpaqueValueExpr(Loc, Inner->getType(), Inner->getValueKind(),
|
|
Inner->getObjectKind(), Inner);
|
|
Actions.push_back(OVE);
|
|
return OVE;
|
|
}
|
|
|
|
Expr *getStringLiteral(llvm::StringRef Str) {
|
|
Expr *Lit = S.Context.getPredefinedStringLiteralFromCache(Str);
|
|
// Wrap the literal in parentheses to attach a source location.
|
|
return new (S.Context) ParenExpr(Loc, Loc, Lit);
|
|
}
|
|
|
|
bool callPrintFunction(llvm::StringRef Format,
|
|
llvm::ArrayRef<Expr *> Exprs = {}) {
|
|
SmallVector<Expr *, 8> Args;
|
|
assert(TheCall->getNumArgs() >= 2);
|
|
Args.reserve((TheCall->getNumArgs() - 2) + /*Format*/ 1 + Exprs.size());
|
|
Args.assign(TheCall->arg_begin() + 2, TheCall->arg_end());
|
|
Args.push_back(getStringLiteral(Format));
|
|
Args.insert(Args.end(), Exprs.begin(), Exprs.end());
|
|
|
|
// Register a note to explain why we're performing the call.
|
|
Sema::CodeSynthesisContext Ctx;
|
|
Ctx.Kind = Sema::CodeSynthesisContext::BuildingBuiltinDumpStructCall;
|
|
Ctx.PointOfInstantiation = Loc;
|
|
Ctx.CallArgs = Args.data();
|
|
Ctx.NumCallArgs = Args.size();
|
|
S.pushCodeSynthesisContext(Ctx);
|
|
|
|
ExprResult RealCall =
|
|
S.BuildCallExpr(/*Scope=*/nullptr, TheCall->getArg(1),
|
|
TheCall->getBeginLoc(), Args, TheCall->getRParenLoc());
|
|
|
|
S.popCodeSynthesisContext();
|
|
if (!RealCall.isInvalid())
|
|
Actions.push_back(RealCall.get());
|
|
// Bail out if we've hit any errors, even if we managed to build the
|
|
// call. We don't want to produce more than one error.
|
|
return RealCall.isInvalid() || ErrorTracker.hasErrorOccurred();
|
|
}
|
|
|
|
Expr *getIndentString(unsigned Depth) {
|
|
if (!Depth)
|
|
return nullptr;
|
|
|
|
llvm::SmallString<32> Indent;
|
|
Indent.resize(Depth * Policy.Indentation, ' ');
|
|
return getStringLiteral(Indent);
|
|
}
|
|
|
|
Expr *getTypeString(QualType T) {
|
|
return getStringLiteral(T.getAsString(Policy));
|
|
}
|
|
|
|
bool appendFormatSpecifier(QualType T, llvm::SmallVectorImpl<char> &Str) {
|
|
llvm::raw_svector_ostream OS(Str);
|
|
|
|
// Format 'bool', 'char', 'signed char', 'unsigned char' as numbers, rather
|
|
// than trying to print a single character.
|
|
if (auto *BT = T->getAs<BuiltinType>()) {
|
|
switch (BT->getKind()) {
|
|
case BuiltinType::Bool:
|
|
OS << "%d";
|
|
return true;
|
|
case BuiltinType::Char_U:
|
|
case BuiltinType::UChar:
|
|
OS << "%hhu";
|
|
return true;
|
|
case BuiltinType::Char_S:
|
|
case BuiltinType::SChar:
|
|
OS << "%hhd";
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
analyze_printf::PrintfSpecifier Specifier;
|
|
if (Specifier.fixType(T, S.getLangOpts(), S.Context, /*IsObjCLiteral=*/false)) {
|
|
// We were able to guess how to format this.
|
|
if (Specifier.getConversionSpecifier().getKind() ==
|
|
analyze_printf::PrintfConversionSpecifier::sArg) {
|
|
// Wrap double-quotes around a '%s' specifier and limit its maximum
|
|
// length. Ideally we'd also somehow escape special characters in the
|
|
// contents but printf doesn't support that.
|
|
// FIXME: '%s' formatting is not safe in general.
|
|
OS << '"';
|
|
Specifier.setPrecision(analyze_printf::OptionalAmount(32u));
|
|
Specifier.toString(OS);
|
|
OS << '"';
|
|
// FIXME: It would be nice to include a '...' if the string doesn't fit
|
|
// in the length limit.
|
|
} else {
|
|
Specifier.toString(OS);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (T->isPointerType()) {
|
|
// Format all pointers with '%p'.
|
|
OS << "%p";
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool dumpUnnamedRecord(const RecordDecl *RD, Expr *E, unsigned Depth) {
|
|
Expr *IndentLit = getIndentString(Depth);
|
|
Expr *TypeLit = getTypeString(S.Context.getRecordType(RD));
|
|
if (IndentLit ? callPrintFunction("%s%s", {IndentLit, TypeLit})
|
|
: callPrintFunction("%s", {TypeLit}))
|
|
return true;
|
|
|
|
return dumpRecordValue(RD, E, IndentLit, Depth);
|
|
}
|
|
|
|
// Dump a record value. E should be a pointer or lvalue referring to an RD.
|
|
bool dumpRecordValue(const RecordDecl *RD, Expr *E, Expr *RecordIndent,
|
|
unsigned Depth) {
|
|
// FIXME: Decide what to do if RD is a union. At least we should probably
|
|
// turn off printing `const char*` members with `%s`, because that is very
|
|
// likely to crash if that's not the active member. Whatever we decide, we
|
|
// should document it.
|
|
|
|
// Build an OpaqueValueExpr so we can refer to E more than once without
|
|
// triggering re-evaluation.
|
|
Expr *RecordArg = makeOpaqueValueExpr(E);
|
|
bool RecordArgIsPtr = RecordArg->getType()->isPointerType();
|
|
|
|
if (callPrintFunction(" {\n"))
|
|
return true;
|
|
|
|
// Dump each base class, regardless of whether they're aggregates.
|
|
if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
|
|
for (const auto &Base : CXXRD->bases()) {
|
|
QualType BaseType =
|
|
RecordArgIsPtr ? S.Context.getPointerType(Base.getType())
|
|
: S.Context.getLValueReferenceType(Base.getType());
|
|
ExprResult BasePtr = S.BuildCStyleCastExpr(
|
|
Loc, S.Context.getTrivialTypeSourceInfo(BaseType, Loc), Loc,
|
|
RecordArg);
|
|
if (BasePtr.isInvalid() ||
|
|
dumpUnnamedRecord(Base.getType()->getAsRecordDecl(), BasePtr.get(),
|
|
Depth + 1))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
Expr *FieldIndentArg = getIndentString(Depth + 1);
|
|
|
|
// Dump each field.
|
|
for (auto *D : RD->decls()) {
|
|
auto *IFD = dyn_cast<IndirectFieldDecl>(D);
|
|
auto *FD = IFD ? IFD->getAnonField() : dyn_cast<FieldDecl>(D);
|
|
if (!FD || FD->isUnnamedBitField() || FD->isAnonymousStructOrUnion())
|
|
continue;
|
|
|
|
llvm::SmallString<20> Format = llvm::StringRef("%s%s %s ");
|
|
llvm::SmallVector<Expr *, 5> Args = {FieldIndentArg,
|
|
getTypeString(FD->getType()),
|
|
getStringLiteral(FD->getName())};
|
|
|
|
if (FD->isBitField()) {
|
|
Format += ": %zu ";
|
|
QualType SizeT = S.Context.getSizeType();
|
|
llvm::APInt BitWidth(S.Context.getIntWidth(SizeT),
|
|
FD->getBitWidthValue());
|
|
Args.push_back(IntegerLiteral::Create(S.Context, BitWidth, SizeT, Loc));
|
|
}
|
|
|
|
Format += "=";
|
|
|
|
ExprResult Field =
|
|
IFD ? S.BuildAnonymousStructUnionMemberReference(
|
|
CXXScopeSpec(), Loc, IFD,
|
|
DeclAccessPair::make(IFD, AS_public), RecordArg, Loc)
|
|
: S.BuildFieldReferenceExpr(
|
|
RecordArg, RecordArgIsPtr, Loc, CXXScopeSpec(), FD,
|
|
DeclAccessPair::make(FD, AS_public),
|
|
DeclarationNameInfo(FD->getDeclName(), Loc));
|
|
if (Field.isInvalid())
|
|
return true;
|
|
|
|
auto *InnerRD = FD->getType()->getAsRecordDecl();
|
|
auto *InnerCXXRD = dyn_cast_or_null<CXXRecordDecl>(InnerRD);
|
|
if (InnerRD && (!InnerCXXRD || InnerCXXRD->isAggregate())) {
|
|
// Recursively print the values of members of aggregate record type.
|
|
if (callPrintFunction(Format, Args) ||
|
|
dumpRecordValue(InnerRD, Field.get(), FieldIndentArg, Depth + 1))
|
|
return true;
|
|
} else {
|
|
Format += " ";
|
|
if (appendFormatSpecifier(FD->getType(), Format)) {
|
|
// We know how to print this field.
|
|
Args.push_back(Field.get());
|
|
} else {
|
|
// We don't know how to print this field. Print out its address
|
|
// with a format specifier that a smart tool will be able to
|
|
// recognize and treat specially.
|
|
Format += "*%p";
|
|
ExprResult FieldAddr =
|
|
S.BuildUnaryOp(nullptr, Loc, UO_AddrOf, Field.get());
|
|
if (FieldAddr.isInvalid())
|
|
return true;
|
|
Args.push_back(FieldAddr.get());
|
|
}
|
|
Format += "\n";
|
|
if (callPrintFunction(Format, Args))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return RecordIndent ? callPrintFunction("%s}\n", RecordIndent)
|
|
: callPrintFunction("}\n");
|
|
}
|
|
|
|
Expr *buildWrapper() {
|
|
auto *Wrapper = PseudoObjectExpr::Create(S.Context, TheCall, Actions,
|
|
PseudoObjectExpr::NoResult);
|
|
TheCall->setType(Wrapper->getType());
|
|
TheCall->setValueKind(Wrapper->getValueKind());
|
|
return Wrapper;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
static ExprResult BuiltinDumpStruct(Sema &S, CallExpr *TheCall) {
|
|
if (S.checkArgCountAtLeast(TheCall, 2))
|
|
return ExprError();
|
|
|
|
ExprResult PtrArgResult = S.DefaultLvalueConversion(TheCall->getArg(0));
|
|
if (PtrArgResult.isInvalid())
|
|
return ExprError();
|
|
TheCall->setArg(0, PtrArgResult.get());
|
|
|
|
// First argument should be a pointer to a struct.
|
|
QualType PtrArgType = PtrArgResult.get()->getType();
|
|
if (!PtrArgType->isPointerType() ||
|
|
!PtrArgType->getPointeeType()->isRecordType()) {
|
|
S.Diag(PtrArgResult.get()->getBeginLoc(),
|
|
diag::err_expected_struct_pointer_argument)
|
|
<< 1 << TheCall->getDirectCallee() << PtrArgType;
|
|
return ExprError();
|
|
}
|
|
QualType Pointee = PtrArgType->getPointeeType();
|
|
const RecordDecl *RD = Pointee->getAsRecordDecl();
|
|
// Try to instantiate the class template as appropriate; otherwise, access to
|
|
// its data() may lead to a crash.
|
|
if (S.RequireCompleteType(PtrArgResult.get()->getBeginLoc(), Pointee,
|
|
diag::err_incomplete_type))
|
|
return ExprError();
|
|
// Second argument is a callable, but we can't fully validate it until we try
|
|
// calling it.
|
|
QualType FnArgType = TheCall->getArg(1)->getType();
|
|
if (!FnArgType->isFunctionType() && !FnArgType->isFunctionPointerType() &&
|
|
!FnArgType->isBlockPointerType() &&
|
|
!(S.getLangOpts().CPlusPlus && FnArgType->isRecordType())) {
|
|
auto *BT = FnArgType->getAs<BuiltinType>();
|
|
switch (BT ? BT->getKind() : BuiltinType::Void) {
|
|
case BuiltinType::Dependent:
|
|
case BuiltinType::Overload:
|
|
case BuiltinType::BoundMember:
|
|
case BuiltinType::PseudoObject:
|
|
case BuiltinType::UnknownAny:
|
|
case BuiltinType::BuiltinFn:
|
|
// This might be a callable.
|
|
break;
|
|
|
|
default:
|
|
S.Diag(TheCall->getArg(1)->getBeginLoc(),
|
|
diag::err_expected_callable_argument)
|
|
<< 2 << TheCall->getDirectCallee() << FnArgType;
|
|
return ExprError();
|
|
}
|
|
}
|
|
|
|
BuiltinDumpStructGenerator Generator(S, TheCall);
|
|
|
|
// Wrap parentheses around the given pointer. This is not necessary for
|
|
// correct code generation, but it means that when we pretty-print the call
|
|
// arguments in our diagnostics we will produce '(&s)->n' instead of the
|
|
// incorrect '&s->n'.
|
|
Expr *PtrArg = PtrArgResult.get();
|
|
PtrArg = new (S.Context)
|
|
ParenExpr(PtrArg->getBeginLoc(),
|
|
S.getLocForEndOfToken(PtrArg->getEndLoc()), PtrArg);
|
|
if (Generator.dumpUnnamedRecord(RD, PtrArg, 0))
|
|
return ExprError();
|
|
|
|
return Generator.buildWrapper();
|
|
}
|
|
|
|
static bool BuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
|
|
if (S.checkArgCount(BuiltinCall, 2))
|
|
return true;
|
|
|
|
SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc();
|
|
Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
|
|
Expr *Call = BuiltinCall->getArg(0);
|
|
Expr *Chain = BuiltinCall->getArg(1);
|
|
|
|
if (Call->getStmtClass() != Stmt::CallExprClass) {
|
|
S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
|
|
<< Call->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
auto CE = cast<CallExpr>(Call);
|
|
if (CE->getCallee()->getType()->isBlockPointerType()) {
|
|
S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
|
|
<< Call->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
const Decl *TargetDecl = CE->getCalleeDecl();
|
|
if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
|
|
if (FD->getBuiltinID()) {
|
|
S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
|
|
<< Call->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
|
|
S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
|
|
<< Call->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
ExprResult ChainResult = S.UsualUnaryConversions(Chain);
|
|
if (ChainResult.isInvalid())
|
|
return true;
|
|
if (!ChainResult.get()->getType()->isPointerType()) {
|
|
S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
|
|
<< Chain->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
QualType ReturnTy = CE->getCallReturnType(S.Context);
|
|
QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
|
|
QualType BuiltinTy = S.Context.getFunctionType(
|
|
ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
|
|
QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
|
|
|
|
Builtin =
|
|
S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
|
|
|
|
BuiltinCall->setType(CE->getType());
|
|
BuiltinCall->setValueKind(CE->getValueKind());
|
|
BuiltinCall->setObjectKind(CE->getObjectKind());
|
|
BuiltinCall->setCallee(Builtin);
|
|
BuiltinCall->setArg(1, ChainResult.get());
|
|
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class ScanfDiagnosticFormatHandler
|
|
: public analyze_format_string::FormatStringHandler {
|
|
// Accepts the argument index (relative to the first destination index) of the
|
|
// argument whose size we want.
|
|
using ComputeSizeFunction =
|
|
llvm::function_ref<std::optional<llvm::APSInt>(unsigned)>;
|
|
|
|
// Accepts the argument index (relative to the first destination index), the
|
|
// destination size, and the source size).
|
|
using DiagnoseFunction =
|
|
llvm::function_ref<void(unsigned, unsigned, unsigned)>;
|
|
|
|
ComputeSizeFunction ComputeSizeArgument;
|
|
DiagnoseFunction Diagnose;
|
|
|
|
public:
|
|
ScanfDiagnosticFormatHandler(ComputeSizeFunction ComputeSizeArgument,
|
|
DiagnoseFunction Diagnose)
|
|
: ComputeSizeArgument(ComputeSizeArgument), Diagnose(Diagnose) {}
|
|
|
|
bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
|
|
const char *StartSpecifier,
|
|
unsigned specifierLen) override {
|
|
if (!FS.consumesDataArgument())
|
|
return true;
|
|
|
|
unsigned NulByte = 0;
|
|
switch ((FS.getConversionSpecifier().getKind())) {
|
|
default:
|
|
return true;
|
|
case analyze_format_string::ConversionSpecifier::sArg:
|
|
case analyze_format_string::ConversionSpecifier::ScanListArg:
|
|
NulByte = 1;
|
|
break;
|
|
case analyze_format_string::ConversionSpecifier::cArg:
|
|
break;
|
|
}
|
|
|
|
analyze_format_string::OptionalAmount FW = FS.getFieldWidth();
|
|
if (FW.getHowSpecified() !=
|
|
analyze_format_string::OptionalAmount::HowSpecified::Constant)
|
|
return true;
|
|
|
|
unsigned SourceSize = FW.getConstantAmount() + NulByte;
|
|
|
|
std::optional<llvm::APSInt> DestSizeAPS =
|
|
ComputeSizeArgument(FS.getArgIndex());
|
|
if (!DestSizeAPS)
|
|
return true;
|
|
|
|
unsigned DestSize = DestSizeAPS->getZExtValue();
|
|
|
|
if (DestSize < SourceSize)
|
|
Diagnose(FS.getArgIndex(), DestSize, SourceSize);
|
|
|
|
return true;
|
|
}
|
|
};
|
|
|
|
class EstimateSizeFormatHandler
|
|
: public analyze_format_string::FormatStringHandler {
|
|
size_t Size;
|
|
/// Whether the format string contains Linux kernel's format specifier
|
|
/// extension.
|
|
bool IsKernelCompatible = true;
|
|
|
|
public:
|
|
EstimateSizeFormatHandler(StringRef Format)
|
|
: Size(std::min(Format.find(0), Format.size()) +
|
|
1 /* null byte always written by sprintf */) {}
|
|
|
|
bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
|
|
const char *, unsigned SpecifierLen,
|
|
const TargetInfo &) override {
|
|
|
|
const size_t FieldWidth = computeFieldWidth(FS);
|
|
const size_t Precision = computePrecision(FS);
|
|
|
|
// The actual format.
|
|
switch (FS.getConversionSpecifier().getKind()) {
|
|
// Just a char.
|
|
case analyze_format_string::ConversionSpecifier::cArg:
|
|
case analyze_format_string::ConversionSpecifier::CArg:
|
|
Size += std::max(FieldWidth, (size_t)1);
|
|
break;
|
|
// Just an integer.
|
|
case analyze_format_string::ConversionSpecifier::dArg:
|
|
case analyze_format_string::ConversionSpecifier::DArg:
|
|
case analyze_format_string::ConversionSpecifier::iArg:
|
|
case analyze_format_string::ConversionSpecifier::oArg:
|
|
case analyze_format_string::ConversionSpecifier::OArg:
|
|
case analyze_format_string::ConversionSpecifier::uArg:
|
|
case analyze_format_string::ConversionSpecifier::UArg:
|
|
case analyze_format_string::ConversionSpecifier::xArg:
|
|
case analyze_format_string::ConversionSpecifier::XArg:
|
|
Size += std::max(FieldWidth, Precision);
|
|
break;
|
|
|
|
// %g style conversion switches between %f or %e style dynamically.
|
|
// %g removes trailing zeros, and does not print decimal point if there are
|
|
// no digits that follow it. Thus %g can print a single digit.
|
|
// FIXME: If it is alternative form:
|
|
// For g and G conversions, trailing zeros are not removed from the result.
|
|
case analyze_format_string::ConversionSpecifier::gArg:
|
|
case analyze_format_string::ConversionSpecifier::GArg:
|
|
Size += 1;
|
|
break;
|
|
|
|
// Floating point number in the form '[+]ddd.ddd'.
|
|
case analyze_format_string::ConversionSpecifier::fArg:
|
|
case analyze_format_string::ConversionSpecifier::FArg:
|
|
Size += std::max(FieldWidth, 1 /* integer part */ +
|
|
(Precision ? 1 + Precision
|
|
: 0) /* period + decimal */);
|
|
break;
|
|
|
|
// Floating point number in the form '[-]d.ddde[+-]dd'.
|
|
case analyze_format_string::ConversionSpecifier::eArg:
|
|
case analyze_format_string::ConversionSpecifier::EArg:
|
|
Size +=
|
|
std::max(FieldWidth,
|
|
1 /* integer part */ +
|
|
(Precision ? 1 + Precision : 0) /* period + decimal */ +
|
|
1 /* e or E letter */ + 2 /* exponent */);
|
|
break;
|
|
|
|
// Floating point number in the form '[-]0xh.hhhhp±dd'.
|
|
case analyze_format_string::ConversionSpecifier::aArg:
|
|
case analyze_format_string::ConversionSpecifier::AArg:
|
|
Size +=
|
|
std::max(FieldWidth,
|
|
2 /* 0x */ + 1 /* integer part */ +
|
|
(Precision ? 1 + Precision : 0) /* period + decimal */ +
|
|
1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */);
|
|
break;
|
|
|
|
// Just a string.
|
|
case analyze_format_string::ConversionSpecifier::sArg:
|
|
case analyze_format_string::ConversionSpecifier::SArg:
|
|
Size += FieldWidth;
|
|
break;
|
|
|
|
// Just a pointer in the form '0xddd'.
|
|
case analyze_format_string::ConversionSpecifier::pArg:
|
|
// Linux kernel has its own extesion for `%p` specifier.
|
|
// Kernel Document:
|
|
// https://docs.kernel.org/core-api/printk-formats.html#pointer-types
|
|
IsKernelCompatible = false;
|
|
Size += std::max(FieldWidth, 2 /* leading 0x */ + Precision);
|
|
break;
|
|
|
|
// A plain percent.
|
|
case analyze_format_string::ConversionSpecifier::PercentArg:
|
|
Size += 1;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
Size += FS.hasPlusPrefix() || FS.hasSpacePrefix();
|
|
|
|
if (FS.hasAlternativeForm()) {
|
|
switch (FS.getConversionSpecifier().getKind()) {
|
|
// For o conversion, it increases the precision, if and only if necessary,
|
|
// to force the first digit of the result to be a zero
|
|
// (if the value and precision are both 0, a single 0 is printed)
|
|
case analyze_format_string::ConversionSpecifier::oArg:
|
|
// For b conversion, a nonzero result has 0b prefixed to it.
|
|
case analyze_format_string::ConversionSpecifier::bArg:
|
|
// For x (or X) conversion, a nonzero result has 0x (or 0X) prefixed to
|
|
// it.
|
|
case analyze_format_string::ConversionSpecifier::xArg:
|
|
case analyze_format_string::ConversionSpecifier::XArg:
|
|
// Note: even when the prefix is added, if
|
|
// (prefix_width <= FieldWidth - formatted_length) holds,
|
|
// the prefix does not increase the format
|
|
// size. e.g.(("%#3x", 0xf) is "0xf")
|
|
|
|
// If the result is zero, o, b, x, X adds nothing.
|
|
break;
|
|
// For a, A, e, E, f, F, g, and G conversions,
|
|
// the result of converting a floating-point number always contains a
|
|
// decimal-point
|
|
case analyze_format_string::ConversionSpecifier::aArg:
|
|
case analyze_format_string::ConversionSpecifier::AArg:
|
|
case analyze_format_string::ConversionSpecifier::eArg:
|
|
case analyze_format_string::ConversionSpecifier::EArg:
|
|
case analyze_format_string::ConversionSpecifier::fArg:
|
|
case analyze_format_string::ConversionSpecifier::FArg:
|
|
case analyze_format_string::ConversionSpecifier::gArg:
|
|
case analyze_format_string::ConversionSpecifier::GArg:
|
|
Size += (Precision ? 0 : 1);
|
|
break;
|
|
// For other conversions, the behavior is undefined.
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
assert(SpecifierLen <= Size && "no underflow");
|
|
Size -= SpecifierLen;
|
|
return true;
|
|
}
|
|
|
|
size_t getSizeLowerBound() const { return Size; }
|
|
bool isKernelCompatible() const { return IsKernelCompatible; }
|
|
|
|
private:
|
|
static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) {
|
|
const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth();
|
|
size_t FieldWidth = 0;
|
|
if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant)
|
|
FieldWidth = FW.getConstantAmount();
|
|
return FieldWidth;
|
|
}
|
|
|
|
static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) {
|
|
const analyze_format_string::OptionalAmount &FW = FS.getPrecision();
|
|
size_t Precision = 0;
|
|
|
|
// See man 3 printf for default precision value based on the specifier.
|
|
switch (FW.getHowSpecified()) {
|
|
case analyze_format_string::OptionalAmount::NotSpecified:
|
|
switch (FS.getConversionSpecifier().getKind()) {
|
|
default:
|
|
break;
|
|
case analyze_format_string::ConversionSpecifier::dArg: // %d
|
|
case analyze_format_string::ConversionSpecifier::DArg: // %D
|
|
case analyze_format_string::ConversionSpecifier::iArg: // %i
|
|
Precision = 1;
|
|
break;
|
|
case analyze_format_string::ConversionSpecifier::oArg: // %d
|
|
case analyze_format_string::ConversionSpecifier::OArg: // %D
|
|
case analyze_format_string::ConversionSpecifier::uArg: // %d
|
|
case analyze_format_string::ConversionSpecifier::UArg: // %D
|
|
case analyze_format_string::ConversionSpecifier::xArg: // %d
|
|
case analyze_format_string::ConversionSpecifier::XArg: // %D
|
|
Precision = 1;
|
|
break;
|
|
case analyze_format_string::ConversionSpecifier::fArg: // %f
|
|
case analyze_format_string::ConversionSpecifier::FArg: // %F
|
|
case analyze_format_string::ConversionSpecifier::eArg: // %e
|
|
case analyze_format_string::ConversionSpecifier::EArg: // %E
|
|
case analyze_format_string::ConversionSpecifier::gArg: // %g
|
|
case analyze_format_string::ConversionSpecifier::GArg: // %G
|
|
Precision = 6;
|
|
break;
|
|
case analyze_format_string::ConversionSpecifier::pArg: // %d
|
|
Precision = 1;
|
|
break;
|
|
}
|
|
break;
|
|
case analyze_format_string::OptionalAmount::Constant:
|
|
Precision = FW.getConstantAmount();
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
return Precision;
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
static bool ProcessFormatStringLiteral(const Expr *FormatExpr,
|
|
StringRef &FormatStrRef, size_t &StrLen,
|
|
ASTContext &Context) {
|
|
if (const auto *Format = dyn_cast<StringLiteral>(FormatExpr);
|
|
Format && (Format->isOrdinary() || Format->isUTF8())) {
|
|
FormatStrRef = Format->getString();
|
|
const ConstantArrayType *T =
|
|
Context.getAsConstantArrayType(Format->getType());
|
|
assert(T && "String literal not of constant array type!");
|
|
size_t TypeSize = T->getZExtSize();
|
|
// In case there's a null byte somewhere.
|
|
StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD,
|
|
CallExpr *TheCall) {
|
|
if (TheCall->isValueDependent() || TheCall->isTypeDependent() ||
|
|
isConstantEvaluatedContext())
|
|
return;
|
|
|
|
bool UseDABAttr = false;
|
|
const FunctionDecl *UseDecl = FD;
|
|
|
|
const auto *DABAttr = FD->getAttr<DiagnoseAsBuiltinAttr>();
|
|
if (DABAttr) {
|
|
UseDecl = DABAttr->getFunction();
|
|
assert(UseDecl && "Missing FunctionDecl in DiagnoseAsBuiltin attribute!");
|
|
UseDABAttr = true;
|
|
}
|
|
|
|
unsigned BuiltinID = UseDecl->getBuiltinID(/*ConsiderWrappers=*/true);
|
|
|
|
if (!BuiltinID)
|
|
return;
|
|
|
|
const TargetInfo &TI = getASTContext().getTargetInfo();
|
|
unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType());
|
|
|
|
auto TranslateIndex = [&](unsigned Index) -> std::optional<unsigned> {
|
|
// If we refer to a diagnose_as_builtin attribute, we need to change the
|
|
// argument index to refer to the arguments of the called function. Unless
|
|
// the index is out of bounds, which presumably means it's a variadic
|
|
// function.
|
|
if (!UseDABAttr)
|
|
return Index;
|
|
unsigned DABIndices = DABAttr->argIndices_size();
|
|
unsigned NewIndex = Index < DABIndices
|
|
? DABAttr->argIndices_begin()[Index]
|
|
: Index - DABIndices + FD->getNumParams();
|
|
if (NewIndex >= TheCall->getNumArgs())
|
|
return std::nullopt;
|
|
return NewIndex;
|
|
};
|
|
|
|
auto ComputeExplicitObjectSizeArgument =
|
|
[&](unsigned Index) -> std::optional<llvm::APSInt> {
|
|
std::optional<unsigned> IndexOptional = TranslateIndex(Index);
|
|
if (!IndexOptional)
|
|
return std::nullopt;
|
|
unsigned NewIndex = *IndexOptional;
|
|
Expr::EvalResult Result;
|
|
Expr *SizeArg = TheCall->getArg(NewIndex);
|
|
if (!SizeArg->EvaluateAsInt(Result, getASTContext()))
|
|
return std::nullopt;
|
|
llvm::APSInt Integer = Result.Val.getInt();
|
|
Integer.setIsUnsigned(true);
|
|
return Integer;
|
|
};
|
|
|
|
auto ComputeSizeArgument =
|
|
[&](unsigned Index) -> std::optional<llvm::APSInt> {
|
|
// If the parameter has a pass_object_size attribute, then we should use its
|
|
// (potentially) more strict checking mode. Otherwise, conservatively assume
|
|
// type 0.
|
|
int BOSType = 0;
|
|
// This check can fail for variadic functions.
|
|
if (Index < FD->getNumParams()) {
|
|
if (const auto *POS =
|
|
FD->getParamDecl(Index)->getAttr<PassObjectSizeAttr>())
|
|
BOSType = POS->getType();
|
|
}
|
|
|
|
std::optional<unsigned> IndexOptional = TranslateIndex(Index);
|
|
if (!IndexOptional)
|
|
return std::nullopt;
|
|
unsigned NewIndex = *IndexOptional;
|
|
|
|
if (NewIndex >= TheCall->getNumArgs())
|
|
return std::nullopt;
|
|
|
|
const Expr *ObjArg = TheCall->getArg(NewIndex);
|
|
uint64_t Result;
|
|
if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType))
|
|
return std::nullopt;
|
|
|
|
// Get the object size in the target's size_t width.
|
|
return llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth);
|
|
};
|
|
|
|
auto ComputeStrLenArgument =
|
|
[&](unsigned Index) -> std::optional<llvm::APSInt> {
|
|
std::optional<unsigned> IndexOptional = TranslateIndex(Index);
|
|
if (!IndexOptional)
|
|
return std::nullopt;
|
|
unsigned NewIndex = *IndexOptional;
|
|
|
|
const Expr *ObjArg = TheCall->getArg(NewIndex);
|
|
uint64_t Result;
|
|
if (!ObjArg->tryEvaluateStrLen(Result, getASTContext()))
|
|
return std::nullopt;
|
|
// Add 1 for null byte.
|
|
return llvm::APSInt::getUnsigned(Result + 1).extOrTrunc(SizeTypeWidth);
|
|
};
|
|
|
|
std::optional<llvm::APSInt> SourceSize;
|
|
std::optional<llvm::APSInt> DestinationSize;
|
|
unsigned DiagID = 0;
|
|
bool IsChkVariant = false;
|
|
|
|
auto GetFunctionName = [&]() {
|
|
std::string FunctionNameStr =
|
|
getASTContext().BuiltinInfo.getName(BuiltinID);
|
|
llvm::StringRef FunctionName = FunctionNameStr;
|
|
// Skim off the details of whichever builtin was called to produce a better
|
|
// diagnostic, as it's unlikely that the user wrote the __builtin
|
|
// explicitly.
|
|
if (IsChkVariant) {
|
|
FunctionName = FunctionName.drop_front(std::strlen("__builtin___"));
|
|
FunctionName = FunctionName.drop_back(std::strlen("_chk"));
|
|
} else {
|
|
FunctionName.consume_front("__builtin_");
|
|
}
|
|
return FunctionName.str();
|
|
};
|
|
|
|
switch (BuiltinID) {
|
|
default:
|
|
return;
|
|
case Builtin::BI__builtin_strcpy:
|
|
case Builtin::BIstrcpy: {
|
|
DiagID = diag::warn_fortify_strlen_overflow;
|
|
SourceSize = ComputeStrLenArgument(1);
|
|
DestinationSize = ComputeSizeArgument(0);
|
|
break;
|
|
}
|
|
|
|
case Builtin::BI__builtin___strcpy_chk: {
|
|
DiagID = diag::warn_fortify_strlen_overflow;
|
|
SourceSize = ComputeStrLenArgument(1);
|
|
DestinationSize = ComputeExplicitObjectSizeArgument(2);
|
|
IsChkVariant = true;
|
|
break;
|
|
}
|
|
|
|
case Builtin::BIscanf:
|
|
case Builtin::BIfscanf:
|
|
case Builtin::BIsscanf: {
|
|
unsigned FormatIndex = 1;
|
|
unsigned DataIndex = 2;
|
|
if (BuiltinID == Builtin::BIscanf) {
|
|
FormatIndex = 0;
|
|
DataIndex = 1;
|
|
}
|
|
|
|
const auto *FormatExpr =
|
|
TheCall->getArg(FormatIndex)->IgnoreParenImpCasts();
|
|
|
|
StringRef FormatStrRef;
|
|
size_t StrLen;
|
|
if (!ProcessFormatStringLiteral(FormatExpr, FormatStrRef, StrLen, Context))
|
|
return;
|
|
|
|
auto Diagnose = [&](unsigned ArgIndex, unsigned DestSize,
|
|
unsigned SourceSize) {
|
|
DiagID = diag::warn_fortify_scanf_overflow;
|
|
unsigned Index = ArgIndex + DataIndex;
|
|
std::string FunctionName = GetFunctionName();
|
|
DiagRuntimeBehavior(TheCall->getArg(Index)->getBeginLoc(), TheCall,
|
|
PDiag(DiagID) << FunctionName << (Index + 1)
|
|
<< DestSize << SourceSize);
|
|
};
|
|
|
|
auto ShiftedComputeSizeArgument = [&](unsigned Index) {
|
|
return ComputeSizeArgument(Index + DataIndex);
|
|
};
|
|
ScanfDiagnosticFormatHandler H(ShiftedComputeSizeArgument, Diagnose);
|
|
const char *FormatBytes = FormatStrRef.data();
|
|
analyze_format_string::ParseScanfString(H, FormatBytes,
|
|
FormatBytes + StrLen, getLangOpts(),
|
|
Context.getTargetInfo());
|
|
|
|
// Unlike the other cases, in this one we have already issued the diagnostic
|
|
// here, so no need to continue (because unlike the other cases, here the
|
|
// diagnostic refers to the argument number).
|
|
return;
|
|
}
|
|
|
|
case Builtin::BIsprintf:
|
|
case Builtin::BI__builtin___sprintf_chk: {
|
|
size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3;
|
|
auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts();
|
|
|
|
StringRef FormatStrRef;
|
|
size_t StrLen;
|
|
if (ProcessFormatStringLiteral(FormatExpr, FormatStrRef, StrLen, Context)) {
|
|
EstimateSizeFormatHandler H(FormatStrRef);
|
|
const char *FormatBytes = FormatStrRef.data();
|
|
if (!analyze_format_string::ParsePrintfString(
|
|
H, FormatBytes, FormatBytes + StrLen, getLangOpts(),
|
|
Context.getTargetInfo(), false)) {
|
|
DiagID = H.isKernelCompatible()
|
|
? diag::warn_format_overflow
|
|
: diag::warn_format_overflow_non_kprintf;
|
|
SourceSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound())
|
|
.extOrTrunc(SizeTypeWidth);
|
|
if (BuiltinID == Builtin::BI__builtin___sprintf_chk) {
|
|
DestinationSize = ComputeExplicitObjectSizeArgument(2);
|
|
IsChkVariant = true;
|
|
} else {
|
|
DestinationSize = ComputeSizeArgument(0);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
case Builtin::BI__builtin___memcpy_chk:
|
|
case Builtin::BI__builtin___memmove_chk:
|
|
case Builtin::BI__builtin___memset_chk:
|
|
case Builtin::BI__builtin___strlcat_chk:
|
|
case Builtin::BI__builtin___strlcpy_chk:
|
|
case Builtin::BI__builtin___strncat_chk:
|
|
case Builtin::BI__builtin___strncpy_chk:
|
|
case Builtin::BI__builtin___stpncpy_chk:
|
|
case Builtin::BI__builtin___memccpy_chk:
|
|
case Builtin::BI__builtin___mempcpy_chk: {
|
|
DiagID = diag::warn_builtin_chk_overflow;
|
|
SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 2);
|
|
DestinationSize =
|
|
ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
|
|
IsChkVariant = true;
|
|
break;
|
|
}
|
|
|
|
case Builtin::BI__builtin___snprintf_chk:
|
|
case Builtin::BI__builtin___vsnprintf_chk: {
|
|
DiagID = diag::warn_builtin_chk_overflow;
|
|
SourceSize = ComputeExplicitObjectSizeArgument(1);
|
|
DestinationSize = ComputeExplicitObjectSizeArgument(3);
|
|
IsChkVariant = true;
|
|
break;
|
|
}
|
|
|
|
case Builtin::BIstrncat:
|
|
case Builtin::BI__builtin_strncat:
|
|
case Builtin::BIstrncpy:
|
|
case Builtin::BI__builtin_strncpy:
|
|
case Builtin::BIstpncpy:
|
|
case Builtin::BI__builtin_stpncpy: {
|
|
// Whether these functions overflow depends on the runtime strlen of the
|
|
// string, not just the buffer size, so emitting the "always overflow"
|
|
// diagnostic isn't quite right. We should still diagnose passing a buffer
|
|
// size larger than the destination buffer though; this is a runtime abort
|
|
// in _FORTIFY_SOURCE mode, and is quite suspicious otherwise.
|
|
DiagID = diag::warn_fortify_source_size_mismatch;
|
|
SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
|
|
DestinationSize = ComputeSizeArgument(0);
|
|
break;
|
|
}
|
|
|
|
case Builtin::BImemcpy:
|
|
case Builtin::BI__builtin_memcpy:
|
|
case Builtin::BImemmove:
|
|
case Builtin::BI__builtin_memmove:
|
|
case Builtin::BImemset:
|
|
case Builtin::BI__builtin_memset:
|
|
case Builtin::BImempcpy:
|
|
case Builtin::BI__builtin_mempcpy: {
|
|
DiagID = diag::warn_fortify_source_overflow;
|
|
SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
|
|
DestinationSize = ComputeSizeArgument(0);
|
|
break;
|
|
}
|
|
case Builtin::BIsnprintf:
|
|
case Builtin::BI__builtin_snprintf:
|
|
case Builtin::BIvsnprintf:
|
|
case Builtin::BI__builtin_vsnprintf: {
|
|
DiagID = diag::warn_fortify_source_size_mismatch;
|
|
SourceSize = ComputeExplicitObjectSizeArgument(1);
|
|
const auto *FormatExpr = TheCall->getArg(2)->IgnoreParenImpCasts();
|
|
StringRef FormatStrRef;
|
|
size_t StrLen;
|
|
if (SourceSize &&
|
|
ProcessFormatStringLiteral(FormatExpr, FormatStrRef, StrLen, Context)) {
|
|
EstimateSizeFormatHandler H(FormatStrRef);
|
|
const char *FormatBytes = FormatStrRef.data();
|
|
if (!analyze_format_string::ParsePrintfString(
|
|
H, FormatBytes, FormatBytes + StrLen, getLangOpts(),
|
|
Context.getTargetInfo(), /*isFreeBSDKPrintf=*/false)) {
|
|
llvm::APSInt FormatSize =
|
|
llvm::APSInt::getUnsigned(H.getSizeLowerBound())
|
|
.extOrTrunc(SizeTypeWidth);
|
|
if (FormatSize > *SourceSize && *SourceSize != 0) {
|
|
unsigned TruncationDiagID =
|
|
H.isKernelCompatible() ? diag::warn_format_truncation
|
|
: diag::warn_format_truncation_non_kprintf;
|
|
SmallString<16> SpecifiedSizeStr;
|
|
SmallString<16> FormatSizeStr;
|
|
SourceSize->toString(SpecifiedSizeStr, /*Radix=*/10);
|
|
FormatSize.toString(FormatSizeStr, /*Radix=*/10);
|
|
DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
|
|
PDiag(TruncationDiagID)
|
|
<< GetFunctionName() << SpecifiedSizeStr
|
|
<< FormatSizeStr);
|
|
}
|
|
}
|
|
}
|
|
DestinationSize = ComputeSizeArgument(0);
|
|
}
|
|
}
|
|
|
|
if (!SourceSize || !DestinationSize ||
|
|
llvm::APSInt::compareValues(*SourceSize, *DestinationSize) <= 0)
|
|
return;
|
|
|
|
std::string FunctionName = GetFunctionName();
|
|
|
|
SmallString<16> DestinationStr;
|
|
SmallString<16> SourceStr;
|
|
DestinationSize->toString(DestinationStr, /*Radix=*/10);
|
|
SourceSize->toString(SourceStr, /*Radix=*/10);
|
|
DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
|
|
PDiag(DiagID)
|
|
<< FunctionName << DestinationStr << SourceStr);
|
|
}
|
|
|
|
static bool BuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall,
|
|
Scope::ScopeFlags NeededScopeFlags,
|
|
unsigned DiagID) {
|
|
// Scopes aren't available during instantiation. Fortunately, builtin
|
|
// functions cannot be template args so they cannot be formed through template
|
|
// instantiation. Therefore checking once during the parse is sufficient.
|
|
if (SemaRef.inTemplateInstantiation())
|
|
return false;
|
|
|
|
Scope *S = SemaRef.getCurScope();
|
|
while (S && !S->isSEHExceptScope())
|
|
S = S->getParent();
|
|
if (!S || !(S->getFlags() & NeededScopeFlags)) {
|
|
auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
|
|
SemaRef.Diag(TheCall->getExprLoc(), DiagID)
|
|
<< DRE->getDecl()->getIdentifier();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// In OpenCL, __builtin_alloca_* should return a pointer to address space
|
|
// that corresponds to the stack address space i.e private address space.
|
|
static void builtinAllocaAddrSpace(Sema &S, CallExpr *TheCall) {
|
|
QualType RT = TheCall->getType();
|
|
assert((RT->isPointerType() && !(RT->getPointeeType().hasAddressSpace())) &&
|
|
"__builtin_alloca has invalid address space");
|
|
|
|
RT = RT->getPointeeType();
|
|
RT = S.Context.getAddrSpaceQualType(RT, LangAS::opencl_private);
|
|
TheCall->setType(S.Context.getPointerType(RT));
|
|
}
|
|
|
|
namespace {
|
|
enum PointerAuthOpKind {
|
|
PAO_Strip,
|
|
PAO_Sign,
|
|
PAO_Auth,
|
|
PAO_SignGeneric,
|
|
PAO_Discriminator,
|
|
PAO_BlendPointer,
|
|
PAO_BlendInteger
|
|
};
|
|
}
|
|
|
|
bool Sema::checkPointerAuthEnabled(SourceLocation Loc, SourceRange Range) {
|
|
if (getLangOpts().PointerAuthIntrinsics)
|
|
return false;
|
|
|
|
Diag(Loc, diag::err_ptrauth_disabled) << Range;
|
|
return true;
|
|
}
|
|
|
|
static bool checkPointerAuthEnabled(Sema &S, Expr *E) {
|
|
return S.checkPointerAuthEnabled(E->getExprLoc(), E->getSourceRange());
|
|
}
|
|
|
|
static bool checkPointerAuthKey(Sema &S, Expr *&Arg) {
|
|
// Convert it to type 'int'.
|
|
if (convertArgumentToType(S, Arg, S.Context.IntTy))
|
|
return true;
|
|
|
|
// Value-dependent expressions are okay; wait for template instantiation.
|
|
if (Arg->isValueDependent())
|
|
return false;
|
|
|
|
unsigned KeyValue;
|
|
return S.checkConstantPointerAuthKey(Arg, KeyValue);
|
|
}
|
|
|
|
bool Sema::checkConstantPointerAuthKey(Expr *Arg, unsigned &Result) {
|
|
// Attempt to constant-evaluate the expression.
|
|
std::optional<llvm::APSInt> KeyValue = Arg->getIntegerConstantExpr(Context);
|
|
if (!KeyValue) {
|
|
Diag(Arg->getExprLoc(), diag::err_expr_not_ice)
|
|
<< 0 << Arg->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
// Ask the target to validate the key parameter.
|
|
if (!Context.getTargetInfo().validatePointerAuthKey(*KeyValue)) {
|
|
llvm::SmallString<32> Value;
|
|
{
|
|
llvm::raw_svector_ostream Str(Value);
|
|
Str << *KeyValue;
|
|
}
|
|
|
|
Diag(Arg->getExprLoc(), diag::err_ptrauth_invalid_key)
|
|
<< Value << Arg->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
Result = KeyValue->getZExtValue();
|
|
return false;
|
|
}
|
|
|
|
static std::pair<const ValueDecl *, CharUnits>
|
|
findConstantBaseAndOffset(Sema &S, Expr *E) {
|
|
// Must evaluate as a pointer.
|
|
Expr::EvalResult Result;
|
|
if (!E->EvaluateAsRValue(Result, S.Context) || !Result.Val.isLValue())
|
|
return {nullptr, CharUnits()};
|
|
|
|
const auto *BaseDecl =
|
|
Result.Val.getLValueBase().dyn_cast<const ValueDecl *>();
|
|
if (!BaseDecl)
|
|
return {nullptr, CharUnits()};
|
|
|
|
return {BaseDecl, Result.Val.getLValueOffset()};
|
|
}
|
|
|
|
static bool checkPointerAuthValue(Sema &S, Expr *&Arg, PointerAuthOpKind OpKind,
|
|
bool RequireConstant = false) {
|
|
if (Arg->hasPlaceholderType()) {
|
|
ExprResult R = S.CheckPlaceholderExpr(Arg);
|
|
if (R.isInvalid())
|
|
return true;
|
|
Arg = R.get();
|
|
}
|
|
|
|
auto AllowsPointer = [](PointerAuthOpKind OpKind) {
|
|
return OpKind != PAO_BlendInteger;
|
|
};
|
|
auto AllowsInteger = [](PointerAuthOpKind OpKind) {
|
|
return OpKind == PAO_Discriminator || OpKind == PAO_BlendInteger ||
|
|
OpKind == PAO_SignGeneric;
|
|
};
|
|
|
|
// Require the value to have the right range of type.
|
|
QualType ExpectedTy;
|
|
if (AllowsPointer(OpKind) && Arg->getType()->isPointerType()) {
|
|
ExpectedTy = Arg->getType().getUnqualifiedType();
|
|
} else if (AllowsPointer(OpKind) && Arg->getType()->isNullPtrType()) {
|
|
ExpectedTy = S.Context.VoidPtrTy;
|
|
} else if (AllowsInteger(OpKind) &&
|
|
Arg->getType()->isIntegralOrUnscopedEnumerationType()) {
|
|
ExpectedTy = S.Context.getUIntPtrType();
|
|
|
|
} else {
|
|
// Diagnose the failures.
|
|
S.Diag(Arg->getExprLoc(), diag::err_ptrauth_value_bad_type)
|
|
<< unsigned(OpKind == PAO_Discriminator ? 1
|
|
: OpKind == PAO_BlendPointer ? 2
|
|
: OpKind == PAO_BlendInteger ? 3
|
|
: 0)
|
|
<< unsigned(AllowsInteger(OpKind) ? (AllowsPointer(OpKind) ? 2 : 1) : 0)
|
|
<< Arg->getType() << Arg->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
// Convert to that type. This should just be an lvalue-to-rvalue
|
|
// conversion.
|
|
if (convertArgumentToType(S, Arg, ExpectedTy))
|
|
return true;
|
|
|
|
if (!RequireConstant) {
|
|
// Warn about null pointers for non-generic sign and auth operations.
|
|
if ((OpKind == PAO_Sign || OpKind == PAO_Auth) &&
|
|
Arg->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNull)) {
|
|
S.Diag(Arg->getExprLoc(), OpKind == PAO_Sign
|
|
? diag::warn_ptrauth_sign_null_pointer
|
|
: diag::warn_ptrauth_auth_null_pointer)
|
|
<< Arg->getSourceRange();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Perform special checking on the arguments to ptrauth_sign_constant.
|
|
|
|
// The main argument.
|
|
if (OpKind == PAO_Sign) {
|
|
// Require the value we're signing to have a special form.
|
|
auto [BaseDecl, Offset] = findConstantBaseAndOffset(S, Arg);
|
|
bool Invalid;
|
|
|
|
// Must be rooted in a declaration reference.
|
|
if (!BaseDecl)
|
|
Invalid = true;
|
|
|
|
// If it's a function declaration, we can't have an offset.
|
|
else if (isa<FunctionDecl>(BaseDecl))
|
|
Invalid = !Offset.isZero();
|
|
|
|
// Otherwise we're fine.
|
|
else
|
|
Invalid = false;
|
|
|
|
if (Invalid)
|
|
S.Diag(Arg->getExprLoc(), diag::err_ptrauth_bad_constant_pointer);
|
|
return Invalid;
|
|
}
|
|
|
|
// The discriminator argument.
|
|
assert(OpKind == PAO_Discriminator);
|
|
|
|
// Must be a pointer or integer or blend thereof.
|
|
Expr *Pointer = nullptr;
|
|
Expr *Integer = nullptr;
|
|
if (auto *Call = dyn_cast<CallExpr>(Arg->IgnoreParens())) {
|
|
if (Call->getBuiltinCallee() ==
|
|
Builtin::BI__builtin_ptrauth_blend_discriminator) {
|
|
Pointer = Call->getArg(0);
|
|
Integer = Call->getArg(1);
|
|
}
|
|
}
|
|
if (!Pointer && !Integer) {
|
|
if (Arg->getType()->isPointerType())
|
|
Pointer = Arg;
|
|
else
|
|
Integer = Arg;
|
|
}
|
|
|
|
// Check the pointer.
|
|
bool Invalid = false;
|
|
if (Pointer) {
|
|
assert(Pointer->getType()->isPointerType());
|
|
|
|
// TODO: if we're initializing a global, check that the address is
|
|
// somehow related to what we're initializing. This probably will
|
|
// never really be feasible and we'll have to catch it at link-time.
|
|
auto [BaseDecl, Offset] = findConstantBaseAndOffset(S, Pointer);
|
|
if (!BaseDecl || !isa<VarDecl>(BaseDecl))
|
|
Invalid = true;
|
|
}
|
|
|
|
// Check the integer.
|
|
if (Integer) {
|
|
assert(Integer->getType()->isIntegerType());
|
|
if (!Integer->isEvaluatable(S.Context))
|
|
Invalid = true;
|
|
}
|
|
|
|
if (Invalid)
|
|
S.Diag(Arg->getExprLoc(), diag::err_ptrauth_bad_constant_discriminator);
|
|
return Invalid;
|
|
}
|
|
|
|
static ExprResult PointerAuthStrip(Sema &S, CallExpr *Call) {
|
|
if (S.checkArgCount(Call, 2))
|
|
return ExprError();
|
|
if (checkPointerAuthEnabled(S, Call))
|
|
return ExprError();
|
|
if (checkPointerAuthValue(S, Call->getArgs()[0], PAO_Strip) ||
|
|
checkPointerAuthKey(S, Call->getArgs()[1]))
|
|
return ExprError();
|
|
|
|
Call->setType(Call->getArgs()[0]->getType());
|
|
return Call;
|
|
}
|
|
|
|
static ExprResult PointerAuthBlendDiscriminator(Sema &S, CallExpr *Call) {
|
|
if (S.checkArgCount(Call, 2))
|
|
return ExprError();
|
|
if (checkPointerAuthEnabled(S, Call))
|
|
return ExprError();
|
|
if (checkPointerAuthValue(S, Call->getArgs()[0], PAO_BlendPointer) ||
|
|
checkPointerAuthValue(S, Call->getArgs()[1], PAO_BlendInteger))
|
|
return ExprError();
|
|
|
|
Call->setType(S.Context.getUIntPtrType());
|
|
return Call;
|
|
}
|
|
|
|
static ExprResult PointerAuthSignGenericData(Sema &S, CallExpr *Call) {
|
|
if (S.checkArgCount(Call, 2))
|
|
return ExprError();
|
|
if (checkPointerAuthEnabled(S, Call))
|
|
return ExprError();
|
|
if (checkPointerAuthValue(S, Call->getArgs()[0], PAO_SignGeneric) ||
|
|
checkPointerAuthValue(S, Call->getArgs()[1], PAO_Discriminator))
|
|
return ExprError();
|
|
|
|
Call->setType(S.Context.getUIntPtrType());
|
|
return Call;
|
|
}
|
|
|
|
static ExprResult PointerAuthSignOrAuth(Sema &S, CallExpr *Call,
|
|
PointerAuthOpKind OpKind,
|
|
bool RequireConstant) {
|
|
if (S.checkArgCount(Call, 3))
|
|
return ExprError();
|
|
if (checkPointerAuthEnabled(S, Call))
|
|
return ExprError();
|
|
if (checkPointerAuthValue(S, Call->getArgs()[0], OpKind, RequireConstant) ||
|
|
checkPointerAuthKey(S, Call->getArgs()[1]) ||
|
|
checkPointerAuthValue(S, Call->getArgs()[2], PAO_Discriminator,
|
|
RequireConstant))
|
|
return ExprError();
|
|
|
|
Call->setType(Call->getArgs()[0]->getType());
|
|
return Call;
|
|
}
|
|
|
|
static ExprResult PointerAuthAuthAndResign(Sema &S, CallExpr *Call) {
|
|
if (S.checkArgCount(Call, 5))
|
|
return ExprError();
|
|
if (checkPointerAuthEnabled(S, Call))
|
|
return ExprError();
|
|
if (checkPointerAuthValue(S, Call->getArgs()[0], PAO_Auth) ||
|
|
checkPointerAuthKey(S, Call->getArgs()[1]) ||
|
|
checkPointerAuthValue(S, Call->getArgs()[2], PAO_Discriminator) ||
|
|
checkPointerAuthKey(S, Call->getArgs()[3]) ||
|
|
checkPointerAuthValue(S, Call->getArgs()[4], PAO_Discriminator))
|
|
return ExprError();
|
|
|
|
Call->setType(Call->getArgs()[0]->getType());
|
|
return Call;
|
|
}
|
|
|
|
static ExprResult PointerAuthStringDiscriminator(Sema &S, CallExpr *Call) {
|
|
if (checkPointerAuthEnabled(S, Call))
|
|
return ExprError();
|
|
|
|
// We've already performed normal call type-checking.
|
|
const Expr *Arg = Call->getArg(0)->IgnoreParenImpCasts();
|
|
|
|
// Operand must be an ordinary or UTF-8 string literal.
|
|
const auto *Literal = dyn_cast<StringLiteral>(Arg);
|
|
if (!Literal || Literal->getCharByteWidth() != 1) {
|
|
S.Diag(Arg->getExprLoc(), diag::err_ptrauth_string_not_literal)
|
|
<< (Literal ? 1 : 0) << Arg->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
return Call;
|
|
}
|
|
|
|
static ExprResult BuiltinLaunder(Sema &S, CallExpr *TheCall) {
|
|
if (S.checkArgCount(TheCall, 1))
|
|
return ExprError();
|
|
|
|
// Compute __builtin_launder's parameter type from the argument.
|
|
// The parameter type is:
|
|
// * The type of the argument if it's not an array or function type,
|
|
// Otherwise,
|
|
// * The decayed argument type.
|
|
QualType ParamTy = [&]() {
|
|
QualType ArgTy = TheCall->getArg(0)->getType();
|
|
if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe())
|
|
return S.Context.getPointerType(Ty->getElementType());
|
|
if (ArgTy->isFunctionType()) {
|
|
return S.Context.getPointerType(ArgTy);
|
|
}
|
|
return ArgTy;
|
|
}();
|
|
|
|
TheCall->setType(ParamTy);
|
|
|
|
auto DiagSelect = [&]() -> std::optional<unsigned> {
|
|
if (!ParamTy->isPointerType())
|
|
return 0;
|
|
if (ParamTy->isFunctionPointerType())
|
|
return 1;
|
|
if (ParamTy->isVoidPointerType())
|
|
return 2;
|
|
return std::optional<unsigned>{};
|
|
}();
|
|
if (DiagSelect) {
|
|
S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg)
|
|
<< *DiagSelect << TheCall->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
// We either have an incomplete class type, or we have a class template
|
|
// whose instantiation has not been forced. Example:
|
|
//
|
|
// template <class T> struct Foo { T value; };
|
|
// Foo<int> *p = nullptr;
|
|
// auto *d = __builtin_launder(p);
|
|
if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(),
|
|
diag::err_incomplete_type))
|
|
return ExprError();
|
|
|
|
assert(ParamTy->getPointeeType()->isObjectType() &&
|
|
"Unhandled non-object pointer case");
|
|
|
|
InitializedEntity Entity =
|
|
InitializedEntity::InitializeParameter(S.Context, ParamTy, false);
|
|
ExprResult Arg =
|
|
S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0));
|
|
if (Arg.isInvalid())
|
|
return ExprError();
|
|
TheCall->setArg(0, Arg.get());
|
|
|
|
return TheCall;
|
|
}
|
|
|
|
static ExprResult BuiltinIsWithinLifetime(Sema &S, CallExpr *TheCall) {
|
|
if (S.checkArgCount(TheCall, 1))
|
|
return ExprError();
|
|
|
|
ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
|
|
if (Arg.isInvalid())
|
|
return ExprError();
|
|
QualType ParamTy = Arg.get()->getType();
|
|
TheCall->setArg(0, Arg.get());
|
|
TheCall->setType(S.Context.BoolTy);
|
|
|
|
// Only accept pointers to objects as arguments, which should have object
|
|
// pointer or void pointer types.
|
|
if (const auto *PT = ParamTy->getAs<PointerType>()) {
|
|
// LWG4138: Function pointer types not allowed
|
|
if (PT->getPointeeType()->isFunctionType()) {
|
|
S.Diag(TheCall->getArg(0)->getExprLoc(),
|
|
diag::err_builtin_is_within_lifetime_invalid_arg)
|
|
<< 1;
|
|
return ExprError();
|
|
}
|
|
// Disallow VLAs too since those shouldn't be able to
|
|
// be a template parameter for `std::is_within_lifetime`
|
|
if (PT->getPointeeType()->isVariableArrayType()) {
|
|
S.Diag(TheCall->getArg(0)->getExprLoc(), diag::err_vla_unsupported)
|
|
<< 1 << "__builtin_is_within_lifetime";
|
|
return ExprError();
|
|
}
|
|
} else {
|
|
S.Diag(TheCall->getArg(0)->getExprLoc(),
|
|
diag::err_builtin_is_within_lifetime_invalid_arg)
|
|
<< 0;
|
|
return ExprError();
|
|
}
|
|
|
|
return TheCall;
|
|
}
|
|
|
|
// Emit an error and return true if the current object format type is in the
|
|
// list of unsupported types.
|
|
static bool CheckBuiltinTargetNotInUnsupported(
|
|
Sema &S, unsigned BuiltinID, CallExpr *TheCall,
|
|
ArrayRef<llvm::Triple::ObjectFormatType> UnsupportedObjectFormatTypes) {
|
|
llvm::Triple::ObjectFormatType CurObjFormat =
|
|
S.getASTContext().getTargetInfo().getTriple().getObjectFormat();
|
|
if (llvm::is_contained(UnsupportedObjectFormatTypes, CurObjFormat)) {
|
|
S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
|
|
<< TheCall->getSourceRange();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Emit an error and return true if the current architecture is not in the list
|
|
// of supported architectures.
|
|
static bool
|
|
CheckBuiltinTargetInSupported(Sema &S, CallExpr *TheCall,
|
|
ArrayRef<llvm::Triple::ArchType> SupportedArchs) {
|
|
llvm::Triple::ArchType CurArch =
|
|
S.getASTContext().getTargetInfo().getTriple().getArch();
|
|
if (llvm::is_contained(SupportedArchs, CurArch))
|
|
return false;
|
|
S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
|
|
<< TheCall->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr,
|
|
SourceLocation CallSiteLoc);
|
|
|
|
bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
|
|
CallExpr *TheCall) {
|
|
switch (TI.getTriple().getArch()) {
|
|
default:
|
|
// Some builtins don't require additional checking, so just consider these
|
|
// acceptable.
|
|
return false;
|
|
case llvm::Triple::arm:
|
|
case llvm::Triple::armeb:
|
|
case llvm::Triple::thumb:
|
|
case llvm::Triple::thumbeb:
|
|
return ARM().CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall);
|
|
case llvm::Triple::aarch64:
|
|
case llvm::Triple::aarch64_32:
|
|
case llvm::Triple::aarch64_be:
|
|
return ARM().CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall);
|
|
case llvm::Triple::bpfeb:
|
|
case llvm::Triple::bpfel:
|
|
return BPF().CheckBPFBuiltinFunctionCall(BuiltinID, TheCall);
|
|
case llvm::Triple::dxil:
|
|
return DirectX().CheckDirectXBuiltinFunctionCall(BuiltinID, TheCall);
|
|
case llvm::Triple::hexagon:
|
|
return Hexagon().CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall);
|
|
case llvm::Triple::mips:
|
|
case llvm::Triple::mipsel:
|
|
case llvm::Triple::mips64:
|
|
case llvm::Triple::mips64el:
|
|
return MIPS().CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall);
|
|
case llvm::Triple::spirv:
|
|
return SPIRV().CheckSPIRVBuiltinFunctionCall(BuiltinID, TheCall);
|
|
case llvm::Triple::systemz:
|
|
return SystemZ().CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall);
|
|
case llvm::Triple::x86:
|
|
case llvm::Triple::x86_64:
|
|
return X86().CheckBuiltinFunctionCall(TI, BuiltinID, TheCall);
|
|
case llvm::Triple::ppc:
|
|
case llvm::Triple::ppcle:
|
|
case llvm::Triple::ppc64:
|
|
case llvm::Triple::ppc64le:
|
|
return PPC().CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall);
|
|
case llvm::Triple::amdgcn:
|
|
return AMDGPU().CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall);
|
|
case llvm::Triple::riscv32:
|
|
case llvm::Triple::riscv64:
|
|
return RISCV().CheckBuiltinFunctionCall(TI, BuiltinID, TheCall);
|
|
case llvm::Triple::loongarch32:
|
|
case llvm::Triple::loongarch64:
|
|
return LoongArch().CheckLoongArchBuiltinFunctionCall(TI, BuiltinID,
|
|
TheCall);
|
|
case llvm::Triple::wasm32:
|
|
case llvm::Triple::wasm64:
|
|
return Wasm().CheckWebAssemblyBuiltinFunctionCall(TI, BuiltinID, TheCall);
|
|
case llvm::Triple::nvptx:
|
|
case llvm::Triple::nvptx64:
|
|
return NVPTX().CheckNVPTXBuiltinFunctionCall(TI, BuiltinID, TheCall);
|
|
}
|
|
}
|
|
|
|
// Check if \p Ty is a valid type for the elementwise math builtins. If it is
|
|
// not a valid type, emit an error message and return true. Otherwise return
|
|
// false.
|
|
static bool
|
|
checkMathBuiltinElementType(Sema &S, SourceLocation Loc, QualType ArgTy,
|
|
Sema::EltwiseBuiltinArgTyRestriction ArgTyRestr,
|
|
int ArgOrdinal) {
|
|
QualType EltTy = ArgTy;
|
|
if (auto *VecTy = EltTy->getAs<VectorType>())
|
|
EltTy = VecTy->getElementType();
|
|
|
|
switch (ArgTyRestr) {
|
|
case Sema::EltwiseBuiltinArgTyRestriction::None:
|
|
if (!ArgTy->getAs<VectorType>() &&
|
|
!ConstantMatrixType::isValidElementType(ArgTy)) {
|
|
return S.Diag(Loc, diag::err_builtin_invalid_arg_type)
|
|
<< ArgOrdinal << /* vector */ 2 << /* integer */ 1 << /* fp */ 1
|
|
<< ArgTy;
|
|
}
|
|
break;
|
|
case Sema::EltwiseBuiltinArgTyRestriction::FloatTy:
|
|
if (!EltTy->isRealFloatingType()) {
|
|
return S.Diag(Loc, diag::err_builtin_invalid_arg_type)
|
|
<< ArgOrdinal << /* scalar or vector */ 5 << /* no int */ 0
|
|
<< /* floating-point */ 1 << ArgTy;
|
|
}
|
|
break;
|
|
case Sema::EltwiseBuiltinArgTyRestriction::IntegerTy:
|
|
if (!EltTy->isIntegerType()) {
|
|
return S.Diag(Loc, diag::err_builtin_invalid_arg_type)
|
|
<< ArgOrdinal << /* scalar or vector */ 5 << /* integer */ 1
|
|
<< /* no fp */ 0 << ArgTy;
|
|
}
|
|
break;
|
|
case Sema::EltwiseBuiltinArgTyRestriction::SignedIntOrFloatTy:
|
|
if (EltTy->isUnsignedIntegerType()) {
|
|
return S.Diag(Loc, diag::err_builtin_invalid_arg_type)
|
|
<< 1 << /* scalar or vector */ 5 << /* signed int */ 2
|
|
<< /* or fp */ 1 << ArgTy;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// BuiltinCpu{Supports|Is} - Handle __builtin_cpu_{supports|is}(char *).
|
|
/// This checks that the target supports the builtin and that the string
|
|
/// argument is constant and valid.
|
|
static bool BuiltinCpu(Sema &S, const TargetInfo &TI, CallExpr *TheCall,
|
|
const TargetInfo *AuxTI, unsigned BuiltinID) {
|
|
assert((BuiltinID == Builtin::BI__builtin_cpu_supports ||
|
|
BuiltinID == Builtin::BI__builtin_cpu_is) &&
|
|
"Expecting __builtin_cpu_...");
|
|
|
|
bool IsCPUSupports = BuiltinID == Builtin::BI__builtin_cpu_supports;
|
|
const TargetInfo *TheTI = &TI;
|
|
auto SupportsBI = [=](const TargetInfo *TInfo) {
|
|
return TInfo && ((IsCPUSupports && TInfo->supportsCpuSupports()) ||
|
|
(!IsCPUSupports && TInfo->supportsCpuIs()));
|
|
};
|
|
if (!SupportsBI(&TI) && SupportsBI(AuxTI))
|
|
TheTI = AuxTI;
|
|
|
|
if ((!IsCPUSupports && !TheTI->supportsCpuIs()) ||
|
|
(IsCPUSupports && !TheTI->supportsCpuSupports()))
|
|
return S.Diag(TheCall->getBeginLoc(),
|
|
TI.getTriple().isOSAIX()
|
|
? diag::err_builtin_aix_os_unsupported
|
|
: diag::err_builtin_target_unsupported)
|
|
<< SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
|
|
|
|
Expr *Arg = TheCall->getArg(0)->IgnoreParenImpCasts();
|
|
// Check if the argument is a string literal.
|
|
if (!isa<StringLiteral>(Arg))
|
|
return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
|
|
<< Arg->getSourceRange();
|
|
|
|
// Check the contents of the string.
|
|
StringRef Feature = cast<StringLiteral>(Arg)->getString();
|
|
if (IsCPUSupports && !TheTI->validateCpuSupports(Feature)) {
|
|
S.Diag(TheCall->getBeginLoc(), diag::warn_invalid_cpu_supports)
|
|
<< Arg->getSourceRange();
|
|
return false;
|
|
}
|
|
if (!IsCPUSupports && !TheTI->validateCpuIs(Feature))
|
|
return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is)
|
|
<< Arg->getSourceRange();
|
|
return false;
|
|
}
|
|
|
|
/// Checks that __builtin_popcountg was called with a single argument, which is
|
|
/// an unsigned integer.
|
|
static bool BuiltinPopcountg(Sema &S, CallExpr *TheCall) {
|
|
if (S.checkArgCount(TheCall, 1))
|
|
return true;
|
|
|
|
ExprResult ArgRes = S.DefaultLvalueConversion(TheCall->getArg(0));
|
|
if (ArgRes.isInvalid())
|
|
return true;
|
|
|
|
Expr *Arg = ArgRes.get();
|
|
TheCall->setArg(0, Arg);
|
|
|
|
QualType ArgTy = Arg->getType();
|
|
|
|
if (!ArgTy->isUnsignedIntegerType()) {
|
|
S.Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
|
|
<< 1 << /* scalar */ 1 << /* unsigned integer ty */ 3 << /* no fp */ 0
|
|
<< ArgTy;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Checks that __builtin_{clzg,ctzg} was called with a first argument, which is
|
|
/// an unsigned integer, and an optional second argument, which is promoted to
|
|
/// an 'int'.
|
|
static bool BuiltinCountZeroBitsGeneric(Sema &S, CallExpr *TheCall) {
|
|
if (S.checkArgCountRange(TheCall, 1, 2))
|
|
return true;
|
|
|
|
ExprResult Arg0Res = S.DefaultLvalueConversion(TheCall->getArg(0));
|
|
if (Arg0Res.isInvalid())
|
|
return true;
|
|
|
|
Expr *Arg0 = Arg0Res.get();
|
|
TheCall->setArg(0, Arg0);
|
|
|
|
QualType Arg0Ty = Arg0->getType();
|
|
|
|
if (!Arg0Ty->isUnsignedIntegerType()) {
|
|
S.Diag(Arg0->getBeginLoc(), diag::err_builtin_invalid_arg_type)
|
|
<< 1 << /* scalar */ 1 << /* unsigned integer ty */ 3 << /* no fp */ 0
|
|
<< Arg0Ty;
|
|
return true;
|
|
}
|
|
|
|
if (TheCall->getNumArgs() > 1) {
|
|
ExprResult Arg1Res = S.UsualUnaryConversions(TheCall->getArg(1));
|
|
if (Arg1Res.isInvalid())
|
|
return true;
|
|
|
|
Expr *Arg1 = Arg1Res.get();
|
|
TheCall->setArg(1, Arg1);
|
|
|
|
QualType Arg1Ty = Arg1->getType();
|
|
|
|
if (!Arg1Ty->isSpecificBuiltinType(BuiltinType::Int)) {
|
|
S.Diag(Arg1->getBeginLoc(), diag::err_builtin_invalid_arg_type)
|
|
<< 2 << /* scalar */ 1 << /* 'int' ty */ 4 << /* no fp */ 0 << Arg1Ty;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
ExprResult
|
|
Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
|
|
CallExpr *TheCall) {
|
|
ExprResult TheCallResult(TheCall);
|
|
|
|
// Find out if any arguments are required to be integer constant expressions.
|
|
unsigned ICEArguments = 0;
|
|
ASTContext::GetBuiltinTypeError Error;
|
|
Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
|
|
if (Error != ASTContext::GE_None)
|
|
ICEArguments = 0; // Don't diagnose previously diagnosed errors.
|
|
|
|
// If any arguments are required to be ICE's, check and diagnose.
|
|
for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
|
|
// Skip arguments not required to be ICE's.
|
|
if ((ICEArguments & (1 << ArgNo)) == 0) continue;
|
|
|
|
llvm::APSInt Result;
|
|
// If we don't have enough arguments, continue so we can issue better
|
|
// diagnostic in checkArgCount(...)
|
|
if (ArgNo < TheCall->getNumArgs() &&
|
|
BuiltinConstantArg(TheCall, ArgNo, Result))
|
|
return true;
|
|
ICEArguments &= ~(1 << ArgNo);
|
|
}
|
|
|
|
FPOptions FPO;
|
|
switch (BuiltinID) {
|
|
case Builtin::BI__builtin_cpu_supports:
|
|
case Builtin::BI__builtin_cpu_is:
|
|
if (BuiltinCpu(*this, Context.getTargetInfo(), TheCall,
|
|
Context.getAuxTargetInfo(), BuiltinID))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_cpu_init:
|
|
if (!Context.getTargetInfo().supportsCpuInit()) {
|
|
Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
|
|
<< SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
|
|
return ExprError();
|
|
}
|
|
break;
|
|
case Builtin::BI__builtin___CFStringMakeConstantString:
|
|
// CFStringMakeConstantString is currently not implemented for GOFF (i.e.,
|
|
// on z/OS) and for XCOFF (i.e., on AIX). Emit unsupported
|
|
if (CheckBuiltinTargetNotInUnsupported(
|
|
*this, BuiltinID, TheCall,
|
|
{llvm::Triple::GOFF, llvm::Triple::XCOFF}))
|
|
return ExprError();
|
|
assert(TheCall->getNumArgs() == 1 &&
|
|
"Wrong # arguments to builtin CFStringMakeConstantString");
|
|
if (ObjC().CheckObjCString(TheCall->getArg(0)))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_ms_va_start:
|
|
case Builtin::BI__builtin_stdarg_start:
|
|
case Builtin::BI__builtin_va_start:
|
|
case Builtin::BI__builtin_c23_va_start:
|
|
if (BuiltinVAStart(BuiltinID, TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__va_start: {
|
|
switch (Context.getTargetInfo().getTriple().getArch()) {
|
|
case llvm::Triple::aarch64:
|
|
case llvm::Triple::arm:
|
|
case llvm::Triple::thumb:
|
|
if (BuiltinVAStartARMMicrosoft(TheCall))
|
|
return ExprError();
|
|
break;
|
|
default:
|
|
if (BuiltinVAStart(BuiltinID, TheCall))
|
|
return ExprError();
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
|
|
// The acquire, release, and no fence variants are ARM and AArch64 only.
|
|
case Builtin::BI_interlockedbittestandset_acq:
|
|
case Builtin::BI_interlockedbittestandset_rel:
|
|
case Builtin::BI_interlockedbittestandset_nf:
|
|
case Builtin::BI_interlockedbittestandreset_acq:
|
|
case Builtin::BI_interlockedbittestandreset_rel:
|
|
case Builtin::BI_interlockedbittestandreset_nf:
|
|
if (CheckBuiltinTargetInSupported(
|
|
*this, TheCall,
|
|
{llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64}))
|
|
return ExprError();
|
|
break;
|
|
|
|
// The 64-bit bittest variants are x64, ARM, and AArch64 only.
|
|
case Builtin::BI_bittest64:
|
|
case Builtin::BI_bittestandcomplement64:
|
|
case Builtin::BI_bittestandreset64:
|
|
case Builtin::BI_bittestandset64:
|
|
case Builtin::BI_interlockedbittestandreset64:
|
|
case Builtin::BI_interlockedbittestandset64:
|
|
if (CheckBuiltinTargetInSupported(
|
|
*this, TheCall,
|
|
{llvm::Triple::x86_64, llvm::Triple::arm, llvm::Triple::thumb,
|
|
llvm::Triple::aarch64, llvm::Triple::amdgcn}))
|
|
return ExprError();
|
|
break;
|
|
|
|
case Builtin::BI__builtin_set_flt_rounds:
|
|
if (CheckBuiltinTargetInSupported(
|
|
*this, TheCall,
|
|
{llvm::Triple::x86, llvm::Triple::x86_64, llvm::Triple::arm,
|
|
llvm::Triple::thumb, llvm::Triple::aarch64, llvm::Triple::amdgcn,
|
|
llvm::Triple::ppc, llvm::Triple::ppc64, llvm::Triple::ppcle,
|
|
llvm::Triple::ppc64le}))
|
|
return ExprError();
|
|
break;
|
|
|
|
case Builtin::BI__builtin_isgreater:
|
|
case Builtin::BI__builtin_isgreaterequal:
|
|
case Builtin::BI__builtin_isless:
|
|
case Builtin::BI__builtin_islessequal:
|
|
case Builtin::BI__builtin_islessgreater:
|
|
case Builtin::BI__builtin_isunordered:
|
|
if (BuiltinUnorderedCompare(TheCall, BuiltinID))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_fpclassify:
|
|
if (BuiltinFPClassification(TheCall, 6, BuiltinID))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_isfpclass:
|
|
if (BuiltinFPClassification(TheCall, 2, BuiltinID))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_isfinite:
|
|
case Builtin::BI__builtin_isinf:
|
|
case Builtin::BI__builtin_isinf_sign:
|
|
case Builtin::BI__builtin_isnan:
|
|
case Builtin::BI__builtin_issignaling:
|
|
case Builtin::BI__builtin_isnormal:
|
|
case Builtin::BI__builtin_issubnormal:
|
|
case Builtin::BI__builtin_iszero:
|
|
case Builtin::BI__builtin_signbit:
|
|
case Builtin::BI__builtin_signbitf:
|
|
case Builtin::BI__builtin_signbitl:
|
|
if (BuiltinFPClassification(TheCall, 1, BuiltinID))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_shufflevector:
|
|
return BuiltinShuffleVector(TheCall);
|
|
// TheCall will be freed by the smart pointer here, but that's fine, since
|
|
// BuiltinShuffleVector guts it, but then doesn't release it.
|
|
case Builtin::BI__builtin_prefetch:
|
|
if (BuiltinPrefetch(TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_alloca_with_align:
|
|
case Builtin::BI__builtin_alloca_with_align_uninitialized:
|
|
if (BuiltinAllocaWithAlign(TheCall))
|
|
return ExprError();
|
|
[[fallthrough]];
|
|
case Builtin::BI__builtin_alloca:
|
|
case Builtin::BI__builtin_alloca_uninitialized:
|
|
Diag(TheCall->getBeginLoc(), diag::warn_alloca)
|
|
<< TheCall->getDirectCallee();
|
|
if (getLangOpts().OpenCL) {
|
|
builtinAllocaAddrSpace(*this, TheCall);
|
|
}
|
|
break;
|
|
case Builtin::BI__arithmetic_fence:
|
|
if (BuiltinArithmeticFence(TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__assume:
|
|
case Builtin::BI__builtin_assume:
|
|
if (BuiltinAssume(TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_assume_aligned:
|
|
if (BuiltinAssumeAligned(TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_dynamic_object_size:
|
|
case Builtin::BI__builtin_object_size:
|
|
if (BuiltinConstantArgRange(TheCall, 1, 0, 3))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_longjmp:
|
|
if (BuiltinLongjmp(TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_setjmp:
|
|
if (BuiltinSetjmp(TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_classify_type:
|
|
if (checkArgCount(TheCall, 1))
|
|
return true;
|
|
TheCall->setType(Context.IntTy);
|
|
break;
|
|
case Builtin::BI__builtin_complex:
|
|
if (BuiltinComplex(TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_constant_p: {
|
|
if (checkArgCount(TheCall, 1))
|
|
return true;
|
|
ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
|
|
if (Arg.isInvalid()) return true;
|
|
TheCall->setArg(0, Arg.get());
|
|
TheCall->setType(Context.IntTy);
|
|
break;
|
|
}
|
|
case Builtin::BI__builtin_launder:
|
|
return BuiltinLaunder(*this, TheCall);
|
|
case Builtin::BI__builtin_is_within_lifetime:
|
|
return BuiltinIsWithinLifetime(*this, TheCall);
|
|
case Builtin::BI__sync_fetch_and_add:
|
|
case Builtin::BI__sync_fetch_and_add_1:
|
|
case Builtin::BI__sync_fetch_and_add_2:
|
|
case Builtin::BI__sync_fetch_and_add_4:
|
|
case Builtin::BI__sync_fetch_and_add_8:
|
|
case Builtin::BI__sync_fetch_and_add_16:
|
|
case Builtin::BI__sync_fetch_and_sub:
|
|
case Builtin::BI__sync_fetch_and_sub_1:
|
|
case Builtin::BI__sync_fetch_and_sub_2:
|
|
case Builtin::BI__sync_fetch_and_sub_4:
|
|
case Builtin::BI__sync_fetch_and_sub_8:
|
|
case Builtin::BI__sync_fetch_and_sub_16:
|
|
case Builtin::BI__sync_fetch_and_or:
|
|
case Builtin::BI__sync_fetch_and_or_1:
|
|
case Builtin::BI__sync_fetch_and_or_2:
|
|
case Builtin::BI__sync_fetch_and_or_4:
|
|
case Builtin::BI__sync_fetch_and_or_8:
|
|
case Builtin::BI__sync_fetch_and_or_16:
|
|
case Builtin::BI__sync_fetch_and_and:
|
|
case Builtin::BI__sync_fetch_and_and_1:
|
|
case Builtin::BI__sync_fetch_and_and_2:
|
|
case Builtin::BI__sync_fetch_and_and_4:
|
|
case Builtin::BI__sync_fetch_and_and_8:
|
|
case Builtin::BI__sync_fetch_and_and_16:
|
|
case Builtin::BI__sync_fetch_and_xor:
|
|
case Builtin::BI__sync_fetch_and_xor_1:
|
|
case Builtin::BI__sync_fetch_and_xor_2:
|
|
case Builtin::BI__sync_fetch_and_xor_4:
|
|
case Builtin::BI__sync_fetch_and_xor_8:
|
|
case Builtin::BI__sync_fetch_and_xor_16:
|
|
case Builtin::BI__sync_fetch_and_nand:
|
|
case Builtin::BI__sync_fetch_and_nand_1:
|
|
case Builtin::BI__sync_fetch_and_nand_2:
|
|
case Builtin::BI__sync_fetch_and_nand_4:
|
|
case Builtin::BI__sync_fetch_and_nand_8:
|
|
case Builtin::BI__sync_fetch_and_nand_16:
|
|
case Builtin::BI__sync_add_and_fetch:
|
|
case Builtin::BI__sync_add_and_fetch_1:
|
|
case Builtin::BI__sync_add_and_fetch_2:
|
|
case Builtin::BI__sync_add_and_fetch_4:
|
|
case Builtin::BI__sync_add_and_fetch_8:
|
|
case Builtin::BI__sync_add_and_fetch_16:
|
|
case Builtin::BI__sync_sub_and_fetch:
|
|
case Builtin::BI__sync_sub_and_fetch_1:
|
|
case Builtin::BI__sync_sub_and_fetch_2:
|
|
case Builtin::BI__sync_sub_and_fetch_4:
|
|
case Builtin::BI__sync_sub_and_fetch_8:
|
|
case Builtin::BI__sync_sub_and_fetch_16:
|
|
case Builtin::BI__sync_and_and_fetch:
|
|
case Builtin::BI__sync_and_and_fetch_1:
|
|
case Builtin::BI__sync_and_and_fetch_2:
|
|
case Builtin::BI__sync_and_and_fetch_4:
|
|
case Builtin::BI__sync_and_and_fetch_8:
|
|
case Builtin::BI__sync_and_and_fetch_16:
|
|
case Builtin::BI__sync_or_and_fetch:
|
|
case Builtin::BI__sync_or_and_fetch_1:
|
|
case Builtin::BI__sync_or_and_fetch_2:
|
|
case Builtin::BI__sync_or_and_fetch_4:
|
|
case Builtin::BI__sync_or_and_fetch_8:
|
|
case Builtin::BI__sync_or_and_fetch_16:
|
|
case Builtin::BI__sync_xor_and_fetch:
|
|
case Builtin::BI__sync_xor_and_fetch_1:
|
|
case Builtin::BI__sync_xor_and_fetch_2:
|
|
case Builtin::BI__sync_xor_and_fetch_4:
|
|
case Builtin::BI__sync_xor_and_fetch_8:
|
|
case Builtin::BI__sync_xor_and_fetch_16:
|
|
case Builtin::BI__sync_nand_and_fetch:
|
|
case Builtin::BI__sync_nand_and_fetch_1:
|
|
case Builtin::BI__sync_nand_and_fetch_2:
|
|
case Builtin::BI__sync_nand_and_fetch_4:
|
|
case Builtin::BI__sync_nand_and_fetch_8:
|
|
case Builtin::BI__sync_nand_and_fetch_16:
|
|
case Builtin::BI__sync_val_compare_and_swap:
|
|
case Builtin::BI__sync_val_compare_and_swap_1:
|
|
case Builtin::BI__sync_val_compare_and_swap_2:
|
|
case Builtin::BI__sync_val_compare_and_swap_4:
|
|
case Builtin::BI__sync_val_compare_and_swap_8:
|
|
case Builtin::BI__sync_val_compare_and_swap_16:
|
|
case Builtin::BI__sync_bool_compare_and_swap:
|
|
case Builtin::BI__sync_bool_compare_and_swap_1:
|
|
case Builtin::BI__sync_bool_compare_and_swap_2:
|
|
case Builtin::BI__sync_bool_compare_and_swap_4:
|
|
case Builtin::BI__sync_bool_compare_and_swap_8:
|
|
case Builtin::BI__sync_bool_compare_and_swap_16:
|
|
case Builtin::BI__sync_lock_test_and_set:
|
|
case Builtin::BI__sync_lock_test_and_set_1:
|
|
case Builtin::BI__sync_lock_test_and_set_2:
|
|
case Builtin::BI__sync_lock_test_and_set_4:
|
|
case Builtin::BI__sync_lock_test_and_set_8:
|
|
case Builtin::BI__sync_lock_test_and_set_16:
|
|
case Builtin::BI__sync_lock_release:
|
|
case Builtin::BI__sync_lock_release_1:
|
|
case Builtin::BI__sync_lock_release_2:
|
|
case Builtin::BI__sync_lock_release_4:
|
|
case Builtin::BI__sync_lock_release_8:
|
|
case Builtin::BI__sync_lock_release_16:
|
|
case Builtin::BI__sync_swap:
|
|
case Builtin::BI__sync_swap_1:
|
|
case Builtin::BI__sync_swap_2:
|
|
case Builtin::BI__sync_swap_4:
|
|
case Builtin::BI__sync_swap_8:
|
|
case Builtin::BI__sync_swap_16:
|
|
return BuiltinAtomicOverloaded(TheCallResult);
|
|
case Builtin::BI__sync_synchronize:
|
|
Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst)
|
|
<< TheCall->getCallee()->getSourceRange();
|
|
break;
|
|
case Builtin::BI__builtin_nontemporal_load:
|
|
case Builtin::BI__builtin_nontemporal_store:
|
|
return BuiltinNontemporalOverloaded(TheCallResult);
|
|
case Builtin::BI__builtin_memcpy_inline: {
|
|
clang::Expr *SizeOp = TheCall->getArg(2);
|
|
// We warn about copying to or from `nullptr` pointers when `size` is
|
|
// greater than 0. When `size` is value dependent we cannot evaluate its
|
|
// value so we bail out.
|
|
if (SizeOp->isValueDependent())
|
|
break;
|
|
if (!SizeOp->EvaluateKnownConstInt(Context).isZero()) {
|
|
CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc());
|
|
CheckNonNullArgument(*this, TheCall->getArg(1), TheCall->getExprLoc());
|
|
}
|
|
break;
|
|
}
|
|
case Builtin::BI__builtin_memset_inline: {
|
|
clang::Expr *SizeOp = TheCall->getArg(2);
|
|
// We warn about filling to `nullptr` pointers when `size` is greater than
|
|
// 0. When `size` is value dependent we cannot evaluate its value so we bail
|
|
// out.
|
|
if (SizeOp->isValueDependent())
|
|
break;
|
|
if (!SizeOp->EvaluateKnownConstInt(Context).isZero())
|
|
CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc());
|
|
break;
|
|
}
|
|
#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
|
|
case Builtin::BI##ID: \
|
|
return AtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
|
|
#include "clang/Basic/Builtins.inc"
|
|
case Builtin::BI__annotation:
|
|
if (BuiltinMSVCAnnotation(*this, TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_annotation:
|
|
if (BuiltinAnnotation(*this, TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_addressof:
|
|
if (BuiltinAddressof(*this, TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_function_start:
|
|
if (BuiltinFunctionStart(*this, TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_is_aligned:
|
|
case Builtin::BI__builtin_align_up:
|
|
case Builtin::BI__builtin_align_down:
|
|
if (BuiltinAlignment(*this, TheCall, BuiltinID))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_add_overflow:
|
|
case Builtin::BI__builtin_sub_overflow:
|
|
case Builtin::BI__builtin_mul_overflow:
|
|
if (BuiltinOverflow(*this, TheCall, BuiltinID))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_operator_new:
|
|
case Builtin::BI__builtin_operator_delete: {
|
|
bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete;
|
|
ExprResult Res =
|
|
BuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete);
|
|
if (Res.isInvalid())
|
|
CorrectDelayedTyposInExpr(TheCallResult.get());
|
|
return Res;
|
|
}
|
|
case Builtin::BI__builtin_dump_struct:
|
|
return BuiltinDumpStruct(*this, TheCall);
|
|
case Builtin::BI__builtin_expect_with_probability: {
|
|
// We first want to ensure we are called with 3 arguments
|
|
if (checkArgCount(TheCall, 3))
|
|
return ExprError();
|
|
// then check probability is constant float in range [0.0, 1.0]
|
|
const Expr *ProbArg = TheCall->getArg(2);
|
|
SmallVector<PartialDiagnosticAt, 8> Notes;
|
|
Expr::EvalResult Eval;
|
|
Eval.Diag = &Notes;
|
|
if ((!ProbArg->EvaluateAsConstantExpr(Eval, Context)) ||
|
|
!Eval.Val.isFloat()) {
|
|
Diag(ProbArg->getBeginLoc(), diag::err_probability_not_constant_float)
|
|
<< ProbArg->getSourceRange();
|
|
for (const PartialDiagnosticAt &PDiag : Notes)
|
|
Diag(PDiag.first, PDiag.second);
|
|
return ExprError();
|
|
}
|
|
llvm::APFloat Probability = Eval.Val.getFloat();
|
|
bool LoseInfo = false;
|
|
Probability.convert(llvm::APFloat::IEEEdouble(),
|
|
llvm::RoundingMode::Dynamic, &LoseInfo);
|
|
if (!(Probability >= llvm::APFloat(0.0) &&
|
|
Probability <= llvm::APFloat(1.0))) {
|
|
Diag(ProbArg->getBeginLoc(), diag::err_probability_out_of_range)
|
|
<< ProbArg->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
break;
|
|
}
|
|
case Builtin::BI__builtin_preserve_access_index:
|
|
if (BuiltinPreserveAI(*this, TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_call_with_static_chain:
|
|
if (BuiltinCallWithStaticChain(*this, TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__exception_code:
|
|
case Builtin::BI_exception_code:
|
|
if (BuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope,
|
|
diag::err_seh___except_block))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__exception_info:
|
|
case Builtin::BI_exception_info:
|
|
if (BuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope,
|
|
diag::err_seh___except_filter))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__GetExceptionInfo:
|
|
if (checkArgCount(TheCall, 1))
|
|
return ExprError();
|
|
|
|
if (CheckCXXThrowOperand(
|
|
TheCall->getBeginLoc(),
|
|
Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()),
|
|
TheCall))
|
|
return ExprError();
|
|
|
|
TheCall->setType(Context.VoidPtrTy);
|
|
break;
|
|
case Builtin::BIaddressof:
|
|
case Builtin::BI__addressof:
|
|
case Builtin::BIforward:
|
|
case Builtin::BIforward_like:
|
|
case Builtin::BImove:
|
|
case Builtin::BImove_if_noexcept:
|
|
case Builtin::BIas_const: {
|
|
// These are all expected to be of the form
|
|
// T &/&&/* f(U &/&&)
|
|
// where T and U only differ in qualification.
|
|
if (checkArgCount(TheCall, 1))
|
|
return ExprError();
|
|
QualType Param = FDecl->getParamDecl(0)->getType();
|
|
QualType Result = FDecl->getReturnType();
|
|
bool ReturnsPointer = BuiltinID == Builtin::BIaddressof ||
|
|
BuiltinID == Builtin::BI__addressof;
|
|
if (!(Param->isReferenceType() &&
|
|
(ReturnsPointer ? Result->isAnyPointerType()
|
|
: Result->isReferenceType()) &&
|
|
Context.hasSameUnqualifiedType(Param->getPointeeType(),
|
|
Result->getPointeeType()))) {
|
|
Diag(TheCall->getBeginLoc(), diag::err_builtin_move_forward_unsupported)
|
|
<< FDecl;
|
|
return ExprError();
|
|
}
|
|
break;
|
|
}
|
|
case Builtin::BI__builtin_ptrauth_strip:
|
|
return PointerAuthStrip(*this, TheCall);
|
|
case Builtin::BI__builtin_ptrauth_blend_discriminator:
|
|
return PointerAuthBlendDiscriminator(*this, TheCall);
|
|
case Builtin::BI__builtin_ptrauth_sign_constant:
|
|
return PointerAuthSignOrAuth(*this, TheCall, PAO_Sign,
|
|
/*RequireConstant=*/true);
|
|
case Builtin::BI__builtin_ptrauth_sign_unauthenticated:
|
|
return PointerAuthSignOrAuth(*this, TheCall, PAO_Sign,
|
|
/*RequireConstant=*/false);
|
|
case Builtin::BI__builtin_ptrauth_auth:
|
|
return PointerAuthSignOrAuth(*this, TheCall, PAO_Auth,
|
|
/*RequireConstant=*/false);
|
|
case Builtin::BI__builtin_ptrauth_sign_generic_data:
|
|
return PointerAuthSignGenericData(*this, TheCall);
|
|
case Builtin::BI__builtin_ptrauth_auth_and_resign:
|
|
return PointerAuthAuthAndResign(*this, TheCall);
|
|
case Builtin::BI__builtin_ptrauth_string_discriminator:
|
|
return PointerAuthStringDiscriminator(*this, TheCall);
|
|
// OpenCL v2.0, s6.13.16 - Pipe functions
|
|
case Builtin::BIread_pipe:
|
|
case Builtin::BIwrite_pipe:
|
|
// Since those two functions are declared with var args, we need a semantic
|
|
// check for the argument.
|
|
if (OpenCL().checkBuiltinRWPipe(TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BIreserve_read_pipe:
|
|
case Builtin::BIreserve_write_pipe:
|
|
case Builtin::BIwork_group_reserve_read_pipe:
|
|
case Builtin::BIwork_group_reserve_write_pipe:
|
|
if (OpenCL().checkBuiltinReserveRWPipe(TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BIsub_group_reserve_read_pipe:
|
|
case Builtin::BIsub_group_reserve_write_pipe:
|
|
if (OpenCL().checkSubgroupExt(TheCall) ||
|
|
OpenCL().checkBuiltinReserveRWPipe(TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BIcommit_read_pipe:
|
|
case Builtin::BIcommit_write_pipe:
|
|
case Builtin::BIwork_group_commit_read_pipe:
|
|
case Builtin::BIwork_group_commit_write_pipe:
|
|
if (OpenCL().checkBuiltinCommitRWPipe(TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BIsub_group_commit_read_pipe:
|
|
case Builtin::BIsub_group_commit_write_pipe:
|
|
if (OpenCL().checkSubgroupExt(TheCall) ||
|
|
OpenCL().checkBuiltinCommitRWPipe(TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BIget_pipe_num_packets:
|
|
case Builtin::BIget_pipe_max_packets:
|
|
if (OpenCL().checkBuiltinPipePackets(TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BIto_global:
|
|
case Builtin::BIto_local:
|
|
case Builtin::BIto_private:
|
|
if (OpenCL().checkBuiltinToAddr(BuiltinID, TheCall))
|
|
return ExprError();
|
|
break;
|
|
// OpenCL v2.0, s6.13.17 - Enqueue kernel functions.
|
|
case Builtin::BIenqueue_kernel:
|
|
if (OpenCL().checkBuiltinEnqueueKernel(TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BIget_kernel_work_group_size:
|
|
case Builtin::BIget_kernel_preferred_work_group_size_multiple:
|
|
if (OpenCL().checkBuiltinKernelWorkGroupSize(TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
|
|
case Builtin::BIget_kernel_sub_group_count_for_ndrange:
|
|
if (OpenCL().checkBuiltinNDRangeAndBlock(TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_os_log_format:
|
|
Cleanup.setExprNeedsCleanups(true);
|
|
[[fallthrough]];
|
|
case Builtin::BI__builtin_os_log_format_buffer_size:
|
|
if (BuiltinOSLogFormat(TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_frame_address:
|
|
case Builtin::BI__builtin_return_address: {
|
|
if (BuiltinConstantArgRange(TheCall, 0, 0, 0xFFFF))
|
|
return ExprError();
|
|
|
|
// -Wframe-address warning if non-zero passed to builtin
|
|
// return/frame address.
|
|
Expr::EvalResult Result;
|
|
if (!TheCall->getArg(0)->isValueDependent() &&
|
|
TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) &&
|
|
Result.Val.getInt() != 0)
|
|
Diag(TheCall->getBeginLoc(), diag::warn_frame_address)
|
|
<< ((BuiltinID == Builtin::BI__builtin_return_address)
|
|
? "__builtin_return_address"
|
|
: "__builtin_frame_address")
|
|
<< TheCall->getSourceRange();
|
|
break;
|
|
}
|
|
|
|
case Builtin::BI__builtin_nondeterministic_value: {
|
|
if (BuiltinNonDeterministicValue(TheCall))
|
|
return ExprError();
|
|
break;
|
|
}
|
|
|
|
// __builtin_elementwise_abs restricts the element type to signed integers or
|
|
// floating point types only.
|
|
case Builtin::BI__builtin_elementwise_abs:
|
|
if (PrepareBuiltinElementwiseMathOneArgCall(
|
|
TheCall, EltwiseBuiltinArgTyRestriction::SignedIntOrFloatTy))
|
|
return ExprError();
|
|
break;
|
|
|
|
// These builtins restrict the element type to floating point
|
|
// types only.
|
|
case Builtin::BI__builtin_elementwise_acos:
|
|
case Builtin::BI__builtin_elementwise_asin:
|
|
case Builtin::BI__builtin_elementwise_atan:
|
|
case Builtin::BI__builtin_elementwise_ceil:
|
|
case Builtin::BI__builtin_elementwise_cos:
|
|
case Builtin::BI__builtin_elementwise_cosh:
|
|
case Builtin::BI__builtin_elementwise_exp:
|
|
case Builtin::BI__builtin_elementwise_exp2:
|
|
case Builtin::BI__builtin_elementwise_exp10:
|
|
case Builtin::BI__builtin_elementwise_floor:
|
|
case Builtin::BI__builtin_elementwise_log:
|
|
case Builtin::BI__builtin_elementwise_log2:
|
|
case Builtin::BI__builtin_elementwise_log10:
|
|
case Builtin::BI__builtin_elementwise_roundeven:
|
|
case Builtin::BI__builtin_elementwise_round:
|
|
case Builtin::BI__builtin_elementwise_rint:
|
|
case Builtin::BI__builtin_elementwise_nearbyint:
|
|
case Builtin::BI__builtin_elementwise_sin:
|
|
case Builtin::BI__builtin_elementwise_sinh:
|
|
case Builtin::BI__builtin_elementwise_sqrt:
|
|
case Builtin::BI__builtin_elementwise_tan:
|
|
case Builtin::BI__builtin_elementwise_tanh:
|
|
case Builtin::BI__builtin_elementwise_trunc:
|
|
case Builtin::BI__builtin_elementwise_canonicalize:
|
|
if (PrepareBuiltinElementwiseMathOneArgCall(
|
|
TheCall, EltwiseBuiltinArgTyRestriction::FloatTy))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_elementwise_fma:
|
|
if (BuiltinElementwiseTernaryMath(TheCall))
|
|
return ExprError();
|
|
break;
|
|
|
|
// These builtins restrict the element type to floating point
|
|
// types only, and take in two arguments.
|
|
case Builtin::BI__builtin_elementwise_minimum:
|
|
case Builtin::BI__builtin_elementwise_maximum:
|
|
case Builtin::BI__builtin_elementwise_atan2:
|
|
case Builtin::BI__builtin_elementwise_fmod:
|
|
case Builtin::BI__builtin_elementwise_pow:
|
|
if (BuiltinElementwiseMath(TheCall,
|
|
EltwiseBuiltinArgTyRestriction::FloatTy))
|
|
return ExprError();
|
|
break;
|
|
// These builtins restrict the element type to integer
|
|
// types only.
|
|
case Builtin::BI__builtin_elementwise_add_sat:
|
|
case Builtin::BI__builtin_elementwise_sub_sat:
|
|
if (BuiltinElementwiseMath(TheCall,
|
|
EltwiseBuiltinArgTyRestriction::IntegerTy))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_elementwise_min:
|
|
case Builtin::BI__builtin_elementwise_max:
|
|
if (BuiltinElementwiseMath(TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_elementwise_popcount:
|
|
case Builtin::BI__builtin_elementwise_bitreverse:
|
|
if (PrepareBuiltinElementwiseMathOneArgCall(
|
|
TheCall, EltwiseBuiltinArgTyRestriction::IntegerTy))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_elementwise_copysign: {
|
|
if (checkArgCount(TheCall, 2))
|
|
return ExprError();
|
|
|
|
ExprResult Magnitude = UsualUnaryConversions(TheCall->getArg(0));
|
|
ExprResult Sign = UsualUnaryConversions(TheCall->getArg(1));
|
|
if (Magnitude.isInvalid() || Sign.isInvalid())
|
|
return ExprError();
|
|
|
|
QualType MagnitudeTy = Magnitude.get()->getType();
|
|
QualType SignTy = Sign.get()->getType();
|
|
if (checkMathBuiltinElementType(
|
|
*this, TheCall->getArg(0)->getBeginLoc(), MagnitudeTy,
|
|
EltwiseBuiltinArgTyRestriction::FloatTy, 1) ||
|
|
checkMathBuiltinElementType(
|
|
*this, TheCall->getArg(1)->getBeginLoc(), SignTy,
|
|
EltwiseBuiltinArgTyRestriction::FloatTy, 2)) {
|
|
return ExprError();
|
|
}
|
|
|
|
if (MagnitudeTy.getCanonicalType() != SignTy.getCanonicalType()) {
|
|
return Diag(Sign.get()->getBeginLoc(),
|
|
diag::err_typecheck_call_different_arg_types)
|
|
<< MagnitudeTy << SignTy;
|
|
}
|
|
|
|
TheCall->setArg(0, Magnitude.get());
|
|
TheCall->setArg(1, Sign.get());
|
|
TheCall->setType(Magnitude.get()->getType());
|
|
break;
|
|
}
|
|
case Builtin::BI__builtin_reduce_max:
|
|
case Builtin::BI__builtin_reduce_min: {
|
|
if (PrepareBuiltinReduceMathOneArgCall(TheCall))
|
|
return ExprError();
|
|
|
|
const Expr *Arg = TheCall->getArg(0);
|
|
const auto *TyA = Arg->getType()->getAs<VectorType>();
|
|
|
|
QualType ElTy;
|
|
if (TyA)
|
|
ElTy = TyA->getElementType();
|
|
else if (Arg->getType()->isSizelessVectorType())
|
|
ElTy = Arg->getType()->getSizelessVectorEltType(Context);
|
|
|
|
if (ElTy.isNull()) {
|
|
Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
|
|
<< 1 << /* vector ty */ 2 << /* no int */ 0 << /* no fp */ 0
|
|
<< Arg->getType();
|
|
return ExprError();
|
|
}
|
|
|
|
TheCall->setType(ElTy);
|
|
break;
|
|
}
|
|
case Builtin::BI__builtin_reduce_maximum:
|
|
case Builtin::BI__builtin_reduce_minimum: {
|
|
if (PrepareBuiltinReduceMathOneArgCall(TheCall))
|
|
return ExprError();
|
|
|
|
const Expr *Arg = TheCall->getArg(0);
|
|
const auto *TyA = Arg->getType()->getAs<VectorType>();
|
|
|
|
QualType ElTy;
|
|
if (TyA)
|
|
ElTy = TyA->getElementType();
|
|
else if (Arg->getType()->isSizelessVectorType())
|
|
ElTy = Arg->getType()->getSizelessVectorEltType(Context);
|
|
|
|
if (ElTy.isNull() || !ElTy->isFloatingType()) {
|
|
Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
|
|
<< 1 << /* vector of */ 4 << /* no int */ 0 << /* fp */ 1
|
|
<< Arg->getType();
|
|
return ExprError();
|
|
}
|
|
|
|
TheCall->setType(ElTy);
|
|
break;
|
|
}
|
|
|
|
// These builtins support vectors of integers only.
|
|
// TODO: ADD/MUL should support floating-point types.
|
|
case Builtin::BI__builtin_reduce_add:
|
|
case Builtin::BI__builtin_reduce_mul:
|
|
case Builtin::BI__builtin_reduce_xor:
|
|
case Builtin::BI__builtin_reduce_or:
|
|
case Builtin::BI__builtin_reduce_and: {
|
|
if (PrepareBuiltinReduceMathOneArgCall(TheCall))
|
|
return ExprError();
|
|
|
|
const Expr *Arg = TheCall->getArg(0);
|
|
const auto *TyA = Arg->getType()->getAs<VectorType>();
|
|
|
|
QualType ElTy;
|
|
if (TyA)
|
|
ElTy = TyA->getElementType();
|
|
else if (Arg->getType()->isSizelessVectorType())
|
|
ElTy = Arg->getType()->getSizelessVectorEltType(Context);
|
|
|
|
if (ElTy.isNull() || !ElTy->isIntegerType()) {
|
|
Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
|
|
<< 1 << /* vector of */ 4 << /* int */ 1 << /* no fp */ 0
|
|
<< Arg->getType();
|
|
return ExprError();
|
|
}
|
|
|
|
TheCall->setType(ElTy);
|
|
break;
|
|
}
|
|
|
|
case Builtin::BI__builtin_matrix_transpose:
|
|
return BuiltinMatrixTranspose(TheCall, TheCallResult);
|
|
|
|
case Builtin::BI__builtin_matrix_column_major_load:
|
|
return BuiltinMatrixColumnMajorLoad(TheCall, TheCallResult);
|
|
|
|
case Builtin::BI__builtin_matrix_column_major_store:
|
|
return BuiltinMatrixColumnMajorStore(TheCall, TheCallResult);
|
|
|
|
case Builtin::BI__builtin_verbose_trap:
|
|
if (!checkBuiltinVerboseTrap(TheCall, *this))
|
|
return ExprError();
|
|
break;
|
|
|
|
case Builtin::BI__builtin_get_device_side_mangled_name: {
|
|
auto Check = [](CallExpr *TheCall) {
|
|
if (TheCall->getNumArgs() != 1)
|
|
return false;
|
|
auto *DRE = dyn_cast<DeclRefExpr>(TheCall->getArg(0)->IgnoreImpCasts());
|
|
if (!DRE)
|
|
return false;
|
|
auto *D = DRE->getDecl();
|
|
if (!isa<FunctionDecl>(D) && !isa<VarDecl>(D))
|
|
return false;
|
|
return D->hasAttr<CUDAGlobalAttr>() || D->hasAttr<CUDADeviceAttr>() ||
|
|
D->hasAttr<CUDAConstantAttr>() || D->hasAttr<HIPManagedAttr>();
|
|
};
|
|
if (!Check(TheCall)) {
|
|
Diag(TheCall->getBeginLoc(),
|
|
diag::err_hip_invalid_args_builtin_mangled_name);
|
|
return ExprError();
|
|
}
|
|
break;
|
|
}
|
|
case Builtin::BI__builtin_popcountg:
|
|
if (BuiltinPopcountg(*this, TheCall))
|
|
return ExprError();
|
|
break;
|
|
case Builtin::BI__builtin_clzg:
|
|
case Builtin::BI__builtin_ctzg:
|
|
if (BuiltinCountZeroBitsGeneric(*this, TheCall))
|
|
return ExprError();
|
|
break;
|
|
|
|
case Builtin::BI__builtin_allow_runtime_check: {
|
|
Expr *Arg = TheCall->getArg(0);
|
|
// Check if the argument is a string literal.
|
|
if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts())) {
|
|
Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
|
|
<< Arg->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
break;
|
|
}
|
|
case Builtin::BI__builtin_counted_by_ref:
|
|
if (BuiltinCountedByRef(TheCall))
|
|
return ExprError();
|
|
break;
|
|
}
|
|
|
|
if (getLangOpts().HLSL && HLSL().CheckBuiltinFunctionCall(BuiltinID, TheCall))
|
|
return ExprError();
|
|
|
|
// Since the target specific builtins for each arch overlap, only check those
|
|
// of the arch we are compiling for.
|
|
if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) {
|
|
if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
|
|
assert(Context.getAuxTargetInfo() &&
|
|
"Aux Target Builtin, but not an aux target?");
|
|
|
|
if (CheckTSBuiltinFunctionCall(
|
|
*Context.getAuxTargetInfo(),
|
|
Context.BuiltinInfo.getAuxBuiltinID(BuiltinID), TheCall))
|
|
return ExprError();
|
|
} else {
|
|
if (CheckTSBuiltinFunctionCall(Context.getTargetInfo(), BuiltinID,
|
|
TheCall))
|
|
return ExprError();
|
|
}
|
|
}
|
|
|
|
return TheCallResult;
|
|
}
|
|
|
|
bool Sema::ValueIsRunOfOnes(CallExpr *TheCall, unsigned ArgNum) {
|
|
llvm::APSInt Result;
|
|
// We can't check the value of a dependent argument.
|
|
Expr *Arg = TheCall->getArg(ArgNum);
|
|
if (Arg->isTypeDependent() || Arg->isValueDependent())
|
|
return false;
|
|
|
|
// Check constant-ness first.
|
|
if (BuiltinConstantArg(TheCall, ArgNum, Result))
|
|
return true;
|
|
|
|
// Check contiguous run of 1s, 0xFF0000FF is also a run of 1s.
|
|
if (Result.isShiftedMask() || (~Result).isShiftedMask())
|
|
return false;
|
|
|
|
return Diag(TheCall->getBeginLoc(),
|
|
diag::err_argument_not_contiguous_bit_field)
|
|
<< ArgNum << Arg->getSourceRange();
|
|
}
|
|
|
|
bool Sema::getFormatStringInfo(const Decl *D, unsigned FormatIdx,
|
|
unsigned FirstArg, FormatStringInfo *FSI) {
|
|
bool IsCXXMember = false;
|
|
if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
|
|
IsCXXMember = MD->isInstance();
|
|
bool IsVariadic = false;
|
|
if (const FunctionType *FnTy = D->getFunctionType())
|
|
IsVariadic = cast<FunctionProtoType>(FnTy)->isVariadic();
|
|
else if (const auto *BD = dyn_cast<BlockDecl>(D))
|
|
IsVariadic = BD->isVariadic();
|
|
else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(D))
|
|
IsVariadic = OMD->isVariadic();
|
|
|
|
return getFormatStringInfo(FormatIdx, FirstArg, IsCXXMember, IsVariadic, FSI);
|
|
}
|
|
|
|
bool Sema::getFormatStringInfo(unsigned FormatIdx, unsigned FirstArg,
|
|
bool IsCXXMember, bool IsVariadic,
|
|
FormatStringInfo *FSI) {
|
|
if (FirstArg == 0)
|
|
FSI->ArgPassingKind = FAPK_VAList;
|
|
else if (IsVariadic)
|
|
FSI->ArgPassingKind = FAPK_Variadic;
|
|
else
|
|
FSI->ArgPassingKind = FAPK_Fixed;
|
|
FSI->FormatIdx = FormatIdx - 1;
|
|
FSI->FirstDataArg = FSI->ArgPassingKind == FAPK_VAList ? 0 : FirstArg - 1;
|
|
|
|
// The way the format attribute works in GCC, the implicit this argument
|
|
// of member functions is counted. However, it doesn't appear in our own
|
|
// lists, so decrement format_idx in that case.
|
|
if (IsCXXMember) {
|
|
if(FSI->FormatIdx == 0)
|
|
return false;
|
|
--FSI->FormatIdx;
|
|
if (FSI->FirstDataArg != 0)
|
|
--FSI->FirstDataArg;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Checks if a the given expression evaluates to null.
|
|
///
|
|
/// Returns true if the value evaluates to null.
|
|
static bool CheckNonNullExpr(Sema &S, const Expr *Expr) {
|
|
// Treat (smart) pointers constructed from nullptr as null, whether we can
|
|
// const-evaluate them or not.
|
|
// This must happen first: the smart pointer expr might have _Nonnull type!
|
|
if (isa<CXXNullPtrLiteralExpr>(
|
|
IgnoreExprNodes(Expr, IgnoreImplicitAsWrittenSingleStep,
|
|
IgnoreElidableImplicitConstructorSingleStep)))
|
|
return true;
|
|
|
|
// If the expression has non-null type, it doesn't evaluate to null.
|
|
if (auto nullability = Expr->IgnoreImplicit()->getType()->getNullability()) {
|
|
if (*nullability == NullabilityKind::NonNull)
|
|
return false;
|
|
}
|
|
|
|
// As a special case, transparent unions initialized with zero are
|
|
// considered null for the purposes of the nonnull attribute.
|
|
if (const RecordType *UT = Expr->getType()->getAsUnionType();
|
|
UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
|
|
if (const auto *CLE = dyn_cast<CompoundLiteralExpr>(Expr))
|
|
if (const auto *ILE = dyn_cast<InitListExpr>(CLE->getInitializer()))
|
|
Expr = ILE->getInit(0);
|
|
}
|
|
|
|
bool Result;
|
|
return (!Expr->isValueDependent() &&
|
|
Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
|
|
!Result);
|
|
}
|
|
|
|
static void CheckNonNullArgument(Sema &S,
|
|
const Expr *ArgExpr,
|
|
SourceLocation CallSiteLoc) {
|
|
if (CheckNonNullExpr(S, ArgExpr))
|
|
S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr,
|
|
S.PDiag(diag::warn_null_arg)
|
|
<< ArgExpr->getSourceRange());
|
|
}
|
|
|
|
/// Determine whether the given type has a non-null nullability annotation.
|
|
static bool isNonNullType(QualType type) {
|
|
if (auto nullability = type->getNullability())
|
|
return *nullability == NullabilityKind::NonNull;
|
|
|
|
return false;
|
|
}
|
|
|
|
static void CheckNonNullArguments(Sema &S,
|
|
const NamedDecl *FDecl,
|
|
const FunctionProtoType *Proto,
|
|
ArrayRef<const Expr *> Args,
|
|
SourceLocation CallSiteLoc) {
|
|
assert((FDecl || Proto) && "Need a function declaration or prototype");
|
|
|
|
// Already checked by constant evaluator.
|
|
if (S.isConstantEvaluatedContext())
|
|
return;
|
|
// Check the attributes attached to the method/function itself.
|
|
llvm::SmallBitVector NonNullArgs;
|
|
if (FDecl) {
|
|
// Handle the nonnull attribute on the function/method declaration itself.
|
|
for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
|
|
if (!NonNull->args_size()) {
|
|
// Easy case: all pointer arguments are nonnull.
|
|
for (const auto *Arg : Args)
|
|
if (S.isValidPointerAttrType(Arg->getType()))
|
|
CheckNonNullArgument(S, Arg, CallSiteLoc);
|
|
return;
|
|
}
|
|
|
|
for (const ParamIdx &Idx : NonNull->args()) {
|
|
unsigned IdxAST = Idx.getASTIndex();
|
|
if (IdxAST >= Args.size())
|
|
continue;
|
|
if (NonNullArgs.empty())
|
|
NonNullArgs.resize(Args.size());
|
|
NonNullArgs.set(IdxAST);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) {
|
|
// Handle the nonnull attribute on the parameters of the
|
|
// function/method.
|
|
ArrayRef<ParmVarDecl*> parms;
|
|
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
|
|
parms = FD->parameters();
|
|
else
|
|
parms = cast<ObjCMethodDecl>(FDecl)->parameters();
|
|
|
|
unsigned ParamIndex = 0;
|
|
for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
|
|
I != E; ++I, ++ParamIndex) {
|
|
const ParmVarDecl *PVD = *I;
|
|
if (PVD->hasAttr<NonNullAttr>() || isNonNullType(PVD->getType())) {
|
|
if (NonNullArgs.empty())
|
|
NonNullArgs.resize(Args.size());
|
|
|
|
NonNullArgs.set(ParamIndex);
|
|
}
|
|
}
|
|
} else {
|
|
// If we have a non-function, non-method declaration but no
|
|
// function prototype, try to dig out the function prototype.
|
|
if (!Proto) {
|
|
if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) {
|
|
QualType type = VD->getType().getNonReferenceType();
|
|
if (auto pointerType = type->getAs<PointerType>())
|
|
type = pointerType->getPointeeType();
|
|
else if (auto blockType = type->getAs<BlockPointerType>())
|
|
type = blockType->getPointeeType();
|
|
// FIXME: data member pointers?
|
|
|
|
// Dig out the function prototype, if there is one.
|
|
Proto = type->getAs<FunctionProtoType>();
|
|
}
|
|
}
|
|
|
|
// Fill in non-null argument information from the nullability
|
|
// information on the parameter types (if we have them).
|
|
if (Proto) {
|
|
unsigned Index = 0;
|
|
for (auto paramType : Proto->getParamTypes()) {
|
|
if (isNonNullType(paramType)) {
|
|
if (NonNullArgs.empty())
|
|
NonNullArgs.resize(Args.size());
|
|
|
|
NonNullArgs.set(Index);
|
|
}
|
|
|
|
++Index;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check for non-null arguments.
|
|
for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size();
|
|
ArgIndex != ArgIndexEnd; ++ArgIndex) {
|
|
if (NonNullArgs[ArgIndex])
|
|
CheckNonNullArgument(S, Args[ArgIndex], Args[ArgIndex]->getExprLoc());
|
|
}
|
|
}
|
|
|
|
void Sema::CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl,
|
|
StringRef ParamName, QualType ArgTy,
|
|
QualType ParamTy) {
|
|
|
|
// If a function accepts a pointer or reference type
|
|
if (!ParamTy->isPointerType() && !ParamTy->isReferenceType())
|
|
return;
|
|
|
|
// If the parameter is a pointer type, get the pointee type for the
|
|
// argument too. If the parameter is a reference type, don't try to get
|
|
// the pointee type for the argument.
|
|
if (ParamTy->isPointerType())
|
|
ArgTy = ArgTy->getPointeeType();
|
|
|
|
// Remove reference or pointer
|
|
ParamTy = ParamTy->getPointeeType();
|
|
|
|
// Find expected alignment, and the actual alignment of the passed object.
|
|
// getTypeAlignInChars requires complete types
|
|
if (ArgTy.isNull() || ParamTy->isDependentType() ||
|
|
ParamTy->isIncompleteType() || ArgTy->isIncompleteType() ||
|
|
ParamTy->isUndeducedType() || ArgTy->isUndeducedType())
|
|
return;
|
|
|
|
CharUnits ParamAlign = Context.getTypeAlignInChars(ParamTy);
|
|
CharUnits ArgAlign = Context.getTypeAlignInChars(ArgTy);
|
|
|
|
// If the argument is less aligned than the parameter, there is a
|
|
// potential alignment issue.
|
|
if (ArgAlign < ParamAlign)
|
|
Diag(Loc, diag::warn_param_mismatched_alignment)
|
|
<< (int)ArgAlign.getQuantity() << (int)ParamAlign.getQuantity()
|
|
<< ParamName << (FDecl != nullptr) << FDecl;
|
|
}
|
|
|
|
void Sema::checkLifetimeCaptureBy(FunctionDecl *FD, bool IsMemberFunction,
|
|
const Expr *ThisArg,
|
|
ArrayRef<const Expr *> Args) {
|
|
if (!FD || Args.empty())
|
|
return;
|
|
auto GetArgAt = [&](int Idx) -> const Expr * {
|
|
if (Idx == LifetimeCaptureByAttr::GLOBAL ||
|
|
Idx == LifetimeCaptureByAttr::UNKNOWN)
|
|
return nullptr;
|
|
if (IsMemberFunction && Idx == 0)
|
|
return ThisArg;
|
|
return Args[Idx - IsMemberFunction];
|
|
};
|
|
auto HandleCaptureByAttr = [&](const LifetimeCaptureByAttr *Attr,
|
|
unsigned ArgIdx) {
|
|
if (!Attr)
|
|
return;
|
|
|
|
Expr *Captured = const_cast<Expr *>(GetArgAt(ArgIdx));
|
|
for (int CapturingParamIdx : Attr->params()) {
|
|
// lifetime_capture_by(this) case is handled in the lifetimebound expr
|
|
// initialization codepath.
|
|
if (CapturingParamIdx == LifetimeCaptureByAttr::THIS &&
|
|
isa<CXXConstructorDecl>(FD))
|
|
continue;
|
|
Expr *Capturing = const_cast<Expr *>(GetArgAt(CapturingParamIdx));
|
|
CapturingEntity CE{Capturing};
|
|
// Ensure that 'Captured' outlives the 'Capturing' entity.
|
|
checkCaptureByLifetime(*this, CE, Captured);
|
|
}
|
|
};
|
|
for (unsigned I = 0; I < FD->getNumParams(); ++I)
|
|
HandleCaptureByAttr(FD->getParamDecl(I)->getAttr<LifetimeCaptureByAttr>(),
|
|
I + IsMemberFunction);
|
|
// Check when the implicit object param is captured.
|
|
if (IsMemberFunction) {
|
|
TypeSourceInfo *TSI = FD->getTypeSourceInfo();
|
|
if (!TSI)
|
|
return;
|
|
AttributedTypeLoc ATL;
|
|
for (TypeLoc TL = TSI->getTypeLoc();
|
|
(ATL = TL.getAsAdjusted<AttributedTypeLoc>());
|
|
TL = ATL.getModifiedLoc())
|
|
HandleCaptureByAttr(ATL.getAttrAs<LifetimeCaptureByAttr>(), 0);
|
|
}
|
|
}
|
|
|
|
void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
|
|
const Expr *ThisArg, ArrayRef<const Expr *> Args,
|
|
bool IsMemberFunction, SourceLocation Loc,
|
|
SourceRange Range, VariadicCallType CallType) {
|
|
// FIXME: We should check as much as we can in the template definition.
|
|
if (CurContext->isDependentContext())
|
|
return;
|
|
|
|
// Printf and scanf checking.
|
|
llvm::SmallBitVector CheckedVarArgs;
|
|
if (FDecl) {
|
|
for (const auto *I : FDecl->specific_attrs<FormatMatchesAttr>()) {
|
|
// Only create vector if there are format attributes.
|
|
CheckedVarArgs.resize(Args.size());
|
|
CheckFormatString(I, Args, IsMemberFunction, CallType, Loc, Range,
|
|
CheckedVarArgs);
|
|
}
|
|
|
|
for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
|
|
CheckedVarArgs.resize(Args.size());
|
|
CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
|
|
CheckedVarArgs);
|
|
}
|
|
}
|
|
|
|
// Refuse POD arguments that weren't caught by the format string
|
|
// checks above.
|
|
auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl);
|
|
if (CallType != VariadicDoesNotApply &&
|
|
(!FD || FD->getBuiltinID() != Builtin::BI__noop)) {
|
|
unsigned NumParams = Proto ? Proto->getNumParams()
|
|
: isa_and_nonnull<FunctionDecl>(FDecl)
|
|
? cast<FunctionDecl>(FDecl)->getNumParams()
|
|
: isa_and_nonnull<ObjCMethodDecl>(FDecl)
|
|
? cast<ObjCMethodDecl>(FDecl)->param_size()
|
|
: 0;
|
|
|
|
for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
|
|
// Args[ArgIdx] can be null in malformed code.
|
|
if (const Expr *Arg = Args[ArgIdx]) {
|
|
if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
|
|
checkVariadicArgument(Arg, CallType);
|
|
}
|
|
}
|
|
}
|
|
if (FD)
|
|
checkLifetimeCaptureBy(FD, IsMemberFunction, ThisArg, Args);
|
|
if (FDecl || Proto) {
|
|
CheckNonNullArguments(*this, FDecl, Proto, Args, Loc);
|
|
|
|
// Type safety checking.
|
|
if (FDecl) {
|
|
for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
|
|
CheckArgumentWithTypeTag(I, Args, Loc);
|
|
}
|
|
}
|
|
|
|
// Check that passed arguments match the alignment of original arguments.
|
|
// Try to get the missing prototype from the declaration.
|
|
if (!Proto && FDecl) {
|
|
const auto *FT = FDecl->getFunctionType();
|
|
if (isa_and_nonnull<FunctionProtoType>(FT))
|
|
Proto = cast<FunctionProtoType>(FDecl->getFunctionType());
|
|
}
|
|
if (Proto) {
|
|
// For variadic functions, we may have more args than parameters.
|
|
// For some K&R functions, we may have less args than parameters.
|
|
const auto N = std::min<unsigned>(Proto->getNumParams(), Args.size());
|
|
bool IsScalableRet = Proto->getReturnType()->isSizelessVectorType();
|
|
bool IsScalableArg = false;
|
|
for (unsigned ArgIdx = 0; ArgIdx < N; ++ArgIdx) {
|
|
// Args[ArgIdx] can be null in malformed code.
|
|
if (const Expr *Arg = Args[ArgIdx]) {
|
|
if (Arg->containsErrors())
|
|
continue;
|
|
|
|
if (Context.getTargetInfo().getTriple().isOSAIX() && FDecl && Arg &&
|
|
FDecl->hasLinkage() &&
|
|
FDecl->getFormalLinkage() != Linkage::Internal &&
|
|
CallType == VariadicDoesNotApply)
|
|
PPC().checkAIXMemberAlignment((Arg->getExprLoc()), Arg);
|
|
|
|
QualType ParamTy = Proto->getParamType(ArgIdx);
|
|
if (ParamTy->isSizelessVectorType())
|
|
IsScalableArg = true;
|
|
QualType ArgTy = Arg->getType();
|
|
CheckArgAlignment(Arg->getExprLoc(), FDecl, std::to_string(ArgIdx + 1),
|
|
ArgTy, ParamTy);
|
|
}
|
|
}
|
|
|
|
// If the callee has an AArch64 SME attribute to indicate that it is an
|
|
// __arm_streaming function, then the caller requires SME to be available.
|
|
FunctionProtoType::ExtProtoInfo ExtInfo = Proto->getExtProtoInfo();
|
|
if (ExtInfo.AArch64SMEAttributes & FunctionType::SME_PStateSMEnabledMask) {
|
|
if (auto *CallerFD = dyn_cast<FunctionDecl>(CurContext)) {
|
|
llvm::StringMap<bool> CallerFeatureMap;
|
|
Context.getFunctionFeatureMap(CallerFeatureMap, CallerFD);
|
|
if (!CallerFeatureMap.contains("sme"))
|
|
Diag(Loc, diag::err_sme_call_in_non_sme_target);
|
|
} else if (!Context.getTargetInfo().hasFeature("sme")) {
|
|
Diag(Loc, diag::err_sme_call_in_non_sme_target);
|
|
}
|
|
}
|
|
|
|
// If the call requires a streaming-mode change and has scalable vector
|
|
// arguments or return values, then warn the user that the streaming and
|
|
// non-streaming vector lengths may be different.
|
|
const auto *CallerFD = dyn_cast<FunctionDecl>(CurContext);
|
|
if (CallerFD && (!FD || !FD->getBuiltinID()) &&
|
|
(IsScalableArg || IsScalableRet)) {
|
|
bool IsCalleeStreaming =
|
|
ExtInfo.AArch64SMEAttributes & FunctionType::SME_PStateSMEnabledMask;
|
|
bool IsCalleeStreamingCompatible =
|
|
ExtInfo.AArch64SMEAttributes &
|
|
FunctionType::SME_PStateSMCompatibleMask;
|
|
SemaARM::ArmStreamingType CallerFnType = getArmStreamingFnType(CallerFD);
|
|
if (!IsCalleeStreamingCompatible &&
|
|
(CallerFnType == SemaARM::ArmStreamingCompatible ||
|
|
((CallerFnType == SemaARM::ArmStreaming) ^ IsCalleeStreaming))) {
|
|
if (IsScalableArg)
|
|
Diag(Loc, diag::warn_sme_streaming_pass_return_vl_to_non_streaming)
|
|
<< /*IsArg=*/true;
|
|
if (IsScalableRet)
|
|
Diag(Loc, diag::warn_sme_streaming_pass_return_vl_to_non_streaming)
|
|
<< /*IsArg=*/false;
|
|
}
|
|
}
|
|
|
|
FunctionType::ArmStateValue CalleeArmZAState =
|
|
FunctionType::getArmZAState(ExtInfo.AArch64SMEAttributes);
|
|
FunctionType::ArmStateValue CalleeArmZT0State =
|
|
FunctionType::getArmZT0State(ExtInfo.AArch64SMEAttributes);
|
|
if (CalleeArmZAState != FunctionType::ARM_None ||
|
|
CalleeArmZT0State != FunctionType::ARM_None) {
|
|
bool CallerHasZAState = false;
|
|
bool CallerHasZT0State = false;
|
|
if (CallerFD) {
|
|
auto *Attr = CallerFD->getAttr<ArmNewAttr>();
|
|
if (Attr && Attr->isNewZA())
|
|
CallerHasZAState = true;
|
|
if (Attr && Attr->isNewZT0())
|
|
CallerHasZT0State = true;
|
|
if (const auto *FPT = CallerFD->getType()->getAs<FunctionProtoType>()) {
|
|
CallerHasZAState |=
|
|
FunctionType::getArmZAState(
|
|
FPT->getExtProtoInfo().AArch64SMEAttributes) !=
|
|
FunctionType::ARM_None;
|
|
CallerHasZT0State |=
|
|
FunctionType::getArmZT0State(
|
|
FPT->getExtProtoInfo().AArch64SMEAttributes) !=
|
|
FunctionType::ARM_None;
|
|
}
|
|
}
|
|
|
|
if (CalleeArmZAState != FunctionType::ARM_None && !CallerHasZAState)
|
|
Diag(Loc, diag::err_sme_za_call_no_za_state);
|
|
|
|
if (CalleeArmZT0State != FunctionType::ARM_None && !CallerHasZT0State)
|
|
Diag(Loc, diag::err_sme_zt0_call_no_zt0_state);
|
|
|
|
if (CallerHasZAState && CalleeArmZAState == FunctionType::ARM_None &&
|
|
CalleeArmZT0State != FunctionType::ARM_None) {
|
|
Diag(Loc, diag::err_sme_unimplemented_za_save_restore);
|
|
Diag(Loc, diag::note_sme_use_preserves_za);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) {
|
|
auto *AA = FDecl->getAttr<AllocAlignAttr>();
|
|
const Expr *Arg = Args[AA->getParamIndex().getASTIndex()];
|
|
if (!Arg->isValueDependent()) {
|
|
Expr::EvalResult Align;
|
|
if (Arg->EvaluateAsInt(Align, Context)) {
|
|
const llvm::APSInt &I = Align.Val.getInt();
|
|
if (!I.isPowerOf2())
|
|
Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two)
|
|
<< Arg->getSourceRange();
|
|
|
|
if (I > Sema::MaximumAlignment)
|
|
Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great)
|
|
<< Arg->getSourceRange() << Sema::MaximumAlignment;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (FD)
|
|
diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc);
|
|
}
|
|
|
|
void Sema::CheckConstrainedAuto(const AutoType *AutoT, SourceLocation Loc) {
|
|
if (ConceptDecl *Decl = AutoT->getTypeConstraintConcept()) {
|
|
DiagnoseUseOfDecl(Decl, Loc);
|
|
}
|
|
}
|
|
|
|
void Sema::CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType,
|
|
ArrayRef<const Expr *> Args,
|
|
const FunctionProtoType *Proto,
|
|
SourceLocation Loc) {
|
|
VariadicCallType CallType =
|
|
Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
|
|
|
|
auto *Ctor = cast<CXXConstructorDecl>(FDecl);
|
|
CheckArgAlignment(
|
|
Loc, FDecl, "'this'", Context.getPointerType(ThisType),
|
|
Context.getPointerType(Ctor->getFunctionObjectParameterType()));
|
|
|
|
checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true,
|
|
Loc, SourceRange(), CallType);
|
|
}
|
|
|
|
bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
|
|
const FunctionProtoType *Proto) {
|
|
bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
|
|
isa<CXXMethodDecl>(FDecl);
|
|
bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
|
|
IsMemberOperatorCall;
|
|
VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
|
|
TheCall->getCallee());
|
|
Expr** Args = TheCall->getArgs();
|
|
unsigned NumArgs = TheCall->getNumArgs();
|
|
|
|
Expr *ImplicitThis = nullptr;
|
|
if (IsMemberOperatorCall && !FDecl->hasCXXExplicitFunctionObjectParameter()) {
|
|
// If this is a call to a member operator, hide the first
|
|
// argument from checkCall.
|
|
// FIXME: Our choice of AST representation here is less than ideal.
|
|
ImplicitThis = Args[0];
|
|
++Args;
|
|
--NumArgs;
|
|
} else if (IsMemberFunction && !FDecl->isStatic() &&
|
|
!FDecl->hasCXXExplicitFunctionObjectParameter())
|
|
ImplicitThis =
|
|
cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument();
|
|
|
|
if (ImplicitThis) {
|
|
// ImplicitThis may or may not be a pointer, depending on whether . or -> is
|
|
// used.
|
|
QualType ThisType = ImplicitThis->getType();
|
|
if (!ThisType->isPointerType()) {
|
|
assert(!ThisType->isReferenceType());
|
|
ThisType = Context.getPointerType(ThisType);
|
|
}
|
|
|
|
QualType ThisTypeFromDecl = Context.getPointerType(
|
|
cast<CXXMethodDecl>(FDecl)->getFunctionObjectParameterType());
|
|
|
|
CheckArgAlignment(TheCall->getRParenLoc(), FDecl, "'this'", ThisType,
|
|
ThisTypeFromDecl);
|
|
}
|
|
|
|
checkCall(FDecl, Proto, ImplicitThis, llvm::ArrayRef(Args, NumArgs),
|
|
IsMemberFunction, TheCall->getRParenLoc(),
|
|
TheCall->getCallee()->getSourceRange(), CallType);
|
|
|
|
IdentifierInfo *FnInfo = FDecl->getIdentifier();
|
|
// None of the checks below are needed for functions that don't have
|
|
// simple names (e.g., C++ conversion functions).
|
|
if (!FnInfo)
|
|
return false;
|
|
|
|
// Enforce TCB except for builtin calls, which are always allowed.
|
|
if (FDecl->getBuiltinID() == 0)
|
|
CheckTCBEnforcement(TheCall->getExprLoc(), FDecl);
|
|
|
|
CheckAbsoluteValueFunction(TheCall, FDecl);
|
|
CheckMaxUnsignedZero(TheCall, FDecl);
|
|
CheckInfNaNFunction(TheCall, FDecl);
|
|
|
|
if (getLangOpts().ObjC)
|
|
ObjC().DiagnoseCStringFormatDirectiveInCFAPI(FDecl, Args, NumArgs);
|
|
|
|
unsigned CMId = FDecl->getMemoryFunctionKind();
|
|
|
|
// Handle memory setting and copying functions.
|
|
switch (CMId) {
|
|
case 0:
|
|
return false;
|
|
case Builtin::BIstrlcpy: // fallthrough
|
|
case Builtin::BIstrlcat:
|
|
CheckStrlcpycatArguments(TheCall, FnInfo);
|
|
break;
|
|
case Builtin::BIstrncat:
|
|
CheckStrncatArguments(TheCall, FnInfo);
|
|
break;
|
|
case Builtin::BIfree:
|
|
CheckFreeArguments(TheCall);
|
|
break;
|
|
default:
|
|
CheckMemaccessArguments(TheCall, CMId, FnInfo);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
|
|
const FunctionProtoType *Proto) {
|
|
QualType Ty;
|
|
if (const auto *V = dyn_cast<VarDecl>(NDecl))
|
|
Ty = V->getType().getNonReferenceType();
|
|
else if (const auto *F = dyn_cast<FieldDecl>(NDecl))
|
|
Ty = F->getType().getNonReferenceType();
|
|
else
|
|
return false;
|
|
|
|
if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() &&
|
|
!Ty->isFunctionProtoType())
|
|
return false;
|
|
|
|
VariadicCallType CallType;
|
|
if (!Proto || !Proto->isVariadic()) {
|
|
CallType = VariadicDoesNotApply;
|
|
} else if (Ty->isBlockPointerType()) {
|
|
CallType = VariadicBlock;
|
|
} else { // Ty->isFunctionPointerType()
|
|
CallType = VariadicFunction;
|
|
}
|
|
|
|
checkCall(NDecl, Proto, /*ThisArg=*/nullptr,
|
|
llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
|
|
/*IsMemberFunction=*/false, TheCall->getRParenLoc(),
|
|
TheCall->getCallee()->getSourceRange(), CallType);
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
|
|
VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
|
|
TheCall->getCallee());
|
|
checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr,
|
|
llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
|
|
/*IsMemberFunction=*/false, TheCall->getRParenLoc(),
|
|
TheCall->getCallee()->getSourceRange(), CallType);
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
|
|
if (!llvm::isValidAtomicOrderingCABI(Ordering))
|
|
return false;
|
|
|
|
auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering;
|
|
switch (Op) {
|
|
case AtomicExpr::AO__c11_atomic_init:
|
|
case AtomicExpr::AO__opencl_atomic_init:
|
|
llvm_unreachable("There is no ordering argument for an init");
|
|
|
|
case AtomicExpr::AO__c11_atomic_load:
|
|
case AtomicExpr::AO__opencl_atomic_load:
|
|
case AtomicExpr::AO__hip_atomic_load:
|
|
case AtomicExpr::AO__atomic_load_n:
|
|
case AtomicExpr::AO__atomic_load:
|
|
case AtomicExpr::AO__scoped_atomic_load_n:
|
|
case AtomicExpr::AO__scoped_atomic_load:
|
|
return OrderingCABI != llvm::AtomicOrderingCABI::release &&
|
|
OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
|
|
|
|
case AtomicExpr::AO__c11_atomic_store:
|
|
case AtomicExpr::AO__opencl_atomic_store:
|
|
case AtomicExpr::AO__hip_atomic_store:
|
|
case AtomicExpr::AO__atomic_store:
|
|
case AtomicExpr::AO__atomic_store_n:
|
|
case AtomicExpr::AO__scoped_atomic_store:
|
|
case AtomicExpr::AO__scoped_atomic_store_n:
|
|
case AtomicExpr::AO__atomic_clear:
|
|
return OrderingCABI != llvm::AtomicOrderingCABI::consume &&
|
|
OrderingCABI != llvm::AtomicOrderingCABI::acquire &&
|
|
OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
|
|
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
ExprResult Sema::AtomicOpsOverloaded(ExprResult TheCallResult,
|
|
AtomicExpr::AtomicOp Op) {
|
|
CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
|
|
DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
|
|
MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()};
|
|
return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()},
|
|
DRE->getSourceRange(), TheCall->getRParenLoc(), Args,
|
|
Op);
|
|
}
|
|
|
|
ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
|
|
SourceLocation RParenLoc, MultiExprArg Args,
|
|
AtomicExpr::AtomicOp Op,
|
|
AtomicArgumentOrder ArgOrder) {
|
|
// All the non-OpenCL operations take one of the following forms.
|
|
// The OpenCL operations take the __c11 forms with one extra argument for
|
|
// synchronization scope.
|
|
enum {
|
|
// C __c11_atomic_init(A *, C)
|
|
Init,
|
|
|
|
// C __c11_atomic_load(A *, int)
|
|
Load,
|
|
|
|
// void __atomic_load(A *, CP, int)
|
|
LoadCopy,
|
|
|
|
// void __atomic_store(A *, CP, int)
|
|
Copy,
|
|
|
|
// C __c11_atomic_add(A *, M, int)
|
|
Arithmetic,
|
|
|
|
// C __atomic_exchange_n(A *, CP, int)
|
|
Xchg,
|
|
|
|
// void __atomic_exchange(A *, C *, CP, int)
|
|
GNUXchg,
|
|
|
|
// bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
|
|
C11CmpXchg,
|
|
|
|
// bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
|
|
GNUCmpXchg,
|
|
|
|
// bool __atomic_test_and_set(A *, int)
|
|
TestAndSetByte,
|
|
|
|
// void __atomic_clear(A *, int)
|
|
ClearByte,
|
|
} Form = Init;
|
|
|
|
const unsigned NumForm = ClearByte + 1;
|
|
const unsigned NumArgs[] = {2, 2, 3, 3, 3, 3, 4, 5, 6, 2, 2};
|
|
const unsigned NumVals[] = {1, 0, 1, 1, 1, 1, 2, 2, 3, 0, 0};
|
|
// where:
|
|
// C is an appropriate type,
|
|
// A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
|
|
// CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
|
|
// M is C if C is an integer, and ptrdiff_t if C is a pointer, and
|
|
// the int parameters are for orderings.
|
|
|
|
static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm
|
|
&& sizeof(NumVals)/sizeof(NumVals[0]) == NumForm,
|
|
"need to update code for modified forms");
|
|
static_assert(AtomicExpr::AO__atomic_add_fetch == 0 &&
|
|
AtomicExpr::AO__atomic_xor_fetch + 1 ==
|
|
AtomicExpr::AO__c11_atomic_compare_exchange_strong,
|
|
"need to update code for modified C11 atomics");
|
|
bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_compare_exchange_strong &&
|
|
Op <= AtomicExpr::AO__opencl_atomic_store;
|
|
bool IsHIP = Op >= AtomicExpr::AO__hip_atomic_compare_exchange_strong &&
|
|
Op <= AtomicExpr::AO__hip_atomic_store;
|
|
bool IsScoped = Op >= AtomicExpr::AO__scoped_atomic_add_fetch &&
|
|
Op <= AtomicExpr::AO__scoped_atomic_xor_fetch;
|
|
bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_compare_exchange_strong &&
|
|
Op <= AtomicExpr::AO__c11_atomic_store) ||
|
|
IsOpenCL;
|
|
bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
|
|
Op == AtomicExpr::AO__atomic_store_n ||
|
|
Op == AtomicExpr::AO__atomic_exchange_n ||
|
|
Op == AtomicExpr::AO__atomic_compare_exchange_n ||
|
|
Op == AtomicExpr::AO__scoped_atomic_load_n ||
|
|
Op == AtomicExpr::AO__scoped_atomic_store_n ||
|
|
Op == AtomicExpr::AO__scoped_atomic_exchange_n ||
|
|
Op == AtomicExpr::AO__scoped_atomic_compare_exchange_n;
|
|
// Bit mask for extra allowed value types other than integers for atomic
|
|
// arithmetic operations. Add/sub allow pointer and floating point. Min/max
|
|
// allow floating point.
|
|
enum ArithOpExtraValueType {
|
|
AOEVT_None = 0,
|
|
AOEVT_Pointer = 1,
|
|
AOEVT_FP = 2,
|
|
};
|
|
unsigned ArithAllows = AOEVT_None;
|
|
|
|
switch (Op) {
|
|
case AtomicExpr::AO__c11_atomic_init:
|
|
case AtomicExpr::AO__opencl_atomic_init:
|
|
Form = Init;
|
|
break;
|
|
|
|
case AtomicExpr::AO__c11_atomic_load:
|
|
case AtomicExpr::AO__opencl_atomic_load:
|
|
case AtomicExpr::AO__hip_atomic_load:
|
|
case AtomicExpr::AO__atomic_load_n:
|
|
case AtomicExpr::AO__scoped_atomic_load_n:
|
|
Form = Load;
|
|
break;
|
|
|
|
case AtomicExpr::AO__atomic_load:
|
|
case AtomicExpr::AO__scoped_atomic_load:
|
|
Form = LoadCopy;
|
|
break;
|
|
|
|
case AtomicExpr::AO__c11_atomic_store:
|
|
case AtomicExpr::AO__opencl_atomic_store:
|
|
case AtomicExpr::AO__hip_atomic_store:
|
|
case AtomicExpr::AO__atomic_store:
|
|
case AtomicExpr::AO__atomic_store_n:
|
|
case AtomicExpr::AO__scoped_atomic_store:
|
|
case AtomicExpr::AO__scoped_atomic_store_n:
|
|
Form = Copy;
|
|
break;
|
|
case AtomicExpr::AO__atomic_fetch_add:
|
|
case AtomicExpr::AO__atomic_fetch_sub:
|
|
case AtomicExpr::AO__atomic_add_fetch:
|
|
case AtomicExpr::AO__atomic_sub_fetch:
|
|
case AtomicExpr::AO__scoped_atomic_fetch_add:
|
|
case AtomicExpr::AO__scoped_atomic_fetch_sub:
|
|
case AtomicExpr::AO__scoped_atomic_add_fetch:
|
|
case AtomicExpr::AO__scoped_atomic_sub_fetch:
|
|
case AtomicExpr::AO__c11_atomic_fetch_add:
|
|
case AtomicExpr::AO__c11_atomic_fetch_sub:
|
|
case AtomicExpr::AO__opencl_atomic_fetch_add:
|
|
case AtomicExpr::AO__opencl_atomic_fetch_sub:
|
|
case AtomicExpr::AO__hip_atomic_fetch_add:
|
|
case AtomicExpr::AO__hip_atomic_fetch_sub:
|
|
ArithAllows = AOEVT_Pointer | AOEVT_FP;
|
|
Form = Arithmetic;
|
|
break;
|
|
case AtomicExpr::AO__atomic_fetch_max:
|
|
case AtomicExpr::AO__atomic_fetch_min:
|
|
case AtomicExpr::AO__atomic_max_fetch:
|
|
case AtomicExpr::AO__atomic_min_fetch:
|
|
case AtomicExpr::AO__scoped_atomic_fetch_max:
|
|
case AtomicExpr::AO__scoped_atomic_fetch_min:
|
|
case AtomicExpr::AO__scoped_atomic_max_fetch:
|
|
case AtomicExpr::AO__scoped_atomic_min_fetch:
|
|
case AtomicExpr::AO__c11_atomic_fetch_max:
|
|
case AtomicExpr::AO__c11_atomic_fetch_min:
|
|
case AtomicExpr::AO__opencl_atomic_fetch_max:
|
|
case AtomicExpr::AO__opencl_atomic_fetch_min:
|
|
case AtomicExpr::AO__hip_atomic_fetch_max:
|
|
case AtomicExpr::AO__hip_atomic_fetch_min:
|
|
ArithAllows = AOEVT_FP;
|
|
Form = Arithmetic;
|
|
break;
|
|
case AtomicExpr::AO__c11_atomic_fetch_and:
|
|
case AtomicExpr::AO__c11_atomic_fetch_or:
|
|
case AtomicExpr::AO__c11_atomic_fetch_xor:
|
|
case AtomicExpr::AO__hip_atomic_fetch_and:
|
|
case AtomicExpr::AO__hip_atomic_fetch_or:
|
|
case AtomicExpr::AO__hip_atomic_fetch_xor:
|
|
case AtomicExpr::AO__c11_atomic_fetch_nand:
|
|
case AtomicExpr::AO__opencl_atomic_fetch_and:
|
|
case AtomicExpr::AO__opencl_atomic_fetch_or:
|
|
case AtomicExpr::AO__opencl_atomic_fetch_xor:
|
|
case AtomicExpr::AO__atomic_fetch_and:
|
|
case AtomicExpr::AO__atomic_fetch_or:
|
|
case AtomicExpr::AO__atomic_fetch_xor:
|
|
case AtomicExpr::AO__atomic_fetch_nand:
|
|
case AtomicExpr::AO__atomic_and_fetch:
|
|
case AtomicExpr::AO__atomic_or_fetch:
|
|
case AtomicExpr::AO__atomic_xor_fetch:
|
|
case AtomicExpr::AO__atomic_nand_fetch:
|
|
case AtomicExpr::AO__scoped_atomic_fetch_and:
|
|
case AtomicExpr::AO__scoped_atomic_fetch_or:
|
|
case AtomicExpr::AO__scoped_atomic_fetch_xor:
|
|
case AtomicExpr::AO__scoped_atomic_fetch_nand:
|
|
case AtomicExpr::AO__scoped_atomic_and_fetch:
|
|
case AtomicExpr::AO__scoped_atomic_or_fetch:
|
|
case AtomicExpr::AO__scoped_atomic_xor_fetch:
|
|
case AtomicExpr::AO__scoped_atomic_nand_fetch:
|
|
Form = Arithmetic;
|
|
break;
|
|
|
|
case AtomicExpr::AO__c11_atomic_exchange:
|
|
case AtomicExpr::AO__hip_atomic_exchange:
|
|
case AtomicExpr::AO__opencl_atomic_exchange:
|
|
case AtomicExpr::AO__atomic_exchange_n:
|
|
case AtomicExpr::AO__scoped_atomic_exchange_n:
|
|
Form = Xchg;
|
|
break;
|
|
|
|
case AtomicExpr::AO__atomic_exchange:
|
|
case AtomicExpr::AO__scoped_atomic_exchange:
|
|
Form = GNUXchg;
|
|
break;
|
|
|
|
case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
|
|
case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
|
|
case AtomicExpr::AO__hip_atomic_compare_exchange_strong:
|
|
case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
|
|
case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
|
|
case AtomicExpr::AO__hip_atomic_compare_exchange_weak:
|
|
Form = C11CmpXchg;
|
|
break;
|
|
|
|
case AtomicExpr::AO__atomic_compare_exchange:
|
|
case AtomicExpr::AO__atomic_compare_exchange_n:
|
|
case AtomicExpr::AO__scoped_atomic_compare_exchange:
|
|
case AtomicExpr::AO__scoped_atomic_compare_exchange_n:
|
|
Form = GNUCmpXchg;
|
|
break;
|
|
|
|
case AtomicExpr::AO__atomic_test_and_set:
|
|
Form = TestAndSetByte;
|
|
break;
|
|
|
|
case AtomicExpr::AO__atomic_clear:
|
|
Form = ClearByte;
|
|
break;
|
|
}
|
|
|
|
unsigned AdjustedNumArgs = NumArgs[Form];
|
|
if ((IsOpenCL || IsHIP || IsScoped) &&
|
|
Op != AtomicExpr::AO__opencl_atomic_init)
|
|
++AdjustedNumArgs;
|
|
// Check we have the right number of arguments.
|
|
if (Args.size() < AdjustedNumArgs) {
|
|
Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args)
|
|
<< 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
|
|
<< /*is non object*/ 0 << ExprRange;
|
|
return ExprError();
|
|
} else if (Args.size() > AdjustedNumArgs) {
|
|
Diag(Args[AdjustedNumArgs]->getBeginLoc(),
|
|
diag::err_typecheck_call_too_many_args)
|
|
<< 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
|
|
<< /*is non object*/ 0 << ExprRange;
|
|
return ExprError();
|
|
}
|
|
|
|
// Inspect the first argument of the atomic operation.
|
|
Expr *Ptr = Args[0];
|
|
ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr);
|
|
if (ConvertedPtr.isInvalid())
|
|
return ExprError();
|
|
|
|
Ptr = ConvertedPtr.get();
|
|
const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
|
|
if (!pointerType) {
|
|
Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer)
|
|
<< Ptr->getType() << 0 << Ptr->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
// For a __c11 builtin, this should be a pointer to an _Atomic type.
|
|
QualType AtomTy = pointerType->getPointeeType(); // 'A'
|
|
QualType ValType = AtomTy; // 'C'
|
|
if (IsC11) {
|
|
if (!AtomTy->isAtomicType()) {
|
|
Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic)
|
|
<< Ptr->getType() << Ptr->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) ||
|
|
AtomTy.getAddressSpace() == LangAS::opencl_constant) {
|
|
Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic)
|
|
<< (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType()
|
|
<< Ptr->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
ValType = AtomTy->castAs<AtomicType>()->getValueType();
|
|
} else if (Form != Load && Form != LoadCopy) {
|
|
if (ValType.isConstQualified()) {
|
|
Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer)
|
|
<< Ptr->getType() << Ptr->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
}
|
|
|
|
if (Form != TestAndSetByte && Form != ClearByte) {
|
|
// Pointer to object of size zero is not allowed.
|
|
if (RequireCompleteType(Ptr->getBeginLoc(), AtomTy,
|
|
diag::err_incomplete_type))
|
|
return ExprError();
|
|
|
|
if (Context.getTypeInfoInChars(AtomTy).Width.isZero()) {
|
|
Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer)
|
|
<< Ptr->getType() << 1 << Ptr->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
} else {
|
|
// The __atomic_clear and __atomic_test_and_set intrinsics accept any
|
|
// non-const pointer type, including void* and pointers to incomplete
|
|
// structs, but only access the first byte.
|
|
AtomTy = Context.CharTy;
|
|
AtomTy = AtomTy.withCVRQualifiers(
|
|
pointerType->getPointeeType().getCVRQualifiers());
|
|
QualType PointerQT = Context.getPointerType(AtomTy);
|
|
pointerType = PointerQT->getAs<PointerType>();
|
|
Ptr = ImpCastExprToType(Ptr, PointerQT, CK_BitCast).get();
|
|
ValType = AtomTy;
|
|
}
|
|
|
|
// For an arithmetic operation, the implied arithmetic must be well-formed.
|
|
if (Form == Arithmetic) {
|
|
// GCC does not enforce these rules for GNU atomics, but we do to help catch
|
|
// trivial type errors.
|
|
auto IsAllowedValueType = [&](QualType ValType,
|
|
unsigned AllowedType) -> bool {
|
|
if (ValType->isIntegerType())
|
|
return true;
|
|
if (ValType->isPointerType())
|
|
return AllowedType & AOEVT_Pointer;
|
|
if (!(ValType->isFloatingType() && (AllowedType & AOEVT_FP)))
|
|
return false;
|
|
// LLVM Parser does not allow atomicrmw with x86_fp80 type.
|
|
if (ValType->isSpecificBuiltinType(BuiltinType::LongDouble) &&
|
|
&Context.getTargetInfo().getLongDoubleFormat() ==
|
|
&llvm::APFloat::x87DoubleExtended())
|
|
return false;
|
|
return true;
|
|
};
|
|
if (!IsAllowedValueType(ValType, ArithAllows)) {
|
|
auto DID = ArithAllows & AOEVT_FP
|
|
? (ArithAllows & AOEVT_Pointer
|
|
? diag::err_atomic_op_needs_atomic_int_ptr_or_fp
|
|
: diag::err_atomic_op_needs_atomic_int_or_fp)
|
|
: diag::err_atomic_op_needs_atomic_int;
|
|
Diag(ExprRange.getBegin(), DID)
|
|
<< IsC11 << Ptr->getType() << Ptr->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
if (IsC11 && ValType->isPointerType() &&
|
|
RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(),
|
|
diag::err_incomplete_type)) {
|
|
return ExprError();
|
|
}
|
|
} else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
|
|
// For __atomic_*_n operations, the value type must be a scalar integral or
|
|
// pointer type which is 1, 2, 4, 8 or 16 bytes in length.
|
|
Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr)
|
|
<< IsC11 << Ptr->getType() << Ptr->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
|
|
!AtomTy->isScalarType()) {
|
|
// For GNU atomics, require a trivially-copyable type. This is not part of
|
|
// the GNU atomics specification but we enforce it for consistency with
|
|
// other atomics which generally all require a trivially-copyable type. This
|
|
// is because atomics just copy bits.
|
|
Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy)
|
|
<< Ptr->getType() << Ptr->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
switch (ValType.getObjCLifetime()) {
|
|
case Qualifiers::OCL_None:
|
|
case Qualifiers::OCL_ExplicitNone:
|
|
// okay
|
|
break;
|
|
|
|
case Qualifiers::OCL_Weak:
|
|
case Qualifiers::OCL_Strong:
|
|
case Qualifiers::OCL_Autoreleasing:
|
|
// FIXME: Can this happen? By this point, ValType should be known
|
|
// to be trivially copyable.
|
|
Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership)
|
|
<< ValType << Ptr->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
// All atomic operations have an overload which takes a pointer to a volatile
|
|
// 'A'. We shouldn't let the volatile-ness of the pointee-type inject itself
|
|
// into the result or the other operands. Similarly atomic_load takes a
|
|
// pointer to a const 'A'.
|
|
ValType.removeLocalVolatile();
|
|
ValType.removeLocalConst();
|
|
QualType ResultType = ValType;
|
|
if (Form == Copy || Form == LoadCopy || Form == GNUXchg || Form == Init ||
|
|
Form == ClearByte)
|
|
ResultType = Context.VoidTy;
|
|
else if (Form == C11CmpXchg || Form == GNUCmpXchg || Form == TestAndSetByte)
|
|
ResultType = Context.BoolTy;
|
|
|
|
// The type of a parameter passed 'by value'. In the GNU atomics, such
|
|
// arguments are actually passed as pointers.
|
|
QualType ByValType = ValType; // 'CP'
|
|
bool IsPassedByAddress = false;
|
|
if (!IsC11 && !IsHIP && !IsN) {
|
|
ByValType = Ptr->getType();
|
|
IsPassedByAddress = true;
|
|
}
|
|
|
|
SmallVector<Expr *, 5> APIOrderedArgs;
|
|
if (ArgOrder == Sema::AtomicArgumentOrder::AST) {
|
|
APIOrderedArgs.push_back(Args[0]);
|
|
switch (Form) {
|
|
case Init:
|
|
case Load:
|
|
APIOrderedArgs.push_back(Args[1]); // Val1/Order
|
|
break;
|
|
case LoadCopy:
|
|
case Copy:
|
|
case Arithmetic:
|
|
case Xchg:
|
|
APIOrderedArgs.push_back(Args[2]); // Val1
|
|
APIOrderedArgs.push_back(Args[1]); // Order
|
|
break;
|
|
case GNUXchg:
|
|
APIOrderedArgs.push_back(Args[2]); // Val1
|
|
APIOrderedArgs.push_back(Args[3]); // Val2
|
|
APIOrderedArgs.push_back(Args[1]); // Order
|
|
break;
|
|
case C11CmpXchg:
|
|
APIOrderedArgs.push_back(Args[2]); // Val1
|
|
APIOrderedArgs.push_back(Args[4]); // Val2
|
|
APIOrderedArgs.push_back(Args[1]); // Order
|
|
APIOrderedArgs.push_back(Args[3]); // OrderFail
|
|
break;
|
|
case GNUCmpXchg:
|
|
APIOrderedArgs.push_back(Args[2]); // Val1
|
|
APIOrderedArgs.push_back(Args[4]); // Val2
|
|
APIOrderedArgs.push_back(Args[5]); // Weak
|
|
APIOrderedArgs.push_back(Args[1]); // Order
|
|
APIOrderedArgs.push_back(Args[3]); // OrderFail
|
|
break;
|
|
case TestAndSetByte:
|
|
case ClearByte:
|
|
APIOrderedArgs.push_back(Args[1]); // Order
|
|
break;
|
|
}
|
|
} else
|
|
APIOrderedArgs.append(Args.begin(), Args.end());
|
|
|
|
// The first argument's non-CV pointer type is used to deduce the type of
|
|
// subsequent arguments, except for:
|
|
// - weak flag (always converted to bool)
|
|
// - memory order (always converted to int)
|
|
// - scope (always converted to int)
|
|
for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) {
|
|
QualType Ty;
|
|
if (i < NumVals[Form] + 1) {
|
|
switch (i) {
|
|
case 0:
|
|
// The first argument is always a pointer. It has a fixed type.
|
|
// It is always dereferenced, a nullptr is undefined.
|
|
CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
|
|
// Nothing else to do: we already know all we want about this pointer.
|
|
continue;
|
|
case 1:
|
|
// The second argument is the non-atomic operand. For arithmetic, this
|
|
// is always passed by value, and for a compare_exchange it is always
|
|
// passed by address. For the rest, GNU uses by-address and C11 uses
|
|
// by-value.
|
|
assert(Form != Load);
|
|
if (Form == Arithmetic && ValType->isPointerType())
|
|
Ty = Context.getPointerDiffType();
|
|
else if (Form == Init || Form == Arithmetic)
|
|
Ty = ValType;
|
|
else if (Form == Copy || Form == Xchg) {
|
|
if (IsPassedByAddress) {
|
|
// The value pointer is always dereferenced, a nullptr is undefined.
|
|
CheckNonNullArgument(*this, APIOrderedArgs[i],
|
|
ExprRange.getBegin());
|
|
}
|
|
Ty = ByValType;
|
|
} else {
|
|
Expr *ValArg = APIOrderedArgs[i];
|
|
// The value pointer is always dereferenced, a nullptr is undefined.
|
|
CheckNonNullArgument(*this, ValArg, ExprRange.getBegin());
|
|
LangAS AS = LangAS::Default;
|
|
// Keep address space of non-atomic pointer type.
|
|
if (const PointerType *PtrTy =
|
|
ValArg->getType()->getAs<PointerType>()) {
|
|
AS = PtrTy->getPointeeType().getAddressSpace();
|
|
}
|
|
Ty = Context.getPointerType(
|
|
Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS));
|
|
}
|
|
break;
|
|
case 2:
|
|
// The third argument to compare_exchange / GNU exchange is the desired
|
|
// value, either by-value (for the C11 and *_n variant) or as a pointer.
|
|
if (IsPassedByAddress)
|
|
CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
|
|
Ty = ByValType;
|
|
break;
|
|
case 3:
|
|
// The fourth argument to GNU compare_exchange is a 'weak' flag.
|
|
Ty = Context.BoolTy;
|
|
break;
|
|
}
|
|
} else {
|
|
// The order(s) and scope are always converted to int.
|
|
Ty = Context.IntTy;
|
|
}
|
|
|
|
InitializedEntity Entity =
|
|
InitializedEntity::InitializeParameter(Context, Ty, false);
|
|
ExprResult Arg = APIOrderedArgs[i];
|
|
Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
|
|
if (Arg.isInvalid())
|
|
return true;
|
|
APIOrderedArgs[i] = Arg.get();
|
|
}
|
|
|
|
// Permute the arguments into a 'consistent' order.
|
|
SmallVector<Expr*, 5> SubExprs;
|
|
SubExprs.push_back(Ptr);
|
|
switch (Form) {
|
|
case Init:
|
|
// Note, AtomicExpr::getVal1() has a special case for this atomic.
|
|
SubExprs.push_back(APIOrderedArgs[1]); // Val1
|
|
break;
|
|
case Load:
|
|
case TestAndSetByte:
|
|
case ClearByte:
|
|
SubExprs.push_back(APIOrderedArgs[1]); // Order
|
|
break;
|
|
case LoadCopy:
|
|
case Copy:
|
|
case Arithmetic:
|
|
case Xchg:
|
|
SubExprs.push_back(APIOrderedArgs[2]); // Order
|
|
SubExprs.push_back(APIOrderedArgs[1]); // Val1
|
|
break;
|
|
case GNUXchg:
|
|
// Note, AtomicExpr::getVal2() has a special case for this atomic.
|
|
SubExprs.push_back(APIOrderedArgs[3]); // Order
|
|
SubExprs.push_back(APIOrderedArgs[1]); // Val1
|
|
SubExprs.push_back(APIOrderedArgs[2]); // Val2
|
|
break;
|
|
case C11CmpXchg:
|
|
SubExprs.push_back(APIOrderedArgs[3]); // Order
|
|
SubExprs.push_back(APIOrderedArgs[1]); // Val1
|
|
SubExprs.push_back(APIOrderedArgs[4]); // OrderFail
|
|
SubExprs.push_back(APIOrderedArgs[2]); // Val2
|
|
break;
|
|
case GNUCmpXchg:
|
|
SubExprs.push_back(APIOrderedArgs[4]); // Order
|
|
SubExprs.push_back(APIOrderedArgs[1]); // Val1
|
|
SubExprs.push_back(APIOrderedArgs[5]); // OrderFail
|
|
SubExprs.push_back(APIOrderedArgs[2]); // Val2
|
|
SubExprs.push_back(APIOrderedArgs[3]); // Weak
|
|
break;
|
|
}
|
|
|
|
// If the memory orders are constants, check they are valid.
|
|
if (SubExprs.size() >= 2 && Form != Init) {
|
|
std::optional<llvm::APSInt> Success =
|
|
SubExprs[1]->getIntegerConstantExpr(Context);
|
|
if (Success && !isValidOrderingForOp(Success->getSExtValue(), Op)) {
|
|
Diag(SubExprs[1]->getBeginLoc(),
|
|
diag::warn_atomic_op_has_invalid_memory_order)
|
|
<< /*success=*/(Form == C11CmpXchg || Form == GNUCmpXchg)
|
|
<< SubExprs[1]->getSourceRange();
|
|
}
|
|
if (SubExprs.size() >= 5) {
|
|
if (std::optional<llvm::APSInt> Failure =
|
|
SubExprs[3]->getIntegerConstantExpr(Context)) {
|
|
if (!llvm::is_contained(
|
|
{llvm::AtomicOrderingCABI::relaxed,
|
|
llvm::AtomicOrderingCABI::consume,
|
|
llvm::AtomicOrderingCABI::acquire,
|
|
llvm::AtomicOrderingCABI::seq_cst},
|
|
(llvm::AtomicOrderingCABI)Failure->getSExtValue())) {
|
|
Diag(SubExprs[3]->getBeginLoc(),
|
|
diag::warn_atomic_op_has_invalid_memory_order)
|
|
<< /*failure=*/2 << SubExprs[3]->getSourceRange();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) {
|
|
auto *Scope = Args[Args.size() - 1];
|
|
if (std::optional<llvm::APSInt> Result =
|
|
Scope->getIntegerConstantExpr(Context)) {
|
|
if (!ScopeModel->isValid(Result->getZExtValue()))
|
|
Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_sync_scope)
|
|
<< Scope->getSourceRange();
|
|
}
|
|
SubExprs.push_back(Scope);
|
|
}
|
|
|
|
AtomicExpr *AE = new (Context)
|
|
AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc);
|
|
|
|
if ((Op == AtomicExpr::AO__c11_atomic_load ||
|
|
Op == AtomicExpr::AO__c11_atomic_store ||
|
|
Op == AtomicExpr::AO__opencl_atomic_load ||
|
|
Op == AtomicExpr::AO__hip_atomic_load ||
|
|
Op == AtomicExpr::AO__opencl_atomic_store ||
|
|
Op == AtomicExpr::AO__hip_atomic_store) &&
|
|
Context.AtomicUsesUnsupportedLibcall(AE))
|
|
Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib)
|
|
<< ((Op == AtomicExpr::AO__c11_atomic_load ||
|
|
Op == AtomicExpr::AO__opencl_atomic_load ||
|
|
Op == AtomicExpr::AO__hip_atomic_load)
|
|
? 0
|
|
: 1);
|
|
|
|
if (ValType->isBitIntType()) {
|
|
Diag(Ptr->getExprLoc(), diag::err_atomic_builtin_bit_int_prohibit);
|
|
return ExprError();
|
|
}
|
|
|
|
return AE;
|
|
}
|
|
|
|
/// checkBuiltinArgument - Given a call to a builtin function, perform
|
|
/// normal type-checking on the given argument, updating the call in
|
|
/// place. This is useful when a builtin function requires custom
|
|
/// type-checking for some of its arguments but not necessarily all of
|
|
/// them.
|
|
///
|
|
/// Returns true on error.
|
|
static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
|
|
FunctionDecl *Fn = E->getDirectCallee();
|
|
assert(Fn && "builtin call without direct callee!");
|
|
|
|
ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
|
|
InitializedEntity Entity =
|
|
InitializedEntity::InitializeParameter(S.Context, Param);
|
|
|
|
ExprResult Arg = E->getArg(ArgIndex);
|
|
Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
|
|
if (Arg.isInvalid())
|
|
return true;
|
|
|
|
E->setArg(ArgIndex, Arg.get());
|
|
return false;
|
|
}
|
|
|
|
ExprResult Sema::BuiltinAtomicOverloaded(ExprResult TheCallResult) {
|
|
CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get());
|
|
Expr *Callee = TheCall->getCallee();
|
|
DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts());
|
|
FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
|
|
|
|
// Ensure that we have at least one argument to do type inference from.
|
|
if (TheCall->getNumArgs() < 1) {
|
|
Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
|
|
<< 0 << 1 << TheCall->getNumArgs() << /*is non object*/ 0
|
|
<< Callee->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
// Inspect the first argument of the atomic builtin. This should always be
|
|
// a pointer type, whose element is an integral scalar or pointer type.
|
|
// Because it is a pointer type, we don't have to worry about any implicit
|
|
// casts here.
|
|
// FIXME: We don't allow floating point scalars as input.
|
|
Expr *FirstArg = TheCall->getArg(0);
|
|
ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
|
|
if (FirstArgResult.isInvalid())
|
|
return ExprError();
|
|
FirstArg = FirstArgResult.get();
|
|
TheCall->setArg(0, FirstArg);
|
|
|
|
const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
|
|
if (!pointerType) {
|
|
Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
|
|
<< FirstArg->getType() << 0 << FirstArg->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
QualType ValType = pointerType->getPointeeType();
|
|
if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
|
|
!ValType->isBlockPointerType()) {
|
|
Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr)
|
|
<< FirstArg->getType() << 0 << FirstArg->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
if (ValType.isConstQualified()) {
|
|
Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const)
|
|
<< FirstArg->getType() << FirstArg->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
switch (ValType.getObjCLifetime()) {
|
|
case Qualifiers::OCL_None:
|
|
case Qualifiers::OCL_ExplicitNone:
|
|
// okay
|
|
break;
|
|
|
|
case Qualifiers::OCL_Weak:
|
|
case Qualifiers::OCL_Strong:
|
|
case Qualifiers::OCL_Autoreleasing:
|
|
Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
|
|
<< ValType << FirstArg->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
// Strip any qualifiers off ValType.
|
|
ValType = ValType.getUnqualifiedType();
|
|
|
|
// The majority of builtins return a value, but a few have special return
|
|
// types, so allow them to override appropriately below.
|
|
QualType ResultType = ValType;
|
|
|
|
// We need to figure out which concrete builtin this maps onto. For example,
|
|
// __sync_fetch_and_add with a 2 byte object turns into
|
|
// __sync_fetch_and_add_2.
|
|
#define BUILTIN_ROW(x) \
|
|
{ Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
|
|
Builtin::BI##x##_8, Builtin::BI##x##_16 }
|
|
|
|
static const unsigned BuiltinIndices[][5] = {
|
|
BUILTIN_ROW(__sync_fetch_and_add),
|
|
BUILTIN_ROW(__sync_fetch_and_sub),
|
|
BUILTIN_ROW(__sync_fetch_and_or),
|
|
BUILTIN_ROW(__sync_fetch_and_and),
|
|
BUILTIN_ROW(__sync_fetch_and_xor),
|
|
BUILTIN_ROW(__sync_fetch_and_nand),
|
|
|
|
BUILTIN_ROW(__sync_add_and_fetch),
|
|
BUILTIN_ROW(__sync_sub_and_fetch),
|
|
BUILTIN_ROW(__sync_and_and_fetch),
|
|
BUILTIN_ROW(__sync_or_and_fetch),
|
|
BUILTIN_ROW(__sync_xor_and_fetch),
|
|
BUILTIN_ROW(__sync_nand_and_fetch),
|
|
|
|
BUILTIN_ROW(__sync_val_compare_and_swap),
|
|
BUILTIN_ROW(__sync_bool_compare_and_swap),
|
|
BUILTIN_ROW(__sync_lock_test_and_set),
|
|
BUILTIN_ROW(__sync_lock_release),
|
|
BUILTIN_ROW(__sync_swap)
|
|
};
|
|
#undef BUILTIN_ROW
|
|
|
|
// Determine the index of the size.
|
|
unsigned SizeIndex;
|
|
switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
|
|
case 1: SizeIndex = 0; break;
|
|
case 2: SizeIndex = 1; break;
|
|
case 4: SizeIndex = 2; break;
|
|
case 8: SizeIndex = 3; break;
|
|
case 16: SizeIndex = 4; break;
|
|
default:
|
|
Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size)
|
|
<< FirstArg->getType() << FirstArg->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
// Each of these builtins has one pointer argument, followed by some number of
|
|
// values (0, 1 or 2) followed by a potentially empty varags list of stuff
|
|
// that we ignore. Find out which row of BuiltinIndices to read from as well
|
|
// as the number of fixed args.
|
|
unsigned BuiltinID = FDecl->getBuiltinID();
|
|
unsigned BuiltinIndex, NumFixed = 1;
|
|
bool WarnAboutSemanticsChange = false;
|
|
switch (BuiltinID) {
|
|
default: llvm_unreachable("Unknown overloaded atomic builtin!");
|
|
case Builtin::BI__sync_fetch_and_add:
|
|
case Builtin::BI__sync_fetch_and_add_1:
|
|
case Builtin::BI__sync_fetch_and_add_2:
|
|
case Builtin::BI__sync_fetch_and_add_4:
|
|
case Builtin::BI__sync_fetch_and_add_8:
|
|
case Builtin::BI__sync_fetch_and_add_16:
|
|
BuiltinIndex = 0;
|
|
break;
|
|
|
|
case Builtin::BI__sync_fetch_and_sub:
|
|
case Builtin::BI__sync_fetch_and_sub_1:
|
|
case Builtin::BI__sync_fetch_and_sub_2:
|
|
case Builtin::BI__sync_fetch_and_sub_4:
|
|
case Builtin::BI__sync_fetch_and_sub_8:
|
|
case Builtin::BI__sync_fetch_and_sub_16:
|
|
BuiltinIndex = 1;
|
|
break;
|
|
|
|
case Builtin::BI__sync_fetch_and_or:
|
|
case Builtin::BI__sync_fetch_and_or_1:
|
|
case Builtin::BI__sync_fetch_and_or_2:
|
|
case Builtin::BI__sync_fetch_and_or_4:
|
|
case Builtin::BI__sync_fetch_and_or_8:
|
|
case Builtin::BI__sync_fetch_and_or_16:
|
|
BuiltinIndex = 2;
|
|
break;
|
|
|
|
case Builtin::BI__sync_fetch_and_and:
|
|
case Builtin::BI__sync_fetch_and_and_1:
|
|
case Builtin::BI__sync_fetch_and_and_2:
|
|
case Builtin::BI__sync_fetch_and_and_4:
|
|
case Builtin::BI__sync_fetch_and_and_8:
|
|
case Builtin::BI__sync_fetch_and_and_16:
|
|
BuiltinIndex = 3;
|
|
break;
|
|
|
|
case Builtin::BI__sync_fetch_and_xor:
|
|
case Builtin::BI__sync_fetch_and_xor_1:
|
|
case Builtin::BI__sync_fetch_and_xor_2:
|
|
case Builtin::BI__sync_fetch_and_xor_4:
|
|
case Builtin::BI__sync_fetch_and_xor_8:
|
|
case Builtin::BI__sync_fetch_and_xor_16:
|
|
BuiltinIndex = 4;
|
|
break;
|
|
|
|
case Builtin::BI__sync_fetch_and_nand:
|
|
case Builtin::BI__sync_fetch_and_nand_1:
|
|
case Builtin::BI__sync_fetch_and_nand_2:
|
|
case Builtin::BI__sync_fetch_and_nand_4:
|
|
case Builtin::BI__sync_fetch_and_nand_8:
|
|
case Builtin::BI__sync_fetch_and_nand_16:
|
|
BuiltinIndex = 5;
|
|
WarnAboutSemanticsChange = true;
|
|
break;
|
|
|
|
case Builtin::BI__sync_add_and_fetch:
|
|
case Builtin::BI__sync_add_and_fetch_1:
|
|
case Builtin::BI__sync_add_and_fetch_2:
|
|
case Builtin::BI__sync_add_and_fetch_4:
|
|
case Builtin::BI__sync_add_and_fetch_8:
|
|
case Builtin::BI__sync_add_and_fetch_16:
|
|
BuiltinIndex = 6;
|
|
break;
|
|
|
|
case Builtin::BI__sync_sub_and_fetch:
|
|
case Builtin::BI__sync_sub_and_fetch_1:
|
|
case Builtin::BI__sync_sub_and_fetch_2:
|
|
case Builtin::BI__sync_sub_and_fetch_4:
|
|
case Builtin::BI__sync_sub_and_fetch_8:
|
|
case Builtin::BI__sync_sub_and_fetch_16:
|
|
BuiltinIndex = 7;
|
|
break;
|
|
|
|
case Builtin::BI__sync_and_and_fetch:
|
|
case Builtin::BI__sync_and_and_fetch_1:
|
|
case Builtin::BI__sync_and_and_fetch_2:
|
|
case Builtin::BI__sync_and_and_fetch_4:
|
|
case Builtin::BI__sync_and_and_fetch_8:
|
|
case Builtin::BI__sync_and_and_fetch_16:
|
|
BuiltinIndex = 8;
|
|
break;
|
|
|
|
case Builtin::BI__sync_or_and_fetch:
|
|
case Builtin::BI__sync_or_and_fetch_1:
|
|
case Builtin::BI__sync_or_and_fetch_2:
|
|
case Builtin::BI__sync_or_and_fetch_4:
|
|
case Builtin::BI__sync_or_and_fetch_8:
|
|
case Builtin::BI__sync_or_and_fetch_16:
|
|
BuiltinIndex = 9;
|
|
break;
|
|
|
|
case Builtin::BI__sync_xor_and_fetch:
|
|
case Builtin::BI__sync_xor_and_fetch_1:
|
|
case Builtin::BI__sync_xor_and_fetch_2:
|
|
case Builtin::BI__sync_xor_and_fetch_4:
|
|
case Builtin::BI__sync_xor_and_fetch_8:
|
|
case Builtin::BI__sync_xor_and_fetch_16:
|
|
BuiltinIndex = 10;
|
|
break;
|
|
|
|
case Builtin::BI__sync_nand_and_fetch:
|
|
case Builtin::BI__sync_nand_and_fetch_1:
|
|
case Builtin::BI__sync_nand_and_fetch_2:
|
|
case Builtin::BI__sync_nand_and_fetch_4:
|
|
case Builtin::BI__sync_nand_and_fetch_8:
|
|
case Builtin::BI__sync_nand_and_fetch_16:
|
|
BuiltinIndex = 11;
|
|
WarnAboutSemanticsChange = true;
|
|
break;
|
|
|
|
case Builtin::BI__sync_val_compare_and_swap:
|
|
case Builtin::BI__sync_val_compare_and_swap_1:
|
|
case Builtin::BI__sync_val_compare_and_swap_2:
|
|
case Builtin::BI__sync_val_compare_and_swap_4:
|
|
case Builtin::BI__sync_val_compare_and_swap_8:
|
|
case Builtin::BI__sync_val_compare_and_swap_16:
|
|
BuiltinIndex = 12;
|
|
NumFixed = 2;
|
|
break;
|
|
|
|
case Builtin::BI__sync_bool_compare_and_swap:
|
|
case Builtin::BI__sync_bool_compare_and_swap_1:
|
|
case Builtin::BI__sync_bool_compare_and_swap_2:
|
|
case Builtin::BI__sync_bool_compare_and_swap_4:
|
|
case Builtin::BI__sync_bool_compare_and_swap_8:
|
|
case Builtin::BI__sync_bool_compare_and_swap_16:
|
|
BuiltinIndex = 13;
|
|
NumFixed = 2;
|
|
ResultType = Context.BoolTy;
|
|
break;
|
|
|
|
case Builtin::BI__sync_lock_test_and_set:
|
|
case Builtin::BI__sync_lock_test_and_set_1:
|
|
case Builtin::BI__sync_lock_test_and_set_2:
|
|
case Builtin::BI__sync_lock_test_and_set_4:
|
|
case Builtin::BI__sync_lock_test_and_set_8:
|
|
case Builtin::BI__sync_lock_test_and_set_16:
|
|
BuiltinIndex = 14;
|
|
break;
|
|
|
|
case Builtin::BI__sync_lock_release:
|
|
case Builtin::BI__sync_lock_release_1:
|
|
case Builtin::BI__sync_lock_release_2:
|
|
case Builtin::BI__sync_lock_release_4:
|
|
case Builtin::BI__sync_lock_release_8:
|
|
case Builtin::BI__sync_lock_release_16:
|
|
BuiltinIndex = 15;
|
|
NumFixed = 0;
|
|
ResultType = Context.VoidTy;
|
|
break;
|
|
|
|
case Builtin::BI__sync_swap:
|
|
case Builtin::BI__sync_swap_1:
|
|
case Builtin::BI__sync_swap_2:
|
|
case Builtin::BI__sync_swap_4:
|
|
case Builtin::BI__sync_swap_8:
|
|
case Builtin::BI__sync_swap_16:
|
|
BuiltinIndex = 16;
|
|
break;
|
|
}
|
|
|
|
// Now that we know how many fixed arguments we expect, first check that we
|
|
// have at least that many.
|
|
if (TheCall->getNumArgs() < 1+NumFixed) {
|
|
Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
|
|
<< 0 << 1 + NumFixed << TheCall->getNumArgs() << /*is non object*/ 0
|
|
<< Callee->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst)
|
|
<< Callee->getSourceRange();
|
|
|
|
if (WarnAboutSemanticsChange) {
|
|
Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change)
|
|
<< Callee->getSourceRange();
|
|
}
|
|
|
|
// Get the decl for the concrete builtin from this, we can tell what the
|
|
// concrete integer type we should convert to is.
|
|
unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
|
|
std::string NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID);
|
|
FunctionDecl *NewBuiltinDecl;
|
|
if (NewBuiltinID == BuiltinID)
|
|
NewBuiltinDecl = FDecl;
|
|
else {
|
|
// Perform builtin lookup to avoid redeclaring it.
|
|
DeclarationName DN(&Context.Idents.get(NewBuiltinName));
|
|
LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName);
|
|
LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
|
|
assert(Res.getFoundDecl());
|
|
NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
|
|
if (!NewBuiltinDecl)
|
|
return ExprError();
|
|
}
|
|
|
|
// The first argument --- the pointer --- has a fixed type; we
|
|
// deduce the types of the rest of the arguments accordingly. Walk
|
|
// the remaining arguments, converting them to the deduced value type.
|
|
for (unsigned i = 0; i != NumFixed; ++i) {
|
|
ExprResult Arg = TheCall->getArg(i+1);
|
|
|
|
// GCC does an implicit conversion to the pointer or integer ValType. This
|
|
// can fail in some cases (1i -> int**), check for this error case now.
|
|
// Initialize the argument.
|
|
InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
|
|
ValType, /*consume*/ false);
|
|
Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
|
|
if (Arg.isInvalid())
|
|
return ExprError();
|
|
|
|
// Okay, we have something that *can* be converted to the right type. Check
|
|
// to see if there is a potentially weird extension going on here. This can
|
|
// happen when you do an atomic operation on something like an char* and
|
|
// pass in 42. The 42 gets converted to char. This is even more strange
|
|
// for things like 45.123 -> char, etc.
|
|
// FIXME: Do this check.
|
|
TheCall->setArg(i+1, Arg.get());
|
|
}
|
|
|
|
// Create a new DeclRefExpr to refer to the new decl.
|
|
DeclRefExpr *NewDRE = DeclRefExpr::Create(
|
|
Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl,
|
|
/*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy,
|
|
DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse());
|
|
|
|
// Set the callee in the CallExpr.
|
|
// FIXME: This loses syntactic information.
|
|
QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
|
|
ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
|
|
CK_BuiltinFnToFnPtr);
|
|
TheCall->setCallee(PromotedCall.get());
|
|
|
|
// Change the result type of the call to match the original value type. This
|
|
// is arbitrary, but the codegen for these builtins ins design to handle it
|
|
// gracefully.
|
|
TheCall->setType(ResultType);
|
|
|
|
// Prohibit problematic uses of bit-precise integer types with atomic
|
|
// builtins. The arguments would have already been converted to the first
|
|
// argument's type, so only need to check the first argument.
|
|
const auto *BitIntValType = ValType->getAs<BitIntType>();
|
|
if (BitIntValType && !llvm::isPowerOf2_64(BitIntValType->getNumBits())) {
|
|
Diag(FirstArg->getExprLoc(), diag::err_atomic_builtin_ext_int_size);
|
|
return ExprError();
|
|
}
|
|
|
|
return TheCallResult;
|
|
}
|
|
|
|
ExprResult Sema::BuiltinNontemporalOverloaded(ExprResult TheCallResult) {
|
|
CallExpr *TheCall = (CallExpr *)TheCallResult.get();
|
|
DeclRefExpr *DRE =
|
|
cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
|
|
FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
|
|
unsigned BuiltinID = FDecl->getBuiltinID();
|
|
assert((BuiltinID == Builtin::BI__builtin_nontemporal_store ||
|
|
BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
|
|
"Unexpected nontemporal load/store builtin!");
|
|
bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store;
|
|
unsigned numArgs = isStore ? 2 : 1;
|
|
|
|
// Ensure that we have the proper number of arguments.
|
|
if (checkArgCount(TheCall, numArgs))
|
|
return ExprError();
|
|
|
|
// Inspect the last argument of the nontemporal builtin. This should always
|
|
// be a pointer type, from which we imply the type of the memory access.
|
|
// Because it is a pointer type, we don't have to worry about any implicit
|
|
// casts here.
|
|
Expr *PointerArg = TheCall->getArg(numArgs - 1);
|
|
ExprResult PointerArgResult =
|
|
DefaultFunctionArrayLvalueConversion(PointerArg);
|
|
|
|
if (PointerArgResult.isInvalid())
|
|
return ExprError();
|
|
PointerArg = PointerArgResult.get();
|
|
TheCall->setArg(numArgs - 1, PointerArg);
|
|
|
|
const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
|
|
if (!pointerType) {
|
|
Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer)
|
|
<< PointerArg->getType() << PointerArg->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
QualType ValType = pointerType->getPointeeType();
|
|
|
|
// Strip any qualifiers off ValType.
|
|
ValType = ValType.getUnqualifiedType();
|
|
if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
|
|
!ValType->isBlockPointerType() && !ValType->isFloatingType() &&
|
|
!ValType->isVectorType()) {
|
|
Diag(DRE->getBeginLoc(),
|
|
diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector)
|
|
<< PointerArg->getType() << PointerArg->getSourceRange();
|
|
return ExprError();
|
|
}
|
|
|
|
if (!isStore) {
|
|
TheCall->setType(ValType);
|
|
return TheCallResult;
|
|
}
|
|
|
|
ExprResult ValArg = TheCall->getArg(0);
|
|
InitializedEntity Entity = InitializedEntity::InitializeParameter(
|
|
Context, ValType, /*consume*/ false);
|
|
ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
|
|
if (ValArg.isInvalid())
|
|
return ExprError();
|
|
|
|
TheCall->setArg(0, ValArg.get());
|
|
TheCall->setType(Context.VoidTy);
|
|
return TheCallResult;
|
|
}
|
|
|
|
/// CheckObjCString - Checks that the format string argument to the os_log()
|
|
/// and os_trace() functions is correct, and converts it to const char *.
|
|
ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) {
|
|
Arg = Arg->IgnoreParenCasts();
|
|
auto *Literal = dyn_cast<StringLiteral>(Arg);
|
|
if (!Literal) {
|
|
if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) {
|
|
Literal = ObjcLiteral->getString();
|
|
}
|
|
}
|
|
|
|
if (!Literal || (!Literal->isOrdinary() && !Literal->isUTF8())) {
|
|
return ExprError(
|
|
Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant)
|
|
<< Arg->getSourceRange());
|
|
}
|
|
|
|
ExprResult Result(Literal);
|
|
QualType ResultTy = Context.getPointerType(Context.CharTy.withConst());
|
|
InitializedEntity Entity =
|
|
InitializedEntity::InitializeParameter(Context, ResultTy, false);
|
|
Result = PerformCopyInitialization(Entity, SourceLocation(), Result);
|
|
return Result;
|
|
}
|
|
|
|
/// Check that the user is calling the appropriate va_start builtin for the
|
|
/// target and calling convention.
|
|
static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) {
|
|
const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
|
|
bool IsX64 = TT.getArch() == llvm::Triple::x86_64;
|
|
bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 ||
|
|
TT.getArch() == llvm::Triple::aarch64_32);
|
|
bool IsWindows = TT.isOSWindows();
|
|
bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start;
|
|
if (IsX64 || IsAArch64) {
|
|
CallingConv CC = CC_C;
|
|
if (const FunctionDecl *FD = S.getCurFunctionDecl())
|
|
CC = FD->getType()->castAs<FunctionType>()->getCallConv();
|
|
if (IsMSVAStart) {
|
|
// Don't allow this in System V ABI functions.
|
|
if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64))
|
|
return S.Diag(Fn->getBeginLoc(),
|
|
diag::err_ms_va_start_used_in_sysv_function);
|
|
} else {
|
|
// On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions.
|
|
// On x64 Windows, don't allow this in System V ABI functions.
|
|
// (Yes, that means there's no corresponding way to support variadic
|
|
// System V ABI functions on Windows.)
|
|
if ((IsWindows && CC == CC_X86_64SysV) ||
|
|
(!IsWindows && CC == CC_Win64))
|
|
return S.Diag(Fn->getBeginLoc(),
|
|
diag::err_va_start_used_in_wrong_abi_function)
|
|
<< !IsWindows;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (IsMSVAStart)
|
|
return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only);
|
|
return false;
|
|
}
|
|
|
|
static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn,
|
|
ParmVarDecl **LastParam = nullptr) {
|
|
// Determine whether the current function, block, or obj-c method is variadic
|
|
// and get its parameter list.
|
|
bool IsVariadic = false;
|
|
ArrayRef<ParmVarDecl *> Params;
|
|
DeclContext *Caller = S.CurContext;
|
|
if (auto *Block = dyn_cast<BlockDecl>(Caller)) {
|
|
IsVariadic = Block->isVariadic();
|
|
Params = Block->parameters();
|
|
} else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) {
|
|
IsVariadic = FD->isVariadic();
|
|
Params = FD->parameters();
|
|
} else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) {
|
|
IsVariadic = MD->isVariadic();
|
|
// FIXME: This isn't correct for methods (results in bogus warning).
|
|
Params = MD->parameters();
|
|
} else if (isa<CapturedDecl>(Caller)) {
|
|
// We don't support va_start in a CapturedDecl.
|
|
S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt);
|
|
return true;
|
|
} else {
|
|
// This must be some other declcontext that parses exprs.
|
|
S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function);
|
|
return true;
|
|
}
|
|
|
|
if (!IsVariadic) {
|
|
S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function);
|
|
return true;
|
|
}
|
|
|
|
if (LastParam)
|
|
*LastParam = Params.empty() ? nullptr : Params.back();
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::BuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) {
|
|
Expr *Fn = TheCall->getCallee();
|
|
if (checkVAStartABI(*this, BuiltinID, Fn))
|
|
return true;
|
|
|
|
if (BuiltinID == Builtin::BI__builtin_c23_va_start) {
|
|
// This builtin requires one argument (the va_list), allows two arguments,
|
|
// but diagnoses more than two arguments. e.g.,
|
|
// __builtin_c23_va_start(); // error
|
|
// __builtin_c23_va_start(list); // ok
|
|
// __builtin_c23_va_start(list, param); // ok
|
|
// __builtin_c23_va_start(list, anything, anything); // error
|
|
// This differs from the GCC behavior in that they accept the last case
|
|
// with a warning, but it doesn't seem like a useful behavior to allow.
|
|
if (checkArgCountRange(TheCall, 1, 2))
|
|
return true;
|
|
} else {
|
|
// In C23 mode, va_start only needs one argument. However, the builtin still
|
|
// requires two arguments (which matches the behavior of the GCC builtin),
|
|
// <stdarg.h> passes `0` as the second argument in C23 mode.
|
|
if (checkArgCount(TheCall, 2))
|
|
return true;
|
|
}
|
|
|
|
// Type-check the first argument normally.
|
|
if (checkBuiltinArgument(*this, TheCall, 0))
|
|
return true;
|
|
|
|
// Check that the current function is variadic, and get its last parameter.
|
|
ParmVarDecl *LastParam;
|
|
if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam))
|
|
return true;
|
|
|
|
// Verify that the second argument to the builtin is the last non-variadic
|
|
// argument of the current function or method. In C23 mode, if the call is
|
|
// not to __builtin_c23_va_start, and the second argument is an integer
|
|
// constant expression with value 0, then we don't bother with this check.
|
|
// For __builtin_c23_va_start, we only perform the check for the second
|
|
// argument being the last argument to the current function if there is a
|
|
// second argument present.
|
|
if (BuiltinID == Builtin::BI__builtin_c23_va_start &&
|
|
TheCall->getNumArgs() < 2) {
|
|
Diag(TheCall->getExprLoc(), diag::warn_c17_compat_va_start_one_arg);
|
|
return false;
|
|
}
|
|
|
|
const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
|
|
if (std::optional<llvm::APSInt> Val =
|
|
TheCall->getArg(1)->getIntegerConstantExpr(Context);
|
|
Val && LangOpts.C23 && *Val == 0 &&
|
|
BuiltinID != Builtin::BI__builtin_c23_va_start) {
|
|
Diag(TheCall->getExprLoc(), diag::warn_c17_compat_va_start_one_arg);
|
|
return false;
|
|
}
|
|
|
|
// These are valid if SecondArgIsLastNonVariadicArgument is false after the
|
|
// next block.
|
|
QualType Type;
|
|
SourceLocation ParamLoc;
|
|
bool IsCRegister = false;
|
|
bool SecondArgIsLastNonVariadicArgument = false;
|
|
if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
|
|
if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
|
|
SecondArgIsLastNonVariadicArgument = PV == LastParam;
|
|
|
|
Type = PV->getType();
|
|
ParamLoc = PV->getLocation();
|
|
IsCRegister =
|
|
PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus;
|
|
}
|
|
}
|
|
|
|
if (!SecondArgIsLastNonVariadicArgument)
|
|
Diag(TheCall->getArg(1)->getBeginLoc(),
|
|
diag::warn_second_arg_of_va_start_not_last_non_variadic_param);
|
|
else if (IsCRegister || Type->isReferenceType() ||
|
|
Type->isSpecificBuiltinType(BuiltinType::Float) || [=] {
|
|
// Promotable integers are UB, but enumerations need a bit of
|
|
// extra checking to see what their promotable type actually is.
|
|
if (!Context.isPromotableIntegerType(Type))
|
|
return false;
|
|
if (!Type->isEnumeralType())
|
|
return true;
|
|
const EnumDecl *ED = Type->castAs<EnumType>()->getDecl();
|
|
return !(ED &&
|
|
Context.typesAreCompatible(ED->getPromotionType(), Type));
|
|
}()) {
|
|
unsigned Reason = 0;
|
|
if (Type->isReferenceType()) Reason = 1;
|
|
else if (IsCRegister) Reason = 2;
|
|
Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason;
|
|
Diag(ParamLoc, diag::note_parameter_type) << Type;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::BuiltinVAStartARMMicrosoft(CallExpr *Call) {
|
|
auto IsSuitablyTypedFormatArgument = [this](const Expr *Arg) -> bool {
|
|
const LangOptions &LO = getLangOpts();
|
|
|
|
if (LO.CPlusPlus)
|
|
return Arg->getType()
|
|
.getCanonicalType()
|
|
.getTypePtr()
|
|
->getPointeeType()
|
|
.withoutLocalFastQualifiers() == Context.CharTy;
|
|
|
|
// In C, allow aliasing through `char *`, this is required for AArch64 at
|
|
// least.
|
|
return true;
|
|
};
|
|
|
|
// void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
|
|
// const char *named_addr);
|
|
|
|
Expr *Func = Call->getCallee();
|
|
|
|
if (Call->getNumArgs() < 3)
|
|
return Diag(Call->getEndLoc(),
|
|
diag::err_typecheck_call_too_few_args_at_least)
|
|
<< 0 /*function call*/ << 3 << Call->getNumArgs()
|
|
<< /*is non object*/ 0;
|
|
|
|
// Type-check the first argument normally.
|
|
if (checkBuiltinArgument(*this, Call, 0))
|
|
return true;
|
|
|
|
// Check that the current function is variadic.
|
|
if (checkVAStartIsInVariadicFunction(*this, Func))
|
|
return true;
|
|
|
|
// __va_start on Windows does not validate the parameter qualifiers
|
|
|
|
const Expr *Arg1 = Call->getArg(1)->IgnoreParens();
|
|
const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr();
|
|
|
|
const Expr *Arg2 = Call->getArg(2)->IgnoreParens();
|
|
const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr();
|
|
|
|
const QualType &ConstCharPtrTy =
|
|
Context.getPointerType(Context.CharTy.withConst());
|
|
if (!Arg1Ty->isPointerType() || !IsSuitablyTypedFormatArgument(Arg1))
|
|
Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible)
|
|
<< Arg1->getType() << ConstCharPtrTy << 1 /* different class */
|
|
<< 0 /* qualifier difference */
|
|
<< 3 /* parameter mismatch */
|
|
<< 2 << Arg1->getType() << ConstCharPtrTy;
|
|
|
|
const QualType SizeTy = Context.getSizeType();
|
|
if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy)
|
|
Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible)
|
|
<< Arg2->getType() << SizeTy << 1 /* different class */
|
|
<< 0 /* qualifier difference */
|
|
<< 3 /* parameter mismatch */
|
|
<< 3 << Arg2->getType() << SizeTy;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::BuiltinUnorderedCompare(CallExpr *TheCall, unsigned BuiltinID) {
|
|
if (checkArgCount(TheCall, 2))
|
|
return true;
|
|
|
|
if (BuiltinID == Builtin::BI__builtin_isunordered &&
|
|
TheCall->getFPFeaturesInEffect(getLangOpts()).getNoHonorNaNs())
|
|
Diag(TheCall->getBeginLoc(), diag::warn_fp_nan_inf_when_disabled)
|
|
<< 1 << 0 << TheCall->getSourceRange();
|
|
|
|
ExprResult OrigArg0 = TheCall->getArg(0);
|
|
ExprResult OrigArg1 = TheCall->getArg(1);
|
|
|
|
// Do standard promotions between the two arguments, returning their common
|
|
// type.
|
|
QualType Res = UsualArithmeticConversions(
|
|
OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison);
|
|
if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
|
|
return true;
|
|
|
|
// Make sure any conversions are pushed back into the call; this is
|
|
// type safe since unordered compare builtins are declared as "_Bool
|
|
// foo(...)".
|
|
TheCall->setArg(0, OrigArg0.get());
|
|
TheCall->setArg(1, OrigArg1.get());
|
|
|
|
if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
|
|
return false;
|
|
|
|
// If the common type isn't a real floating type, then the arguments were
|
|
// invalid for this operation.
|
|
if (Res.isNull() || !Res->isRealFloatingType())
|
|
return Diag(OrigArg0.get()->getBeginLoc(),
|
|
diag::err_typecheck_call_invalid_ordered_compare)
|
|
<< OrigArg0.get()->getType() << OrigArg1.get()->getType()
|
|
<< SourceRange(OrigArg0.get()->getBeginLoc(),
|
|
OrigArg1.get()->getEndLoc());
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::BuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs,
|
|
unsigned BuiltinID) {
|
|
if (checkArgCount(TheCall, NumArgs))
|
|
return true;
|
|
|
|
FPOptions FPO = TheCall->getFPFeaturesInEffect(getLangOpts());
|
|
if (FPO.getNoHonorInfs() && (BuiltinID == Builtin::BI__builtin_isfinite ||
|
|
BuiltinID == Builtin::BI__builtin_isinf ||
|
|
BuiltinID == Builtin::BI__builtin_isinf_sign))
|
|
Diag(TheCall->getBeginLoc(), diag::warn_fp_nan_inf_when_disabled)
|
|
<< 0 << 0 << TheCall->getSourceRange();
|
|
|
|
if (FPO.getNoHonorNaNs() && (BuiltinID == Builtin::BI__builtin_isnan ||
|
|
BuiltinID == Builtin::BI__builtin_isunordered))
|
|
Diag(TheCall->getBeginLoc(), diag::warn_fp_nan_inf_when_disabled)
|
|
<< 1 << 0 << TheCall->getSourceRange();
|
|
|
|
bool IsFPClass = NumArgs == 2;
|
|
|
|
// Find out position of floating-point argument.
|
|
unsigned FPArgNo = IsFPClass ? 0 : NumArgs - 1;
|
|
|
|
// We can count on all parameters preceding the floating-point just being int.
|
|
// Try all of those.
|
|
for (unsigned i = 0; i < FPArgNo; ++i) {
|
|
Expr *Arg = TheCall->getArg(i);
|
|
|
|
if (Arg->isTypeDependent())
|
|
return false;
|
|
|
|
ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy,
|
|
AssignmentAction::Passing);
|
|
|
|
if (Res.isInvalid())
|
|
return true;
|
|
TheCall->setArg(i, Res.get());
|
|
}
|
|
|
|
Expr *OrigArg = TheCall->getArg(FPArgNo);
|
|
|
|
if (OrigArg->isTypeDependent())
|
|
return false;
|
|
|
|
// Usual Unary Conversions will convert half to float, which we want for
|
|
// machines that use fp16 conversion intrinsics. Else, we wnat to leave the
|
|
// type how it is, but do normal L->Rvalue conversions.
|
|
if (Context.getTargetInfo().useFP16ConversionIntrinsics()) {
|
|
ExprResult Res = UsualUnaryConversions(OrigArg);
|
|
|
|
if (!Res.isUsable())
|
|
return true;
|
|
OrigArg = Res.get();
|
|
} else {
|
|
ExprResult Res = DefaultFunctionArrayLvalueConversion(OrigArg);
|
|
|
|
if (!Res.isUsable())
|
|
return true;
|
|
OrigArg = Res.get();
|
|
}
|
|
TheCall->setArg(FPArgNo, OrigArg);
|
|
|
|
QualType VectorResultTy;
|
|
QualType ElementTy = OrigArg->getType();
|
|
// TODO: When all classification function are implemented with is_fpclass,
|
|
// vector argument can be supported in all of them.
|
|
if (ElementTy->isVectorType() && IsFPClass) {
|
|
VectorResultTy = GetSignedVectorType(ElementTy);
|
|
ElementTy = ElementTy->castAs<VectorType>()->getElementType();
|
|
}
|
|
|
|
// This operation requires a non-_Complex floating-point number.
|
|
if (!ElementTy->isRealFloatingType())
|
|
return Diag(OrigArg->getBeginLoc(),
|
|
diag::err_typecheck_call_invalid_unary_fp)
|
|
<< OrigArg->getType() << OrigArg->getSourceRange();
|
|
|
|
// __builtin_isfpclass has integer parameter that specify test mask. It is
|
|
// passed in (...), so it should be analyzed completely here.
|
|
if (IsFPClass)
|
|
if (BuiltinConstantArgRange(TheCall, 1, 0, llvm::fcAllFlags))
|
|
return true;
|
|
|
|
// TODO: enable this code to all classification functions.
|
|
if (IsFPClass) {
|
|
QualType ResultTy;
|
|
if (!VectorResultTy.isNull())
|
|
ResultTy = VectorResultTy;
|
|
else
|
|
ResultTy = Context.IntTy;
|
|
TheCall->setType(ResultTy);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::BuiltinComplex(CallExpr *TheCall) {
|
|
if (checkArgCount(TheCall, 2))
|
|
return true;
|
|
|
|
bool Dependent = false;
|
|
for (unsigned I = 0; I != 2; ++I) {
|
|
Expr *Arg = TheCall->getArg(I);
|
|
QualType T = Arg->getType();
|
|
if (T->isDependentType()) {
|
|
Dependent = true;
|
|
continue;
|
|
}
|
|
|
|
// Despite supporting _Complex int, GCC requires a real floating point type
|
|
// for the operands of __builtin_complex.
|
|
if (!T->isRealFloatingType()) {
|
|
return Diag(Arg->getBeginLoc(), diag::err_typecheck_call_requires_real_fp)
|
|
<< Arg->getType() << Arg->getSourceRange();
|
|
}
|
|
|
|
ExprResult Converted = DefaultLvalueConversion(Arg);
|
|
if (Converted.isInvalid())
|
|
return true;
|
|
TheCall->setArg(I, Converted.get());
|
|
}
|
|
|
|
if (Dependent) {
|
|
TheCall->setType(Context.DependentTy);
|
|
return false;
|
|
}
|
|
|
|
Expr *Real = TheCall->getArg(0);
|
|
Expr *Imag = TheCall->getArg(1);
|
|
if (!Context.hasSameType(Real->getType(), Imag->getType())) {
|
|
return Diag(Real->getBeginLoc(),
|
|
diag::err_typecheck_call_different_arg_types)
|
|
<< Real->getType() << Imag->getType()
|
|
<< Real->getSourceRange() << Imag->getSourceRange();
|
|
}
|
|
|
|
// We don't allow _Complex _Float16 nor _Complex __fp16 as type specifiers;
|
|
// don't allow this builtin to form those types either.
|
|
// FIXME: Should we allow these types?
|
|
if (Real->getType()->isFloat16Type())
|
|
return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
|
|
<< "_Float16";
|
|
if (Real->getType()->isHalfType())
|
|
return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
|
|
<< "half";
|
|
|
|
TheCall->setType(Context.getComplexType(Real->getType()));
|
|
return false;
|
|
}
|
|
|
|
/// BuiltinShuffleVector - Handle __builtin_shufflevector.
|
|
// This is declared to take (...), so we have to check everything.
|
|
ExprResult Sema::BuiltinShuffleVector(CallExpr *TheCall) {
|
|
if (TheCall->getNumArgs() < 2)
|
|
return ExprError(Diag(TheCall->getEndLoc(),
|
|
diag::err_typecheck_call_too_few_args_at_least)
|
|
<< 0 /*function call*/ << 2 << TheCall->getNumArgs()
|
|
<< /*is non object*/ 0 << TheCall->getSourceRange());
|
|
|
|
// Determine which of the following types of shufflevector we're checking:
|
|
// 1) unary, vector mask: (lhs, mask)
|
|
// 2) binary, scalar mask: (lhs, rhs, index, ..., index)
|
|
QualType resType = TheCall->getArg(0)->getType();
|
|
unsigned numElements = 0;
|
|
|
|
if (!TheCall->getArg(0)->isTypeDependent() &&
|
|
!TheCall->getArg(1)->isTypeDependent()) {
|
|
QualType LHSType = TheCall->getArg(0)->getType();
|
|
QualType RHSType = TheCall->getArg(1)->getType();
|
|
|
|
if (!LHSType->isVectorType() || !RHSType->isVectorType())
|
|
return ExprError(
|
|
Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector)
|
|
<< TheCall->getDirectCallee() << /*isMorethantwoArgs*/ false
|
|
<< SourceRange(TheCall->getArg(0)->getBeginLoc(),
|
|
TheCall->getArg(1)->getEndLoc()));
|
|
|
|
numElements = LHSType->castAs<VectorType>()->getNumElements();
|
|
unsigned numResElements = TheCall->getNumArgs() - 2;
|
|
|
|
// Check to see if we have a call with 2 vector arguments, the unary shuffle
|
|
// with mask. If so, verify that RHS is an integer vector type with the
|
|
// same number of elts as lhs.
|
|
if (TheCall->getNumArgs() == 2) {
|
|
if (!RHSType->hasIntegerRepresentation() ||
|
|
RHSType->castAs<VectorType>()->getNumElements() != numElements)
|
|
return ExprError(Diag(TheCall->getBeginLoc(),
|
|
diag::err_vec_builtin_incompatible_vector)
|
|
<< TheCall->getDirectCallee()
|
|
<< /*isMorethantwoArgs*/ false
|
|
<< SourceRange(TheCall->getArg(1)->getBeginLoc(),
|
|
TheCall->getArg(1)->getEndLoc()));
|
|
} else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
|
|
return ExprError(Diag(TheCall->getBeginLoc(),
|
|
diag::err_vec_builtin_incompatible_vector)
|
|
<< TheCall->getDirectCallee()
|
|
<< /*isMorethantwoArgs*/ false
|
|
<< SourceRange(TheCall->getArg(0)->getBeginLoc(),
|
|
TheCall->getArg(1)->getEndLoc()));
|
|
} else if (numElements != numResElements) {
|
|
QualType eltType = LHSType->castAs<VectorType>()->getElementType();
|
|
resType =
|
|
Context.getVectorType(eltType, numResElements, VectorKind::Generic);
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
|
|
if (TheCall->getArg(i)->isTypeDependent() ||
|
|
TheCall->getArg(i)->isValueDependent())
|
|
continue;
|
|
|
|
std::optional<llvm::APSInt> Result;
|
|
if (!(Result = TheCall->getArg(i)->getIntegerConstantExpr(Context)))
|
|
return ExprError(Diag(TheCall->getBeginLoc(),
|
|
diag::err_shufflevector_nonconstant_argument)
|
|
<< TheCall->getArg(i)->getSourceRange());
|
|
|
|
// Allow -1 which will be translated to undef in the IR.
|
|
if (Result->isSigned() && Result->isAllOnes())
|
|
continue;
|
|
|
|
if (Result->getActiveBits() > 64 ||
|
|
Result->getZExtValue() >= numElements * 2)
|
|
return ExprError(Diag(TheCall->getBeginLoc(),
|
|
diag::err_shufflevector_argument_too_large)
|
|
<< TheCall->getArg(i)->getSourceRange());
|
|
}
|
|
|
|
SmallVector<Expr*, 32> exprs;
|
|
|
|
for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
|
|
exprs.push_back(TheCall->getArg(i));
|
|
TheCall->setArg(i, nullptr);
|
|
}
|
|
|
|
return new (Context) ShuffleVectorExpr(Context, exprs, resType,
|
|
TheCall->getCallee()->getBeginLoc(),
|
|
TheCall->getRParenLoc());
|
|
}
|
|
|
|
ExprResult Sema::ConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
|
|
SourceLocation BuiltinLoc,
|
|
SourceLocation RParenLoc) {
|
|
ExprValueKind VK = VK_PRValue;
|
|
ExprObjectKind OK = OK_Ordinary;
|
|
QualType DstTy = TInfo->getType();
|
|
QualType SrcTy = E->getType();
|
|
|
|
if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
|
|
return ExprError(Diag(BuiltinLoc,
|
|
diag::err_convertvector_non_vector)
|
|
<< E->getSourceRange());
|
|
if (!DstTy->isVectorType() && !DstTy->isDependentType())
|
|
return ExprError(Diag(BuiltinLoc, diag::err_builtin_non_vector_type)
|
|
<< "second"
|
|
<< "__builtin_convertvector");
|
|
|
|
if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
|
|
unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements();
|
|
unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements();
|
|
if (SrcElts != DstElts)
|
|
return ExprError(Diag(BuiltinLoc,
|
|
diag::err_convertvector_incompatible_vector)
|
|
<< E->getSourceRange());
|
|
}
|
|
|
|
return ConvertVectorExpr::Create(Context, E, TInfo, DstTy, VK, OK, BuiltinLoc,
|
|
RParenLoc, CurFPFeatureOverrides());
|
|
}
|
|
|
|
bool Sema::BuiltinPrefetch(CallExpr *TheCall) {
|
|
unsigned NumArgs = TheCall->getNumArgs();
|
|
|
|
if (NumArgs > 3)
|
|
return Diag(TheCall->getEndLoc(),
|
|
diag::err_typecheck_call_too_many_args_at_most)
|
|
<< 0 /*function call*/ << 3 << NumArgs << /*is non object*/ 0
|
|
<< TheCall->getSourceRange();
|
|
|
|
// Argument 0 is checked for us and the remaining arguments must be
|
|
// constant integers.
|
|
for (unsigned i = 1; i != NumArgs; ++i)
|
|
if (BuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::BuiltinArithmeticFence(CallExpr *TheCall) {
|
|
if (!Context.getTargetInfo().checkArithmeticFenceSupported())
|
|
return Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
|
|
<< SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
|
|
if (checkArgCount(TheCall, 1))
|
|
return true;
|
|
Expr *Arg = TheCall->getArg(0);
|
|
if (Arg->isInstantiationDependent())
|
|
return false;
|
|
|
|
QualType ArgTy = Arg->getType();
|
|
if (!ArgTy->hasFloatingRepresentation())
|
|
return Diag(TheCall->getEndLoc(), diag::err_typecheck_expect_flt_or_vector)
|
|
<< ArgTy;
|
|
if (Arg->isLValue()) {
|
|
ExprResult FirstArg = DefaultLvalueConversion(Arg);
|
|
TheCall->setArg(0, FirstArg.get());
|
|
}
|
|
TheCall->setType(TheCall->getArg(0)->getType());
|
|
return false;
|
|
}
|
|
|
|
bool Sema::BuiltinAssume(CallExpr *TheCall) {
|
|
Expr *Arg = TheCall->getArg(0);
|
|
if (Arg->isInstantiationDependent()) return false;
|
|
|
|
if (Arg->HasSideEffects(Context))
|
|
Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects)
|
|
<< Arg->getSourceRange()
|
|
<< cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::BuiltinAllocaWithAlign(CallExpr *TheCall) {
|
|
// The alignment must be a constant integer.
|
|
Expr *Arg = TheCall->getArg(1);
|
|
|
|
// We can't check the value of a dependent argument.
|
|
if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
|
|
if (const auto *UE =
|
|
dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts()))
|
|
if (UE->getKind() == UETT_AlignOf ||
|
|
UE->getKind() == UETT_PreferredAlignOf)
|
|
Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof)
|
|
<< Arg->getSourceRange();
|
|
|
|
llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context);
|
|
|
|
if (!Result.isPowerOf2())
|
|
return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
|
|
<< Arg->getSourceRange();
|
|
|
|
if (Result < Context.getCharWidth())
|
|
return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small)
|
|
<< (unsigned)Context.getCharWidth() << Arg->getSourceRange();
|
|
|
|
if (Result > std::numeric_limits<int32_t>::max())
|
|
return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big)
|
|
<< std::numeric_limits<int32_t>::max() << Arg->getSourceRange();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::BuiltinAssumeAligned(CallExpr *TheCall) {
|
|
if (checkArgCountRange(TheCall, 2, 3))
|
|
return true;
|
|
|
|
unsigned NumArgs = TheCall->getNumArgs();
|
|
Expr *FirstArg = TheCall->getArg(0);
|
|
|
|
{
|
|
ExprResult FirstArgResult =
|
|
DefaultFunctionArrayLvalueConversion(FirstArg);
|
|
if (!FirstArgResult.get()->getType()->isPointerType()) {
|
|
Diag(TheCall->getBeginLoc(), diag::err_builtin_assume_aligned_invalid_arg)
|
|
<< TheCall->getSourceRange();
|
|
return true;
|
|
}
|
|
TheCall->setArg(0, FirstArgResult.get());
|
|
}
|
|
|
|
// The alignment must be a constant integer.
|
|
Expr *SecondArg = TheCall->getArg(1);
|
|
|
|
// We can't check the value of a dependent argument.
|
|
if (!SecondArg->isValueDependent()) {
|
|
llvm::APSInt Result;
|
|
if (BuiltinConstantArg(TheCall, 1, Result))
|
|
return true;
|
|
|
|
if (!Result.isPowerOf2())
|
|
return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
|
|
<< SecondArg->getSourceRange();
|
|
|
|
if (Result > Sema::MaximumAlignment)
|
|
Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great)
|
|
<< SecondArg->getSourceRange() << Sema::MaximumAlignment;
|
|
}
|
|
|
|
if (NumArgs > 2) {
|
|
Expr *ThirdArg = TheCall->getArg(2);
|
|
if (convertArgumentToType(*this, ThirdArg, Context.getSizeType()))
|
|
return true;
|
|
TheCall->setArg(2, ThirdArg);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::BuiltinOSLogFormat(CallExpr *TheCall) {
|
|
unsigned BuiltinID =
|
|
cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID();
|
|
bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size;
|
|
|
|
unsigned NumArgs = TheCall->getNumArgs();
|
|
unsigned NumRequiredArgs = IsSizeCall ? 1 : 2;
|
|
if (NumArgs < NumRequiredArgs) {
|
|
return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
|
|
<< 0 /* function call */ << NumRequiredArgs << NumArgs
|
|
<< /*is non object*/ 0 << TheCall->getSourceRange();
|
|
}
|
|
if (NumArgs >= NumRequiredArgs + 0x100) {
|
|
return Diag(TheCall->getEndLoc(),
|
|
diag::err_typecheck_call_too_many_args_at_most)
|
|
<< 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs
|
|
<< /*is non object*/ 0 << TheCall->getSourceRange();
|
|
}
|
|
unsigned i = 0;
|
|
|
|
// For formatting call, check buffer arg.
|
|
if (!IsSizeCall) {
|
|
ExprResult Arg(TheCall->getArg(i));
|
|
InitializedEntity Entity = InitializedEntity::InitializeParameter(
|
|
Context, Context.VoidPtrTy, false);
|
|
Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
|
|
if (Arg.isInvalid())
|
|
return true;
|
|
TheCall->setArg(i, Arg.get());
|
|
i++;
|
|
}
|
|
|
|
// Check string literal arg.
|
|
unsigned FormatIdx = i;
|
|
{
|
|
ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i));
|
|
if (Arg.isInvalid())
|
|
return true;
|
|
TheCall->setArg(i, Arg.get());
|
|
i++;
|
|
}
|
|
|
|
// Make sure variadic args are scalar.
|
|
unsigned FirstDataArg = i;
|
|
while (i < NumArgs) {
|
|
ExprResult Arg = DefaultVariadicArgumentPromotion(
|
|
TheCall->getArg(i), VariadicFunction, nullptr);
|
|
if (Arg.isInvalid())
|
|
return true;
|
|
CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType());
|
|
if (ArgSize.getQuantity() >= 0x100) {
|
|
return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big)
|
|
<< i << (int)ArgSize.getQuantity() << 0xff
|
|
<< TheCall->getSourceRange();
|
|
}
|
|
TheCall->setArg(i, Arg.get());
|
|
i++;
|
|
}
|
|
|
|
// Check formatting specifiers. NOTE: We're only doing this for the non-size
|
|
// call to avoid duplicate diagnostics.
|
|
if (!IsSizeCall) {
|
|
llvm::SmallBitVector CheckedVarArgs(NumArgs, false);
|
|
ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs());
|
|
bool Success = CheckFormatArguments(
|
|
Args, FAPK_Variadic, nullptr, FormatIdx, FirstDataArg, FST_OSLog,
|
|
VariadicFunction, TheCall->getBeginLoc(), SourceRange(),
|
|
CheckedVarArgs);
|
|
if (!Success)
|
|
return true;
|
|
}
|
|
|
|
if (IsSizeCall) {
|
|
TheCall->setType(Context.getSizeType());
|
|
} else {
|
|
TheCall->setType(Context.VoidPtrTy);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Sema::BuiltinConstantArg(CallExpr *TheCall, int ArgNum,
|
|
llvm::APSInt &Result) {
|
|
Expr *Arg = TheCall->getArg(ArgNum);
|
|
DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
|
|
FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
|
|
|
|
if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
|
|
|
|
std::optional<llvm::APSInt> R;
|
|
if (!(R = Arg->getIntegerConstantExpr(Context)))
|
|
return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type)
|
|
<< FDecl->getDeclName() << Arg->getSourceRange();
|
|
Result = *R;
|
|
return false;
|
|
}
|
|
|
|
bool Sema::BuiltinConstantArgRange(CallExpr *TheCall, int ArgNum, int Low,
|
|
int High, bool RangeIsError) {
|
|
if (isConstantEvaluatedContext())
|
|
return false;
|
|
llvm::APSInt Result;
|
|
|
|
// We can't check the value of a dependent argument.
|
|
Expr *Arg = TheCall->getArg(ArgNum);
|
|
if (Arg->isTypeDependent() || Arg->isValueDependent())
|
|
return false;
|
|
|
|
// Check constant-ness first.
|
|
if (BuiltinConstantArg(TheCall, ArgNum, Result))
|
|
return true;
|
|
|
|
if (Result.getSExtValue() < Low || Result.getSExtValue() > High) {
|
|
if (RangeIsError)
|
|
return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range)
|
|
<< toString(Result, 10) << Low << High << Arg->getSourceRange();
|
|
else
|
|
// Defer the warning until we know if the code will be emitted so that
|
|
// dead code can ignore this.
|
|
DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
|
|
PDiag(diag::warn_argument_invalid_range)
|
|
<< toString(Result, 10) << Low << High
|
|
<< Arg->getSourceRange());
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::BuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
|
|
unsigned Num) {
|
|
llvm::APSInt Result;
|
|
|
|
// We can't check the value of a dependent argument.
|
|
Expr *Arg = TheCall->getArg(ArgNum);
|
|
if (Arg->isTypeDependent() || Arg->isValueDependent())
|
|
return false;
|
|
|
|
// Check constant-ness first.
|
|
if (BuiltinConstantArg(TheCall, ArgNum, Result))
|
|
return true;
|
|
|
|
if (Result.getSExtValue() % Num != 0)
|
|
return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple)
|
|
<< Num << Arg->getSourceRange();
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::BuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) {
|
|
llvm::APSInt Result;
|
|
|
|
// We can't check the value of a dependent argument.
|
|
Expr *Arg = TheCall->getArg(ArgNum);
|
|
if (Arg->isTypeDependent() || Arg->isValueDependent())
|
|
return false;
|
|
|
|
// Check constant-ness first.
|
|
if (BuiltinConstantArg(TheCall, ArgNum, Result))
|
|
return true;
|
|
|
|
// Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if
|
|
// and only if x is a power of 2.
|
|
if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0)
|
|
return false;
|
|
|
|
return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2)
|
|
<< Arg->getSourceRange();
|
|
}
|
|
|
|
static bool IsShiftedByte(llvm::APSInt Value) {
|
|
if (Value.isNegative())
|
|
return false;
|
|
|
|
// Check if it's a shifted byte, by shifting it down
|
|
while (true) {
|
|
// If the value fits in the bottom byte, the check passes.
|
|
if (Value < 0x100)
|
|
return true;
|
|
|
|
// Otherwise, if the value has _any_ bits in the bottom byte, the check
|
|
// fails.
|
|
if ((Value & 0xFF) != 0)
|
|
return false;
|
|
|
|
// If the bottom 8 bits are all 0, but something above that is nonzero,
|
|
// then shifting the value right by 8 bits won't affect whether it's a
|
|
// shifted byte or not. So do that, and go round again.
|
|
Value >>= 8;
|
|
}
|
|
}
|
|
|
|
bool Sema::BuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum,
|
|
unsigned ArgBits) {
|
|
llvm::APSInt Result;
|
|
|
|
// We can't check the value of a dependent argument.
|
|
Expr *Arg = TheCall->getArg(ArgNum);
|
|
if (Arg->isTypeDependent() || Arg->isValueDependent())
|
|
return false;
|
|
|
|
// Check constant-ness first.
|
|
if (BuiltinConstantArg(TheCall, ArgNum, Result))
|
|
return true;
|
|
|
|
// Truncate to the given size.
|
|
Result = Result.getLoBits(ArgBits);
|
|
Result.setIsUnsigned(true);
|
|
|
|
if (IsShiftedByte(Result))
|
|
return false;
|
|
|
|
return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte)
|
|
<< Arg->getSourceRange();
|
|
}
|
|
|
|
bool Sema::BuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall, int ArgNum,
|
|
unsigned ArgBits) {
|
|
llvm::APSInt Result;
|
|
|
|
// We can't check the value of a dependent argument.
|
|
Expr *Arg = TheCall->getArg(ArgNum);
|
|
if (Arg->isTypeDependent() || Arg->isValueDependent())
|
|
return false;
|
|
|
|
// Check constant-ness first.
|
|
if (BuiltinConstantArg(TheCall, ArgNum, Result))
|
|
return true;
|
|
|
|
// Truncate to the given size.
|
|
Result = Result.getLoBits(ArgBits);
|
|
Result.setIsUnsigned(true);
|
|
|
|
// Check to see if it's in either of the required forms.
|
|
if (IsShiftedByte(Result) ||
|
|
(Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF))
|
|
return false;
|
|
|
|
return Diag(TheCall->getBeginLoc(),
|
|
diag::err_argument_not_shifted_byte_or_xxff)
|
|
<< Arg->getSourceRange();
|
|
}
|
|
|
|
bool Sema::BuiltinLongjmp(CallExpr *TheCall) {
|
|
if (!Context.getTargetInfo().hasSjLjLowering())
|
|
return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported)
|
|
<< SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
|
|
|
|
Expr *Arg = TheCall->getArg(1);
|
|
llvm::APSInt Result;
|
|
|
|
// TODO: This is less than ideal. Overload this to take a value.
|
|
if (BuiltinConstantArg(TheCall, 1, Result))
|
|
return true;
|
|
|
|
if (Result != 1)
|
|
return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val)
|
|
<< SourceRange(Arg->getBeginLoc(), Arg->getEndLoc());
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::BuiltinSetjmp(CallExpr *TheCall) {
|
|
if (!Context.getTargetInfo().hasSjLjLowering())
|
|
return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported)
|
|
<< SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
|
|
return false;
|
|
}
|
|
|
|
bool Sema::BuiltinCountedByRef(CallExpr *TheCall) {
|
|
if (checkArgCount(TheCall, 1))
|
|
return true;
|
|
|
|
ExprResult ArgRes = UsualUnaryConversions(TheCall->getArg(0));
|
|
if (ArgRes.isInvalid())
|
|
return true;
|
|
|
|
// For simplicity, we support only limited expressions for the argument.
|
|
// Specifically a pointer to a flexible array member:'ptr->array'. This
|
|
// allows us to reject arguments with complex casting, which really shouldn't
|
|
// be a huge problem.
|
|
const Expr *Arg = ArgRes.get()->IgnoreParenImpCasts();
|
|
if (!isa<PointerType>(Arg->getType()) && !Arg->getType()->isArrayType())
|
|
return Diag(Arg->getBeginLoc(),
|
|
diag::err_builtin_counted_by_ref_must_be_flex_array_member)
|
|
<< Arg->getSourceRange();
|
|
|
|
if (Arg->HasSideEffects(Context))
|
|
return Diag(Arg->getBeginLoc(),
|
|
diag::err_builtin_counted_by_ref_has_side_effects)
|
|
<< Arg->getSourceRange();
|
|
|
|
if (const auto *ME = dyn_cast<MemberExpr>(Arg)) {
|
|
if (!ME->isFlexibleArrayMemberLike(
|
|
Context, getLangOpts().getStrictFlexArraysLevel()))
|
|
return Diag(Arg->getBeginLoc(),
|
|
diag::err_builtin_counted_by_ref_must_be_flex_array_member)
|
|
<< Arg->getSourceRange();
|
|
|
|
if (auto *CATy =
|
|
ME->getMemberDecl()->getType()->getAs<CountAttributedType>();
|
|
CATy && CATy->getKind() == CountAttributedType::CountedBy) {
|
|
const auto *FAMDecl = cast<FieldDecl>(ME->getMemberDecl());
|
|
if (const FieldDecl *CountFD = FAMDecl->findCountedByField()) {
|
|
TheCall->setType(Context.getPointerType(CountFD->getType()));
|
|
return false;
|
|
}
|
|
}
|
|
} else {
|
|
return Diag(Arg->getBeginLoc(),
|
|
diag::err_builtin_counted_by_ref_must_be_flex_array_member)
|
|
<< Arg->getSourceRange();
|
|
}
|
|
|
|
TheCall->setType(Context.getPointerType(Context.VoidTy));
|
|
return false;
|
|
}
|
|
|
|
/// The result of __builtin_counted_by_ref cannot be assigned to a variable.
|
|
/// It allows leaking and modification of bounds safety information.
|
|
bool Sema::CheckInvalidBuiltinCountedByRef(const Expr *E,
|
|
BuiltinCountedByRefKind K) {
|
|
const CallExpr *CE =
|
|
E ? dyn_cast<CallExpr>(E->IgnoreParenImpCasts()) : nullptr;
|
|
if (!CE || CE->getBuiltinCallee() != Builtin::BI__builtin_counted_by_ref)
|
|
return false;
|
|
|
|
switch (K) {
|
|
case AssignmentKind:
|
|
case InitializerKind:
|
|
Diag(E->getExprLoc(),
|
|
diag::err_builtin_counted_by_ref_cannot_leak_reference)
|
|
<< 0 << E->getSourceRange();
|
|
break;
|
|
case FunctionArgKind:
|
|
Diag(E->getExprLoc(),
|
|
diag::err_builtin_counted_by_ref_cannot_leak_reference)
|
|
<< 1 << E->getSourceRange();
|
|
break;
|
|
case ReturnArgKind:
|
|
Diag(E->getExprLoc(),
|
|
diag::err_builtin_counted_by_ref_cannot_leak_reference)
|
|
<< 2 << E->getSourceRange();
|
|
break;
|
|
case ArraySubscriptKind:
|
|
Diag(E->getExprLoc(), diag::err_builtin_counted_by_ref_invalid_use)
|
|
<< 0 << E->getSourceRange();
|
|
break;
|
|
case BinaryExprKind:
|
|
Diag(E->getExprLoc(), diag::err_builtin_counted_by_ref_invalid_use)
|
|
<< 1 << E->getSourceRange();
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class UncoveredArgHandler {
|
|
enum { Unknown = -1, AllCovered = -2 };
|
|
|
|
signed FirstUncoveredArg = Unknown;
|
|
SmallVector<const Expr *, 4> DiagnosticExprs;
|
|
|
|
public:
|
|
UncoveredArgHandler() = default;
|
|
|
|
bool hasUncoveredArg() const {
|
|
return (FirstUncoveredArg >= 0);
|
|
}
|
|
|
|
unsigned getUncoveredArg() const {
|
|
assert(hasUncoveredArg() && "no uncovered argument");
|
|
return FirstUncoveredArg;
|
|
}
|
|
|
|
void setAllCovered() {
|
|
// A string has been found with all arguments covered, so clear out
|
|
// the diagnostics.
|
|
DiagnosticExprs.clear();
|
|
FirstUncoveredArg = AllCovered;
|
|
}
|
|
|
|
void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) {
|
|
assert(NewFirstUncoveredArg >= 0 && "Outside range");
|
|
|
|
// Don't update if a previous string covers all arguments.
|
|
if (FirstUncoveredArg == AllCovered)
|
|
return;
|
|
|
|
// UncoveredArgHandler tracks the highest uncovered argument index
|
|
// and with it all the strings that match this index.
|
|
if (NewFirstUncoveredArg == FirstUncoveredArg)
|
|
DiagnosticExprs.push_back(StrExpr);
|
|
else if (NewFirstUncoveredArg > FirstUncoveredArg) {
|
|
DiagnosticExprs.clear();
|
|
DiagnosticExprs.push_back(StrExpr);
|
|
FirstUncoveredArg = NewFirstUncoveredArg;
|
|
}
|
|
}
|
|
|
|
void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr);
|
|
};
|
|
|
|
enum StringLiteralCheckType {
|
|
SLCT_NotALiteral,
|
|
SLCT_UncheckedLiteral,
|
|
SLCT_CheckedLiteral
|
|
};
|
|
|
|
} // namespace
|
|
|
|
static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend,
|
|
BinaryOperatorKind BinOpKind,
|
|
bool AddendIsRight) {
|
|
unsigned BitWidth = Offset.getBitWidth();
|
|
unsigned AddendBitWidth = Addend.getBitWidth();
|
|
// There might be negative interim results.
|
|
if (Addend.isUnsigned()) {
|
|
Addend = Addend.zext(++AddendBitWidth);
|
|
Addend.setIsSigned(true);
|
|
}
|
|
// Adjust the bit width of the APSInts.
|
|
if (AddendBitWidth > BitWidth) {
|
|
Offset = Offset.sext(AddendBitWidth);
|
|
BitWidth = AddendBitWidth;
|
|
} else if (BitWidth > AddendBitWidth) {
|
|
Addend = Addend.sext(BitWidth);
|
|
}
|
|
|
|
bool Ov = false;
|
|
llvm::APSInt ResOffset = Offset;
|
|
if (BinOpKind == BO_Add)
|
|
ResOffset = Offset.sadd_ov(Addend, Ov);
|
|
else {
|
|
assert(AddendIsRight && BinOpKind == BO_Sub &&
|
|
"operator must be add or sub with addend on the right");
|
|
ResOffset = Offset.ssub_ov(Addend, Ov);
|
|
}
|
|
|
|
// We add an offset to a pointer here so we should support an offset as big as
|
|
// possible.
|
|
if (Ov) {
|
|
assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 &&
|
|
"index (intermediate) result too big");
|
|
Offset = Offset.sext(2 * BitWidth);
|
|
sumOffsets(Offset, Addend, BinOpKind, AddendIsRight);
|
|
return;
|
|
}
|
|
|
|
Offset = ResOffset;
|
|
}
|
|
|
|
namespace {
|
|
|
|
// This is a wrapper class around StringLiteral to support offsetted string
|
|
// literals as format strings. It takes the offset into account when returning
|
|
// the string and its length or the source locations to display notes correctly.
|
|
class FormatStringLiteral {
|
|
const StringLiteral *FExpr;
|
|
int64_t Offset;
|
|
|
|
public:
|
|
FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0)
|
|
: FExpr(fexpr), Offset(Offset) {}
|
|
|
|
const StringLiteral *getFormatString() const { return FExpr; }
|
|
|
|
StringRef getString() const { return FExpr->getString().drop_front(Offset); }
|
|
|
|
unsigned getByteLength() const {
|
|
return FExpr->getByteLength() - getCharByteWidth() * Offset;
|
|
}
|
|
|
|
unsigned getLength() const { return FExpr->getLength() - Offset; }
|
|
unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); }
|
|
|
|
StringLiteralKind getKind() const { return FExpr->getKind(); }
|
|
|
|
QualType getType() const { return FExpr->getType(); }
|
|
|
|
bool isAscii() const { return FExpr->isOrdinary(); }
|
|
bool isWide() const { return FExpr->isWide(); }
|
|
bool isUTF8() const { return FExpr->isUTF8(); }
|
|
bool isUTF16() const { return FExpr->isUTF16(); }
|
|
bool isUTF32() const { return FExpr->isUTF32(); }
|
|
bool isPascal() const { return FExpr->isPascal(); }
|
|
|
|
SourceLocation getLocationOfByte(
|
|
unsigned ByteNo, const SourceManager &SM, const LangOptions &Features,
|
|
const TargetInfo &Target, unsigned *StartToken = nullptr,
|
|
unsigned *StartTokenByteOffset = nullptr) const {
|
|
return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target,
|
|
StartToken, StartTokenByteOffset);
|
|
}
|
|
|
|
SourceLocation getBeginLoc() const LLVM_READONLY {
|
|
return FExpr->getBeginLoc().getLocWithOffset(Offset);
|
|
}
|
|
|
|
SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); }
|
|
};
|
|
|
|
} // namespace
|
|
|
|
static void CheckFormatString(
|
|
Sema &S, const FormatStringLiteral *FExpr,
|
|
const StringLiteral *ReferenceFormatString, const Expr *OrigFormatExpr,
|
|
ArrayRef<const Expr *> Args, Sema::FormatArgumentPassingKind APK,
|
|
unsigned format_idx, unsigned firstDataArg, Sema::FormatStringType Type,
|
|
bool inFunctionCall, Sema::VariadicCallType CallType,
|
|
llvm::SmallBitVector &CheckedVarArgs, UncoveredArgHandler &UncoveredArg,
|
|
bool IgnoreStringsWithoutSpecifiers);
|
|
|
|
static const Expr *maybeConstEvalStringLiteral(ASTContext &Context,
|
|
const Expr *E);
|
|
|
|
// Determine if an expression is a string literal or constant string.
|
|
// If this function returns false on the arguments to a function expecting a
|
|
// format string, we will usually need to emit a warning.
|
|
// True string literals are then checked by CheckFormatString.
|
|
static StringLiteralCheckType checkFormatStringExpr(
|
|
Sema &S, const StringLiteral *ReferenceFormatString, const Expr *E,
|
|
ArrayRef<const Expr *> Args, Sema::FormatArgumentPassingKind APK,
|
|
unsigned format_idx, unsigned firstDataArg, Sema::FormatStringType Type,
|
|
Sema::VariadicCallType CallType, bool InFunctionCall,
|
|
llvm::SmallBitVector &CheckedVarArgs, UncoveredArgHandler &UncoveredArg,
|
|
llvm::APSInt Offset, bool IgnoreStringsWithoutSpecifiers = false) {
|
|
if (S.isConstantEvaluatedContext())
|
|
return SLCT_NotALiteral;
|
|
tryAgain:
|
|
assert(Offset.isSigned() && "invalid offset");
|
|
|
|
if (E->isTypeDependent() || E->isValueDependent())
|
|
return SLCT_NotALiteral;
|
|
|
|
E = E->IgnoreParenCasts();
|
|
|
|
if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
|
|
// Technically -Wformat-nonliteral does not warn about this case.
|
|
// The behavior of printf and friends in this case is implementation
|
|
// dependent. Ideally if the format string cannot be null then
|
|
// it should have a 'nonnull' attribute in the function prototype.
|
|
return SLCT_UncheckedLiteral;
|
|
|
|
switch (E->getStmtClass()) {
|
|
case Stmt::InitListExprClass:
|
|
// Handle expressions like {"foobar"}.
|
|
if (const clang::Expr *SLE = maybeConstEvalStringLiteral(S.Context, E)) {
|
|
return checkFormatStringExpr(
|
|
S, ReferenceFormatString, SLE, Args, APK, format_idx, firstDataArg,
|
|
Type, CallType, /*InFunctionCall*/ false, CheckedVarArgs,
|
|
UncoveredArg, Offset, IgnoreStringsWithoutSpecifiers);
|
|
}
|
|
return SLCT_NotALiteral;
|
|
case Stmt::BinaryConditionalOperatorClass:
|
|
case Stmt::ConditionalOperatorClass: {
|
|
// The expression is a literal if both sub-expressions were, and it was
|
|
// completely checked only if both sub-expressions were checked.
|
|
const AbstractConditionalOperator *C =
|
|
cast<AbstractConditionalOperator>(E);
|
|
|
|
// Determine whether it is necessary to check both sub-expressions, for
|
|
// example, because the condition expression is a constant that can be
|
|
// evaluated at compile time.
|
|
bool CheckLeft = true, CheckRight = true;
|
|
|
|
bool Cond;
|
|
if (C->getCond()->EvaluateAsBooleanCondition(
|
|
Cond, S.getASTContext(), S.isConstantEvaluatedContext())) {
|
|
if (Cond)
|
|
CheckRight = false;
|
|
else
|
|
CheckLeft = false;
|
|
}
|
|
|
|
// We need to maintain the offsets for the right and the left hand side
|
|
// separately to check if every possible indexed expression is a valid
|
|
// string literal. They might have different offsets for different string
|
|
// literals in the end.
|
|
StringLiteralCheckType Left;
|
|
if (!CheckLeft)
|
|
Left = SLCT_UncheckedLiteral;
|
|
else {
|
|
Left = checkFormatStringExpr(
|
|
S, ReferenceFormatString, C->getTrueExpr(), Args, APK, format_idx,
|
|
firstDataArg, Type, CallType, InFunctionCall, CheckedVarArgs,
|
|
UncoveredArg, Offset, IgnoreStringsWithoutSpecifiers);
|
|
if (Left == SLCT_NotALiteral || !CheckRight) {
|
|
return Left;
|
|
}
|
|
}
|
|
|
|
StringLiteralCheckType Right = checkFormatStringExpr(
|
|
S, ReferenceFormatString, C->getFalseExpr(), Args, APK, format_idx,
|
|
firstDataArg, Type, CallType, InFunctionCall, CheckedVarArgs,
|
|
UncoveredArg, Offset, IgnoreStringsWithoutSpecifiers);
|
|
|
|
return (CheckLeft && Left < Right) ? Left : Right;
|
|
}
|
|
|
|
case Stmt::ImplicitCastExprClass:
|
|
E = cast<ImplicitCastExpr>(E)->getSubExpr();
|
|
goto tryAgain;
|
|
|
|
case Stmt::OpaqueValueExprClass:
|
|
if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
|
|
E = src;
|
|
goto tryAgain;
|
|
}
|
|
return SLCT_NotALiteral;
|
|
|
|
case Stmt::PredefinedExprClass:
|
|
// While __func__, etc., are technically not string literals, they
|
|
// cannot contain format specifiers and thus are not a security
|
|
// liability.
|
|
return SLCT_UncheckedLiteral;
|
|
|
|
case Stmt::DeclRefExprClass: {
|
|
const DeclRefExpr *DR = cast<DeclRefExpr>(E);
|
|
|
|
// As an exception, do not flag errors for variables binding to
|
|
// const string literals.
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
|
|
bool isConstant = false;
|
|
QualType T = DR->getType();
|
|
|
|
if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
|
|
isConstant = AT->getElementType().isConstant(S.Context);
|
|
} else if (const PointerType *PT = T->getAs<PointerType>()) {
|
|
isConstant = T.isConstant(S.Context) &&
|
|
PT->getPointeeType().isConstant(S.Context);
|
|
} else if (T->isObjCObjectPointerType()) {
|
|
// In ObjC, there is usually no "const ObjectPointer" type,
|
|
// so don't check if the pointee type is constant.
|
|
isConstant = T.isConstant(S.Context);
|
|
}
|
|
|
|
if (isConstant) {
|
|
if (const Expr *Init = VD->getAnyInitializer()) {
|
|
// Look through initializers like const char c[] = { "foo" }
|
|
if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
|
|
if (InitList->isStringLiteralInit())
|
|
Init = InitList->getInit(0)->IgnoreParenImpCasts();
|
|
}
|
|
return checkFormatStringExpr(
|
|
S, ReferenceFormatString, Init, Args, APK, format_idx,
|
|
firstDataArg, Type, CallType,
|
|
/*InFunctionCall*/ false, CheckedVarArgs, UncoveredArg, Offset);
|
|
}
|
|
}
|
|
|
|
// When the format argument is an argument of this function, and this
|
|
// function also has the format attribute, there are several interactions
|
|
// for which there shouldn't be a warning. For instance, when calling
|
|
// v*printf from a function that has the printf format attribute, we
|
|
// should not emit a warning about using `fmt`, even though it's not
|
|
// constant, because the arguments have already been checked for the
|
|
// caller of `logmessage`:
|
|
//
|
|
// __attribute__((format(printf, 1, 2)))
|
|
// void logmessage(char const *fmt, ...) {
|
|
// va_list ap;
|
|
// va_start(ap, fmt);
|
|
// vprintf(fmt, ap); /* do not emit a warning about "fmt" */
|
|
// ...
|
|
// }
|
|
//
|
|
// Another interaction that we need to support is using a format string
|
|
// specified by the format_matches attribute:
|
|
//
|
|
// __attribute__((format_matches(printf, 1, "%s %d")))
|
|
// void logmessage(char const *fmt, const char *a, int b) {
|
|
// printf(fmt, a, b); /* do not emit a warning about "fmt" */
|
|
// printf(fmt, 123.4); /* emit warnings that "%s %d" is incompatible */
|
|
// ...
|
|
// }
|
|
//
|
|
// Yet another interaction that we need to support is calling a variadic
|
|
// format function from a format function that has fixed arguments. For
|
|
// instance:
|
|
//
|
|
// __attribute__((format(printf, 1, 2)))
|
|
// void logstring(char const *fmt, char const *str) {
|
|
// printf(fmt, str); /* do not emit a warning about "fmt" */
|
|
// }
|
|
//
|
|
// Same (and perhaps more relatably) for the variadic template case:
|
|
//
|
|
// template<typename... Args>
|
|
// __attribute__((format(printf, 1, 2)))
|
|
// void log(const char *fmt, Args&&... args) {
|
|
// printf(fmt, forward<Args>(args)...);
|
|
// /* do not emit a warning about "fmt" */
|
|
// }
|
|
//
|
|
// Due to implementation difficulty, we only check the format, not the
|
|
// format arguments, in all cases.
|
|
//
|
|
if (const auto *PV = dyn_cast<ParmVarDecl>(VD)) {
|
|
if (const auto *D = dyn_cast<Decl>(PV->getDeclContext())) {
|
|
for (const auto *PVFormatMatches :
|
|
D->specific_attrs<FormatMatchesAttr>()) {
|
|
Sema::FormatStringInfo CalleeFSI;
|
|
if (!Sema::getFormatStringInfo(D, PVFormatMatches->getFormatIdx(),
|
|
0, &CalleeFSI))
|
|
continue;
|
|
if (PV->getFunctionScopeIndex() == CalleeFSI.FormatIdx) {
|
|
// If using the wrong type of format string, emit a diagnostic
|
|
// here and stop checking to avoid irrelevant diagnostics.
|
|
if (Type != S.GetFormatStringType(PVFormatMatches)) {
|
|
S.Diag(Args[format_idx]->getBeginLoc(),
|
|
diag::warn_format_string_type_incompatible)
|
|
<< PVFormatMatches->getType()->getName()
|
|
<< S.GetFormatStringTypeName(Type);
|
|
if (!InFunctionCall) {
|
|
S.Diag(PVFormatMatches->getFormatString()->getBeginLoc(),
|
|
diag::note_format_string_defined);
|
|
}
|
|
return SLCT_UncheckedLiteral;
|
|
}
|
|
return checkFormatStringExpr(
|
|
S, ReferenceFormatString, PVFormatMatches->getFormatString(),
|
|
Args, APK, format_idx, firstDataArg, Type, CallType,
|
|
/*InFunctionCall*/ false, CheckedVarArgs, UncoveredArg,
|
|
Offset, IgnoreStringsWithoutSpecifiers);
|
|
}
|
|
}
|
|
|
|
for (const auto *PVFormat : D->specific_attrs<FormatAttr>()) {
|
|
Sema::FormatStringInfo CallerFSI;
|
|
if (!Sema::getFormatStringInfo(D, PVFormat->getFormatIdx(),
|
|
PVFormat->getFirstArg(), &CallerFSI))
|
|
continue;
|
|
if (PV->getFunctionScopeIndex() == CallerFSI.FormatIdx) {
|
|
// We also check if the formats are compatible.
|
|
// We can't pass a 'scanf' string to a 'printf' function.
|
|
if (Type != S.GetFormatStringType(PVFormat)) {
|
|
S.Diag(Args[format_idx]->getBeginLoc(),
|
|
diag::warn_format_string_type_incompatible)
|
|
<< PVFormat->getType()->getName()
|
|
<< S.GetFormatStringTypeName(Type);
|
|
if (!InFunctionCall) {
|
|
S.Diag(E->getBeginLoc(), diag::note_format_string_defined);
|
|
}
|
|
return SLCT_UncheckedLiteral;
|
|
}
|
|
// Lastly, check that argument passing kinds transition in a
|
|
// way that makes sense:
|
|
// from a caller with FAPK_VAList, allow FAPK_VAList
|
|
// from a caller with FAPK_Fixed, allow FAPK_Fixed
|
|
// from a caller with FAPK_Fixed, allow FAPK_Variadic
|
|
// from a caller with FAPK_Variadic, allow FAPK_VAList
|
|
switch (combineFAPK(CallerFSI.ArgPassingKind, APK)) {
|
|
case combineFAPK(Sema::FAPK_VAList, Sema::FAPK_VAList):
|
|
case combineFAPK(Sema::FAPK_Fixed, Sema::FAPK_Fixed):
|
|
case combineFAPK(Sema::FAPK_Fixed, Sema::FAPK_Variadic):
|
|
case combineFAPK(Sema::FAPK_Variadic, Sema::FAPK_VAList):
|
|
return SLCT_UncheckedLiteral;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return SLCT_NotALiteral;
|
|
}
|
|
|
|
case Stmt::CallExprClass:
|
|
case Stmt::CXXMemberCallExprClass: {
|
|
const CallExpr *CE = cast<CallExpr>(E);
|
|
if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
|
|
bool IsFirst = true;
|
|
StringLiteralCheckType CommonResult;
|
|
for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) {
|
|
const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex());
|
|
StringLiteralCheckType Result = checkFormatStringExpr(
|
|
S, ReferenceFormatString, Arg, Args, APK, format_idx, firstDataArg,
|
|
Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg,
|
|
Offset, IgnoreStringsWithoutSpecifiers);
|
|
if (IsFirst) {
|
|
CommonResult = Result;
|
|
IsFirst = false;
|
|
}
|
|
}
|
|
if (!IsFirst)
|
|
return CommonResult;
|
|
|
|
if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
|
|
unsigned BuiltinID = FD->getBuiltinID();
|
|
if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
|
|
BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
|
|
const Expr *Arg = CE->getArg(0);
|
|
return checkFormatStringExpr(
|
|
S, ReferenceFormatString, Arg, Args, APK, format_idx,
|
|
firstDataArg, Type, CallType, InFunctionCall, CheckedVarArgs,
|
|
UncoveredArg, Offset, IgnoreStringsWithoutSpecifiers);
|
|
}
|
|
}
|
|
}
|
|
if (const Expr *SLE = maybeConstEvalStringLiteral(S.Context, E))
|
|
return checkFormatStringExpr(
|
|
S, ReferenceFormatString, SLE, Args, APK, format_idx, firstDataArg,
|
|
Type, CallType, /*InFunctionCall*/ false, CheckedVarArgs,
|
|
UncoveredArg, Offset, IgnoreStringsWithoutSpecifiers);
|
|
return SLCT_NotALiteral;
|
|
}
|
|
case Stmt::ObjCMessageExprClass: {
|
|
const auto *ME = cast<ObjCMessageExpr>(E);
|
|
if (const auto *MD = ME->getMethodDecl()) {
|
|
if (const auto *FA = MD->getAttr<FormatArgAttr>()) {
|
|
// As a special case heuristic, if we're using the method -[NSBundle
|
|
// localizedStringForKey:value:table:], ignore any key strings that lack
|
|
// format specifiers. The idea is that if the key doesn't have any
|
|
// format specifiers then its probably just a key to map to the
|
|
// localized strings. If it does have format specifiers though, then its
|
|
// likely that the text of the key is the format string in the
|
|
// programmer's language, and should be checked.
|
|
const ObjCInterfaceDecl *IFace;
|
|
if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) &&
|
|
IFace->getIdentifier()->isStr("NSBundle") &&
|
|
MD->getSelector().isKeywordSelector(
|
|
{"localizedStringForKey", "value", "table"})) {
|
|
IgnoreStringsWithoutSpecifiers = true;
|
|
}
|
|
|
|
const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex());
|
|
return checkFormatStringExpr(
|
|
S, ReferenceFormatString, Arg, Args, APK, format_idx, firstDataArg,
|
|
Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg,
|
|
Offset, IgnoreStringsWithoutSpecifiers);
|
|
}
|
|
}
|
|
|
|
return SLCT_NotALiteral;
|
|
}
|
|
case Stmt::ObjCStringLiteralClass:
|
|
case Stmt::StringLiteralClass: {
|
|
const StringLiteral *StrE = nullptr;
|
|
|
|
if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
|
|
StrE = ObjCFExpr->getString();
|
|
else
|
|
StrE = cast<StringLiteral>(E);
|
|
|
|
if (StrE) {
|
|
if (Offset.isNegative() || Offset > StrE->getLength()) {
|
|
// TODO: It would be better to have an explicit warning for out of
|
|
// bounds literals.
|
|
return SLCT_NotALiteral;
|
|
}
|
|
FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue());
|
|
CheckFormatString(S, &FStr, ReferenceFormatString, E, Args, APK,
|
|
format_idx, firstDataArg, Type, InFunctionCall,
|
|
CallType, CheckedVarArgs, UncoveredArg,
|
|
IgnoreStringsWithoutSpecifiers);
|
|
return SLCT_CheckedLiteral;
|
|
}
|
|
|
|
return SLCT_NotALiteral;
|
|
}
|
|
case Stmt::BinaryOperatorClass: {
|
|
const BinaryOperator *BinOp = cast<BinaryOperator>(E);
|
|
|
|
// A string literal + an int offset is still a string literal.
|
|
if (BinOp->isAdditiveOp()) {
|
|
Expr::EvalResult LResult, RResult;
|
|
|
|
bool LIsInt = BinOp->getLHS()->EvaluateAsInt(
|
|
LResult, S.Context, Expr::SE_NoSideEffects,
|
|
S.isConstantEvaluatedContext());
|
|
bool RIsInt = BinOp->getRHS()->EvaluateAsInt(
|
|
RResult, S.Context, Expr::SE_NoSideEffects,
|
|
S.isConstantEvaluatedContext());
|
|
|
|
if (LIsInt != RIsInt) {
|
|
BinaryOperatorKind BinOpKind = BinOp->getOpcode();
|
|
|
|
if (LIsInt) {
|
|
if (BinOpKind == BO_Add) {
|
|
sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt);
|
|
E = BinOp->getRHS();
|
|
goto tryAgain;
|
|
}
|
|
} else {
|
|
sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt);
|
|
E = BinOp->getLHS();
|
|
goto tryAgain;
|
|
}
|
|
}
|
|
}
|
|
|
|
return SLCT_NotALiteral;
|
|
}
|
|
case Stmt::UnaryOperatorClass: {
|
|
const UnaryOperator *UnaOp = cast<UnaryOperator>(E);
|
|
auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr());
|
|
if (UnaOp->getOpcode() == UO_AddrOf && ASE) {
|
|
Expr::EvalResult IndexResult;
|
|
if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context,
|
|
Expr::SE_NoSideEffects,
|
|
S.isConstantEvaluatedContext())) {
|
|
sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add,
|
|
/*RHS is int*/ true);
|
|
E = ASE->getBase();
|
|
goto tryAgain;
|
|
}
|
|
}
|
|
|
|
return SLCT_NotALiteral;
|
|
}
|
|
|
|
default:
|
|
return SLCT_NotALiteral;
|
|
}
|
|
}
|
|
|
|
// If this expression can be evaluated at compile-time,
|
|
// check if the result is a StringLiteral and return it
|
|
// otherwise return nullptr
|
|
static const Expr *maybeConstEvalStringLiteral(ASTContext &Context,
|
|
const Expr *E) {
|
|
Expr::EvalResult Result;
|
|
if (E->EvaluateAsRValue(Result, Context) && Result.Val.isLValue()) {
|
|
const auto *LVE = Result.Val.getLValueBase().dyn_cast<const Expr *>();
|
|
if (isa_and_nonnull<StringLiteral>(LVE))
|
|
return LVE;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
StringRef Sema::GetFormatStringTypeName(Sema::FormatStringType FST) {
|
|
switch (FST) {
|
|
case FST_Scanf:
|
|
return "scanf";
|
|
case FST_Printf:
|
|
return "printf";
|
|
case FST_NSString:
|
|
return "NSString";
|
|
case FST_Strftime:
|
|
return "strftime";
|
|
case FST_Strfmon:
|
|
return "strfmon";
|
|
case FST_Kprintf:
|
|
return "kprintf";
|
|
case FST_FreeBSDKPrintf:
|
|
return "freebsd_kprintf";
|
|
case FST_OSLog:
|
|
return "os_log";
|
|
default:
|
|
return "<unknown>";
|
|
}
|
|
}
|
|
|
|
Sema::FormatStringType Sema::GetFormatStringType(StringRef Flavor) {
|
|
return llvm::StringSwitch<FormatStringType>(Flavor)
|
|
.Case("scanf", FST_Scanf)
|
|
.Cases("printf", "printf0", "syslog", FST_Printf)
|
|
.Cases("NSString", "CFString", FST_NSString)
|
|
.Case("strftime", FST_Strftime)
|
|
.Case("strfmon", FST_Strfmon)
|
|
.Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
|
|
.Case("freebsd_kprintf", FST_FreeBSDKPrintf)
|
|
.Case("os_trace", FST_OSLog)
|
|
.Case("os_log", FST_OSLog)
|
|
.Default(FST_Unknown);
|
|
}
|
|
|
|
Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
|
|
return GetFormatStringType(Format->getType()->getName());
|
|
}
|
|
|
|
Sema::FormatStringType
|
|
Sema::GetFormatStringType(const FormatMatchesAttr *Format) {
|
|
return GetFormatStringType(Format->getType()->getName());
|
|
}
|
|
|
|
bool Sema::CheckFormatArguments(const FormatAttr *Format,
|
|
ArrayRef<const Expr *> Args, bool IsCXXMember,
|
|
VariadicCallType CallType, SourceLocation Loc,
|
|
SourceRange Range,
|
|
llvm::SmallBitVector &CheckedVarArgs) {
|
|
FormatStringInfo FSI;
|
|
if (getFormatStringInfo(Format->getFormatIdx(), Format->getFirstArg(),
|
|
IsCXXMember, CallType != VariadicDoesNotApply, &FSI))
|
|
return CheckFormatArguments(
|
|
Args, FSI.ArgPassingKind, nullptr, FSI.FormatIdx, FSI.FirstDataArg,
|
|
GetFormatStringType(Format), CallType, Loc, Range, CheckedVarArgs);
|
|
return false;
|
|
}
|
|
|
|
bool Sema::CheckFormatString(const FormatMatchesAttr *Format,
|
|
ArrayRef<const Expr *> Args, bool IsCXXMember,
|
|
VariadicCallType CallType, SourceLocation Loc,
|
|
SourceRange Range,
|
|
llvm::SmallBitVector &CheckedVarArgs) {
|
|
FormatStringInfo FSI;
|
|
if (getFormatStringInfo(Format->getFormatIdx(), 0, IsCXXMember, false,
|
|
&FSI)) {
|
|
FSI.ArgPassingKind = Sema::FAPK_Elsewhere;
|
|
return CheckFormatArguments(Args, FSI.ArgPassingKind,
|
|
Format->getFormatString(), FSI.FormatIdx,
|
|
FSI.FirstDataArg, GetFormatStringType(Format),
|
|
CallType, Loc, Range, CheckedVarArgs);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
|
|
Sema::FormatArgumentPassingKind APK,
|
|
const StringLiteral *ReferenceFormatString,
|
|
unsigned format_idx, unsigned firstDataArg,
|
|
FormatStringType Type,
|
|
VariadicCallType CallType, SourceLocation Loc,
|
|
SourceRange Range,
|
|
llvm::SmallBitVector &CheckedVarArgs) {
|
|
// CHECK: printf/scanf-like function is called with no format string.
|
|
if (format_idx >= Args.size()) {
|
|
Diag(Loc, diag::warn_missing_format_string) << Range;
|
|
return false;
|
|
}
|
|
|
|
const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
|
|
|
|
// CHECK: format string is not a string literal.
|
|
//
|
|
// Dynamically generated format strings are difficult to
|
|
// automatically vet at compile time. Requiring that format strings
|
|
// are string literals: (1) permits the checking of format strings by
|
|
// the compiler and thereby (2) can practically remove the source of
|
|
// many format string exploits.
|
|
|
|
// Format string can be either ObjC string (e.g. @"%d") or
|
|
// C string (e.g. "%d")
|
|
// ObjC string uses the same format specifiers as C string, so we can use
|
|
// the same format string checking logic for both ObjC and C strings.
|
|
UncoveredArgHandler UncoveredArg;
|
|
StringLiteralCheckType CT = checkFormatStringExpr(
|
|
*this, ReferenceFormatString, OrigFormatExpr, Args, APK, format_idx,
|
|
firstDataArg, Type, CallType,
|
|
/*IsFunctionCall*/ true, CheckedVarArgs, UncoveredArg,
|
|
/*no string offset*/ llvm::APSInt(64, false) = 0);
|
|
|
|
// Generate a diagnostic where an uncovered argument is detected.
|
|
if (UncoveredArg.hasUncoveredArg()) {
|
|
unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg;
|
|
assert(ArgIdx < Args.size() && "ArgIdx outside bounds");
|
|
UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]);
|
|
}
|
|
|
|
if (CT != SLCT_NotALiteral)
|
|
// Literal format string found, check done!
|
|
return CT == SLCT_CheckedLiteral;
|
|
|
|
// Strftime is particular as it always uses a single 'time' argument,
|
|
// so it is safe to pass a non-literal string.
|
|
if (Type == FST_Strftime)
|
|
return false;
|
|
|
|
// Do not emit diag when the string param is a macro expansion and the
|
|
// format is either NSString or CFString. This is a hack to prevent
|
|
// diag when using the NSLocalizedString and CFCopyLocalizedString macros
|
|
// which are usually used in place of NS and CF string literals.
|
|
SourceLocation FormatLoc = Args[format_idx]->getBeginLoc();
|
|
if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc))
|
|
return false;
|
|
|
|
// If there are no arguments specified, warn with -Wformat-security, otherwise
|
|
// warn only with -Wformat-nonliteral.
|
|
if (Args.size() == firstDataArg) {
|
|
Diag(FormatLoc, diag::warn_format_nonliteral_noargs)
|
|
<< OrigFormatExpr->getSourceRange();
|
|
switch (Type) {
|
|
default:
|
|
break;
|
|
case FST_Kprintf:
|
|
case FST_FreeBSDKPrintf:
|
|
case FST_Printf:
|
|
case FST_Syslog:
|
|
Diag(FormatLoc, diag::note_format_security_fixit)
|
|
<< FixItHint::CreateInsertion(FormatLoc, "\"%s\", ");
|
|
break;
|
|
case FST_NSString:
|
|
Diag(FormatLoc, diag::note_format_security_fixit)
|
|
<< FixItHint::CreateInsertion(FormatLoc, "@\"%@\", ");
|
|
break;
|
|
}
|
|
} else {
|
|
Diag(FormatLoc, diag::warn_format_nonliteral)
|
|
<< OrigFormatExpr->getSourceRange();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
|
|
class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
|
|
protected:
|
|
Sema &S;
|
|
const FormatStringLiteral *FExpr;
|
|
const Expr *OrigFormatExpr;
|
|
const Sema::FormatStringType FSType;
|
|
const unsigned FirstDataArg;
|
|
const unsigned NumDataArgs;
|
|
const char *Beg; // Start of format string.
|
|
const Sema::FormatArgumentPassingKind ArgPassingKind;
|
|
ArrayRef<const Expr *> Args;
|
|
unsigned FormatIdx;
|
|
llvm::SmallBitVector CoveredArgs;
|
|
bool usesPositionalArgs = false;
|
|
bool atFirstArg = true;
|
|
bool inFunctionCall;
|
|
Sema::VariadicCallType CallType;
|
|
llvm::SmallBitVector &CheckedVarArgs;
|
|
UncoveredArgHandler &UncoveredArg;
|
|
|
|
public:
|
|
CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr,
|
|
const Expr *origFormatExpr,
|
|
const Sema::FormatStringType type, unsigned firstDataArg,
|
|
unsigned numDataArgs, const char *beg,
|
|
Sema::FormatArgumentPassingKind APK,
|
|
ArrayRef<const Expr *> Args, unsigned formatIdx,
|
|
bool inFunctionCall, Sema::VariadicCallType callType,
|
|
llvm::SmallBitVector &CheckedVarArgs,
|
|
UncoveredArgHandler &UncoveredArg)
|
|
: S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type),
|
|
FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg),
|
|
ArgPassingKind(APK), Args(Args), FormatIdx(formatIdx),
|
|
inFunctionCall(inFunctionCall), CallType(callType),
|
|
CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) {
|
|
CoveredArgs.resize(numDataArgs);
|
|
CoveredArgs.reset();
|
|
}
|
|
|
|
bool HasFormatArguments() const {
|
|
return ArgPassingKind == Sema::FAPK_Fixed ||
|
|
ArgPassingKind == Sema::FAPK_Variadic;
|
|
}
|
|
|
|
void DoneProcessing();
|
|
|
|
void HandleIncompleteSpecifier(const char *startSpecifier,
|
|
unsigned specifierLen) override;
|
|
|
|
void HandleInvalidLengthModifier(
|
|
const analyze_format_string::FormatSpecifier &FS,
|
|
const analyze_format_string::ConversionSpecifier &CS,
|
|
const char *startSpecifier, unsigned specifierLen,
|
|
unsigned DiagID);
|
|
|
|
void HandleNonStandardLengthModifier(
|
|
const analyze_format_string::FormatSpecifier &FS,
|
|
const char *startSpecifier, unsigned specifierLen);
|
|
|
|
void HandleNonStandardConversionSpecifier(
|
|
const analyze_format_string::ConversionSpecifier &CS,
|
|
const char *startSpecifier, unsigned specifierLen);
|
|
|
|
void HandlePosition(const char *startPos, unsigned posLen) override;
|
|
|
|
void HandleInvalidPosition(const char *startSpecifier,
|
|
unsigned specifierLen,
|
|
analyze_format_string::PositionContext p) override;
|
|
|
|
void HandleZeroPosition(const char *startPos, unsigned posLen) override;
|
|
|
|
void HandleNullChar(const char *nullCharacter) override;
|
|
|
|
template <typename Range>
|
|
static void
|
|
EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr,
|
|
const PartialDiagnostic &PDiag, SourceLocation StringLoc,
|
|
bool IsStringLocation, Range StringRange,
|
|
ArrayRef<FixItHint> Fixit = {});
|
|
|
|
protected:
|
|
bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
|
|
const char *startSpec,
|
|
unsigned specifierLen,
|
|
const char *csStart, unsigned csLen);
|
|
|
|
void HandlePositionalNonpositionalArgs(SourceLocation Loc,
|
|
const char *startSpec,
|
|
unsigned specifierLen);
|
|
|
|
SourceRange getFormatStringRange();
|
|
CharSourceRange getSpecifierRange(const char *startSpecifier,
|
|
unsigned specifierLen);
|
|
SourceLocation getLocationOfByte(const char *x);
|
|
|
|
const Expr *getDataArg(unsigned i) const;
|
|
|
|
bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
|
|
const analyze_format_string::ConversionSpecifier &CS,
|
|
const char *startSpecifier, unsigned specifierLen,
|
|
unsigned argIndex);
|
|
|
|
template <typename Range>
|
|
void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
|
|
bool IsStringLocation, Range StringRange,
|
|
ArrayRef<FixItHint> Fixit = {});
|
|
};
|
|
|
|
} // namespace
|
|
|
|
SourceRange CheckFormatHandler::getFormatStringRange() {
|
|
return OrigFormatExpr->getSourceRange();
|
|
}
|
|
|
|
CharSourceRange CheckFormatHandler::
|
|
getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
|
|
SourceLocation Start = getLocationOfByte(startSpecifier);
|
|
SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1);
|
|
|
|
// Advance the end SourceLocation by one due to half-open ranges.
|
|
End = End.getLocWithOffset(1);
|
|
|
|
return CharSourceRange::getCharRange(Start, End);
|
|
}
|
|
|
|
SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
|
|
return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(),
|
|
S.getLangOpts(), S.Context.getTargetInfo());
|
|
}
|
|
|
|
void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
|
|
unsigned specifierLen){
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
|
|
getLocationOfByte(startSpecifier),
|
|
/*IsStringLocation*/true,
|
|
getSpecifierRange(startSpecifier, specifierLen));
|
|
}
|
|
|
|
void CheckFormatHandler::HandleInvalidLengthModifier(
|
|
const analyze_format_string::FormatSpecifier &FS,
|
|
const analyze_format_string::ConversionSpecifier &CS,
|
|
const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
|
|
using namespace analyze_format_string;
|
|
|
|
const LengthModifier &LM = FS.getLengthModifier();
|
|
CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
|
|
|
|
// See if we know how to fix this length modifier.
|
|
std::optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
|
|
if (FixedLM) {
|
|
EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
|
|
getLocationOfByte(LM.getStart()),
|
|
/*IsStringLocation*/true,
|
|
getSpecifierRange(startSpecifier, specifierLen));
|
|
|
|
S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
|
|
<< FixedLM->toString()
|
|
<< FixItHint::CreateReplacement(LMRange, FixedLM->toString());
|
|
|
|
} else {
|
|
FixItHint Hint;
|
|
if (DiagID == diag::warn_format_nonsensical_length)
|
|
Hint = FixItHint::CreateRemoval(LMRange);
|
|
|
|
EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
|
|
getLocationOfByte(LM.getStart()),
|
|
/*IsStringLocation*/true,
|
|
getSpecifierRange(startSpecifier, specifierLen),
|
|
Hint);
|
|
}
|
|
}
|
|
|
|
void CheckFormatHandler::HandleNonStandardLengthModifier(
|
|
const analyze_format_string::FormatSpecifier &FS,
|
|
const char *startSpecifier, unsigned specifierLen) {
|
|
using namespace analyze_format_string;
|
|
|
|
const LengthModifier &LM = FS.getLengthModifier();
|
|
CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
|
|
|
|
// See if we know how to fix this length modifier.
|
|
std::optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
|
|
if (FixedLM) {
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
|
|
<< LM.toString() << 0,
|
|
getLocationOfByte(LM.getStart()),
|
|
/*IsStringLocation*/true,
|
|
getSpecifierRange(startSpecifier, specifierLen));
|
|
|
|
S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
|
|
<< FixedLM->toString()
|
|
<< FixItHint::CreateReplacement(LMRange, FixedLM->toString());
|
|
|
|
} else {
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
|
|
<< LM.toString() << 0,
|
|
getLocationOfByte(LM.getStart()),
|
|
/*IsStringLocation*/true,
|
|
getSpecifierRange(startSpecifier, specifierLen));
|
|
}
|
|
}
|
|
|
|
void CheckFormatHandler::HandleNonStandardConversionSpecifier(
|
|
const analyze_format_string::ConversionSpecifier &CS,
|
|
const char *startSpecifier, unsigned specifierLen) {
|
|
using namespace analyze_format_string;
|
|
|
|
// See if we know how to fix this conversion specifier.
|
|
std::optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
|
|
if (FixedCS) {
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
|
|
<< CS.toString() << /*conversion specifier*/1,
|
|
getLocationOfByte(CS.getStart()),
|
|
/*IsStringLocation*/true,
|
|
getSpecifierRange(startSpecifier, specifierLen));
|
|
|
|
CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
|
|
S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
|
|
<< FixedCS->toString()
|
|
<< FixItHint::CreateReplacement(CSRange, FixedCS->toString());
|
|
} else {
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
|
|
<< CS.toString() << /*conversion specifier*/1,
|
|
getLocationOfByte(CS.getStart()),
|
|
/*IsStringLocation*/true,
|
|
getSpecifierRange(startSpecifier, specifierLen));
|
|
}
|
|
}
|
|
|
|
void CheckFormatHandler::HandlePosition(const char *startPos,
|
|
unsigned posLen) {
|
|
if (!S.getDiagnostics().isIgnored(
|
|
diag::warn_format_non_standard_positional_arg, SourceLocation()))
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
|
|
getLocationOfByte(startPos),
|
|
/*IsStringLocation*/ true,
|
|
getSpecifierRange(startPos, posLen));
|
|
}
|
|
|
|
void CheckFormatHandler::HandleInvalidPosition(
|
|
const char *startSpecifier, unsigned specifierLen,
|
|
analyze_format_string::PositionContext p) {
|
|
if (!S.getDiagnostics().isIgnored(
|
|
diag::warn_format_invalid_positional_specifier, SourceLocation()))
|
|
EmitFormatDiagnostic(
|
|
S.PDiag(diag::warn_format_invalid_positional_specifier) << (unsigned)p,
|
|
getLocationOfByte(startSpecifier), /*IsStringLocation*/ true,
|
|
getSpecifierRange(startSpecifier, specifierLen));
|
|
}
|
|
|
|
void CheckFormatHandler::HandleZeroPosition(const char *startPos,
|
|
unsigned posLen) {
|
|
if (!S.getDiagnostics().isIgnored(diag::warn_format_zero_positional_specifier,
|
|
SourceLocation()))
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
|
|
getLocationOfByte(startPos),
|
|
/*IsStringLocation*/ true,
|
|
getSpecifierRange(startPos, posLen));
|
|
}
|
|
|
|
void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
|
|
if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
|
|
// The presence of a null character is likely an error.
|
|
EmitFormatDiagnostic(
|
|
S.PDiag(diag::warn_printf_format_string_contains_null_char),
|
|
getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
|
|
getFormatStringRange());
|
|
}
|
|
}
|
|
|
|
// Note that this may return NULL if there was an error parsing or building
|
|
// one of the argument expressions.
|
|
const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
|
|
return Args[FirstDataArg + i];
|
|
}
|
|
|
|
void CheckFormatHandler::DoneProcessing() {
|
|
// Does the number of data arguments exceed the number of
|
|
// format conversions in the format string?
|
|
if (HasFormatArguments()) {
|
|
// Find any arguments that weren't covered.
|
|
CoveredArgs.flip();
|
|
signed notCoveredArg = CoveredArgs.find_first();
|
|
if (notCoveredArg >= 0) {
|
|
assert((unsigned)notCoveredArg < NumDataArgs);
|
|
UncoveredArg.Update(notCoveredArg, OrigFormatExpr);
|
|
} else {
|
|
UncoveredArg.setAllCovered();
|
|
}
|
|
}
|
|
}
|
|
|
|
void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall,
|
|
const Expr *ArgExpr) {
|
|
assert(hasUncoveredArg() && !DiagnosticExprs.empty() &&
|
|
"Invalid state");
|
|
|
|
if (!ArgExpr)
|
|
return;
|
|
|
|
SourceLocation Loc = ArgExpr->getBeginLoc();
|
|
|
|
if (S.getSourceManager().isInSystemMacro(Loc))
|
|
return;
|
|
|
|
PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used);
|
|
for (auto E : DiagnosticExprs)
|
|
PDiag << E->getSourceRange();
|
|
|
|
CheckFormatHandler::EmitFormatDiagnostic(
|
|
S, IsFunctionCall, DiagnosticExprs[0],
|
|
PDiag, Loc, /*IsStringLocation*/false,
|
|
DiagnosticExprs[0]->getSourceRange());
|
|
}
|
|
|
|
bool
|
|
CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
|
|
SourceLocation Loc,
|
|
const char *startSpec,
|
|
unsigned specifierLen,
|
|
const char *csStart,
|
|
unsigned csLen) {
|
|
bool keepGoing = true;
|
|
if (argIndex < NumDataArgs) {
|
|
// Consider the argument coverered, even though the specifier doesn't
|
|
// make sense.
|
|
CoveredArgs.set(argIndex);
|
|
}
|
|
else {
|
|
// If argIndex exceeds the number of data arguments we
|
|
// don't issue a warning because that is just a cascade of warnings (and
|
|
// they may have intended '%%' anyway). We don't want to continue processing
|
|
// the format string after this point, however, as we will like just get
|
|
// gibberish when trying to match arguments.
|
|
keepGoing = false;
|
|
}
|
|
|
|
StringRef Specifier(csStart, csLen);
|
|
|
|
// If the specifier in non-printable, it could be the first byte of a UTF-8
|
|
// sequence. In that case, print the UTF-8 code point. If not, print the byte
|
|
// hex value.
|
|
std::string CodePointStr;
|
|
if (!llvm::sys::locale::isPrint(*csStart)) {
|
|
llvm::UTF32 CodePoint;
|
|
const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart);
|
|
const llvm::UTF8 *E =
|
|
reinterpret_cast<const llvm::UTF8 *>(csStart + csLen);
|
|
llvm::ConversionResult Result =
|
|
llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion);
|
|
|
|
if (Result != llvm::conversionOK) {
|
|
unsigned char FirstChar = *csStart;
|
|
CodePoint = (llvm::UTF32)FirstChar;
|
|
}
|
|
|
|
llvm::raw_string_ostream OS(CodePointStr);
|
|
if (CodePoint < 256)
|
|
OS << "\\x" << llvm::format("%02x", CodePoint);
|
|
else if (CodePoint <= 0xFFFF)
|
|
OS << "\\u" << llvm::format("%04x", CodePoint);
|
|
else
|
|
OS << "\\U" << llvm::format("%08x", CodePoint);
|
|
Specifier = CodePointStr;
|
|
}
|
|
|
|
EmitFormatDiagnostic(
|
|
S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc,
|
|
/*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen));
|
|
|
|
return keepGoing;
|
|
}
|
|
|
|
void
|
|
CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
|
|
const char *startSpec,
|
|
unsigned specifierLen) {
|
|
EmitFormatDiagnostic(
|
|
S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
|
|
Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
|
|
}
|
|
|
|
bool
|
|
CheckFormatHandler::CheckNumArgs(
|
|
const analyze_format_string::FormatSpecifier &FS,
|
|
const analyze_format_string::ConversionSpecifier &CS,
|
|
const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
|
|
|
|
if (HasFormatArguments() && argIndex >= NumDataArgs) {
|
|
PartialDiagnostic PDiag = FS.usesPositionalArg()
|
|
? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
|
|
<< (argIndex+1) << NumDataArgs)
|
|
: S.PDiag(diag::warn_printf_insufficient_data_args);
|
|
EmitFormatDiagnostic(
|
|
PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
|
|
getSpecifierRange(startSpecifier, specifierLen));
|
|
|
|
// Since more arguments than conversion tokens are given, by extension
|
|
// all arguments are covered, so mark this as so.
|
|
UncoveredArg.setAllCovered();
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template<typename Range>
|
|
void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
|
|
SourceLocation Loc,
|
|
bool IsStringLocation,
|
|
Range StringRange,
|
|
ArrayRef<FixItHint> FixIt) {
|
|
EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
|
|
Loc, IsStringLocation, StringRange, FixIt);
|
|
}
|
|
|
|
/// If the format string is not within the function call, emit a note
|
|
/// so that the function call and string are in diagnostic messages.
|
|
///
|
|
/// \param InFunctionCall if true, the format string is within the function
|
|
/// call and only one diagnostic message will be produced. Otherwise, an
|
|
/// extra note will be emitted pointing to location of the format string.
|
|
///
|
|
/// \param ArgumentExpr the expression that is passed as the format string
|
|
/// argument in the function call. Used for getting locations when two
|
|
/// diagnostics are emitted.
|
|
///
|
|
/// \param PDiag the callee should already have provided any strings for the
|
|
/// diagnostic message. This function only adds locations and fixits
|
|
/// to diagnostics.
|
|
///
|
|
/// \param Loc primary location for diagnostic. If two diagnostics are
|
|
/// required, one will be at Loc and a new SourceLocation will be created for
|
|
/// the other one.
|
|
///
|
|
/// \param IsStringLocation if true, Loc points to the format string should be
|
|
/// used for the note. Otherwise, Loc points to the argument list and will
|
|
/// be used with PDiag.
|
|
///
|
|
/// \param StringRange some or all of the string to highlight. This is
|
|
/// templated so it can accept either a CharSourceRange or a SourceRange.
|
|
///
|
|
/// \param FixIt optional fix it hint for the format string.
|
|
template <typename Range>
|
|
void CheckFormatHandler::EmitFormatDiagnostic(
|
|
Sema &S, bool InFunctionCall, const Expr *ArgumentExpr,
|
|
const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation,
|
|
Range StringRange, ArrayRef<FixItHint> FixIt) {
|
|
if (InFunctionCall) {
|
|
const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
|
|
D << StringRange;
|
|
D << FixIt;
|
|
} else {
|
|
S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
|
|
<< ArgumentExpr->getSourceRange();
|
|
|
|
const Sema::SemaDiagnosticBuilder &Note =
|
|
S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
|
|
diag::note_format_string_defined);
|
|
|
|
Note << StringRange;
|
|
Note << FixIt;
|
|
}
|
|
}
|
|
|
|
//===--- CHECK: Printf format string checking -----------------------------===//
|
|
|
|
namespace {
|
|
|
|
class CheckPrintfHandler : public CheckFormatHandler {
|
|
public:
|
|
CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr,
|
|
const Expr *origFormatExpr,
|
|
const Sema::FormatStringType type, unsigned firstDataArg,
|
|
unsigned numDataArgs, bool isObjC, const char *beg,
|
|
Sema::FormatArgumentPassingKind APK,
|
|
ArrayRef<const Expr *> Args, unsigned formatIdx,
|
|
bool inFunctionCall, Sema::VariadicCallType CallType,
|
|
llvm::SmallBitVector &CheckedVarArgs,
|
|
UncoveredArgHandler &UncoveredArg)
|
|
: CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
|
|
numDataArgs, beg, APK, Args, formatIdx,
|
|
inFunctionCall, CallType, CheckedVarArgs,
|
|
UncoveredArg) {}
|
|
|
|
bool isObjCContext() const { return FSType == Sema::FST_NSString; }
|
|
|
|
/// Returns true if '%@' specifiers are allowed in the format string.
|
|
bool allowsObjCArg() const {
|
|
return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog ||
|
|
FSType == Sema::FST_OSTrace;
|
|
}
|
|
|
|
bool HandleInvalidPrintfConversionSpecifier(
|
|
const analyze_printf::PrintfSpecifier &FS,
|
|
const char *startSpecifier,
|
|
unsigned specifierLen) override;
|
|
|
|
void handleInvalidMaskType(StringRef MaskType) override;
|
|
|
|
bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
|
|
const char *startSpecifier, unsigned specifierLen,
|
|
const TargetInfo &Target) override;
|
|
bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
|
|
const char *StartSpecifier,
|
|
unsigned SpecifierLen,
|
|
const Expr *E);
|
|
|
|
bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
|
|
const char *startSpecifier, unsigned specifierLen);
|
|
void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
|
|
const analyze_printf::OptionalAmount &Amt,
|
|
unsigned type,
|
|
const char *startSpecifier, unsigned specifierLen);
|
|
void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
|
|
const analyze_printf::OptionalFlag &flag,
|
|
const char *startSpecifier, unsigned specifierLen);
|
|
void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
|
|
const analyze_printf::OptionalFlag &ignoredFlag,
|
|
const analyze_printf::OptionalFlag &flag,
|
|
const char *startSpecifier, unsigned specifierLen);
|
|
bool checkForCStrMembers(const analyze_printf::ArgType &AT,
|
|
const Expr *E);
|
|
|
|
void HandleEmptyObjCModifierFlag(const char *startFlag,
|
|
unsigned flagLen) override;
|
|
|
|
void HandleInvalidObjCModifierFlag(const char *startFlag,
|
|
unsigned flagLen) override;
|
|
|
|
void
|
|
HandleObjCFlagsWithNonObjCConversion(const char *flagsStart,
|
|
const char *flagsEnd,
|
|
const char *conversionPosition) override;
|
|
};
|
|
|
|
/// Keeps around the information needed to verify that two specifiers are
|
|
/// compatible.
|
|
class EquatableFormatArgument {
|
|
public:
|
|
enum SpecifierSensitivity : unsigned {
|
|
SS_None,
|
|
SS_Private,
|
|
SS_Public,
|
|
SS_Sensitive
|
|
};
|
|
|
|
enum FormatArgumentRole : unsigned {
|
|
FAR_Data,
|
|
FAR_FieldWidth,
|
|
FAR_Precision,
|
|
FAR_Auxiliary, // FreeBSD kernel %b and %D
|
|
};
|
|
|
|
private:
|
|
analyze_format_string::ArgType ArgType;
|
|
analyze_format_string::LengthModifier::Kind LengthMod;
|
|
StringRef SpecifierLetter;
|
|
CharSourceRange Range;
|
|
SourceLocation ElementLoc;
|
|
FormatArgumentRole Role : 2;
|
|
SpecifierSensitivity Sensitivity : 2; // only set for FAR_Data
|
|
unsigned Position : 14;
|
|
unsigned ModifierFor : 14; // not set for FAR_Data
|
|
|
|
void EmitDiagnostic(Sema &S, PartialDiagnostic PDiag, const Expr *FmtExpr,
|
|
bool InFunctionCall) const;
|
|
|
|
public:
|
|
EquatableFormatArgument(CharSourceRange Range, SourceLocation ElementLoc,
|
|
analyze_format_string::LengthModifier::Kind LengthMod,
|
|
StringRef SpecifierLetter,
|
|
analyze_format_string::ArgType ArgType,
|
|
FormatArgumentRole Role,
|
|
SpecifierSensitivity Sensitivity, unsigned Position,
|
|
unsigned ModifierFor)
|
|
: ArgType(ArgType), LengthMod(LengthMod),
|
|
SpecifierLetter(SpecifierLetter), Range(Range), ElementLoc(ElementLoc),
|
|
Role(Role), Sensitivity(Sensitivity), Position(Position),
|
|
ModifierFor(ModifierFor) {}
|
|
|
|
unsigned getPosition() const { return Position; }
|
|
SourceLocation getSourceLocation() const { return ElementLoc; }
|
|
CharSourceRange getSourceRange() const { return Range; }
|
|
analyze_format_string::LengthModifier getLengthModifier() const {
|
|
return analyze_format_string::LengthModifier(nullptr, LengthMod);
|
|
}
|
|
void setModifierFor(unsigned V) { ModifierFor = V; }
|
|
|
|
std::string buildFormatSpecifier() const {
|
|
std::string result;
|
|
llvm::raw_string_ostream(result)
|
|
<< getLengthModifier().toString() << SpecifierLetter;
|
|
return result;
|
|
}
|
|
|
|
bool VerifyCompatible(Sema &S, const EquatableFormatArgument &Other,
|
|
const Expr *FmtExpr, bool InFunctionCall) const;
|
|
};
|
|
|
|
/// Turns format strings into lists of EquatableSpecifier objects.
|
|
class DecomposePrintfHandler : public CheckPrintfHandler {
|
|
llvm::SmallVectorImpl<EquatableFormatArgument> &Specs;
|
|
bool HadError;
|
|
|
|
DecomposePrintfHandler(
|
|
Sema &s, const FormatStringLiteral *fexpr, const Expr *origFormatExpr,
|
|
const Sema::FormatStringType type, unsigned firstDataArg,
|
|
unsigned numDataArgs, bool isObjC, const char *beg,
|
|
Sema::FormatArgumentPassingKind APK, ArrayRef<const Expr *> Args,
|
|
unsigned formatIdx, bool inFunctionCall, Sema::VariadicCallType CallType,
|
|
llvm::SmallBitVector &CheckedVarArgs, UncoveredArgHandler &UncoveredArg,
|
|
llvm::SmallVectorImpl<EquatableFormatArgument> &Specs)
|
|
: CheckPrintfHandler(s, fexpr, origFormatExpr, type, firstDataArg,
|
|
numDataArgs, isObjC, beg, APK, Args, formatIdx,
|
|
inFunctionCall, CallType, CheckedVarArgs,
|
|
UncoveredArg),
|
|
Specs(Specs), HadError(false) {}
|
|
|
|
public:
|
|
static bool
|
|
GetSpecifiers(Sema &S, const FormatStringLiteral *FSL, const Expr *FmtExpr,
|
|
Sema::FormatStringType type, bool IsObjC, bool InFunctionCall,
|
|
llvm::SmallVectorImpl<EquatableFormatArgument> &Args);
|
|
|
|
virtual bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
|
|
const char *startSpecifier,
|
|
unsigned specifierLen,
|
|
const TargetInfo &Target) override;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
|
|
const analyze_printf::PrintfSpecifier &FS, const char *startSpecifier,
|
|
unsigned specifierLen) {
|
|
const analyze_printf::PrintfConversionSpecifier &CS =
|
|
FS.getConversionSpecifier();
|
|
|
|
return HandleInvalidConversionSpecifier(FS.getArgIndex(),
|
|
getLocationOfByte(CS.getStart()),
|
|
startSpecifier, specifierLen,
|
|
CS.getStart(), CS.getLength());
|
|
}
|
|
|
|
void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) {
|
|
S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size);
|
|
}
|
|
|
|
bool CheckPrintfHandler::HandleAmount(
|
|
const analyze_format_string::OptionalAmount &Amt, unsigned k,
|
|
const char *startSpecifier, unsigned specifierLen) {
|
|
if (Amt.hasDataArgument()) {
|
|
if (HasFormatArguments()) {
|
|
unsigned argIndex = Amt.getArgIndex();
|
|
if (argIndex >= NumDataArgs) {
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
|
|
<< k,
|
|
getLocationOfByte(Amt.getStart()),
|
|
/*IsStringLocation*/ true,
|
|
getSpecifierRange(startSpecifier, specifierLen));
|
|
// Don't do any more checking. We will just emit
|
|
// spurious errors.
|
|
return false;
|
|
}
|
|
|
|
// Type check the data argument. It should be an 'int'.
|
|
// Although not in conformance with C99, we also allow the argument to be
|
|
// an 'unsigned int' as that is a reasonably safe case. GCC also
|
|
// doesn't emit a warning for that case.
|
|
CoveredArgs.set(argIndex);
|
|
const Expr *Arg = getDataArg(argIndex);
|
|
if (!Arg)
|
|
return false;
|
|
|
|
QualType T = Arg->getType();
|
|
|
|
const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
|
|
assert(AT.isValid());
|
|
|
|
if (!AT.matchesType(S.Context, T)) {
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
|
|
<< k << AT.getRepresentativeTypeName(S.Context)
|
|
<< T << Arg->getSourceRange(),
|
|
getLocationOfByte(Amt.getStart()),
|
|
/*IsStringLocation*/true,
|
|
getSpecifierRange(startSpecifier, specifierLen));
|
|
// Don't do any more checking. We will just emit
|
|
// spurious errors.
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void CheckPrintfHandler::HandleInvalidAmount(
|
|
const analyze_printf::PrintfSpecifier &FS,
|
|
const analyze_printf::OptionalAmount &Amt,
|
|
unsigned type,
|
|
const char *startSpecifier,
|
|
unsigned specifierLen) {
|
|
const analyze_printf::PrintfConversionSpecifier &CS =
|
|
FS.getConversionSpecifier();
|
|
|
|
FixItHint fixit =
|
|
Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
|
|
? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
|
|
Amt.getConstantLength()))
|
|
: FixItHint();
|
|
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
|
|
<< type << CS.toString(),
|
|
getLocationOfByte(Amt.getStart()),
|
|
/*IsStringLocation*/true,
|
|
getSpecifierRange(startSpecifier, specifierLen),
|
|
fixit);
|
|
}
|
|
|
|
void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
|
|
const analyze_printf::OptionalFlag &flag,
|
|
const char *startSpecifier,
|
|
unsigned specifierLen) {
|
|
// Warn about pointless flag with a fixit removal.
|
|
const analyze_printf::PrintfConversionSpecifier &CS =
|
|
FS.getConversionSpecifier();
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
|
|
<< flag.toString() << CS.toString(),
|
|
getLocationOfByte(flag.getPosition()),
|
|
/*IsStringLocation*/true,
|
|
getSpecifierRange(startSpecifier, specifierLen),
|
|
FixItHint::CreateRemoval(
|
|
getSpecifierRange(flag.getPosition(), 1)));
|
|
}
|
|
|
|
void CheckPrintfHandler::HandleIgnoredFlag(
|
|
const analyze_printf::PrintfSpecifier &FS,
|
|
const analyze_printf::OptionalFlag &ignoredFlag,
|
|
const analyze_printf::OptionalFlag &flag,
|
|
const char *startSpecifier,
|
|
unsigned specifierLen) {
|
|
// Warn about ignored flag with a fixit removal.
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
|
|
<< ignoredFlag.toString() << flag.toString(),
|
|
getLocationOfByte(ignoredFlag.getPosition()),
|
|
/*IsStringLocation*/true,
|
|
getSpecifierRange(startSpecifier, specifierLen),
|
|
FixItHint::CreateRemoval(
|
|
getSpecifierRange(ignoredFlag.getPosition(), 1)));
|
|
}
|
|
|
|
void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag,
|
|
unsigned flagLen) {
|
|
// Warn about an empty flag.
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag),
|
|
getLocationOfByte(startFlag),
|
|
/*IsStringLocation*/true,
|
|
getSpecifierRange(startFlag, flagLen));
|
|
}
|
|
|
|
void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag,
|
|
unsigned flagLen) {
|
|
// Warn about an invalid flag.
|
|
auto Range = getSpecifierRange(startFlag, flagLen);
|
|
StringRef flag(startFlag, flagLen);
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag,
|
|
getLocationOfByte(startFlag),
|
|
/*IsStringLocation*/true,
|
|
Range, FixItHint::CreateRemoval(Range));
|
|
}
|
|
|
|
void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion(
|
|
const char *flagsStart, const char *flagsEnd, const char *conversionPosition) {
|
|
// Warn about using '[...]' without a '@' conversion.
|
|
auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1);
|
|
auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion;
|
|
EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1),
|
|
getLocationOfByte(conversionPosition),
|
|
/*IsStringLocation*/ true, Range,
|
|
FixItHint::CreateRemoval(Range));
|
|
}
|
|
|
|
void EquatableFormatArgument::EmitDiagnostic(Sema &S, PartialDiagnostic PDiag,
|
|
const Expr *FmtExpr,
|
|
bool InFunctionCall) const {
|
|
CheckFormatHandler::EmitFormatDiagnostic(S, InFunctionCall, FmtExpr, PDiag,
|
|
ElementLoc, true, Range);
|
|
}
|
|
|
|
bool EquatableFormatArgument::VerifyCompatible(
|
|
Sema &S, const EquatableFormatArgument &Other, const Expr *FmtExpr,
|
|
bool InFunctionCall) const {
|
|
using MK = analyze_format_string::ArgType::MatchKind;
|
|
if (Role != Other.Role) {
|
|
// diagnose and stop
|
|
EmitDiagnostic(
|
|
S, S.PDiag(diag::warn_format_cmp_role_mismatch) << Role << Other.Role,
|
|
FmtExpr, InFunctionCall);
|
|
S.Diag(Other.ElementLoc, diag::note_format_cmp_with) << 0 << Other.Range;
|
|
return false;
|
|
}
|
|
|
|
if (Role != FAR_Data) {
|
|
if (ModifierFor != Other.ModifierFor) {
|
|
// diagnose and stop
|
|
EmitDiagnostic(S,
|
|
S.PDiag(diag::warn_format_cmp_modifierfor_mismatch)
|
|
<< (ModifierFor + 1) << (Other.ModifierFor + 1),
|
|
FmtExpr, InFunctionCall);
|
|
S.Diag(Other.ElementLoc, diag::note_format_cmp_with) << 0 << Other.Range;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool HadError = false;
|
|
if (Sensitivity != Other.Sensitivity) {
|
|
// diagnose and continue
|
|
EmitDiagnostic(S,
|
|
S.PDiag(diag::warn_format_cmp_sensitivity_mismatch)
|
|
<< Sensitivity << Other.Sensitivity,
|
|
FmtExpr, InFunctionCall);
|
|
HadError = S.Diag(Other.ElementLoc, diag::note_format_cmp_with)
|
|
<< 0 << Other.Range;
|
|
}
|
|
|
|
switch (ArgType.matchesArgType(S.Context, Other.ArgType)) {
|
|
case MK::Match:
|
|
break;
|
|
|
|
case MK::MatchPromotion:
|
|
// Per consensus reached at https://discourse.llvm.org/t/-/83076/12,
|
|
// MatchPromotion is treated as a failure by format_matches.
|
|
case MK::NoMatch:
|
|
case MK::NoMatchTypeConfusion:
|
|
case MK::NoMatchPromotionTypeConfusion:
|
|
EmitDiagnostic(S,
|
|
S.PDiag(diag::warn_format_cmp_specifier_mismatch)
|
|
<< buildFormatSpecifier()
|
|
<< Other.buildFormatSpecifier(),
|
|
FmtExpr, InFunctionCall);
|
|
HadError = S.Diag(Other.ElementLoc, diag::note_format_cmp_with)
|
|
<< 0 << Other.Range;
|
|
break;
|
|
|
|
case MK::NoMatchPedantic:
|
|
EmitDiagnostic(S,
|
|
S.PDiag(diag::warn_format_cmp_specifier_mismatch_pedantic)
|
|
<< buildFormatSpecifier()
|
|
<< Other.buildFormatSpecifier(),
|
|
FmtExpr, InFunctionCall);
|
|
HadError = S.Diag(Other.ElementLoc, diag::note_format_cmp_with)
|
|
<< 0 << Other.Range;
|
|
break;
|
|
|
|
case MK::NoMatchSignedness:
|
|
if (!S.getDiagnostics().isIgnored(
|
|
diag::warn_format_conversion_argument_type_mismatch_signedness,
|
|
ElementLoc)) {
|
|
EmitDiagnostic(S,
|
|
S.PDiag(diag::warn_format_cmp_specifier_sign_mismatch)
|
|
<< buildFormatSpecifier()
|
|
<< Other.buildFormatSpecifier(),
|
|
FmtExpr, InFunctionCall);
|
|
HadError = S.Diag(Other.ElementLoc, diag::note_format_cmp_with)
|
|
<< 0 << Other.Range;
|
|
}
|
|
break;
|
|
}
|
|
return !HadError;
|
|
}
|
|
|
|
bool DecomposePrintfHandler::GetSpecifiers(
|
|
Sema &S, const FormatStringLiteral *FSL, const Expr *FmtExpr,
|
|
Sema::FormatStringType Type, bool IsObjC, bool InFunctionCall,
|
|
llvm::SmallVectorImpl<EquatableFormatArgument> &Args) {
|
|
StringRef Data = FSL->getString();
|
|
const char *Str = Data.data();
|
|
llvm::SmallBitVector BV;
|
|
UncoveredArgHandler UA;
|
|
const Expr *PrintfArgs[] = {FSL->getFormatString()};
|
|
DecomposePrintfHandler H(S, FSL, FSL->getFormatString(), Type, 0, 0, IsObjC,
|
|
Str, Sema::FAPK_Elsewhere, PrintfArgs, 0,
|
|
InFunctionCall, Sema::VariadicDoesNotApply, BV, UA,
|
|
Args);
|
|
|
|
if (!analyze_format_string::ParsePrintfString(
|
|
H, Str, Str + Data.size(), S.getLangOpts(), S.Context.getTargetInfo(),
|
|
Type == Sema::FST_FreeBSDKPrintf))
|
|
H.DoneProcessing();
|
|
if (H.HadError)
|
|
return false;
|
|
|
|
std::stable_sort(
|
|
Args.begin(), Args.end(),
|
|
[](const EquatableFormatArgument &A, const EquatableFormatArgument &B) {
|
|
return A.getPosition() < B.getPosition();
|
|
});
|
|
return true;
|
|
}
|
|
|
|
bool DecomposePrintfHandler::HandlePrintfSpecifier(
|
|
const analyze_printf::PrintfSpecifier &FS, const char *startSpecifier,
|
|
unsigned specifierLen, const TargetInfo &Target) {
|
|
if (!CheckPrintfHandler::HandlePrintfSpecifier(FS, startSpecifier,
|
|
specifierLen, Target)) {
|
|
HadError = true;
|
|
return false;
|
|
}
|
|
|
|
// Do not add any specifiers to the list for %%. This is possibly incorrect
|
|
// if using a precision/width with a data argument, but that combination is
|
|
// meaningless and we wouldn't know which format to attach the
|
|
// precision/width to.
|
|
const auto &CS = FS.getConversionSpecifier();
|
|
if (CS.getKind() == analyze_format_string::ConversionSpecifier::PercentArg)
|
|
return true;
|
|
|
|
// have to patch these to have the right ModifierFor if they are used
|
|
const unsigned Unset = ~0;
|
|
unsigned FieldWidthIndex = Unset;
|
|
unsigned PrecisionIndex = Unset;
|
|
|
|
// field width?
|
|
const auto &FieldWidth = FS.getFieldWidth();
|
|
if (!FieldWidth.isInvalid() && FieldWidth.hasDataArgument()) {
|
|
FieldWidthIndex = Specs.size();
|
|
Specs.emplace_back(getSpecifierRange(startSpecifier, specifierLen),
|
|
getLocationOfByte(FieldWidth.getStart()),
|
|
analyze_format_string::LengthModifier::None, "*",
|
|
FieldWidth.getArgType(S.Context),
|
|
EquatableFormatArgument::FAR_FieldWidth,
|
|
EquatableFormatArgument::SS_None,
|
|
FieldWidth.usesPositionalArg()
|
|
? FieldWidth.getPositionalArgIndex() - 1
|
|
: FieldWidthIndex,
|
|
0);
|
|
}
|
|
// precision?
|
|
const auto &Precision = FS.getPrecision();
|
|
if (!Precision.isInvalid() && Precision.hasDataArgument()) {
|
|
PrecisionIndex = Specs.size();
|
|
Specs.emplace_back(
|
|
getSpecifierRange(startSpecifier, specifierLen),
|
|
getLocationOfByte(Precision.getStart()),
|
|
analyze_format_string::LengthModifier::None, ".*",
|
|
Precision.getArgType(S.Context), EquatableFormatArgument::FAR_Precision,
|
|
EquatableFormatArgument::SS_None,
|
|
Precision.usesPositionalArg() ? Precision.getPositionalArgIndex() - 1
|
|
: PrecisionIndex,
|
|
0);
|
|
}
|
|
|
|
// this specifier
|
|
unsigned SpecIndex =
|
|
FS.usesPositionalArg() ? FS.getPositionalArgIndex() - 1 : Specs.size();
|
|
if (FieldWidthIndex != Unset)
|
|
Specs[FieldWidthIndex].setModifierFor(SpecIndex);
|
|
if (PrecisionIndex != Unset)
|
|
Specs[PrecisionIndex].setModifierFor(SpecIndex);
|
|
|
|
EquatableFormatArgument::SpecifierSensitivity Sensitivity;
|
|
if (FS.isPrivate())
|
|
Sensitivity = EquatableFormatArgument::SS_Private;
|
|
else if (FS.isPublic())
|
|
Sensitivity = EquatableFormatArgument::SS_Public;
|
|
else if (FS.isSensitive())
|
|
Sensitivity = EquatableFormatArgument::SS_Sensitive;
|
|
else
|
|
Sensitivity = EquatableFormatArgument::SS_None;
|
|
|
|
Specs.emplace_back(
|
|
getSpecifierRange(startSpecifier, specifierLen),
|
|
getLocationOfByte(CS.getStart()), FS.getLengthModifier().getKind(),
|
|
CS.getCharacters(), FS.getArgType(S.Context, isObjCContext()),
|
|
EquatableFormatArgument::FAR_Data, Sensitivity, SpecIndex, 0);
|
|
|
|
// auxiliary argument?
|
|
if (CS.getKind() == analyze_format_string::ConversionSpecifier::FreeBSDbArg ||
|
|
CS.getKind() == analyze_format_string::ConversionSpecifier::FreeBSDDArg) {
|
|
Specs.emplace_back(getSpecifierRange(startSpecifier, specifierLen),
|
|
getLocationOfByte(CS.getStart()),
|
|
analyze_format_string::LengthModifier::None,
|
|
CS.getCharacters(),
|
|
analyze_format_string::ArgType::CStrTy,
|
|
EquatableFormatArgument::FAR_Auxiliary, Sensitivity,
|
|
SpecIndex + 1, SpecIndex);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Determines if the specified is a C++ class or struct containing
|
|
// a member with the specified name and kind (e.g. a CXXMethodDecl named
|
|
// "c_str()").
|
|
template<typename MemberKind>
|
|
static llvm::SmallPtrSet<MemberKind*, 1>
|
|
CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
|
|
const RecordType *RT = Ty->getAs<RecordType>();
|
|
llvm::SmallPtrSet<MemberKind*, 1> Results;
|
|
|
|
if (!RT)
|
|
return Results;
|
|
const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
|
|
if (!RD || !RD->getDefinition())
|
|
return Results;
|
|
|
|
LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
|
|
Sema::LookupMemberName);
|
|
R.suppressDiagnostics();
|
|
|
|
// We just need to include all members of the right kind turned up by the
|
|
// filter, at this point.
|
|
if (S.LookupQualifiedName(R, RT->getDecl()))
|
|
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
|
|
NamedDecl *decl = (*I)->getUnderlyingDecl();
|
|
if (MemberKind *FK = dyn_cast<MemberKind>(decl))
|
|
Results.insert(FK);
|
|
}
|
|
return Results;
|
|
}
|
|
|
|
/// Check if we could call '.c_str()' on an object.
|
|
///
|
|
/// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
|
|
/// allow the call, or if it would be ambiguous).
|
|
bool Sema::hasCStrMethod(const Expr *E) {
|
|
using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
|
|
|
|
MethodSet Results =
|
|
CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
|
|
for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
|
|
MI != ME; ++MI)
|
|
if ((*MI)->getMinRequiredArguments() == 0)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// Check if a (w)string was passed when a (w)char* was needed, and offer a
|
|
// better diagnostic if so. AT is assumed to be valid.
|
|
// Returns true when a c_str() conversion method is found.
|
|
bool CheckPrintfHandler::checkForCStrMembers(
|
|
const analyze_printf::ArgType &AT, const Expr *E) {
|
|
using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
|
|
|
|
MethodSet Results =
|
|
CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
|
|
|
|
for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
|
|
MI != ME; ++MI) {
|
|
const CXXMethodDecl *Method = *MI;
|
|
if (Method->getMinRequiredArguments() == 0 &&
|
|
AT.matchesType(S.Context, Method->getReturnType())) {
|
|
// FIXME: Suggest parens if the expression needs them.
|
|
SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc());
|
|
S.Diag(E->getBeginLoc(), diag::note_printf_c_str)
|
|
<< "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()");
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool CheckPrintfHandler::HandlePrintfSpecifier(
|
|
const analyze_printf::PrintfSpecifier &FS, const char *startSpecifier,
|
|
unsigned specifierLen, const TargetInfo &Target) {
|
|
using namespace analyze_format_string;
|
|
using namespace analyze_printf;
|
|
|
|
const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
|
|
|
|
if (FS.consumesDataArgument()) {
|
|
if (atFirstArg) {
|
|
atFirstArg = false;
|
|
usesPositionalArgs = FS.usesPositionalArg();
|
|
}
|
|
else if (usesPositionalArgs != FS.usesPositionalArg()) {
|
|
HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
|
|
startSpecifier, specifierLen);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// First check if the field width, precision, and conversion specifier
|
|
// have matching data arguments.
|
|
if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
|
|
startSpecifier, specifierLen)) {
|
|
return false;
|
|
}
|
|
|
|
if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
|
|
startSpecifier, specifierLen)) {
|
|
return false;
|
|
}
|
|
|
|
if (!CS.consumesDataArgument()) {
|
|
// FIXME: Technically specifying a precision or field width here
|
|
// makes no sense. Worth issuing a warning at some point.
|
|
return true;
|
|
}
|
|
|
|
// Consume the argument.
|
|
unsigned argIndex = FS.getArgIndex();
|
|
if (argIndex < NumDataArgs) {
|
|
// The check to see if the argIndex is valid will come later.
|
|
// We set the bit here because we may exit early from this
|
|
// function if we encounter some other error.
|
|
CoveredArgs.set(argIndex);
|
|
}
|
|
|
|
// FreeBSD kernel extensions.
|
|
if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
|
|
CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
|
|
// We need at least two arguments.
|
|
if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
|
|
return false;
|
|
|
|
if (HasFormatArguments()) {
|
|
// Claim the second argument.
|
|
CoveredArgs.set(argIndex + 1);
|
|
|
|
// Type check the first argument (int for %b, pointer for %D)
|
|
const Expr *Ex = getDataArg(argIndex);
|
|
const analyze_printf::ArgType &AT =
|
|
(CS.getKind() == ConversionSpecifier::FreeBSDbArg)
|
|
? ArgType(S.Context.IntTy)
|
|
: ArgType::CPointerTy;
|
|
if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
|
|
EmitFormatDiagnostic(
|
|
S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
|
|
<< AT.getRepresentativeTypeName(S.Context) << Ex->getType()
|
|
<< false << Ex->getSourceRange(),
|
|
Ex->getBeginLoc(), /*IsStringLocation*/ false,
|
|
getSpecifierRange(startSpecifier, specifierLen));
|
|
|
|
// Type check the second argument (char * for both %b and %D)
|
|
Ex = getDataArg(argIndex + 1);
|
|
const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
|
|
if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
|
|
EmitFormatDiagnostic(
|
|
S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
|
|
<< AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
|
|
<< false << Ex->getSourceRange(),
|
|
Ex->getBeginLoc(), /*IsStringLocation*/ false,
|
|
getSpecifierRange(startSpecifier, specifierLen));
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Check for using an Objective-C specific conversion specifier
|
|
// in a non-ObjC literal.
|
|
if (!allowsObjCArg() && CS.isObjCArg()) {
|
|
return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
|
|
specifierLen);
|
|
}
|
|
|
|
// %P can only be used with os_log.
|
|
if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) {
|
|
return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
|
|
specifierLen);
|
|
}
|
|
|
|
// %n is not allowed with os_log.
|
|
if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) {
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg),
|
|
getLocationOfByte(CS.getStart()),
|
|
/*IsStringLocation*/ false,
|
|
getSpecifierRange(startSpecifier, specifierLen));
|
|
|
|
return true;
|
|
}
|
|
|
|
// Only scalars are allowed for os_trace.
|
|
if (FSType == Sema::FST_OSTrace &&
|
|
(CS.getKind() == ConversionSpecifier::PArg ||
|
|
CS.getKind() == ConversionSpecifier::sArg ||
|
|
CS.getKind() == ConversionSpecifier::ObjCObjArg)) {
|
|
return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
|
|
specifierLen);
|
|
}
|
|
|
|
// Check for use of public/private annotation outside of os_log().
|
|
if (FSType != Sema::FST_OSLog) {
|
|
if (FS.isPublic().isSet()) {
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
|
|
<< "public",
|
|
getLocationOfByte(FS.isPublic().getPosition()),
|
|
/*IsStringLocation*/ false,
|
|
getSpecifierRange(startSpecifier, specifierLen));
|
|
}
|
|
if (FS.isPrivate().isSet()) {
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
|
|
<< "private",
|
|
getLocationOfByte(FS.isPrivate().getPosition()),
|
|
/*IsStringLocation*/ false,
|
|
getSpecifierRange(startSpecifier, specifierLen));
|
|
}
|
|
}
|
|
|
|
const llvm::Triple &Triple = Target.getTriple();
|
|
if (CS.getKind() == ConversionSpecifier::nArg &&
|
|
(Triple.isAndroid() || Triple.isOSFuchsia())) {
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_printf_narg_not_supported),
|
|
getLocationOfByte(CS.getStart()),
|
|
/*IsStringLocation*/ false,
|
|
getSpecifierRange(startSpecifier, specifierLen));
|
|
}
|
|
|
|
// Check for invalid use of field width
|
|
if (!FS.hasValidFieldWidth()) {
|
|
HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
|
|
startSpecifier, specifierLen);
|
|
}
|
|
|
|
// Check for invalid use of precision
|
|
if (!FS.hasValidPrecision()) {
|
|
HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
|
|
startSpecifier, specifierLen);
|
|
}
|
|
|
|
// Precision is mandatory for %P specifier.
|
|
if (CS.getKind() == ConversionSpecifier::PArg &&
|
|
FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) {
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision),
|
|
getLocationOfByte(startSpecifier),
|
|
/*IsStringLocation*/ false,
|
|
getSpecifierRange(startSpecifier, specifierLen));
|
|
}
|
|
|
|
// Check each flag does not conflict with any other component.
|
|
if (!FS.hasValidThousandsGroupingPrefix())
|
|
HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
|
|
if (!FS.hasValidLeadingZeros())
|
|
HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
|
|
if (!FS.hasValidPlusPrefix())
|
|
HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
|
|
if (!FS.hasValidSpacePrefix())
|
|
HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
|
|
if (!FS.hasValidAlternativeForm())
|
|
HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
|
|
if (!FS.hasValidLeftJustified())
|
|
HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
|
|
|
|
// Check that flags are not ignored by another flag
|
|
if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
|
|
HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
|
|
startSpecifier, specifierLen);
|
|
if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
|
|
HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
|
|
startSpecifier, specifierLen);
|
|
|
|
// Check the length modifier is valid with the given conversion specifier.
|
|
if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
|
|
S.getLangOpts()))
|
|
HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
|
|
diag::warn_format_nonsensical_length);
|
|
else if (!FS.hasStandardLengthModifier())
|
|
HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
|
|
else if (!FS.hasStandardLengthConversionCombination())
|
|
HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
|
|
diag::warn_format_non_standard_conversion_spec);
|
|
|
|
if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
|
|
HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
|
|
|
|
// The remaining checks depend on the data arguments.
|
|
if (!HasFormatArguments())
|
|
return true;
|
|
|
|
if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
|
|
return false;
|
|
|
|
const Expr *Arg = getDataArg(argIndex);
|
|
if (!Arg)
|
|
return true;
|
|
|
|
return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
|
|
}
|
|
|
|
static bool requiresParensToAddCast(const Expr *E) {
|
|
// FIXME: We should have a general way to reason about operator
|
|
// precedence and whether parens are actually needed here.
|
|
// Take care of a few common cases where they aren't.
|
|
const Expr *Inside = E->IgnoreImpCasts();
|
|
if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
|
|
Inside = POE->getSyntacticForm()->IgnoreImpCasts();
|
|
|
|
switch (Inside->getStmtClass()) {
|
|
case Stmt::ArraySubscriptExprClass:
|
|
case Stmt::CallExprClass:
|
|
case Stmt::CharacterLiteralClass:
|
|
case Stmt::CXXBoolLiteralExprClass:
|
|
case Stmt::DeclRefExprClass:
|
|
case Stmt::FloatingLiteralClass:
|
|
case Stmt::IntegerLiteralClass:
|
|
case Stmt::MemberExprClass:
|
|
case Stmt::ObjCArrayLiteralClass:
|
|
case Stmt::ObjCBoolLiteralExprClass:
|
|
case Stmt::ObjCBoxedExprClass:
|
|
case Stmt::ObjCDictionaryLiteralClass:
|
|
case Stmt::ObjCEncodeExprClass:
|
|
case Stmt::ObjCIvarRefExprClass:
|
|
case Stmt::ObjCMessageExprClass:
|
|
case Stmt::ObjCPropertyRefExprClass:
|
|
case Stmt::ObjCStringLiteralClass:
|
|
case Stmt::ObjCSubscriptRefExprClass:
|
|
case Stmt::ParenExprClass:
|
|
case Stmt::StringLiteralClass:
|
|
case Stmt::UnaryOperatorClass:
|
|
return false;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
static std::pair<QualType, StringRef>
|
|
shouldNotPrintDirectly(const ASTContext &Context,
|
|
QualType IntendedTy,
|
|
const Expr *E) {
|
|
// Use a 'while' to peel off layers of typedefs.
|
|
QualType TyTy = IntendedTy;
|
|
while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
|
|
StringRef Name = UserTy->getDecl()->getName();
|
|
QualType CastTy = llvm::StringSwitch<QualType>(Name)
|
|
.Case("CFIndex", Context.getNSIntegerType())
|
|
.Case("NSInteger", Context.getNSIntegerType())
|
|
.Case("NSUInteger", Context.getNSUIntegerType())
|
|
.Case("SInt32", Context.IntTy)
|
|
.Case("UInt32", Context.UnsignedIntTy)
|
|
.Default(QualType());
|
|
|
|
if (!CastTy.isNull())
|
|
return std::make_pair(CastTy, Name);
|
|
|
|
TyTy = UserTy->desugar();
|
|
}
|
|
|
|
// Strip parens if necessary.
|
|
if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
|
|
return shouldNotPrintDirectly(Context,
|
|
PE->getSubExpr()->getType(),
|
|
PE->getSubExpr());
|
|
|
|
// If this is a conditional expression, then its result type is constructed
|
|
// via usual arithmetic conversions and thus there might be no necessary
|
|
// typedef sugar there. Recurse to operands to check for NSInteger &
|
|
// Co. usage condition.
|
|
if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
|
|
QualType TrueTy, FalseTy;
|
|
StringRef TrueName, FalseName;
|
|
|
|
std::tie(TrueTy, TrueName) =
|
|
shouldNotPrintDirectly(Context,
|
|
CO->getTrueExpr()->getType(),
|
|
CO->getTrueExpr());
|
|
std::tie(FalseTy, FalseName) =
|
|
shouldNotPrintDirectly(Context,
|
|
CO->getFalseExpr()->getType(),
|
|
CO->getFalseExpr());
|
|
|
|
if (TrueTy == FalseTy)
|
|
return std::make_pair(TrueTy, TrueName);
|
|
else if (TrueTy.isNull())
|
|
return std::make_pair(FalseTy, FalseName);
|
|
else if (FalseTy.isNull())
|
|
return std::make_pair(TrueTy, TrueName);
|
|
}
|
|
|
|
return std::make_pair(QualType(), StringRef());
|
|
}
|
|
|
|
/// Return true if \p ICE is an implicit argument promotion of an arithmetic
|
|
/// type. Bit-field 'promotions' from a higher ranked type to a lower ranked
|
|
/// type do not count.
|
|
static bool
|
|
isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) {
|
|
QualType From = ICE->getSubExpr()->getType();
|
|
QualType To = ICE->getType();
|
|
// It's an integer promotion if the destination type is the promoted
|
|
// source type.
|
|
if (ICE->getCastKind() == CK_IntegralCast &&
|
|
S.Context.isPromotableIntegerType(From) &&
|
|
S.Context.getPromotedIntegerType(From) == To)
|
|
return true;
|
|
// Look through vector types, since we do default argument promotion for
|
|
// those in OpenCL.
|
|
if (const auto *VecTy = From->getAs<ExtVectorType>())
|
|
From = VecTy->getElementType();
|
|
if (const auto *VecTy = To->getAs<ExtVectorType>())
|
|
To = VecTy->getElementType();
|
|
// It's a floating promotion if the source type is a lower rank.
|
|
return ICE->getCastKind() == CK_FloatingCast &&
|
|
S.Context.getFloatingTypeOrder(From, To) < 0;
|
|
}
|
|
|
|
static analyze_format_string::ArgType::MatchKind
|
|
handleFormatSignedness(analyze_format_string::ArgType::MatchKind Match,
|
|
DiagnosticsEngine &Diags, SourceLocation Loc) {
|
|
if (Match == analyze_format_string::ArgType::NoMatchSignedness) {
|
|
Match =
|
|
Diags.isIgnored(
|
|
diag::warn_format_conversion_argument_type_mismatch_signedness, Loc)
|
|
? analyze_format_string::ArgType::Match
|
|
: analyze_format_string::ArgType::NoMatch;
|
|
}
|
|
return Match;
|
|
}
|
|
|
|
bool
|
|
CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
|
|
const char *StartSpecifier,
|
|
unsigned SpecifierLen,
|
|
const Expr *E) {
|
|
using namespace analyze_format_string;
|
|
using namespace analyze_printf;
|
|
|
|
// Now type check the data expression that matches the
|
|
// format specifier.
|
|
const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext());
|
|
if (!AT.isValid())
|
|
return true;
|
|
|
|
QualType ExprTy = E->getType();
|
|
while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
|
|
ExprTy = TET->getUnderlyingExpr()->getType();
|
|
}
|
|
|
|
// When using the format attribute in C++, you can receive a function or an
|
|
// array that will necessarily decay to a pointer when passed to the final
|
|
// format consumer. Apply decay before type comparison.
|
|
if (ExprTy->canDecayToPointerType())
|
|
ExprTy = S.Context.getDecayedType(ExprTy);
|
|
|
|
// Diagnose attempts to print a boolean value as a character. Unlike other
|
|
// -Wformat diagnostics, this is fine from a type perspective, but it still
|
|
// doesn't make sense.
|
|
if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg &&
|
|
E->isKnownToHaveBooleanValue()) {
|
|
const CharSourceRange &CSR =
|
|
getSpecifierRange(StartSpecifier, SpecifierLen);
|
|
SmallString<4> FSString;
|
|
llvm::raw_svector_ostream os(FSString);
|
|
FS.toString(os);
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character)
|
|
<< FSString,
|
|
E->getExprLoc(), false, CSR);
|
|
return true;
|
|
}
|
|
|
|
// Diagnose attempts to use '%P' with ObjC object types, which will result in
|
|
// dumping raw class data (like is-a pointer), not actual data.
|
|
if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::PArg &&
|
|
ExprTy->isObjCObjectPointerType()) {
|
|
const CharSourceRange &CSR =
|
|
getSpecifierRange(StartSpecifier, SpecifierLen);
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_with_objc_pointer),
|
|
E->getExprLoc(), false, CSR);
|
|
return true;
|
|
}
|
|
|
|
ArgType::MatchKind ImplicitMatch = ArgType::NoMatch;
|
|
ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy);
|
|
ArgType::MatchKind OrigMatch = Match;
|
|
|
|
Match = handleFormatSignedness(Match, S.getDiagnostics(), E->getExprLoc());
|
|
if (Match == ArgType::Match)
|
|
return true;
|
|
|
|
// NoMatchPromotionTypeConfusion should be only returned in ImplictCastExpr
|
|
assert(Match != ArgType::NoMatchPromotionTypeConfusion);
|
|
|
|
// Look through argument promotions for our error message's reported type.
|
|
// This includes the integral and floating promotions, but excludes array
|
|
// and function pointer decay (seeing that an argument intended to be a
|
|
// string has type 'char [6]' is probably more confusing than 'char *') and
|
|
// certain bitfield promotions (bitfields can be 'demoted' to a lesser type).
|
|
if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
|
|
if (isArithmeticArgumentPromotion(S, ICE)) {
|
|
E = ICE->getSubExpr();
|
|
ExprTy = E->getType();
|
|
|
|
// Check if we didn't match because of an implicit cast from a 'char'
|
|
// or 'short' to an 'int'. This is done because printf is a varargs
|
|
// function.
|
|
if (ICE->getType() == S.Context.IntTy ||
|
|
ICE->getType() == S.Context.UnsignedIntTy) {
|
|
// All further checking is done on the subexpression
|
|
ImplicitMatch = AT.matchesType(S.Context, ExprTy);
|
|
if (OrigMatch == ArgType::NoMatchSignedness &&
|
|
ImplicitMatch != ArgType::NoMatchSignedness)
|
|
// If the original match was a signedness match this match on the
|
|
// implicit cast type also need to be signedness match otherwise we
|
|
// might introduce new unexpected warnings from -Wformat-signedness.
|
|
return true;
|
|
ImplicitMatch = handleFormatSignedness(
|
|
ImplicitMatch, S.getDiagnostics(), E->getExprLoc());
|
|
if (ImplicitMatch == ArgType::Match)
|
|
return true;
|
|
}
|
|
}
|
|
} else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
|
|
// Special case for 'a', which has type 'int' in C.
|
|
// Note, however, that we do /not/ want to treat multibyte constants like
|
|
// 'MooV' as characters! This form is deprecated but still exists. In
|
|
// addition, don't treat expressions as of type 'char' if one byte length
|
|
// modifier is provided.
|
|
if (ExprTy == S.Context.IntTy &&
|
|
FS.getLengthModifier().getKind() != LengthModifier::AsChar)
|
|
if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue())) {
|
|
ExprTy = S.Context.CharTy;
|
|
// To improve check results, we consider a character literal in C
|
|
// to be a 'char' rather than an 'int'. 'printf("%hd", 'a');' is
|
|
// more likely a type confusion situation, so we will suggest to
|
|
// use '%hhd' instead by discarding the MatchPromotion.
|
|
if (Match == ArgType::MatchPromotion)
|
|
Match = ArgType::NoMatch;
|
|
}
|
|
}
|
|
if (Match == ArgType::MatchPromotion) {
|
|
// WG14 N2562 only clarified promotions in *printf
|
|
// For NSLog in ObjC, just preserve -Wformat behavior
|
|
if (!S.getLangOpts().ObjC &&
|
|
ImplicitMatch != ArgType::NoMatchPromotionTypeConfusion &&
|
|
ImplicitMatch != ArgType::NoMatchTypeConfusion)
|
|
return true;
|
|
Match = ArgType::NoMatch;
|
|
}
|
|
if (ImplicitMatch == ArgType::NoMatchPedantic ||
|
|
ImplicitMatch == ArgType::NoMatchTypeConfusion)
|
|
Match = ImplicitMatch;
|
|
assert(Match != ArgType::MatchPromotion);
|
|
|
|
// Look through unscoped enums to their underlying type.
|
|
bool IsEnum = false;
|
|
bool IsScopedEnum = false;
|
|
QualType IntendedTy = ExprTy;
|
|
if (auto EnumTy = ExprTy->getAs<EnumType>()) {
|
|
IntendedTy = EnumTy->getDecl()->getIntegerType();
|
|
if (EnumTy->isUnscopedEnumerationType()) {
|
|
ExprTy = IntendedTy;
|
|
// This controls whether we're talking about the underlying type or not,
|
|
// which we only want to do when it's an unscoped enum.
|
|
IsEnum = true;
|
|
} else {
|
|
IsScopedEnum = true;
|
|
}
|
|
}
|
|
|
|
// %C in an Objective-C context prints a unichar, not a wchar_t.
|
|
// If the argument is an integer of some kind, believe the %C and suggest
|
|
// a cast instead of changing the conversion specifier.
|
|
if (isObjCContext() &&
|
|
FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
|
|
if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
|
|
!ExprTy->isCharType()) {
|
|
// 'unichar' is defined as a typedef of unsigned short, but we should
|
|
// prefer using the typedef if it is visible.
|
|
IntendedTy = S.Context.UnsignedShortTy;
|
|
|
|
// While we are here, check if the value is an IntegerLiteral that happens
|
|
// to be within the valid range.
|
|
if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
|
|
const llvm::APInt &V = IL->getValue();
|
|
if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
|
|
return true;
|
|
}
|
|
|
|
LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(),
|
|
Sema::LookupOrdinaryName);
|
|
if (S.LookupName(Result, S.getCurScope())) {
|
|
NamedDecl *ND = Result.getFoundDecl();
|
|
if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
|
|
if (TD->getUnderlyingType() == IntendedTy)
|
|
IntendedTy = S.Context.getTypedefType(TD);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Special-case some of Darwin's platform-independence types by suggesting
|
|
// casts to primitive types that are known to be large enough.
|
|
bool ShouldNotPrintDirectly = false; StringRef CastTyName;
|
|
if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
|
|
QualType CastTy;
|
|
std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
|
|
if (!CastTy.isNull()) {
|
|
// %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int
|
|
// (long in ASTContext). Only complain to pedants or when they're the
|
|
// underlying type of a scoped enum (which always needs a cast).
|
|
if (!IsScopedEnum &&
|
|
(CastTyName == "NSInteger" || CastTyName == "NSUInteger") &&
|
|
(AT.isSizeT() || AT.isPtrdiffT()) &&
|
|
AT.matchesType(S.Context, CastTy))
|
|
Match = ArgType::NoMatchPedantic;
|
|
IntendedTy = CastTy;
|
|
ShouldNotPrintDirectly = true;
|
|
}
|
|
}
|
|
|
|
// We may be able to offer a FixItHint if it is a supported type.
|
|
PrintfSpecifier fixedFS = FS;
|
|
bool Success =
|
|
fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext());
|
|
|
|
if (Success) {
|
|
// Get the fix string from the fixed format specifier
|
|
SmallString<16> buf;
|
|
llvm::raw_svector_ostream os(buf);
|
|
fixedFS.toString(os);
|
|
|
|
CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
|
|
|
|
if (IntendedTy == ExprTy && !ShouldNotPrintDirectly && !IsScopedEnum) {
|
|
unsigned Diag;
|
|
switch (Match) {
|
|
case ArgType::Match:
|
|
case ArgType::MatchPromotion:
|
|
case ArgType::NoMatchPromotionTypeConfusion:
|
|
case ArgType::NoMatchSignedness:
|
|
llvm_unreachable("expected non-matching");
|
|
case ArgType::NoMatchPedantic:
|
|
Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
|
|
break;
|
|
case ArgType::NoMatchTypeConfusion:
|
|
Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
|
|
break;
|
|
case ArgType::NoMatch:
|
|
Diag = diag::warn_format_conversion_argument_type_mismatch;
|
|
break;
|
|
}
|
|
|
|
// In this case, the specifier is wrong and should be changed to match
|
|
// the argument.
|
|
EmitFormatDiagnostic(S.PDiag(Diag)
|
|
<< AT.getRepresentativeTypeName(S.Context)
|
|
<< IntendedTy << IsEnum << E->getSourceRange(),
|
|
E->getBeginLoc(),
|
|
/*IsStringLocation*/ false, SpecRange,
|
|
FixItHint::CreateReplacement(SpecRange, os.str()));
|
|
} else {
|
|
// The canonical type for formatting this value is different from the
|
|
// actual type of the expression. (This occurs, for example, with Darwin's
|
|
// NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
|
|
// should be printed as 'long' for 64-bit compatibility.)
|
|
// Rather than emitting a normal format/argument mismatch, we want to
|
|
// add a cast to the recommended type (and correct the format string
|
|
// if necessary). We should also do so for scoped enumerations.
|
|
SmallString<16> CastBuf;
|
|
llvm::raw_svector_ostream CastFix(CastBuf);
|
|
CastFix << (S.LangOpts.CPlusPlus ? "static_cast<" : "(");
|
|
IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
|
|
CastFix << (S.LangOpts.CPlusPlus ? ">" : ")");
|
|
|
|
SmallVector<FixItHint,4> Hints;
|
|
ArgType::MatchKind IntendedMatch = AT.matchesType(S.Context, IntendedTy);
|
|
IntendedMatch = handleFormatSignedness(IntendedMatch, S.getDiagnostics(),
|
|
E->getExprLoc());
|
|
if ((IntendedMatch != ArgType::Match) || ShouldNotPrintDirectly)
|
|
Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
|
|
|
|
if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
|
|
// If there's already a cast present, just replace it.
|
|
SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
|
|
Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
|
|
|
|
} else if (!requiresParensToAddCast(E) && !S.LangOpts.CPlusPlus) {
|
|
// If the expression has high enough precedence,
|
|
// just write the C-style cast.
|
|
Hints.push_back(
|
|
FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
|
|
} else {
|
|
// Otherwise, add parens around the expression as well as the cast.
|
|
CastFix << "(";
|
|
Hints.push_back(
|
|
FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
|
|
|
|
// We don't use getLocForEndOfToken because it returns invalid source
|
|
// locations for macro expansions (by design).
|
|
SourceLocation EndLoc = S.SourceMgr.getSpellingLoc(E->getEndLoc());
|
|
SourceLocation After = EndLoc.getLocWithOffset(
|
|
Lexer::MeasureTokenLength(EndLoc, S.SourceMgr, S.LangOpts));
|
|
Hints.push_back(FixItHint::CreateInsertion(After, ")"));
|
|
}
|
|
|
|
if (ShouldNotPrintDirectly && !IsScopedEnum) {
|
|
// The expression has a type that should not be printed directly.
|
|
// We extract the name from the typedef because we don't want to show
|
|
// the underlying type in the diagnostic.
|
|
StringRef Name;
|
|
if (const auto *TypedefTy = ExprTy->getAs<TypedefType>())
|
|
Name = TypedefTy->getDecl()->getName();
|
|
else
|
|
Name = CastTyName;
|
|
unsigned Diag = Match == ArgType::NoMatchPedantic
|
|
? diag::warn_format_argument_needs_cast_pedantic
|
|
: diag::warn_format_argument_needs_cast;
|
|
EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum
|
|
<< E->getSourceRange(),
|
|
E->getBeginLoc(), /*IsStringLocation=*/false,
|
|
SpecRange, Hints);
|
|
} else {
|
|
// In this case, the expression could be printed using a different
|
|
// specifier, but we've decided that the specifier is probably correct
|
|
// and we should cast instead. Just use the normal warning message.
|
|
|
|
unsigned Diag =
|
|
IsScopedEnum
|
|
? diag::warn_format_conversion_argument_type_mismatch_pedantic
|
|
: diag::warn_format_conversion_argument_type_mismatch;
|
|
|
|
EmitFormatDiagnostic(
|
|
S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
|
|
<< IsEnum << E->getSourceRange(),
|
|
E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints);
|
|
}
|
|
}
|
|
} else {
|
|
const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
|
|
SpecifierLen);
|
|
// Since the warning for passing non-POD types to variadic functions
|
|
// was deferred until now, we emit a warning for non-POD
|
|
// arguments here.
|
|
bool EmitTypeMismatch = false;
|
|
switch (S.isValidVarArgType(ExprTy)) {
|
|
case Sema::VAK_Valid:
|
|
case Sema::VAK_ValidInCXX11: {
|
|
unsigned Diag;
|
|
switch (Match) {
|
|
case ArgType::Match:
|
|
case ArgType::MatchPromotion:
|
|
case ArgType::NoMatchPromotionTypeConfusion:
|
|
case ArgType::NoMatchSignedness:
|
|
llvm_unreachable("expected non-matching");
|
|
case ArgType::NoMatchPedantic:
|
|
Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
|
|
break;
|
|
case ArgType::NoMatchTypeConfusion:
|
|
Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
|
|
break;
|
|
case ArgType::NoMatch:
|
|
Diag = diag::warn_format_conversion_argument_type_mismatch;
|
|
break;
|
|
}
|
|
|
|
EmitFormatDiagnostic(
|
|
S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
|
|
<< IsEnum << CSR << E->getSourceRange(),
|
|
E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
|
|
break;
|
|
}
|
|
case Sema::VAK_Undefined:
|
|
case Sema::VAK_MSVCUndefined:
|
|
if (CallType == Sema::VariadicDoesNotApply) {
|
|
EmitTypeMismatch = true;
|
|
} else {
|
|
EmitFormatDiagnostic(
|
|
S.PDiag(diag::warn_non_pod_vararg_with_format_string)
|
|
<< S.getLangOpts().CPlusPlus11 << ExprTy << CallType
|
|
<< AT.getRepresentativeTypeName(S.Context) << CSR
|
|
<< E->getSourceRange(),
|
|
E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
|
|
checkForCStrMembers(AT, E);
|
|
}
|
|
break;
|
|
|
|
case Sema::VAK_Invalid:
|
|
if (CallType == Sema::VariadicDoesNotApply)
|
|
EmitTypeMismatch = true;
|
|
else if (ExprTy->isObjCObjectType())
|
|
EmitFormatDiagnostic(
|
|
S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
|
|
<< S.getLangOpts().CPlusPlus11 << ExprTy << CallType
|
|
<< AT.getRepresentativeTypeName(S.Context) << CSR
|
|
<< E->getSourceRange(),
|
|
E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
|
|
else
|
|
// FIXME: If this is an initializer list, suggest removing the braces
|
|
// or inserting a cast to the target type.
|
|
S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format)
|
|
<< isa<InitListExpr>(E) << ExprTy << CallType
|
|
<< AT.getRepresentativeTypeName(S.Context) << E->getSourceRange();
|
|
break;
|
|
}
|
|
|
|
if (EmitTypeMismatch) {
|
|
// The function is not variadic, so we do not generate warnings about
|
|
// being allowed to pass that object as a variadic argument. Instead,
|
|
// since there are inherently no printf specifiers for types which cannot
|
|
// be passed as variadic arguments, emit a plain old specifier mismatch
|
|
// argument.
|
|
EmitFormatDiagnostic(
|
|
S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
|
|
<< AT.getRepresentativeTypeName(S.Context) << ExprTy << false
|
|
<< E->getSourceRange(),
|
|
E->getBeginLoc(), false, CSR);
|
|
}
|
|
|
|
assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
|
|
"format string specifier index out of range");
|
|
CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
//===--- CHECK: Scanf format string checking ------------------------------===//
|
|
|
|
namespace {
|
|
|
|
class CheckScanfHandler : public CheckFormatHandler {
|
|
public:
|
|
CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr,
|
|
const Expr *origFormatExpr, Sema::FormatStringType type,
|
|
unsigned firstDataArg, unsigned numDataArgs,
|
|
const char *beg, Sema::FormatArgumentPassingKind APK,
|
|
ArrayRef<const Expr *> Args, unsigned formatIdx,
|
|
bool inFunctionCall, Sema::VariadicCallType CallType,
|
|
llvm::SmallBitVector &CheckedVarArgs,
|
|
UncoveredArgHandler &UncoveredArg)
|
|
: CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
|
|
numDataArgs, beg, APK, Args, formatIdx,
|
|
inFunctionCall, CallType, CheckedVarArgs,
|
|
UncoveredArg) {}
|
|
|
|
bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
|
|
const char *startSpecifier,
|
|
unsigned specifierLen) override;
|
|
|
|
bool HandleInvalidScanfConversionSpecifier(
|
|
const analyze_scanf::ScanfSpecifier &FS,
|
|
const char *startSpecifier,
|
|
unsigned specifierLen) override;
|
|
|
|
void HandleIncompleteScanList(const char *start, const char *end) override;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
void CheckScanfHandler::HandleIncompleteScanList(const char *start,
|
|
const char *end) {
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
|
|
getLocationOfByte(end), /*IsStringLocation*/true,
|
|
getSpecifierRange(start, end - start));
|
|
}
|
|
|
|
bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
|
|
const analyze_scanf::ScanfSpecifier &FS,
|
|
const char *startSpecifier,
|
|
unsigned specifierLen) {
|
|
const analyze_scanf::ScanfConversionSpecifier &CS =
|
|
FS.getConversionSpecifier();
|
|
|
|
return HandleInvalidConversionSpecifier(FS.getArgIndex(),
|
|
getLocationOfByte(CS.getStart()),
|
|
startSpecifier, specifierLen,
|
|
CS.getStart(), CS.getLength());
|
|
}
|
|
|
|
bool CheckScanfHandler::HandleScanfSpecifier(
|
|
const analyze_scanf::ScanfSpecifier &FS,
|
|
const char *startSpecifier,
|
|
unsigned specifierLen) {
|
|
using namespace analyze_scanf;
|
|
using namespace analyze_format_string;
|
|
|
|
const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
|
|
|
|
// Handle case where '%' and '*' don't consume an argument. These shouldn't
|
|
// be used to decide if we are using positional arguments consistently.
|
|
if (FS.consumesDataArgument()) {
|
|
if (atFirstArg) {
|
|
atFirstArg = false;
|
|
usesPositionalArgs = FS.usesPositionalArg();
|
|
}
|
|
else if (usesPositionalArgs != FS.usesPositionalArg()) {
|
|
HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
|
|
startSpecifier, specifierLen);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Check if the field with is non-zero.
|
|
const OptionalAmount &Amt = FS.getFieldWidth();
|
|
if (Amt.getHowSpecified() == OptionalAmount::Constant) {
|
|
if (Amt.getConstantAmount() == 0) {
|
|
const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
|
|
Amt.getConstantLength());
|
|
EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
|
|
getLocationOfByte(Amt.getStart()),
|
|
/*IsStringLocation*/true, R,
|
|
FixItHint::CreateRemoval(R));
|
|
}
|
|
}
|
|
|
|
if (!FS.consumesDataArgument()) {
|
|
// FIXME: Technically specifying a precision or field width here
|
|
// makes no sense. Worth issuing a warning at some point.
|
|
return true;
|
|
}
|
|
|
|
// Consume the argument.
|
|
unsigned argIndex = FS.getArgIndex();
|
|
if (argIndex < NumDataArgs) {
|
|
// The check to see if the argIndex is valid will come later.
|
|
// We set the bit here because we may exit early from this
|
|
// function if we encounter some other error.
|
|
CoveredArgs.set(argIndex);
|
|
}
|
|
|
|
// Check the length modifier is valid with the given conversion specifier.
|
|
if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
|
|
S.getLangOpts()))
|
|
HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
|
|
diag::warn_format_nonsensical_length);
|
|
else if (!FS.hasStandardLengthModifier())
|
|
HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
|
|
else if (!FS.hasStandardLengthConversionCombination())
|
|
HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
|
|
diag::warn_format_non_standard_conversion_spec);
|
|
|
|
if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
|
|
HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
|
|
|
|
// The remaining checks depend on the data arguments.
|
|
if (!HasFormatArguments())
|
|
return true;
|
|
|
|
if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
|
|
return false;
|
|
|
|
// Check that the argument type matches the format specifier.
|
|
const Expr *Ex = getDataArg(argIndex);
|
|
if (!Ex)
|
|
return true;
|
|
|
|
const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
|
|
|
|
if (!AT.isValid()) {
|
|
return true;
|
|
}
|
|
|
|
analyze_format_string::ArgType::MatchKind Match =
|
|
AT.matchesType(S.Context, Ex->getType());
|
|
Match = handleFormatSignedness(Match, S.getDiagnostics(), Ex->getExprLoc());
|
|
bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic;
|
|
if (Match == analyze_format_string::ArgType::Match)
|
|
return true;
|
|
|
|
ScanfSpecifier fixedFS = FS;
|
|
bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(),
|
|
S.getLangOpts(), S.Context);
|
|
|
|
unsigned Diag =
|
|
Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic
|
|
: diag::warn_format_conversion_argument_type_mismatch;
|
|
|
|
if (Success) {
|
|
// Get the fix string from the fixed format specifier.
|
|
SmallString<128> buf;
|
|
llvm::raw_svector_ostream os(buf);
|
|
fixedFS.toString(os);
|
|
|
|
EmitFormatDiagnostic(
|
|
S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context)
|
|
<< Ex->getType() << false << Ex->getSourceRange(),
|
|
Ex->getBeginLoc(),
|
|
/*IsStringLocation*/ false,
|
|
getSpecifierRange(startSpecifier, specifierLen),
|
|
FixItHint::CreateReplacement(
|
|
getSpecifierRange(startSpecifier, specifierLen), os.str()));
|
|
} else {
|
|
EmitFormatDiagnostic(S.PDiag(Diag)
|
|
<< AT.getRepresentativeTypeName(S.Context)
|
|
<< Ex->getType() << false << Ex->getSourceRange(),
|
|
Ex->getBeginLoc(),
|
|
/*IsStringLocation*/ false,
|
|
getSpecifierRange(startSpecifier, specifierLen));
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool CompareFormatSpecifiers(Sema &S, const StringLiteral *Ref,
|
|
ArrayRef<EquatableFormatArgument> RefArgs,
|
|
const StringLiteral *Fmt,
|
|
ArrayRef<EquatableFormatArgument> FmtArgs,
|
|
const Expr *FmtExpr, bool InFunctionCall) {
|
|
bool HadError = false;
|
|
auto FmtIter = FmtArgs.begin(), FmtEnd = FmtArgs.end();
|
|
auto RefIter = RefArgs.begin(), RefEnd = RefArgs.end();
|
|
while (FmtIter < FmtEnd && RefIter < RefEnd) {
|
|
// In positional-style format strings, the same specifier can appear
|
|
// multiple times (like %2$i %2$d). Specifiers in both RefArgs and FmtArgs
|
|
// are sorted by getPosition(), and we process each range of equal
|
|
// getPosition() values as one group.
|
|
// RefArgs are taken from a string literal that was given to
|
|
// attribute(format_matches), and if we got this far, we have already
|
|
// verified that if it has positional specifiers that appear in multiple
|
|
// locations, then they are all mutually compatible. What's left for us to
|
|
// do is verify that all specifiers with the same position in FmtArgs are
|
|
// compatible with the RefArgs specifiers. We check each specifier from
|
|
// FmtArgs against the first member of the RefArgs group.
|
|
for (; FmtIter < FmtEnd; ++FmtIter) {
|
|
// Clang does not diagnose missing format specifiers in positional-style
|
|
// strings (TODO: which it probably should do, as it is UB to skip over a
|
|
// format argument). Skip specifiers if needed.
|
|
if (FmtIter->getPosition() < RefIter->getPosition())
|
|
continue;
|
|
|
|
// Delimits a new getPosition() value.
|
|
if (FmtIter->getPosition() > RefIter->getPosition())
|
|
break;
|
|
|
|
HadError |=
|
|
!FmtIter->VerifyCompatible(S, *RefIter, FmtExpr, InFunctionCall);
|
|
}
|
|
|
|
// Jump RefIter to the start of the next group.
|
|
RefIter = std::find_if(RefIter + 1, RefEnd, [=](const auto &Arg) {
|
|
return Arg.getPosition() != RefIter->getPosition();
|
|
});
|
|
}
|
|
|
|
if (FmtIter < FmtEnd) {
|
|
CheckFormatHandler::EmitFormatDiagnostic(
|
|
S, InFunctionCall, FmtExpr,
|
|
S.PDiag(diag::warn_format_cmp_specifier_arity) << 1,
|
|
FmtExpr->getBeginLoc(), false, FmtIter->getSourceRange());
|
|
HadError = S.Diag(Ref->getBeginLoc(), diag::note_format_cmp_with) << 1;
|
|
} else if (RefIter < RefEnd) {
|
|
CheckFormatHandler::EmitFormatDiagnostic(
|
|
S, InFunctionCall, FmtExpr,
|
|
S.PDiag(diag::warn_format_cmp_specifier_arity) << 0,
|
|
FmtExpr->getBeginLoc(), false, Fmt->getSourceRange());
|
|
HadError = S.Diag(Ref->getBeginLoc(), diag::note_format_cmp_with)
|
|
<< 1 << RefIter->getSourceRange();
|
|
}
|
|
return !HadError;
|
|
}
|
|
|
|
static void CheckFormatString(
|
|
Sema &S, const FormatStringLiteral *FExpr,
|
|
const StringLiteral *ReferenceFormatString, const Expr *OrigFormatExpr,
|
|
ArrayRef<const Expr *> Args, Sema::FormatArgumentPassingKind APK,
|
|
unsigned format_idx, unsigned firstDataArg, Sema::FormatStringType Type,
|
|
bool inFunctionCall, Sema::VariadicCallType CallType,
|
|
llvm::SmallBitVector &CheckedVarArgs, UncoveredArgHandler &UncoveredArg,
|
|
bool IgnoreStringsWithoutSpecifiers) {
|
|
// CHECK: is the format string a wide literal?
|
|
if (!FExpr->isAscii() && !FExpr->isUTF8()) {
|
|
CheckFormatHandler::EmitFormatDiagnostic(
|
|
S, inFunctionCall, Args[format_idx],
|
|
S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(),
|
|
/*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
|
|
return;
|
|
}
|
|
|
|
// Str - The format string. NOTE: this is NOT null-terminated!
|
|
StringRef StrRef = FExpr->getString();
|
|
const char *Str = StrRef.data();
|
|
// Account for cases where the string literal is truncated in a declaration.
|
|
const ConstantArrayType *T =
|
|
S.Context.getAsConstantArrayType(FExpr->getType());
|
|
assert(T && "String literal not of constant array type!");
|
|
size_t TypeSize = T->getZExtSize();
|
|
size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
|
|
const unsigned numDataArgs = Args.size() - firstDataArg;
|
|
|
|
if (IgnoreStringsWithoutSpecifiers &&
|
|
!analyze_format_string::parseFormatStringHasFormattingSpecifiers(
|
|
Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo()))
|
|
return;
|
|
|
|
// Emit a warning if the string literal is truncated and does not contain an
|
|
// embedded null character.
|
|
if (TypeSize <= StrRef.size() && !StrRef.substr(0, TypeSize).contains('\0')) {
|
|
CheckFormatHandler::EmitFormatDiagnostic(
|
|
S, inFunctionCall, Args[format_idx],
|
|
S.PDiag(diag::warn_printf_format_string_not_null_terminated),
|
|
FExpr->getBeginLoc(),
|
|
/*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
|
|
return;
|
|
}
|
|
|
|
// CHECK: empty format string?
|
|
if (StrLen == 0 && numDataArgs > 0) {
|
|
CheckFormatHandler::EmitFormatDiagnostic(
|
|
S, inFunctionCall, Args[format_idx],
|
|
S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(),
|
|
/*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
|
|
return;
|
|
}
|
|
|
|
if (Type == Sema::FST_Printf || Type == Sema::FST_NSString ||
|
|
Type == Sema::FST_Kprintf || Type == Sema::FST_FreeBSDKPrintf ||
|
|
Type == Sema::FST_OSLog || Type == Sema::FST_OSTrace ||
|
|
Type == Sema::FST_Syslog) {
|
|
bool IsObjC = Type == Sema::FST_NSString || Type == Sema::FST_OSTrace;
|
|
if (ReferenceFormatString == nullptr) {
|
|
CheckPrintfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg,
|
|
numDataArgs, IsObjC, Str, APK, Args, format_idx,
|
|
inFunctionCall, CallType, CheckedVarArgs,
|
|
UncoveredArg);
|
|
|
|
if (!analyze_format_string::ParsePrintfString(
|
|
H, Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo(),
|
|
Type == Sema::FST_Kprintf || Type == Sema::FST_FreeBSDKPrintf))
|
|
H.DoneProcessing();
|
|
} else {
|
|
S.CheckFormatStringsCompatible(
|
|
Type, ReferenceFormatString, FExpr->getFormatString(),
|
|
inFunctionCall ? nullptr : Args[format_idx]);
|
|
}
|
|
} else if (Type == Sema::FST_Scanf) {
|
|
CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg,
|
|
numDataArgs, Str, APK, Args, format_idx, inFunctionCall,
|
|
CallType, CheckedVarArgs, UncoveredArg);
|
|
|
|
if (!analyze_format_string::ParseScanfString(
|
|
H, Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo()))
|
|
H.DoneProcessing();
|
|
} // TODO: handle other formats
|
|
}
|
|
|
|
bool Sema::CheckFormatStringsCompatible(
|
|
FormatStringType Type, const StringLiteral *AuthoritativeFormatString,
|
|
const StringLiteral *TestedFormatString, const Expr *FunctionCallArg) {
|
|
if (Type != Sema::FST_Printf && Type != Sema::FST_NSString &&
|
|
Type != Sema::FST_Kprintf && Type != Sema::FST_FreeBSDKPrintf &&
|
|
Type != Sema::FST_OSLog && Type != Sema::FST_OSTrace &&
|
|
Type != Sema::FST_Syslog)
|
|
return true;
|
|
|
|
bool IsObjC = Type == Sema::FST_NSString || Type == Sema::FST_OSTrace;
|
|
llvm::SmallVector<EquatableFormatArgument, 9> RefArgs, FmtArgs;
|
|
FormatStringLiteral RefLit = AuthoritativeFormatString;
|
|
FormatStringLiteral TestLit = TestedFormatString;
|
|
const Expr *Arg;
|
|
bool DiagAtStringLiteral;
|
|
if (FunctionCallArg) {
|
|
Arg = FunctionCallArg;
|
|
DiagAtStringLiteral = false;
|
|
} else {
|
|
Arg = TestedFormatString;
|
|
DiagAtStringLiteral = true;
|
|
}
|
|
if (DecomposePrintfHandler::GetSpecifiers(*this, &RefLit,
|
|
AuthoritativeFormatString, Type,
|
|
IsObjC, true, RefArgs) &&
|
|
DecomposePrintfHandler::GetSpecifiers(*this, &TestLit, Arg, Type, IsObjC,
|
|
DiagAtStringLiteral, FmtArgs)) {
|
|
return CompareFormatSpecifiers(*this, AuthoritativeFormatString, RefArgs,
|
|
TestedFormatString, FmtArgs, Arg,
|
|
DiagAtStringLiteral);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool Sema::ValidateFormatString(FormatStringType Type,
|
|
const StringLiteral *Str) {
|
|
if (Type != Sema::FST_Printf && Type != Sema::FST_NSString &&
|
|
Type != Sema::FST_Kprintf && Type != Sema::FST_FreeBSDKPrintf &&
|
|
Type != Sema::FST_OSLog && Type != Sema::FST_OSTrace &&
|
|
Type != Sema::FST_Syslog)
|
|
return true;
|
|
|
|
FormatStringLiteral RefLit = Str;
|
|
llvm::SmallVector<EquatableFormatArgument, 9> Args;
|
|
bool IsObjC = Type == Sema::FST_NSString || Type == Sema::FST_OSTrace;
|
|
if (!DecomposePrintfHandler::GetSpecifiers(*this, &RefLit, Str, Type, IsObjC,
|
|
true, Args))
|
|
return false;
|
|
|
|
// Group arguments by getPosition() value, and check that each member of the
|
|
// group is compatible with the first member. This verifies that when
|
|
// positional arguments are used multiple times (such as %2$i %2$d), all uses
|
|
// are mutually compatible. As an optimization, don't test the first member
|
|
// against itself.
|
|
bool HadError = false;
|
|
auto Iter = Args.begin();
|
|
auto End = Args.end();
|
|
while (Iter != End) {
|
|
const auto &FirstInGroup = *Iter;
|
|
for (++Iter;
|
|
Iter != End && Iter->getPosition() == FirstInGroup.getPosition();
|
|
++Iter) {
|
|
HadError |= !Iter->VerifyCompatible(*this, FirstInGroup, Str, true);
|
|
}
|
|
}
|
|
return !HadError;
|
|
}
|
|
|
|
bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
|
|
// Str - The format string. NOTE: this is NOT null-terminated!
|
|
StringRef StrRef = FExpr->getString();
|
|
const char *Str = StrRef.data();
|
|
// Account for cases where the string literal is truncated in a declaration.
|
|
const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
|
|
assert(T && "String literal not of constant array type!");
|
|
size_t TypeSize = T->getZExtSize();
|
|
size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
|
|
return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
|
|
getLangOpts(),
|
|
Context.getTargetInfo());
|
|
}
|
|
|
|
//===--- CHECK: Warn on use of wrong absolute value function. -------------===//
|
|
|
|
// Returns the related absolute value function that is larger, of 0 if one
|
|
// does not exist.
|
|
static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
|
|
switch (AbsFunction) {
|
|
default:
|
|
return 0;
|
|
|
|
case Builtin::BI__builtin_abs:
|
|
return Builtin::BI__builtin_labs;
|
|
case Builtin::BI__builtin_labs:
|
|
return Builtin::BI__builtin_llabs;
|
|
case Builtin::BI__builtin_llabs:
|
|
return 0;
|
|
|
|
case Builtin::BI__builtin_fabsf:
|
|
return Builtin::BI__builtin_fabs;
|
|
case Builtin::BI__builtin_fabs:
|
|
return Builtin::BI__builtin_fabsl;
|
|
case Builtin::BI__builtin_fabsl:
|
|
return 0;
|
|
|
|
case Builtin::BI__builtin_cabsf:
|
|
return Builtin::BI__builtin_cabs;
|
|
case Builtin::BI__builtin_cabs:
|
|
return Builtin::BI__builtin_cabsl;
|
|
case Builtin::BI__builtin_cabsl:
|
|
return 0;
|
|
|
|
case Builtin::BIabs:
|
|
return Builtin::BIlabs;
|
|
case Builtin::BIlabs:
|
|
return Builtin::BIllabs;
|
|
case Builtin::BIllabs:
|
|
return 0;
|
|
|
|
case Builtin::BIfabsf:
|
|
return Builtin::BIfabs;
|
|
case Builtin::BIfabs:
|
|
return Builtin::BIfabsl;
|
|
case Builtin::BIfabsl:
|
|
return 0;
|
|
|
|
case Builtin::BIcabsf:
|
|
return Builtin::BIcabs;
|
|
case Builtin::BIcabs:
|
|
return Builtin::BIcabsl;
|
|
case Builtin::BIcabsl:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// Returns the argument type of the absolute value function.
|
|
static QualType getAbsoluteValueArgumentType(ASTContext &Context,
|
|
unsigned AbsType) {
|
|
if (AbsType == 0)
|
|
return QualType();
|
|
|
|
ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
|
|
QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
|
|
if (Error != ASTContext::GE_None)
|
|
return QualType();
|
|
|
|
const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
|
|
if (!FT)
|
|
return QualType();
|
|
|
|
if (FT->getNumParams() != 1)
|
|
return QualType();
|
|
|
|
return FT->getParamType(0);
|
|
}
|
|
|
|
// Returns the best absolute value function, or zero, based on type and
|
|
// current absolute value function.
|
|
static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
|
|
unsigned AbsFunctionKind) {
|
|
unsigned BestKind = 0;
|
|
uint64_t ArgSize = Context.getTypeSize(ArgType);
|
|
for (unsigned Kind = AbsFunctionKind; Kind != 0;
|
|
Kind = getLargerAbsoluteValueFunction(Kind)) {
|
|
QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
|
|
if (Context.getTypeSize(ParamType) >= ArgSize) {
|
|
if (BestKind == 0)
|
|
BestKind = Kind;
|
|
else if (Context.hasSameType(ParamType, ArgType)) {
|
|
BestKind = Kind;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return BestKind;
|
|
}
|
|
|
|
enum AbsoluteValueKind {
|
|
AVK_Integer,
|
|
AVK_Floating,
|
|
AVK_Complex
|
|
};
|
|
|
|
static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
|
|
if (T->isIntegralOrEnumerationType())
|
|
return AVK_Integer;
|
|
if (T->isRealFloatingType())
|
|
return AVK_Floating;
|
|
if (T->isAnyComplexType())
|
|
return AVK_Complex;
|
|
|
|
llvm_unreachable("Type not integer, floating, or complex");
|
|
}
|
|
|
|
// Changes the absolute value function to a different type. Preserves whether
|
|
// the function is a builtin.
|
|
static unsigned changeAbsFunction(unsigned AbsKind,
|
|
AbsoluteValueKind ValueKind) {
|
|
switch (ValueKind) {
|
|
case AVK_Integer:
|
|
switch (AbsKind) {
|
|
default:
|
|
return 0;
|
|
case Builtin::BI__builtin_fabsf:
|
|
case Builtin::BI__builtin_fabs:
|
|
case Builtin::BI__builtin_fabsl:
|
|
case Builtin::BI__builtin_cabsf:
|
|
case Builtin::BI__builtin_cabs:
|
|
case Builtin::BI__builtin_cabsl:
|
|
return Builtin::BI__builtin_abs;
|
|
case Builtin::BIfabsf:
|
|
case Builtin::BIfabs:
|
|
case Builtin::BIfabsl:
|
|
case Builtin::BIcabsf:
|
|
case Builtin::BIcabs:
|
|
case Builtin::BIcabsl:
|
|
return Builtin::BIabs;
|
|
}
|
|
case AVK_Floating:
|
|
switch (AbsKind) {
|
|
default:
|
|
return 0;
|
|
case Builtin::BI__builtin_abs:
|
|
case Builtin::BI__builtin_labs:
|
|
case Builtin::BI__builtin_llabs:
|
|
case Builtin::BI__builtin_cabsf:
|
|
case Builtin::BI__builtin_cabs:
|
|
case Builtin::BI__builtin_cabsl:
|
|
return Builtin::BI__builtin_fabsf;
|
|
case Builtin::BIabs:
|
|
case Builtin::BIlabs:
|
|
case Builtin::BIllabs:
|
|
case Builtin::BIcabsf:
|
|
case Builtin::BIcabs:
|
|
case Builtin::BIcabsl:
|
|
return Builtin::BIfabsf;
|
|
}
|
|
case AVK_Complex:
|
|
switch (AbsKind) {
|
|
default:
|
|
return 0;
|
|
case Builtin::BI__builtin_abs:
|
|
case Builtin::BI__builtin_labs:
|
|
case Builtin::BI__builtin_llabs:
|
|
case Builtin::BI__builtin_fabsf:
|
|
case Builtin::BI__builtin_fabs:
|
|
case Builtin::BI__builtin_fabsl:
|
|
return Builtin::BI__builtin_cabsf;
|
|
case Builtin::BIabs:
|
|
case Builtin::BIlabs:
|
|
case Builtin::BIllabs:
|
|
case Builtin::BIfabsf:
|
|
case Builtin::BIfabs:
|
|
case Builtin::BIfabsl:
|
|
return Builtin::BIcabsf;
|
|
}
|
|
}
|
|
llvm_unreachable("Unable to convert function");
|
|
}
|
|
|
|
static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
|
|
const IdentifierInfo *FnInfo = FDecl->getIdentifier();
|
|
if (!FnInfo)
|
|
return 0;
|
|
|
|
switch (FDecl->getBuiltinID()) {
|
|
default:
|
|
return 0;
|
|
case Builtin::BI__builtin_abs:
|
|
case Builtin::BI__builtin_fabs:
|
|
case Builtin::BI__builtin_fabsf:
|
|
case Builtin::BI__builtin_fabsl:
|
|
case Builtin::BI__builtin_labs:
|
|
case Builtin::BI__builtin_llabs:
|
|
case Builtin::BI__builtin_cabs:
|
|
case Builtin::BI__builtin_cabsf:
|
|
case Builtin::BI__builtin_cabsl:
|
|
case Builtin::BIabs:
|
|
case Builtin::BIlabs:
|
|
case Builtin::BIllabs:
|
|
case Builtin::BIfabs:
|
|
case Builtin::BIfabsf:
|
|
case Builtin::BIfabsl:
|
|
case Builtin::BIcabs:
|
|
case Builtin::BIcabsf:
|
|
case Builtin::BIcabsl:
|
|
return FDecl->getBuiltinID();
|
|
}
|
|
llvm_unreachable("Unknown Builtin type");
|
|
}
|
|
|
|
// If the replacement is valid, emit a note with replacement function.
|
|
// Additionally, suggest including the proper header if not already included.
|
|
static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
|
|
unsigned AbsKind, QualType ArgType) {
|
|
bool EmitHeaderHint = true;
|
|
const char *HeaderName = nullptr;
|
|
std::string FunctionName;
|
|
if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
|
|
FunctionName = "std::abs";
|
|
if (ArgType->isIntegralOrEnumerationType()) {
|
|
HeaderName = "cstdlib";
|
|
} else if (ArgType->isRealFloatingType()) {
|
|
HeaderName = "cmath";
|
|
} else {
|
|
llvm_unreachable("Invalid Type");
|
|
}
|
|
|
|
// Lookup all std::abs
|
|
if (NamespaceDecl *Std = S.getStdNamespace()) {
|
|
LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
|
|
R.suppressDiagnostics();
|
|
S.LookupQualifiedName(R, Std);
|
|
|
|
for (const auto *I : R) {
|
|
const FunctionDecl *FDecl = nullptr;
|
|
if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
|
|
FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
|
|
} else {
|
|
FDecl = dyn_cast<FunctionDecl>(I);
|
|
}
|
|
if (!FDecl)
|
|
continue;
|
|
|
|
// Found std::abs(), check that they are the right ones.
|
|
if (FDecl->getNumParams() != 1)
|
|
continue;
|
|
|
|
// Check that the parameter type can handle the argument.
|
|
QualType ParamType = FDecl->getParamDecl(0)->getType();
|
|
if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
|
|
S.Context.getTypeSize(ArgType) <=
|
|
S.Context.getTypeSize(ParamType)) {
|
|
// Found a function, don't need the header hint.
|
|
EmitHeaderHint = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
FunctionName = S.Context.BuiltinInfo.getName(AbsKind);
|
|
HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
|
|
|
|
if (HeaderName) {
|
|
DeclarationName DN(&S.Context.Idents.get(FunctionName));
|
|
LookupResult R(S, DN, Loc, Sema::LookupAnyName);
|
|
R.suppressDiagnostics();
|
|
S.LookupName(R, S.getCurScope());
|
|
|
|
if (R.isSingleResult()) {
|
|
FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
|
|
if (FD && FD->getBuiltinID() == AbsKind) {
|
|
EmitHeaderHint = false;
|
|
} else {
|
|
return;
|
|
}
|
|
} else if (!R.empty()) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
S.Diag(Loc, diag::note_replace_abs_function)
|
|
<< FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
|
|
|
|
if (!HeaderName)
|
|
return;
|
|
|
|
if (!EmitHeaderHint)
|
|
return;
|
|
|
|
S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
|
|
<< FunctionName;
|
|
}
|
|
|
|
template <std::size_t StrLen>
|
|
static bool IsStdFunction(const FunctionDecl *FDecl,
|
|
const char (&Str)[StrLen]) {
|
|
if (!FDecl)
|
|
return false;
|
|
if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str))
|
|
return false;
|
|
if (!FDecl->isInStdNamespace())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
enum class MathCheck { NaN, Inf };
|
|
static bool IsInfOrNanFunction(StringRef calleeName, MathCheck Check) {
|
|
auto MatchesAny = [&](std::initializer_list<llvm::StringRef> names) {
|
|
return std::any_of(names.begin(), names.end(), [&](llvm::StringRef name) {
|
|
return calleeName == name;
|
|
});
|
|
};
|
|
|
|
switch (Check) {
|
|
case MathCheck::NaN:
|
|
return MatchesAny({"__builtin_nan", "__builtin_nanf", "__builtin_nanl",
|
|
"__builtin_nanf16", "__builtin_nanf128"});
|
|
case MathCheck::Inf:
|
|
return MatchesAny({"__builtin_inf", "__builtin_inff", "__builtin_infl",
|
|
"__builtin_inff16", "__builtin_inff128"});
|
|
}
|
|
llvm_unreachable("unknown MathCheck");
|
|
}
|
|
|
|
static bool IsInfinityFunction(const FunctionDecl *FDecl) {
|
|
if (FDecl->getName() != "infinity")
|
|
return false;
|
|
|
|
if (const CXXMethodDecl *MDecl = dyn_cast<CXXMethodDecl>(FDecl)) {
|
|
const CXXRecordDecl *RDecl = MDecl->getParent();
|
|
if (RDecl->getName() != "numeric_limits")
|
|
return false;
|
|
|
|
if (const NamespaceDecl *NSDecl =
|
|
dyn_cast<NamespaceDecl>(RDecl->getDeclContext()))
|
|
return NSDecl->isStdNamespace();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void Sema::CheckInfNaNFunction(const CallExpr *Call,
|
|
const FunctionDecl *FDecl) {
|
|
if (!FDecl->getIdentifier())
|
|
return;
|
|
|
|
FPOptions FPO = Call->getFPFeaturesInEffect(getLangOpts());
|
|
if (FPO.getNoHonorNaNs() &&
|
|
(IsStdFunction(FDecl, "isnan") || IsStdFunction(FDecl, "isunordered") ||
|
|
IsInfOrNanFunction(FDecl->getName(), MathCheck::NaN))) {
|
|
Diag(Call->getBeginLoc(), diag::warn_fp_nan_inf_when_disabled)
|
|
<< 1 << 0 << Call->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
if (FPO.getNoHonorInfs() &&
|
|
(IsStdFunction(FDecl, "isinf") || IsStdFunction(FDecl, "isfinite") ||
|
|
IsInfinityFunction(FDecl) ||
|
|
IsInfOrNanFunction(FDecl->getName(), MathCheck::Inf))) {
|
|
Diag(Call->getBeginLoc(), diag::warn_fp_nan_inf_when_disabled)
|
|
<< 0 << 0 << Call->getSourceRange();
|
|
}
|
|
}
|
|
|
|
void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
|
|
const FunctionDecl *FDecl) {
|
|
if (Call->getNumArgs() != 1)
|
|
return;
|
|
|
|
unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
|
|
bool IsStdAbs = IsStdFunction(FDecl, "abs");
|
|
if (AbsKind == 0 && !IsStdAbs)
|
|
return;
|
|
|
|
QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
|
|
QualType ParamType = Call->getArg(0)->getType();
|
|
|
|
// Unsigned types cannot be negative. Suggest removing the absolute value
|
|
// function call.
|
|
if (ArgType->isUnsignedIntegerType()) {
|
|
std::string FunctionName =
|
|
IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind);
|
|
Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
|
|
Diag(Call->getExprLoc(), diag::note_remove_abs)
|
|
<< FunctionName
|
|
<< FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
|
|
return;
|
|
}
|
|
|
|
// Taking the absolute value of a pointer is very suspicious, they probably
|
|
// wanted to index into an array, dereference a pointer, call a function, etc.
|
|
if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) {
|
|
unsigned DiagType = 0;
|
|
if (ArgType->isFunctionType())
|
|
DiagType = 1;
|
|
else if (ArgType->isArrayType())
|
|
DiagType = 2;
|
|
|
|
Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType;
|
|
return;
|
|
}
|
|
|
|
// std::abs has overloads which prevent most of the absolute value problems
|
|
// from occurring.
|
|
if (IsStdAbs)
|
|
return;
|
|
|
|
AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
|
|
AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
|
|
|
|
// The argument and parameter are the same kind. Check if they are the right
|
|
// size.
|
|
if (ArgValueKind == ParamValueKind) {
|
|
if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
|
|
return;
|
|
|
|
unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
|
|
Diag(Call->getExprLoc(), diag::warn_abs_too_small)
|
|
<< FDecl << ArgType << ParamType;
|
|
|
|
if (NewAbsKind == 0)
|
|
return;
|
|
|
|
emitReplacement(*this, Call->getExprLoc(),
|
|
Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
|
|
return;
|
|
}
|
|
|
|
// ArgValueKind != ParamValueKind
|
|
// The wrong type of absolute value function was used. Attempt to find the
|
|
// proper one.
|
|
unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
|
|
NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
|
|
if (NewAbsKind == 0)
|
|
return;
|
|
|
|
Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
|
|
<< FDecl << ParamValueKind << ArgValueKind;
|
|
|
|
emitReplacement(*this, Call->getExprLoc(),
|
|
Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
|
|
}
|
|
|
|
//===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===//
|
|
void Sema::CheckMaxUnsignedZero(const CallExpr *Call,
|
|
const FunctionDecl *FDecl) {
|
|
if (!Call || !FDecl) return;
|
|
|
|
// Ignore template specializations and macros.
|
|
if (inTemplateInstantiation()) return;
|
|
if (Call->getExprLoc().isMacroID()) return;
|
|
|
|
// Only care about the one template argument, two function parameter std::max
|
|
if (Call->getNumArgs() != 2) return;
|
|
if (!IsStdFunction(FDecl, "max")) return;
|
|
const auto * ArgList = FDecl->getTemplateSpecializationArgs();
|
|
if (!ArgList) return;
|
|
if (ArgList->size() != 1) return;
|
|
|
|
// Check that template type argument is unsigned integer.
|
|
const auto& TA = ArgList->get(0);
|
|
if (TA.getKind() != TemplateArgument::Type) return;
|
|
QualType ArgType = TA.getAsType();
|
|
if (!ArgType->isUnsignedIntegerType()) return;
|
|
|
|
// See if either argument is a literal zero.
|
|
auto IsLiteralZeroArg = [](const Expr* E) -> bool {
|
|
const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E);
|
|
if (!MTE) return false;
|
|
const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr());
|
|
if (!Num) return false;
|
|
if (Num->getValue() != 0) return false;
|
|
return true;
|
|
};
|
|
|
|
const Expr *FirstArg = Call->getArg(0);
|
|
const Expr *SecondArg = Call->getArg(1);
|
|
const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg);
|
|
const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg);
|
|
|
|
// Only warn when exactly one argument is zero.
|
|
if (IsFirstArgZero == IsSecondArgZero) return;
|
|
|
|
SourceRange FirstRange = FirstArg->getSourceRange();
|
|
SourceRange SecondRange = SecondArg->getSourceRange();
|
|
|
|
SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange;
|
|
|
|
Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero)
|
|
<< IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange;
|
|
|
|
// Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)".
|
|
SourceRange RemovalRange;
|
|
if (IsFirstArgZero) {
|
|
RemovalRange = SourceRange(FirstRange.getBegin(),
|
|
SecondRange.getBegin().getLocWithOffset(-1));
|
|
} else {
|
|
RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()),
|
|
SecondRange.getEnd());
|
|
}
|
|
|
|
Diag(Call->getExprLoc(), diag::note_remove_max_call)
|
|
<< FixItHint::CreateRemoval(Call->getCallee()->getSourceRange())
|
|
<< FixItHint::CreateRemoval(RemovalRange);
|
|
}
|
|
|
|
//===--- CHECK: Standard memory functions ---------------------------------===//
|
|
|
|
/// Takes the expression passed to the size_t parameter of functions
|
|
/// such as memcmp, strncat, etc and warns if it's a comparison.
|
|
///
|
|
/// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
|
|
static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
|
|
IdentifierInfo *FnName,
|
|
SourceLocation FnLoc,
|
|
SourceLocation RParenLoc) {
|
|
const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
|
|
if (!Size)
|
|
return false;
|
|
|
|
// if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||:
|
|
if (!Size->isComparisonOp() && !Size->isLogicalOp())
|
|
return false;
|
|
|
|
SourceRange SizeRange = Size->getSourceRange();
|
|
S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
|
|
<< SizeRange << FnName;
|
|
S.Diag(FnLoc, diag::note_memsize_comparison_paren)
|
|
<< FnName
|
|
<< FixItHint::CreateInsertion(
|
|
S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")")
|
|
<< FixItHint::CreateRemoval(RParenLoc);
|
|
S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
|
|
<< FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
|
|
<< FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
|
|
")");
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Determine whether the given type is or contains a dynamic class type
|
|
/// (e.g., whether it has a vtable).
|
|
static const CXXRecordDecl *getContainedDynamicClass(QualType T,
|
|
bool &IsContained) {
|
|
// Look through array types while ignoring qualifiers.
|
|
const Type *Ty = T->getBaseElementTypeUnsafe();
|
|
IsContained = false;
|
|
|
|
const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
|
|
RD = RD ? RD->getDefinition() : nullptr;
|
|
if (!RD || RD->isInvalidDecl())
|
|
return nullptr;
|
|
|
|
if (RD->isDynamicClass())
|
|
return RD;
|
|
|
|
// Check all the fields. If any bases were dynamic, the class is dynamic.
|
|
// It's impossible for a class to transitively contain itself by value, so
|
|
// infinite recursion is impossible.
|
|
for (auto *FD : RD->fields()) {
|
|
bool SubContained;
|
|
if (const CXXRecordDecl *ContainedRD =
|
|
getContainedDynamicClass(FD->getType(), SubContained)) {
|
|
IsContained = true;
|
|
return ContainedRD;
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) {
|
|
if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E))
|
|
if (Unary->getKind() == UETT_SizeOf)
|
|
return Unary;
|
|
return nullptr;
|
|
}
|
|
|
|
/// If E is a sizeof expression, returns its argument expression,
|
|
/// otherwise returns NULL.
|
|
static const Expr *getSizeOfExprArg(const Expr *E) {
|
|
if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
|
|
if (!SizeOf->isArgumentType())
|
|
return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
|
|
return nullptr;
|
|
}
|
|
|
|
/// If E is a sizeof expression, returns its argument type.
|
|
static QualType getSizeOfArgType(const Expr *E) {
|
|
if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
|
|
return SizeOf->getTypeOfArgument();
|
|
return QualType();
|
|
}
|
|
|
|
namespace {
|
|
|
|
struct SearchNonTrivialToInitializeField
|
|
: DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> {
|
|
using Super =
|
|
DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>;
|
|
|
|
SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {}
|
|
|
|
void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT,
|
|
SourceLocation SL) {
|
|
if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
|
|
asDerived().visitArray(PDIK, AT, SL);
|
|
return;
|
|
}
|
|
|
|
Super::visitWithKind(PDIK, FT, SL);
|
|
}
|
|
|
|
void visitARCStrong(QualType FT, SourceLocation SL) {
|
|
S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
|
|
}
|
|
void visitARCWeak(QualType FT, SourceLocation SL) {
|
|
S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
|
|
}
|
|
void visitStruct(QualType FT, SourceLocation SL) {
|
|
for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
|
|
visit(FD->getType(), FD->getLocation());
|
|
}
|
|
void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK,
|
|
const ArrayType *AT, SourceLocation SL) {
|
|
visit(getContext().getBaseElementType(AT), SL);
|
|
}
|
|
void visitTrivial(QualType FT, SourceLocation SL) {}
|
|
|
|
static void diag(QualType RT, const Expr *E, Sema &S) {
|
|
SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation());
|
|
}
|
|
|
|
ASTContext &getContext() { return S.getASTContext(); }
|
|
|
|
const Expr *E;
|
|
Sema &S;
|
|
};
|
|
|
|
struct SearchNonTrivialToCopyField
|
|
: CopiedTypeVisitor<SearchNonTrivialToCopyField, false> {
|
|
using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>;
|
|
|
|
SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {}
|
|
|
|
void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT,
|
|
SourceLocation SL) {
|
|
if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
|
|
asDerived().visitArray(PCK, AT, SL);
|
|
return;
|
|
}
|
|
|
|
Super::visitWithKind(PCK, FT, SL);
|
|
}
|
|
|
|
void visitARCStrong(QualType FT, SourceLocation SL) {
|
|
S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
|
|
}
|
|
void visitARCWeak(QualType FT, SourceLocation SL) {
|
|
S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
|
|
}
|
|
void visitStruct(QualType FT, SourceLocation SL) {
|
|
for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
|
|
visit(FD->getType(), FD->getLocation());
|
|
}
|
|
void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT,
|
|
SourceLocation SL) {
|
|
visit(getContext().getBaseElementType(AT), SL);
|
|
}
|
|
void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT,
|
|
SourceLocation SL) {}
|
|
void visitTrivial(QualType FT, SourceLocation SL) {}
|
|
void visitVolatileTrivial(QualType FT, SourceLocation SL) {}
|
|
|
|
static void diag(QualType RT, const Expr *E, Sema &S) {
|
|
SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation());
|
|
}
|
|
|
|
ASTContext &getContext() { return S.getASTContext(); }
|
|
|
|
const Expr *E;
|
|
Sema &S;
|
|
};
|
|
|
|
}
|
|
|
|
/// Detect if \c SizeofExpr is likely to calculate the sizeof an object.
|
|
static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) {
|
|
SizeofExpr = SizeofExpr->IgnoreParenImpCasts();
|
|
|
|
if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) {
|
|
if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add)
|
|
return false;
|
|
|
|
return doesExprLikelyComputeSize(BO->getLHS()) ||
|
|
doesExprLikelyComputeSize(BO->getRHS());
|
|
}
|
|
|
|
return getAsSizeOfExpr(SizeofExpr) != nullptr;
|
|
}
|
|
|
|
/// Check if the ArgLoc originated from a macro passed to the call at CallLoc.
|
|
///
|
|
/// \code
|
|
/// #define MACRO 0
|
|
/// foo(MACRO);
|
|
/// foo(0);
|
|
/// \endcode
|
|
///
|
|
/// This should return true for the first call to foo, but not for the second
|
|
/// (regardless of whether foo is a macro or function).
|
|
static bool isArgumentExpandedFromMacro(SourceManager &SM,
|
|
SourceLocation CallLoc,
|
|
SourceLocation ArgLoc) {
|
|
if (!CallLoc.isMacroID())
|
|
return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc);
|
|
|
|
return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) !=
|
|
SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc));
|
|
}
|
|
|
|
/// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the
|
|
/// last two arguments transposed.
|
|
static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) {
|
|
if (BId != Builtin::BImemset && BId != Builtin::BIbzero)
|
|
return;
|
|
|
|
const Expr *SizeArg =
|
|
Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts();
|
|
|
|
auto isLiteralZero = [](const Expr *E) {
|
|
return (isa<IntegerLiteral>(E) &&
|
|
cast<IntegerLiteral>(E)->getValue() == 0) ||
|
|
(isa<CharacterLiteral>(E) &&
|
|
cast<CharacterLiteral>(E)->getValue() == 0);
|
|
};
|
|
|
|
// If we're memsetting or bzeroing 0 bytes, then this is likely an error.
|
|
SourceLocation CallLoc = Call->getRParenLoc();
|
|
SourceManager &SM = S.getSourceManager();
|
|
if (isLiteralZero(SizeArg) &&
|
|
!isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) {
|
|
|
|
SourceLocation DiagLoc = SizeArg->getExprLoc();
|
|
|
|
// Some platforms #define bzero to __builtin_memset. See if this is the
|
|
// case, and if so, emit a better diagnostic.
|
|
if (BId == Builtin::BIbzero ||
|
|
(CallLoc.isMacroID() && Lexer::getImmediateMacroName(
|
|
CallLoc, SM, S.getLangOpts()) == "bzero")) {
|
|
S.Diag(DiagLoc, diag::warn_suspicious_bzero_size);
|
|
S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence);
|
|
} else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) {
|
|
S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0;
|
|
S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// If the second argument to a memset is a sizeof expression and the third
|
|
// isn't, this is also likely an error. This should catch
|
|
// 'memset(buf, sizeof(buf), 0xff)'.
|
|
if (BId == Builtin::BImemset &&
|
|
doesExprLikelyComputeSize(Call->getArg(1)) &&
|
|
!doesExprLikelyComputeSize(Call->getArg(2))) {
|
|
SourceLocation DiagLoc = Call->getArg(1)->getExprLoc();
|
|
S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1;
|
|
S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1;
|
|
return;
|
|
}
|
|
}
|
|
|
|
void Sema::CheckMemaccessArguments(const CallExpr *Call,
|
|
unsigned BId,
|
|
IdentifierInfo *FnName) {
|
|
assert(BId != 0);
|
|
|
|
// It is possible to have a non-standard definition of memset. Validate
|
|
// we have enough arguments, and if not, abort further checking.
|
|
unsigned ExpectedNumArgs =
|
|
(BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3);
|
|
if (Call->getNumArgs() < ExpectedNumArgs)
|
|
return;
|
|
|
|
unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero ||
|
|
BId == Builtin::BIstrndup ? 1 : 2);
|
|
unsigned LenArg =
|
|
(BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2);
|
|
const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
|
|
|
|
if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
|
|
Call->getBeginLoc(), Call->getRParenLoc()))
|
|
return;
|
|
|
|
// Catch cases like 'memset(buf, sizeof(buf), 0)'.
|
|
CheckMemaccessSize(*this, BId, Call);
|
|
|
|
// We have special checking when the length is a sizeof expression.
|
|
QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
|
|
const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
|
|
llvm::FoldingSetNodeID SizeOfArgID;
|
|
|
|
// Although widely used, 'bzero' is not a standard function. Be more strict
|
|
// with the argument types before allowing diagnostics and only allow the
|
|
// form bzero(ptr, sizeof(...)).
|
|
QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType();
|
|
if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>())
|
|
return;
|
|
|
|
for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
|
|
const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
|
|
SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
|
|
|
|
QualType DestTy = Dest->getType();
|
|
QualType PointeeTy;
|
|
if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
|
|
PointeeTy = DestPtrTy->getPointeeType();
|
|
|
|
// Never warn about void type pointers. This can be used to suppress
|
|
// false positives.
|
|
if (PointeeTy->isVoidType())
|
|
continue;
|
|
|
|
// Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
|
|
// actually comparing the expressions for equality. Because computing the
|
|
// expression IDs can be expensive, we only do this if the diagnostic is
|
|
// enabled.
|
|
if (SizeOfArg &&
|
|
!Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
|
|
SizeOfArg->getExprLoc())) {
|
|
// We only compute IDs for expressions if the warning is enabled, and
|
|
// cache the sizeof arg's ID.
|
|
if (SizeOfArgID == llvm::FoldingSetNodeID())
|
|
SizeOfArg->Profile(SizeOfArgID, Context, true);
|
|
llvm::FoldingSetNodeID DestID;
|
|
Dest->Profile(DestID, Context, true);
|
|
if (DestID == SizeOfArgID) {
|
|
// TODO: For strncpy() and friends, this could suggest sizeof(dst)
|
|
// over sizeof(src) as well.
|
|
unsigned ActionIdx = 0; // Default is to suggest dereferencing.
|
|
StringRef ReadableName = FnName->getName();
|
|
|
|
if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
|
|
if (UnaryOp->getOpcode() == UO_AddrOf)
|
|
ActionIdx = 1; // If its an address-of operator, just remove it.
|
|
if (!PointeeTy->isIncompleteType() &&
|
|
(Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
|
|
ActionIdx = 2; // If the pointee's size is sizeof(char),
|
|
// suggest an explicit length.
|
|
|
|
// If the function is defined as a builtin macro, do not show macro
|
|
// expansion.
|
|
SourceLocation SL = SizeOfArg->getExprLoc();
|
|
SourceRange DSR = Dest->getSourceRange();
|
|
SourceRange SSR = SizeOfArg->getSourceRange();
|
|
SourceManager &SM = getSourceManager();
|
|
|
|
if (SM.isMacroArgExpansion(SL)) {
|
|
ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
|
|
SL = SM.getSpellingLoc(SL);
|
|
DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
|
|
SM.getSpellingLoc(DSR.getEnd()));
|
|
SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
|
|
SM.getSpellingLoc(SSR.getEnd()));
|
|
}
|
|
|
|
DiagRuntimeBehavior(SL, SizeOfArg,
|
|
PDiag(diag::warn_sizeof_pointer_expr_memaccess)
|
|
<< ReadableName
|
|
<< PointeeTy
|
|
<< DestTy
|
|
<< DSR
|
|
<< SSR);
|
|
DiagRuntimeBehavior(SL, SizeOfArg,
|
|
PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
|
|
<< ActionIdx
|
|
<< SSR);
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Also check for cases where the sizeof argument is the exact same
|
|
// type as the memory argument, and where it points to a user-defined
|
|
// record type.
|
|
if (SizeOfArgTy != QualType()) {
|
|
if (PointeeTy->isRecordType() &&
|
|
Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
|
|
DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
|
|
PDiag(diag::warn_sizeof_pointer_type_memaccess)
|
|
<< FnName << SizeOfArgTy << ArgIdx
|
|
<< PointeeTy << Dest->getSourceRange()
|
|
<< LenExpr->getSourceRange());
|
|
break;
|
|
}
|
|
}
|
|
} else if (DestTy->isArrayType()) {
|
|
PointeeTy = DestTy;
|
|
}
|
|
|
|
if (PointeeTy == QualType())
|
|
continue;
|
|
|
|
// Always complain about dynamic classes.
|
|
bool IsContained;
|
|
if (const CXXRecordDecl *ContainedRD =
|
|
getContainedDynamicClass(PointeeTy, IsContained)) {
|
|
|
|
unsigned OperationType = 0;
|
|
const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp;
|
|
// "overwritten" if we're warning about the destination for any call
|
|
// but memcmp; otherwise a verb appropriate to the call.
|
|
if (ArgIdx != 0 || IsCmp) {
|
|
if (BId == Builtin::BImemcpy)
|
|
OperationType = 1;
|
|
else if(BId == Builtin::BImemmove)
|
|
OperationType = 2;
|
|
else if (IsCmp)
|
|
OperationType = 3;
|
|
}
|
|
|
|
DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
|
|
PDiag(diag::warn_dyn_class_memaccess)
|
|
<< (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName
|
|
<< IsContained << ContainedRD << OperationType
|
|
<< Call->getCallee()->getSourceRange());
|
|
} else if (PointeeTy.hasNonTrivialObjCLifetime() &&
|
|
BId != Builtin::BImemset)
|
|
DiagRuntimeBehavior(
|
|
Dest->getExprLoc(), Dest,
|
|
PDiag(diag::warn_arc_object_memaccess)
|
|
<< ArgIdx << FnName << PointeeTy
|
|
<< Call->getCallee()->getSourceRange());
|
|
else if (const auto *RT = PointeeTy->getAs<RecordType>()) {
|
|
|
|
// FIXME: Do not consider incomplete types even though they may be
|
|
// completed later. GCC does not diagnose such code, but we may want to
|
|
// consider diagnosing it in the future, perhaps under a different, but
|
|
// related, diagnostic group.
|
|
bool MayBeTriviallyCopyableCXXRecord =
|
|
RT->isIncompleteType() ||
|
|
RT->desugar().isTriviallyCopyableType(Context);
|
|
|
|
if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) &&
|
|
RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) {
|
|
DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
|
|
PDiag(diag::warn_cstruct_memaccess)
|
|
<< ArgIdx << FnName << PointeeTy << 0);
|
|
SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this);
|
|
} else if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) &&
|
|
!MayBeTriviallyCopyableCXXRecord && ArgIdx == 0) {
|
|
// FIXME: Limiting this warning to dest argument until we decide
|
|
// whether it's valid for source argument too.
|
|
DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
|
|
PDiag(diag::warn_cxxstruct_memaccess)
|
|
<< FnName << PointeeTy);
|
|
} else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) &&
|
|
RT->getDecl()->isNonTrivialToPrimitiveCopy()) {
|
|
DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
|
|
PDiag(diag::warn_cstruct_memaccess)
|
|
<< ArgIdx << FnName << PointeeTy << 1);
|
|
SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this);
|
|
} else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) &&
|
|
!MayBeTriviallyCopyableCXXRecord && ArgIdx == 0) {
|
|
// FIXME: Limiting this warning to dest argument until we decide
|
|
// whether it's valid for source argument too.
|
|
DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
|
|
PDiag(diag::warn_cxxstruct_memaccess)
|
|
<< FnName << PointeeTy);
|
|
} else {
|
|
continue;
|
|
}
|
|
} else
|
|
continue;
|
|
|
|
DiagRuntimeBehavior(
|
|
Dest->getExprLoc(), Dest,
|
|
PDiag(diag::note_bad_memaccess_silence)
|
|
<< FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
|
|
break;
|
|
}
|
|
}
|
|
|
|
// A little helper routine: ignore addition and subtraction of integer literals.
|
|
// This intentionally does not ignore all integer constant expressions because
|
|
// we don't want to remove sizeof().
|
|
static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
|
|
Ex = Ex->IgnoreParenCasts();
|
|
|
|
while (true) {
|
|
const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
|
|
if (!BO || !BO->isAdditiveOp())
|
|
break;
|
|
|
|
const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
|
|
const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
|
|
|
|
if (isa<IntegerLiteral>(RHS))
|
|
Ex = LHS;
|
|
else if (isa<IntegerLiteral>(LHS))
|
|
Ex = RHS;
|
|
else
|
|
break;
|
|
}
|
|
|
|
return Ex;
|
|
}
|
|
|
|
static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
|
|
ASTContext &Context) {
|
|
// Only handle constant-sized or VLAs, but not flexible members.
|
|
if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
|
|
// Only issue the FIXIT for arrays of size > 1.
|
|
if (CAT->getZExtSize() <= 1)
|
|
return false;
|
|
} else if (!Ty->isVariableArrayType()) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
|
|
IdentifierInfo *FnName) {
|
|
|
|
// Don't crash if the user has the wrong number of arguments
|
|
unsigned NumArgs = Call->getNumArgs();
|
|
if ((NumArgs != 3) && (NumArgs != 4))
|
|
return;
|
|
|
|
const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
|
|
const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
|
|
const Expr *CompareWithSrc = nullptr;
|
|
|
|
if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
|
|
Call->getBeginLoc(), Call->getRParenLoc()))
|
|
return;
|
|
|
|
// Look for 'strlcpy(dst, x, sizeof(x))'
|
|
if (const Expr *Ex = getSizeOfExprArg(SizeArg))
|
|
CompareWithSrc = Ex;
|
|
else {
|
|
// Look for 'strlcpy(dst, x, strlen(x))'
|
|
if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
|
|
if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
|
|
SizeCall->getNumArgs() == 1)
|
|
CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
|
|
}
|
|
}
|
|
|
|
if (!CompareWithSrc)
|
|
return;
|
|
|
|
// Determine if the argument to sizeof/strlen is equal to the source
|
|
// argument. In principle there's all kinds of things you could do
|
|
// here, for instance creating an == expression and evaluating it with
|
|
// EvaluateAsBooleanCondition, but this uses a more direct technique:
|
|
const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
|
|
if (!SrcArgDRE)
|
|
return;
|
|
|
|
const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
|
|
if (!CompareWithSrcDRE ||
|
|
SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
|
|
return;
|
|
|
|
const Expr *OriginalSizeArg = Call->getArg(2);
|
|
Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size)
|
|
<< OriginalSizeArg->getSourceRange() << FnName;
|
|
|
|
// Output a FIXIT hint if the destination is an array (rather than a
|
|
// pointer to an array). This could be enhanced to handle some
|
|
// pointers if we know the actual size, like if DstArg is 'array+2'
|
|
// we could say 'sizeof(array)-2'.
|
|
const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
|
|
if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
|
|
return;
|
|
|
|
SmallString<128> sizeString;
|
|
llvm::raw_svector_ostream OS(sizeString);
|
|
OS << "sizeof(";
|
|
DstArg->printPretty(OS, nullptr, getPrintingPolicy());
|
|
OS << ")";
|
|
|
|
Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size)
|
|
<< FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
|
|
OS.str());
|
|
}
|
|
|
|
/// Check if two expressions refer to the same declaration.
|
|
static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
|
|
if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
|
|
if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
|
|
return D1->getDecl() == D2->getDecl();
|
|
return false;
|
|
}
|
|
|
|
static const Expr *getStrlenExprArg(const Expr *E) {
|
|
if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
|
|
const FunctionDecl *FD = CE->getDirectCallee();
|
|
if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
|
|
return nullptr;
|
|
return CE->getArg(0)->IgnoreParenCasts();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void Sema::CheckStrncatArguments(const CallExpr *CE,
|
|
IdentifierInfo *FnName) {
|
|
// Don't crash if the user has the wrong number of arguments.
|
|
if (CE->getNumArgs() < 3)
|
|
return;
|
|
const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
|
|
const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
|
|
const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
|
|
|
|
if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(),
|
|
CE->getRParenLoc()))
|
|
return;
|
|
|
|
// Identify common expressions, which are wrongly used as the size argument
|
|
// to strncat and may lead to buffer overflows.
|
|
unsigned PatternType = 0;
|
|
if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
|
|
// - sizeof(dst)
|
|
if (referToTheSameDecl(SizeOfArg, DstArg))
|
|
PatternType = 1;
|
|
// - sizeof(src)
|
|
else if (referToTheSameDecl(SizeOfArg, SrcArg))
|
|
PatternType = 2;
|
|
} else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
|
|
if (BE->getOpcode() == BO_Sub) {
|
|
const Expr *L = BE->getLHS()->IgnoreParenCasts();
|
|
const Expr *R = BE->getRHS()->IgnoreParenCasts();
|
|
// - sizeof(dst) - strlen(dst)
|
|
if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
|
|
referToTheSameDecl(DstArg, getStrlenExprArg(R)))
|
|
PatternType = 1;
|
|
// - sizeof(src) - (anything)
|
|
else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
|
|
PatternType = 2;
|
|
}
|
|
}
|
|
|
|
if (PatternType == 0)
|
|
return;
|
|
|
|
// Generate the diagnostic.
|
|
SourceLocation SL = LenArg->getBeginLoc();
|
|
SourceRange SR = LenArg->getSourceRange();
|
|
SourceManager &SM = getSourceManager();
|
|
|
|
// If the function is defined as a builtin macro, do not show macro expansion.
|
|
if (SM.isMacroArgExpansion(SL)) {
|
|
SL = SM.getSpellingLoc(SL);
|
|
SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
|
|
SM.getSpellingLoc(SR.getEnd()));
|
|
}
|
|
|
|
// Check if the destination is an array (rather than a pointer to an array).
|
|
QualType DstTy = DstArg->getType();
|
|
bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
|
|
Context);
|
|
if (!isKnownSizeArray) {
|
|
if (PatternType == 1)
|
|
Diag(SL, diag::warn_strncat_wrong_size) << SR;
|
|
else
|
|
Diag(SL, diag::warn_strncat_src_size) << SR;
|
|
return;
|
|
}
|
|
|
|
if (PatternType == 1)
|
|
Diag(SL, diag::warn_strncat_large_size) << SR;
|
|
else
|
|
Diag(SL, diag::warn_strncat_src_size) << SR;
|
|
|
|
SmallString<128> sizeString;
|
|
llvm::raw_svector_ostream OS(sizeString);
|
|
OS << "sizeof(";
|
|
DstArg->printPretty(OS, nullptr, getPrintingPolicy());
|
|
OS << ") - ";
|
|
OS << "strlen(";
|
|
DstArg->printPretty(OS, nullptr, getPrintingPolicy());
|
|
OS << ") - 1";
|
|
|
|
Diag(SL, diag::note_strncat_wrong_size)
|
|
<< FixItHint::CreateReplacement(SR, OS.str());
|
|
}
|
|
|
|
namespace {
|
|
void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName,
|
|
const UnaryOperator *UnaryExpr, const Decl *D) {
|
|
if (isa<FieldDecl, FunctionDecl, VarDecl>(D)) {
|
|
S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object)
|
|
<< CalleeName << 0 /*object: */ << cast<NamedDecl>(D);
|
|
return;
|
|
}
|
|
}
|
|
|
|
void CheckFreeArgumentsAddressof(Sema &S, const std::string &CalleeName,
|
|
const UnaryOperator *UnaryExpr) {
|
|
if (const auto *Lvalue = dyn_cast<DeclRefExpr>(UnaryExpr->getSubExpr())) {
|
|
const Decl *D = Lvalue->getDecl();
|
|
if (isa<DeclaratorDecl>(D))
|
|
if (!dyn_cast<DeclaratorDecl>(D)->getType()->isReferenceType())
|
|
return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, D);
|
|
}
|
|
|
|
if (const auto *Lvalue = dyn_cast<MemberExpr>(UnaryExpr->getSubExpr()))
|
|
return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr,
|
|
Lvalue->getMemberDecl());
|
|
}
|
|
|
|
void CheckFreeArgumentsPlus(Sema &S, const std::string &CalleeName,
|
|
const UnaryOperator *UnaryExpr) {
|
|
const auto *Lambda = dyn_cast<LambdaExpr>(
|
|
UnaryExpr->getSubExpr()->IgnoreImplicitAsWritten()->IgnoreParens());
|
|
if (!Lambda)
|
|
return;
|
|
|
|
S.Diag(Lambda->getBeginLoc(), diag::warn_free_nonheap_object)
|
|
<< CalleeName << 2 /*object: lambda expression*/;
|
|
}
|
|
|
|
void CheckFreeArgumentsStackArray(Sema &S, const std::string &CalleeName,
|
|
const DeclRefExpr *Lvalue) {
|
|
const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl());
|
|
if (Var == nullptr)
|
|
return;
|
|
|
|
S.Diag(Lvalue->getBeginLoc(), diag::warn_free_nonheap_object)
|
|
<< CalleeName << 0 /*object: */ << Var;
|
|
}
|
|
|
|
void CheckFreeArgumentsCast(Sema &S, const std::string &CalleeName,
|
|
const CastExpr *Cast) {
|
|
SmallString<128> SizeString;
|
|
llvm::raw_svector_ostream OS(SizeString);
|
|
|
|
clang::CastKind Kind = Cast->getCastKind();
|
|
if (Kind == clang::CK_BitCast &&
|
|
!Cast->getSubExpr()->getType()->isFunctionPointerType())
|
|
return;
|
|
if (Kind == clang::CK_IntegralToPointer &&
|
|
!isa<IntegerLiteral>(
|
|
Cast->getSubExpr()->IgnoreParenImpCasts()->IgnoreParens()))
|
|
return;
|
|
|
|
switch (Cast->getCastKind()) {
|
|
case clang::CK_BitCast:
|
|
case clang::CK_IntegralToPointer:
|
|
case clang::CK_FunctionToPointerDecay:
|
|
OS << '\'';
|
|
Cast->printPretty(OS, nullptr, S.getPrintingPolicy());
|
|
OS << '\'';
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
S.Diag(Cast->getBeginLoc(), diag::warn_free_nonheap_object)
|
|
<< CalleeName << 0 /*object: */ << OS.str();
|
|
}
|
|
} // namespace
|
|
|
|
void Sema::CheckFreeArguments(const CallExpr *E) {
|
|
const std::string CalleeName =
|
|
cast<FunctionDecl>(E->getCalleeDecl())->getQualifiedNameAsString();
|
|
|
|
{ // Prefer something that doesn't involve a cast to make things simpler.
|
|
const Expr *Arg = E->getArg(0)->IgnoreParenCasts();
|
|
if (const auto *UnaryExpr = dyn_cast<UnaryOperator>(Arg))
|
|
switch (UnaryExpr->getOpcode()) {
|
|
case UnaryOperator::Opcode::UO_AddrOf:
|
|
return CheckFreeArgumentsAddressof(*this, CalleeName, UnaryExpr);
|
|
case UnaryOperator::Opcode::UO_Plus:
|
|
return CheckFreeArgumentsPlus(*this, CalleeName, UnaryExpr);
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (const auto *Lvalue = dyn_cast<DeclRefExpr>(Arg))
|
|
if (Lvalue->getType()->isArrayType())
|
|
return CheckFreeArgumentsStackArray(*this, CalleeName, Lvalue);
|
|
|
|
if (const auto *Label = dyn_cast<AddrLabelExpr>(Arg)) {
|
|
Diag(Label->getBeginLoc(), diag::warn_free_nonheap_object)
|
|
<< CalleeName << 0 /*object: */ << Label->getLabel()->getIdentifier();
|
|
return;
|
|
}
|
|
|
|
if (isa<BlockExpr>(Arg)) {
|
|
Diag(Arg->getBeginLoc(), diag::warn_free_nonheap_object)
|
|
<< CalleeName << 1 /*object: block*/;
|
|
return;
|
|
}
|
|
}
|
|
// Maybe the cast was important, check after the other cases.
|
|
if (const auto *Cast = dyn_cast<CastExpr>(E->getArg(0)))
|
|
return CheckFreeArgumentsCast(*this, CalleeName, Cast);
|
|
}
|
|
|
|
void
|
|
Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
|
|
SourceLocation ReturnLoc,
|
|
bool isObjCMethod,
|
|
const AttrVec *Attrs,
|
|
const FunctionDecl *FD) {
|
|
// Check if the return value is null but should not be.
|
|
if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) ||
|
|
(!isObjCMethod && isNonNullType(lhsType))) &&
|
|
CheckNonNullExpr(*this, RetValExp))
|
|
Diag(ReturnLoc, diag::warn_null_ret)
|
|
<< (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
|
|
|
|
// C++11 [basic.stc.dynamic.allocation]p4:
|
|
// If an allocation function declared with a non-throwing
|
|
// exception-specification fails to allocate storage, it shall return
|
|
// a null pointer. Any other allocation function that fails to allocate
|
|
// storage shall indicate failure only by throwing an exception [...]
|
|
if (FD) {
|
|
OverloadedOperatorKind Op = FD->getOverloadedOperator();
|
|
if (Op == OO_New || Op == OO_Array_New) {
|
|
const FunctionProtoType *Proto
|
|
= FD->getType()->castAs<FunctionProtoType>();
|
|
if (!Proto->isNothrow(/*ResultIfDependent*/true) &&
|
|
CheckNonNullExpr(*this, RetValExp))
|
|
Diag(ReturnLoc, diag::warn_operator_new_returns_null)
|
|
<< FD << getLangOpts().CPlusPlus11;
|
|
}
|
|
}
|
|
|
|
if (RetValExp && RetValExp->getType()->isWebAssemblyTableType()) {
|
|
Diag(ReturnLoc, diag::err_wasm_table_art) << 1;
|
|
}
|
|
|
|
// PPC MMA non-pointer types are not allowed as return type. Checking the type
|
|
// here prevent the user from using a PPC MMA type as trailing return type.
|
|
if (Context.getTargetInfo().getTriple().isPPC64())
|
|
PPC().CheckPPCMMAType(RetValExp->getType(), ReturnLoc);
|
|
}
|
|
|
|
void Sema::CheckFloatComparison(SourceLocation Loc, Expr *LHS, Expr *RHS,
|
|
BinaryOperatorKind Opcode) {
|
|
if (!BinaryOperator::isEqualityOp(Opcode))
|
|
return;
|
|
|
|
// Match and capture subexpressions such as "(float) X == 0.1".
|
|
FloatingLiteral *FPLiteral;
|
|
CastExpr *FPCast;
|
|
auto getCastAndLiteral = [&FPLiteral, &FPCast](Expr *L, Expr *R) {
|
|
FPLiteral = dyn_cast<FloatingLiteral>(L->IgnoreParens());
|
|
FPCast = dyn_cast<CastExpr>(R->IgnoreParens());
|
|
return FPLiteral && FPCast;
|
|
};
|
|
|
|
if (getCastAndLiteral(LHS, RHS) || getCastAndLiteral(RHS, LHS)) {
|
|
auto *SourceTy = FPCast->getSubExpr()->getType()->getAs<BuiltinType>();
|
|
auto *TargetTy = FPLiteral->getType()->getAs<BuiltinType>();
|
|
if (SourceTy && TargetTy && SourceTy->isFloatingPoint() &&
|
|
TargetTy->isFloatingPoint()) {
|
|
bool Lossy;
|
|
llvm::APFloat TargetC = FPLiteral->getValue();
|
|
TargetC.convert(Context.getFloatTypeSemantics(QualType(SourceTy, 0)),
|
|
llvm::APFloat::rmNearestTiesToEven, &Lossy);
|
|
if (Lossy) {
|
|
// If the literal cannot be represented in the source type, then a
|
|
// check for == is always false and check for != is always true.
|
|
Diag(Loc, diag::warn_float_compare_literal)
|
|
<< (Opcode == BO_EQ) << QualType(SourceTy, 0)
|
|
<< LHS->getSourceRange() << RHS->getSourceRange();
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Match a more general floating-point equality comparison (-Wfloat-equal).
|
|
Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
|
|
Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
|
|
|
|
// Special case: check for x == x (which is OK).
|
|
// Do not emit warnings for such cases.
|
|
if (auto *DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
|
|
if (auto *DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
|
|
if (DRL->getDecl() == DRR->getDecl())
|
|
return;
|
|
|
|
// Special case: check for comparisons against literals that can be exactly
|
|
// represented by APFloat. In such cases, do not emit a warning. This
|
|
// is a heuristic: often comparison against such literals are used to
|
|
// detect if a value in a variable has not changed. This clearly can
|
|
// lead to false negatives.
|
|
if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
|
|
if (FLL->isExact())
|
|
return;
|
|
} else
|
|
if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
|
|
if (FLR->isExact())
|
|
return;
|
|
|
|
// Check for comparisons with builtin types.
|
|
if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
|
|
if (CL->getBuiltinCallee())
|
|
return;
|
|
|
|
if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
|
|
if (CR->getBuiltinCallee())
|
|
return;
|
|
|
|
// Emit the diagnostic.
|
|
Diag(Loc, diag::warn_floatingpoint_eq)
|
|
<< LHS->getSourceRange() << RHS->getSourceRange();
|
|
}
|
|
|
|
//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
|
|
//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
|
|
|
|
namespace {
|
|
|
|
/// Structure recording the 'active' range of an integer-valued
|
|
/// expression.
|
|
struct IntRange {
|
|
/// The number of bits active in the int. Note that this includes exactly one
|
|
/// sign bit if !NonNegative.
|
|
unsigned Width;
|
|
|
|
/// True if the int is known not to have negative values. If so, all leading
|
|
/// bits before Width are known zero, otherwise they are known to be the
|
|
/// same as the MSB within Width.
|
|
bool NonNegative;
|
|
|
|
IntRange(unsigned Width, bool NonNegative)
|
|
: Width(Width), NonNegative(NonNegative) {}
|
|
|
|
/// Number of bits excluding the sign bit.
|
|
unsigned valueBits() const {
|
|
return NonNegative ? Width : Width - 1;
|
|
}
|
|
|
|
/// Returns the range of the bool type.
|
|
static IntRange forBoolType() {
|
|
return IntRange(1, true);
|
|
}
|
|
|
|
/// Returns the range of an opaque value of the given integral type.
|
|
static IntRange forValueOfType(ASTContext &C, QualType T) {
|
|
return forValueOfCanonicalType(C,
|
|
T->getCanonicalTypeInternal().getTypePtr());
|
|
}
|
|
|
|
/// Returns the range of an opaque value of a canonical integral type.
|
|
static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
|
|
assert(T->isCanonicalUnqualified());
|
|
|
|
if (const VectorType *VT = dyn_cast<VectorType>(T))
|
|
T = VT->getElementType().getTypePtr();
|
|
if (const ComplexType *CT = dyn_cast<ComplexType>(T))
|
|
T = CT->getElementType().getTypePtr();
|
|
if (const AtomicType *AT = dyn_cast<AtomicType>(T))
|
|
T = AT->getValueType().getTypePtr();
|
|
|
|
if (!C.getLangOpts().CPlusPlus) {
|
|
// For enum types in C code, use the underlying datatype.
|
|
if (const EnumType *ET = dyn_cast<EnumType>(T))
|
|
T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr();
|
|
} else if (const EnumType *ET = dyn_cast<EnumType>(T)) {
|
|
// For enum types in C++, use the known bit width of the enumerators.
|
|
EnumDecl *Enum = ET->getDecl();
|
|
// In C++11, enums can have a fixed underlying type. Use this type to
|
|
// compute the range.
|
|
if (Enum->isFixed()) {
|
|
return IntRange(C.getIntWidth(QualType(T, 0)),
|
|
!ET->isSignedIntegerOrEnumerationType());
|
|
}
|
|
|
|
unsigned NumPositive = Enum->getNumPositiveBits();
|
|
unsigned NumNegative = Enum->getNumNegativeBits();
|
|
|
|
if (NumNegative == 0)
|
|
return IntRange(NumPositive, true/*NonNegative*/);
|
|
else
|
|
return IntRange(std::max(NumPositive + 1, NumNegative),
|
|
false/*NonNegative*/);
|
|
}
|
|
|
|
if (const auto *EIT = dyn_cast<BitIntType>(T))
|
|
return IntRange(EIT->getNumBits(), EIT->isUnsigned());
|
|
|
|
const BuiltinType *BT = cast<BuiltinType>(T);
|
|
assert(BT->isInteger());
|
|
|
|
return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
|
|
}
|
|
|
|
/// Returns the "target" range of a canonical integral type, i.e.
|
|
/// the range of values expressible in the type.
|
|
///
|
|
/// This matches forValueOfCanonicalType except that enums have the
|
|
/// full range of their type, not the range of their enumerators.
|
|
static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
|
|
assert(T->isCanonicalUnqualified());
|
|
|
|
if (const VectorType *VT = dyn_cast<VectorType>(T))
|
|
T = VT->getElementType().getTypePtr();
|
|
if (const ComplexType *CT = dyn_cast<ComplexType>(T))
|
|
T = CT->getElementType().getTypePtr();
|
|
if (const AtomicType *AT = dyn_cast<AtomicType>(T))
|
|
T = AT->getValueType().getTypePtr();
|
|
if (const EnumType *ET = dyn_cast<EnumType>(T))
|
|
T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
|
|
|
|
if (const auto *EIT = dyn_cast<BitIntType>(T))
|
|
return IntRange(EIT->getNumBits(), EIT->isUnsigned());
|
|
|
|
const BuiltinType *BT = cast<BuiltinType>(T);
|
|
assert(BT->isInteger());
|
|
|
|
return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
|
|
}
|
|
|
|
/// Returns the supremum of two ranges: i.e. their conservative merge.
|
|
static IntRange join(IntRange L, IntRange R) {
|
|
bool Unsigned = L.NonNegative && R.NonNegative;
|
|
return IntRange(std::max(L.valueBits(), R.valueBits()) + !Unsigned,
|
|
L.NonNegative && R.NonNegative);
|
|
}
|
|
|
|
/// Return the range of a bitwise-AND of the two ranges.
|
|
static IntRange bit_and(IntRange L, IntRange R) {
|
|
unsigned Bits = std::max(L.Width, R.Width);
|
|
bool NonNegative = false;
|
|
if (L.NonNegative) {
|
|
Bits = std::min(Bits, L.Width);
|
|
NonNegative = true;
|
|
}
|
|
if (R.NonNegative) {
|
|
Bits = std::min(Bits, R.Width);
|
|
NonNegative = true;
|
|
}
|
|
return IntRange(Bits, NonNegative);
|
|
}
|
|
|
|
/// Return the range of a sum of the two ranges.
|
|
static IntRange sum(IntRange L, IntRange R) {
|
|
bool Unsigned = L.NonNegative && R.NonNegative;
|
|
return IntRange(std::max(L.valueBits(), R.valueBits()) + 1 + !Unsigned,
|
|
Unsigned);
|
|
}
|
|
|
|
/// Return the range of a difference of the two ranges.
|
|
static IntRange difference(IntRange L, IntRange R) {
|
|
// We need a 1-bit-wider range if:
|
|
// 1) LHS can be negative: least value can be reduced.
|
|
// 2) RHS can be negative: greatest value can be increased.
|
|
bool CanWiden = !L.NonNegative || !R.NonNegative;
|
|
bool Unsigned = L.NonNegative && R.Width == 0;
|
|
return IntRange(std::max(L.valueBits(), R.valueBits()) + CanWiden +
|
|
!Unsigned,
|
|
Unsigned);
|
|
}
|
|
|
|
/// Return the range of a product of the two ranges.
|
|
static IntRange product(IntRange L, IntRange R) {
|
|
// If both LHS and RHS can be negative, we can form
|
|
// -2^L * -2^R = 2^(L + R)
|
|
// which requires L + R + 1 value bits to represent.
|
|
bool CanWiden = !L.NonNegative && !R.NonNegative;
|
|
bool Unsigned = L.NonNegative && R.NonNegative;
|
|
return IntRange(L.valueBits() + R.valueBits() + CanWiden + !Unsigned,
|
|
Unsigned);
|
|
}
|
|
|
|
/// Return the range of a remainder operation between the two ranges.
|
|
static IntRange rem(IntRange L, IntRange R) {
|
|
// The result of a remainder can't be larger than the result of
|
|
// either side. The sign of the result is the sign of the LHS.
|
|
bool Unsigned = L.NonNegative;
|
|
return IntRange(std::min(L.valueBits(), R.valueBits()) + !Unsigned,
|
|
Unsigned);
|
|
}
|
|
};
|
|
|
|
} // namespace
|
|
|
|
static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
|
|
unsigned MaxWidth) {
|
|
if (value.isSigned() && value.isNegative())
|
|
return IntRange(value.getSignificantBits(), false);
|
|
|
|
if (value.getBitWidth() > MaxWidth)
|
|
value = value.trunc(MaxWidth);
|
|
|
|
// isNonNegative() just checks the sign bit without considering
|
|
// signedness.
|
|
return IntRange(value.getActiveBits(), true);
|
|
}
|
|
|
|
static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
|
|
unsigned MaxWidth) {
|
|
if (result.isInt())
|
|
return GetValueRange(C, result.getInt(), MaxWidth);
|
|
|
|
if (result.isVector()) {
|
|
IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
|
|
for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
|
|
IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
|
|
R = IntRange::join(R, El);
|
|
}
|
|
return R;
|
|
}
|
|
|
|
if (result.isComplexInt()) {
|
|
IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
|
|
IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
|
|
return IntRange::join(R, I);
|
|
}
|
|
|
|
// This can happen with lossless casts to intptr_t of "based" lvalues.
|
|
// Assume it might use arbitrary bits.
|
|
// FIXME: The only reason we need to pass the type in here is to get
|
|
// the sign right on this one case. It would be nice if APValue
|
|
// preserved this.
|
|
assert(result.isLValue() || result.isAddrLabelDiff());
|
|
return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
|
|
}
|
|
|
|
static QualType GetExprType(const Expr *E) {
|
|
QualType Ty = E->getType();
|
|
if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
|
|
Ty = AtomicRHS->getValueType();
|
|
return Ty;
|
|
}
|
|
|
|
/// Attempts to estimate an approximate range for the given integer expression.
|
|
/// Returns a range if successful, otherwise it returns \c std::nullopt if a
|
|
/// reliable estimation cannot be determined.
|
|
///
|
|
/// \param MaxWidth The width to which the value will be truncated.
|
|
/// \param InConstantContext If \c true, interpret the expression within a
|
|
/// constant context.
|
|
/// \param Approximate If \c true, provide a likely range of values by assuming
|
|
/// that arithmetic on narrower types remains within those types.
|
|
/// If \c false, return a range that includes all possible values
|
|
/// resulting from the expression.
|
|
/// \returns A range of values that the expression might take, or
|
|
/// std::nullopt if a reliable estimation cannot be determined.
|
|
static std::optional<IntRange> TryGetExprRange(ASTContext &C, const Expr *E,
|
|
unsigned MaxWidth,
|
|
bool InConstantContext,
|
|
bool Approximate) {
|
|
E = E->IgnoreParens();
|
|
|
|
// Try a full evaluation first.
|
|
Expr::EvalResult result;
|
|
if (E->EvaluateAsRValue(result, C, InConstantContext))
|
|
return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
|
|
|
|
// I think we only want to look through implicit casts here; if the
|
|
// user has an explicit widening cast, we should treat the value as
|
|
// being of the new, wider type.
|
|
if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) {
|
|
if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
|
|
return TryGetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext,
|
|
Approximate);
|
|
|
|
IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
|
|
|
|
bool isIntegerCast = CE->getCastKind() == CK_IntegralCast ||
|
|
CE->getCastKind() == CK_BooleanToSignedIntegral;
|
|
|
|
// Assume that non-integer casts can span the full range of the type.
|
|
if (!isIntegerCast)
|
|
return OutputTypeRange;
|
|
|
|
std::optional<IntRange> SubRange = TryGetExprRange(
|
|
C, CE->getSubExpr(), std::min(MaxWidth, OutputTypeRange.Width),
|
|
InConstantContext, Approximate);
|
|
if (!SubRange)
|
|
return std::nullopt;
|
|
|
|
// Bail out if the subexpr's range is as wide as the cast type.
|
|
if (SubRange->Width >= OutputTypeRange.Width)
|
|
return OutputTypeRange;
|
|
|
|
// Otherwise, we take the smaller width, and we're non-negative if
|
|
// either the output type or the subexpr is.
|
|
return IntRange(SubRange->Width,
|
|
SubRange->NonNegative || OutputTypeRange.NonNegative);
|
|
}
|
|
|
|
if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
|
|
// If we can fold the condition, just take that operand.
|
|
bool CondResult;
|
|
if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
|
|
return TryGetExprRange(
|
|
C, CondResult ? CO->getTrueExpr() : CO->getFalseExpr(), MaxWidth,
|
|
InConstantContext, Approximate);
|
|
|
|
// Otherwise, conservatively merge.
|
|
// TryGetExprRange requires an integer expression, but a throw expression
|
|
// results in a void type.
|
|
Expr *TrueExpr = CO->getTrueExpr();
|
|
if (TrueExpr->getType()->isVoidType())
|
|
return std::nullopt;
|
|
|
|
std::optional<IntRange> L =
|
|
TryGetExprRange(C, TrueExpr, MaxWidth, InConstantContext, Approximate);
|
|
if (!L)
|
|
return std::nullopt;
|
|
|
|
Expr *FalseExpr = CO->getFalseExpr();
|
|
if (FalseExpr->getType()->isVoidType())
|
|
return std::nullopt;
|
|
|
|
std::optional<IntRange> R =
|
|
TryGetExprRange(C, FalseExpr, MaxWidth, InConstantContext, Approximate);
|
|
if (!R)
|
|
return std::nullopt;
|
|
|
|
return IntRange::join(*L, *R);
|
|
}
|
|
|
|
if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
|
|
IntRange (*Combine)(IntRange, IntRange) = IntRange::join;
|
|
|
|
switch (BO->getOpcode()) {
|
|
case BO_Cmp:
|
|
llvm_unreachable("builtin <=> should have class type");
|
|
|
|
// Boolean-valued operations are single-bit and positive.
|
|
case BO_LAnd:
|
|
case BO_LOr:
|
|
case BO_LT:
|
|
case BO_GT:
|
|
case BO_LE:
|
|
case BO_GE:
|
|
case BO_EQ:
|
|
case BO_NE:
|
|
return IntRange::forBoolType();
|
|
|
|
// The type of the assignments is the type of the LHS, so the RHS
|
|
// is not necessarily the same type.
|
|
case BO_MulAssign:
|
|
case BO_DivAssign:
|
|
case BO_RemAssign:
|
|
case BO_AddAssign:
|
|
case BO_SubAssign:
|
|
case BO_XorAssign:
|
|
case BO_OrAssign:
|
|
// TODO: bitfields?
|
|
return IntRange::forValueOfType(C, GetExprType(E));
|
|
|
|
// Simple assignments just pass through the RHS, which will have
|
|
// been coerced to the LHS type.
|
|
case BO_Assign:
|
|
// TODO: bitfields?
|
|
return TryGetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
|
|
Approximate);
|
|
|
|
// Operations with opaque sources are black-listed.
|
|
case BO_PtrMemD:
|
|
case BO_PtrMemI:
|
|
return IntRange::forValueOfType(C, GetExprType(E));
|
|
|
|
// Bitwise-and uses the *infinum* of the two source ranges.
|
|
case BO_And:
|
|
case BO_AndAssign:
|
|
Combine = IntRange::bit_and;
|
|
break;
|
|
|
|
// Left shift gets black-listed based on a judgement call.
|
|
case BO_Shl:
|
|
// ...except that we want to treat '1 << (blah)' as logically
|
|
// positive. It's an important idiom.
|
|
if (IntegerLiteral *I
|
|
= dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
|
|
if (I->getValue() == 1) {
|
|
IntRange R = IntRange::forValueOfType(C, GetExprType(E));
|
|
return IntRange(R.Width, /*NonNegative*/ true);
|
|
}
|
|
}
|
|
[[fallthrough]];
|
|
|
|
case BO_ShlAssign:
|
|
return IntRange::forValueOfType(C, GetExprType(E));
|
|
|
|
// Right shift by a constant can narrow its left argument.
|
|
case BO_Shr:
|
|
case BO_ShrAssign: {
|
|
std::optional<IntRange> L = TryGetExprRange(
|
|
C, BO->getLHS(), MaxWidth, InConstantContext, Approximate);
|
|
if (!L)
|
|
return std::nullopt;
|
|
|
|
// If the shift amount is a positive constant, drop the width by
|
|
// that much.
|
|
if (std::optional<llvm::APSInt> shift =
|
|
BO->getRHS()->getIntegerConstantExpr(C)) {
|
|
if (shift->isNonNegative()) {
|
|
if (shift->uge(L->Width))
|
|
L->Width = (L->NonNegative ? 0 : 1);
|
|
else
|
|
L->Width -= shift->getZExtValue();
|
|
}
|
|
}
|
|
|
|
return L;
|
|
}
|
|
|
|
// Comma acts as its right operand.
|
|
case BO_Comma:
|
|
return TryGetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
|
|
Approximate);
|
|
|
|
case BO_Add:
|
|
if (!Approximate)
|
|
Combine = IntRange::sum;
|
|
break;
|
|
|
|
case BO_Sub:
|
|
if (BO->getLHS()->getType()->isPointerType())
|
|
return IntRange::forValueOfType(C, GetExprType(E));
|
|
if (!Approximate)
|
|
Combine = IntRange::difference;
|
|
break;
|
|
|
|
case BO_Mul:
|
|
if (!Approximate)
|
|
Combine = IntRange::product;
|
|
break;
|
|
|
|
// The width of a division result is mostly determined by the size
|
|
// of the LHS.
|
|
case BO_Div: {
|
|
// Don't 'pre-truncate' the operands.
|
|
unsigned opWidth = C.getIntWidth(GetExprType(E));
|
|
std::optional<IntRange> L = TryGetExprRange(
|
|
C, BO->getLHS(), opWidth, InConstantContext, Approximate);
|
|
if (!L)
|
|
return std::nullopt;
|
|
|
|
// If the divisor is constant, use that.
|
|
if (std::optional<llvm::APSInt> divisor =
|
|
BO->getRHS()->getIntegerConstantExpr(C)) {
|
|
unsigned log2 = divisor->logBase2(); // floor(log_2(divisor))
|
|
if (log2 >= L->Width)
|
|
L->Width = (L->NonNegative ? 0 : 1);
|
|
else
|
|
L->Width = std::min(L->Width - log2, MaxWidth);
|
|
return L;
|
|
}
|
|
|
|
// Otherwise, just use the LHS's width.
|
|
// FIXME: This is wrong if the LHS could be its minimal value and the RHS
|
|
// could be -1.
|
|
std::optional<IntRange> R = TryGetExprRange(
|
|
C, BO->getRHS(), opWidth, InConstantContext, Approximate);
|
|
if (!R)
|
|
return std::nullopt;
|
|
|
|
return IntRange(L->Width, L->NonNegative && R->NonNegative);
|
|
}
|
|
|
|
case BO_Rem:
|
|
Combine = IntRange::rem;
|
|
break;
|
|
|
|
// The default behavior is okay for these.
|
|
case BO_Xor:
|
|
case BO_Or:
|
|
break;
|
|
}
|
|
|
|
// Combine the two ranges, but limit the result to the type in which we
|
|
// performed the computation.
|
|
QualType T = GetExprType(E);
|
|
unsigned opWidth = C.getIntWidth(T);
|
|
std::optional<IntRange> L = TryGetExprRange(C, BO->getLHS(), opWidth,
|
|
InConstantContext, Approximate);
|
|
if (!L)
|
|
return std::nullopt;
|
|
|
|
std::optional<IntRange> R = TryGetExprRange(C, BO->getRHS(), opWidth,
|
|
InConstantContext, Approximate);
|
|
if (!R)
|
|
return std::nullopt;
|
|
|
|
IntRange C = Combine(*L, *R);
|
|
C.NonNegative |= T->isUnsignedIntegerOrEnumerationType();
|
|
C.Width = std::min(C.Width, MaxWidth);
|
|
return C;
|
|
}
|
|
|
|
if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
|
|
switch (UO->getOpcode()) {
|
|
// Boolean-valued operations are white-listed.
|
|
case UO_LNot:
|
|
return IntRange::forBoolType();
|
|
|
|
// Operations with opaque sources are black-listed.
|
|
case UO_Deref:
|
|
case UO_AddrOf: // should be impossible
|
|
return IntRange::forValueOfType(C, GetExprType(E));
|
|
|
|
case UO_Minus: {
|
|
if (E->getType()->isUnsignedIntegerType()) {
|
|
return TryGetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext,
|
|
Approximate);
|
|
}
|
|
|
|
std::optional<IntRange> SubRange = TryGetExprRange(
|
|
C, UO->getSubExpr(), MaxWidth, InConstantContext, Approximate);
|
|
|
|
if (!SubRange)
|
|
return std::nullopt;
|
|
|
|
// If the range was previously non-negative, we need an extra bit for the
|
|
// sign bit. If the range was not non-negative, we need an extra bit
|
|
// because the negation of the most-negative value is one bit wider than
|
|
// that value.
|
|
return IntRange(SubRange->Width + 1, false);
|
|
}
|
|
|
|
case UO_Not: {
|
|
if (E->getType()->isUnsignedIntegerType()) {
|
|
return TryGetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext,
|
|
Approximate);
|
|
}
|
|
|
|
std::optional<IntRange> SubRange = TryGetExprRange(
|
|
C, UO->getSubExpr(), MaxWidth, InConstantContext, Approximate);
|
|
|
|
if (!SubRange)
|
|
return std::nullopt;
|
|
|
|
// The width increments by 1 if the sub-expression cannot be negative
|
|
// since it now can be.
|
|
return IntRange(SubRange->Width + (int)SubRange->NonNegative, false);
|
|
}
|
|
|
|
default:
|
|
return TryGetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext,
|
|
Approximate);
|
|
}
|
|
}
|
|
|
|
if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
|
|
return TryGetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext,
|
|
Approximate);
|
|
|
|
if (const auto *BitField = E->getSourceBitField())
|
|
return IntRange(BitField->getBitWidthValue(),
|
|
BitField->getType()->isUnsignedIntegerOrEnumerationType());
|
|
|
|
if (GetExprType(E)->isVoidType())
|
|
return std::nullopt;
|
|
|
|
return IntRange::forValueOfType(C, GetExprType(E));
|
|
}
|
|
|
|
static std::optional<IntRange> TryGetExprRange(ASTContext &C, const Expr *E,
|
|
bool InConstantContext,
|
|
bool Approximate) {
|
|
return TryGetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext,
|
|
Approximate);
|
|
}
|
|
|
|
/// Checks whether the given value, which currently has the given
|
|
/// source semantics, has the same value when coerced through the
|
|
/// target semantics.
|
|
static bool IsSameFloatAfterCast(const llvm::APFloat &value,
|
|
const llvm::fltSemantics &Src,
|
|
const llvm::fltSemantics &Tgt) {
|
|
llvm::APFloat truncated = value;
|
|
|
|
bool ignored;
|
|
truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
|
|
truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
|
|
|
|
return truncated.bitwiseIsEqual(value);
|
|
}
|
|
|
|
/// Checks whether the given value, which currently has the given
|
|
/// source semantics, has the same value when coerced through the
|
|
/// target semantics.
|
|
///
|
|
/// The value might be a vector of floats (or a complex number).
|
|
static bool IsSameFloatAfterCast(const APValue &value,
|
|
const llvm::fltSemantics &Src,
|
|
const llvm::fltSemantics &Tgt) {
|
|
if (value.isFloat())
|
|
return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
|
|
|
|
if (value.isVector()) {
|
|
for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
|
|
if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
assert(value.isComplexFloat());
|
|
return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
|
|
IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
|
|
}
|
|
|
|
static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC,
|
|
bool IsListInit = false);
|
|
|
|
static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) {
|
|
// Suppress cases where we are comparing against an enum constant.
|
|
if (const DeclRefExpr *DR =
|
|
dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
|
|
if (isa<EnumConstantDecl>(DR->getDecl()))
|
|
return true;
|
|
|
|
// Suppress cases where the value is expanded from a macro, unless that macro
|
|
// is how a language represents a boolean literal. This is the case in both C
|
|
// and Objective-C.
|
|
SourceLocation BeginLoc = E->getBeginLoc();
|
|
if (BeginLoc.isMacroID()) {
|
|
StringRef MacroName = Lexer::getImmediateMacroName(
|
|
BeginLoc, S.getSourceManager(), S.getLangOpts());
|
|
return MacroName != "YES" && MacroName != "NO" &&
|
|
MacroName != "true" && MacroName != "false";
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool isKnownToHaveUnsignedValue(Expr *E) {
|
|
return E->getType()->isIntegerType() &&
|
|
(!E->getType()->isSignedIntegerType() ||
|
|
!E->IgnoreParenImpCasts()->getType()->isSignedIntegerType());
|
|
}
|
|
|
|
namespace {
|
|
/// The promoted range of values of a type. In general this has the
|
|
/// following structure:
|
|
///
|
|
/// |-----------| . . . |-----------|
|
|
/// ^ ^ ^ ^
|
|
/// Min HoleMin HoleMax Max
|
|
///
|
|
/// ... where there is only a hole if a signed type is promoted to unsigned
|
|
/// (in which case Min and Max are the smallest and largest representable
|
|
/// values).
|
|
struct PromotedRange {
|
|
// Min, or HoleMax if there is a hole.
|
|
llvm::APSInt PromotedMin;
|
|
// Max, or HoleMin if there is a hole.
|
|
llvm::APSInt PromotedMax;
|
|
|
|
PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) {
|
|
if (R.Width == 0)
|
|
PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned);
|
|
else if (R.Width >= BitWidth && !Unsigned) {
|
|
// Promotion made the type *narrower*. This happens when promoting
|
|
// a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'.
|
|
// Treat all values of 'signed int' as being in range for now.
|
|
PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned);
|
|
PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned);
|
|
} else {
|
|
PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative)
|
|
.extOrTrunc(BitWidth);
|
|
PromotedMin.setIsUnsigned(Unsigned);
|
|
|
|
PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative)
|
|
.extOrTrunc(BitWidth);
|
|
PromotedMax.setIsUnsigned(Unsigned);
|
|
}
|
|
}
|
|
|
|
// Determine whether this range is contiguous (has no hole).
|
|
bool isContiguous() const { return PromotedMin <= PromotedMax; }
|
|
|
|
// Where a constant value is within the range.
|
|
enum ComparisonResult {
|
|
LT = 0x1,
|
|
LE = 0x2,
|
|
GT = 0x4,
|
|
GE = 0x8,
|
|
EQ = 0x10,
|
|
NE = 0x20,
|
|
InRangeFlag = 0x40,
|
|
|
|
Less = LE | LT | NE,
|
|
Min = LE | InRangeFlag,
|
|
InRange = InRangeFlag,
|
|
Max = GE | InRangeFlag,
|
|
Greater = GE | GT | NE,
|
|
|
|
OnlyValue = LE | GE | EQ | InRangeFlag,
|
|
InHole = NE
|
|
};
|
|
|
|
ComparisonResult compare(const llvm::APSInt &Value) const {
|
|
assert(Value.getBitWidth() == PromotedMin.getBitWidth() &&
|
|
Value.isUnsigned() == PromotedMin.isUnsigned());
|
|
if (!isContiguous()) {
|
|
assert(Value.isUnsigned() && "discontiguous range for signed compare");
|
|
if (Value.isMinValue()) return Min;
|
|
if (Value.isMaxValue()) return Max;
|
|
if (Value >= PromotedMin) return InRange;
|
|
if (Value <= PromotedMax) return InRange;
|
|
return InHole;
|
|
}
|
|
|
|
switch (llvm::APSInt::compareValues(Value, PromotedMin)) {
|
|
case -1: return Less;
|
|
case 0: return PromotedMin == PromotedMax ? OnlyValue : Min;
|
|
case 1:
|
|
switch (llvm::APSInt::compareValues(Value, PromotedMax)) {
|
|
case -1: return InRange;
|
|
case 0: return Max;
|
|
case 1: return Greater;
|
|
}
|
|
}
|
|
|
|
llvm_unreachable("impossible compare result");
|
|
}
|
|
|
|
static std::optional<StringRef>
|
|
constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) {
|
|
if (Op == BO_Cmp) {
|
|
ComparisonResult LTFlag = LT, GTFlag = GT;
|
|
if (ConstantOnRHS) std::swap(LTFlag, GTFlag);
|
|
|
|
if (R & EQ) return StringRef("'std::strong_ordering::equal'");
|
|
if (R & LTFlag) return StringRef("'std::strong_ordering::less'");
|
|
if (R & GTFlag) return StringRef("'std::strong_ordering::greater'");
|
|
return std::nullopt;
|
|
}
|
|
|
|
ComparisonResult TrueFlag, FalseFlag;
|
|
if (Op == BO_EQ) {
|
|
TrueFlag = EQ;
|
|
FalseFlag = NE;
|
|
} else if (Op == BO_NE) {
|
|
TrueFlag = NE;
|
|
FalseFlag = EQ;
|
|
} else {
|
|
if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) {
|
|
TrueFlag = LT;
|
|
FalseFlag = GE;
|
|
} else {
|
|
TrueFlag = GT;
|
|
FalseFlag = LE;
|
|
}
|
|
if (Op == BO_GE || Op == BO_LE)
|
|
std::swap(TrueFlag, FalseFlag);
|
|
}
|
|
if (R & TrueFlag)
|
|
return StringRef("true");
|
|
if (R & FalseFlag)
|
|
return StringRef("false");
|
|
return std::nullopt;
|
|
}
|
|
};
|
|
}
|
|
|
|
static bool HasEnumType(Expr *E) {
|
|
// Strip off implicit integral promotions.
|
|
while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
|
|
if (ICE->getCastKind() != CK_IntegralCast &&
|
|
ICE->getCastKind() != CK_NoOp)
|
|
break;
|
|
E = ICE->getSubExpr();
|
|
}
|
|
|
|
return E->getType()->isEnumeralType();
|
|
}
|
|
|
|
static int classifyConstantValue(Expr *Constant) {
|
|
// The values of this enumeration are used in the diagnostics
|
|
// diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare.
|
|
enum ConstantValueKind {
|
|
Miscellaneous = 0,
|
|
LiteralTrue,
|
|
LiteralFalse
|
|
};
|
|
if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant))
|
|
return BL->getValue() ? ConstantValueKind::LiteralTrue
|
|
: ConstantValueKind::LiteralFalse;
|
|
return ConstantValueKind::Miscellaneous;
|
|
}
|
|
|
|
static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E,
|
|
Expr *Constant, Expr *Other,
|
|
const llvm::APSInt &Value,
|
|
bool RhsConstant) {
|
|
if (S.inTemplateInstantiation())
|
|
return false;
|
|
|
|
Expr *OriginalOther = Other;
|
|
|
|
Constant = Constant->IgnoreParenImpCasts();
|
|
Other = Other->IgnoreParenImpCasts();
|
|
|
|
// Suppress warnings on tautological comparisons between values of the same
|
|
// enumeration type. There are only two ways we could warn on this:
|
|
// - If the constant is outside the range of representable values of
|
|
// the enumeration. In such a case, we should warn about the cast
|
|
// to enumeration type, not about the comparison.
|
|
// - If the constant is the maximum / minimum in-range value. For an
|
|
// enumeratin type, such comparisons can be meaningful and useful.
|
|
if (Constant->getType()->isEnumeralType() &&
|
|
S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType()))
|
|
return false;
|
|
|
|
std::optional<IntRange> OtherValueRange = TryGetExprRange(
|
|
S.Context, Other, S.isConstantEvaluatedContext(), /*Approximate=*/false);
|
|
if (!OtherValueRange)
|
|
return false;
|
|
|
|
QualType OtherT = Other->getType();
|
|
if (const auto *AT = OtherT->getAs<AtomicType>())
|
|
OtherT = AT->getValueType();
|
|
IntRange OtherTypeRange = IntRange::forValueOfType(S.Context, OtherT);
|
|
|
|
// Special case for ObjC BOOL on targets where its a typedef for a signed char
|
|
// (Namely, macOS). FIXME: IntRange::forValueOfType should do this.
|
|
bool IsObjCSignedCharBool = S.getLangOpts().ObjC &&
|
|
S.ObjC().NSAPIObj->isObjCBOOLType(OtherT) &&
|
|
OtherT->isSpecificBuiltinType(BuiltinType::SChar);
|
|
|
|
// Whether we're treating Other as being a bool because of the form of
|
|
// expression despite it having another type (typically 'int' in C).
|
|
bool OtherIsBooleanDespiteType =
|
|
!OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue();
|
|
if (OtherIsBooleanDespiteType || IsObjCSignedCharBool)
|
|
OtherTypeRange = *OtherValueRange = IntRange::forBoolType();
|
|
|
|
// Check if all values in the range of possible values of this expression
|
|
// lead to the same comparison outcome.
|
|
PromotedRange OtherPromotedValueRange(*OtherValueRange, Value.getBitWidth(),
|
|
Value.isUnsigned());
|
|
auto Cmp = OtherPromotedValueRange.compare(Value);
|
|
auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant);
|
|
if (!Result)
|
|
return false;
|
|
|
|
// Also consider the range determined by the type alone. This allows us to
|
|
// classify the warning under the proper diagnostic group.
|
|
bool TautologicalTypeCompare = false;
|
|
{
|
|
PromotedRange OtherPromotedTypeRange(OtherTypeRange, Value.getBitWidth(),
|
|
Value.isUnsigned());
|
|
auto TypeCmp = OtherPromotedTypeRange.compare(Value);
|
|
if (auto TypeResult = PromotedRange::constantValue(E->getOpcode(), TypeCmp,
|
|
RhsConstant)) {
|
|
TautologicalTypeCompare = true;
|
|
Cmp = TypeCmp;
|
|
Result = TypeResult;
|
|
}
|
|
}
|
|
|
|
// Don't warn if the non-constant operand actually always evaluates to the
|
|
// same value.
|
|
if (!TautologicalTypeCompare && OtherValueRange->Width == 0)
|
|
return false;
|
|
|
|
// Suppress the diagnostic for an in-range comparison if the constant comes
|
|
// from a macro or enumerator. We don't want to diagnose
|
|
//
|
|
// some_long_value <= INT_MAX
|
|
//
|
|
// when sizeof(int) == sizeof(long).
|
|
bool InRange = Cmp & PromotedRange::InRangeFlag;
|
|
if (InRange && IsEnumConstOrFromMacro(S, Constant))
|
|
return false;
|
|
|
|
// A comparison of an unsigned bit-field against 0 is really a type problem,
|
|
// even though at the type level the bit-field might promote to 'signed int'.
|
|
if (Other->refersToBitField() && InRange && Value == 0 &&
|
|
Other->getType()->isUnsignedIntegerOrEnumerationType())
|
|
TautologicalTypeCompare = true;
|
|
|
|
// If this is a comparison to an enum constant, include that
|
|
// constant in the diagnostic.
|
|
const EnumConstantDecl *ED = nullptr;
|
|
if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
|
|
ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
|
|
|
|
// Should be enough for uint128 (39 decimal digits)
|
|
SmallString<64> PrettySourceValue;
|
|
llvm::raw_svector_ostream OS(PrettySourceValue);
|
|
if (ED) {
|
|
OS << '\'' << *ED << "' (" << Value << ")";
|
|
} else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>(
|
|
Constant->IgnoreParenImpCasts())) {
|
|
OS << (BL->getValue() ? "YES" : "NO");
|
|
} else {
|
|
OS << Value;
|
|
}
|
|
|
|
if (!TautologicalTypeCompare) {
|
|
S.Diag(E->getOperatorLoc(), diag::warn_tautological_compare_value_range)
|
|
<< RhsConstant << OtherValueRange->Width << OtherValueRange->NonNegative
|
|
<< E->getOpcodeStr() << OS.str() << *Result
|
|
<< E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
|
|
return true;
|
|
}
|
|
|
|
if (IsObjCSignedCharBool) {
|
|
S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
|
|
S.PDiag(diag::warn_tautological_compare_objc_bool)
|
|
<< OS.str() << *Result);
|
|
return true;
|
|
}
|
|
|
|
// FIXME: We use a somewhat different formatting for the in-range cases and
|
|
// cases involving boolean values for historical reasons. We should pick a
|
|
// consistent way of presenting these diagnostics.
|
|
if (!InRange || Other->isKnownToHaveBooleanValue()) {
|
|
|
|
S.DiagRuntimeBehavior(
|
|
E->getOperatorLoc(), E,
|
|
S.PDiag(!InRange ? diag::warn_out_of_range_compare
|
|
: diag::warn_tautological_bool_compare)
|
|
<< OS.str() << classifyConstantValue(Constant) << OtherT
|
|
<< OtherIsBooleanDespiteType << *Result
|
|
<< E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
|
|
} else {
|
|
bool IsCharTy = OtherT.withoutLocalFastQualifiers() == S.Context.CharTy;
|
|
unsigned Diag =
|
|
(isKnownToHaveUnsignedValue(OriginalOther) && Value == 0)
|
|
? (HasEnumType(OriginalOther)
|
|
? diag::warn_unsigned_enum_always_true_comparison
|
|
: IsCharTy ? diag::warn_unsigned_char_always_true_comparison
|
|
: diag::warn_unsigned_always_true_comparison)
|
|
: diag::warn_tautological_constant_compare;
|
|
|
|
S.Diag(E->getOperatorLoc(), Diag)
|
|
<< RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result
|
|
<< E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Analyze the operands of the given comparison. Implements the
|
|
/// fallback case from AnalyzeComparison.
|
|
static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
|
|
AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
|
|
AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
|
|
}
|
|
|
|
/// Implements -Wsign-compare.
|
|
///
|
|
/// \param E the binary operator to check for warnings
|
|
static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
|
|
// The type the comparison is being performed in.
|
|
QualType T = E->getLHS()->getType();
|
|
|
|
// Only analyze comparison operators where both sides have been converted to
|
|
// the same type.
|
|
if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
|
|
return AnalyzeImpConvsInComparison(S, E);
|
|
|
|
// Don't analyze value-dependent comparisons directly.
|
|
if (E->isValueDependent())
|
|
return AnalyzeImpConvsInComparison(S, E);
|
|
|
|
Expr *LHS = E->getLHS();
|
|
Expr *RHS = E->getRHS();
|
|
|
|
if (T->isIntegralType(S.Context)) {
|
|
std::optional<llvm::APSInt> RHSValue =
|
|
RHS->getIntegerConstantExpr(S.Context);
|
|
std::optional<llvm::APSInt> LHSValue =
|
|
LHS->getIntegerConstantExpr(S.Context);
|
|
|
|
// We don't care about expressions whose result is a constant.
|
|
if (RHSValue && LHSValue)
|
|
return AnalyzeImpConvsInComparison(S, E);
|
|
|
|
// We only care about expressions where just one side is literal
|
|
if ((bool)RHSValue ^ (bool)LHSValue) {
|
|
// Is the constant on the RHS or LHS?
|
|
const bool RhsConstant = (bool)RHSValue;
|
|
Expr *Const = RhsConstant ? RHS : LHS;
|
|
Expr *Other = RhsConstant ? LHS : RHS;
|
|
const llvm::APSInt &Value = RhsConstant ? *RHSValue : *LHSValue;
|
|
|
|
// Check whether an integer constant comparison results in a value
|
|
// of 'true' or 'false'.
|
|
if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant))
|
|
return AnalyzeImpConvsInComparison(S, E);
|
|
}
|
|
}
|
|
|
|
if (!T->hasUnsignedIntegerRepresentation()) {
|
|
// We don't do anything special if this isn't an unsigned integral
|
|
// comparison: we're only interested in integral comparisons, and
|
|
// signed comparisons only happen in cases we don't care to warn about.
|
|
return AnalyzeImpConvsInComparison(S, E);
|
|
}
|
|
|
|
LHS = LHS->IgnoreParenImpCasts();
|
|
RHS = RHS->IgnoreParenImpCasts();
|
|
|
|
if (!S.getLangOpts().CPlusPlus) {
|
|
// Avoid warning about comparison of integers with different signs when
|
|
// RHS/LHS has a `typeof(E)` type whose sign is different from the sign of
|
|
// the type of `E`.
|
|
if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType()))
|
|
LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
|
|
if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType()))
|
|
RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
|
|
}
|
|
|
|
// Check to see if one of the (unmodified) operands is of different
|
|
// signedness.
|
|
Expr *signedOperand, *unsignedOperand;
|
|
if (LHS->getType()->hasSignedIntegerRepresentation()) {
|
|
assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
|
|
"unsigned comparison between two signed integer expressions?");
|
|
signedOperand = LHS;
|
|
unsignedOperand = RHS;
|
|
} else if (RHS->getType()->hasSignedIntegerRepresentation()) {
|
|
signedOperand = RHS;
|
|
unsignedOperand = LHS;
|
|
} else {
|
|
return AnalyzeImpConvsInComparison(S, E);
|
|
}
|
|
|
|
// Otherwise, calculate the effective range of the signed operand.
|
|
std::optional<IntRange> signedRange =
|
|
TryGetExprRange(S.Context, signedOperand, S.isConstantEvaluatedContext(),
|
|
/*Approximate=*/true);
|
|
if (!signedRange)
|
|
return;
|
|
|
|
// Go ahead and analyze implicit conversions in the operands. Note
|
|
// that we skip the implicit conversions on both sides.
|
|
AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
|
|
AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
|
|
|
|
// If the signed range is non-negative, -Wsign-compare won't fire.
|
|
if (signedRange->NonNegative)
|
|
return;
|
|
|
|
// For (in)equality comparisons, if the unsigned operand is a
|
|
// constant which cannot collide with a overflowed signed operand,
|
|
// then reinterpreting the signed operand as unsigned will not
|
|
// change the result of the comparison.
|
|
if (E->isEqualityOp()) {
|
|
unsigned comparisonWidth = S.Context.getIntWidth(T);
|
|
std::optional<IntRange> unsignedRange = TryGetExprRange(
|
|
S.Context, unsignedOperand, S.isConstantEvaluatedContext(),
|
|
/*Approximate=*/true);
|
|
if (!unsignedRange)
|
|
return;
|
|
|
|
// We should never be unable to prove that the unsigned operand is
|
|
// non-negative.
|
|
assert(unsignedRange->NonNegative && "unsigned range includes negative?");
|
|
|
|
if (unsignedRange->Width < comparisonWidth)
|
|
return;
|
|
}
|
|
|
|
S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
|
|
S.PDiag(diag::warn_mixed_sign_comparison)
|
|
<< LHS->getType() << RHS->getType()
|
|
<< LHS->getSourceRange() << RHS->getSourceRange());
|
|
}
|
|
|
|
/// Analyzes an attempt to assign the given value to a bitfield.
|
|
///
|
|
/// Returns true if there was something fishy about the attempt.
|
|
static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
|
|
SourceLocation InitLoc) {
|
|
assert(Bitfield->isBitField());
|
|
if (Bitfield->isInvalidDecl())
|
|
return false;
|
|
|
|
// White-list bool bitfields.
|
|
QualType BitfieldType = Bitfield->getType();
|
|
if (BitfieldType->isBooleanType())
|
|
return false;
|
|
|
|
if (BitfieldType->isEnumeralType()) {
|
|
EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl();
|
|
// If the underlying enum type was not explicitly specified as an unsigned
|
|
// type and the enum contain only positive values, MSVC++ will cause an
|
|
// inconsistency by storing this as a signed type.
|
|
if (S.getLangOpts().CPlusPlus11 &&
|
|
!BitfieldEnumDecl->getIntegerTypeSourceInfo() &&
|
|
BitfieldEnumDecl->getNumPositiveBits() > 0 &&
|
|
BitfieldEnumDecl->getNumNegativeBits() == 0) {
|
|
S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield)
|
|
<< BitfieldEnumDecl;
|
|
}
|
|
}
|
|
|
|
// Ignore value- or type-dependent expressions.
|
|
if (Bitfield->getBitWidth()->isValueDependent() ||
|
|
Bitfield->getBitWidth()->isTypeDependent() ||
|
|
Init->isValueDependent() ||
|
|
Init->isTypeDependent())
|
|
return false;
|
|
|
|
Expr *OriginalInit = Init->IgnoreParenImpCasts();
|
|
unsigned FieldWidth = Bitfield->getBitWidthValue();
|
|
|
|
Expr::EvalResult Result;
|
|
if (!OriginalInit->EvaluateAsInt(Result, S.Context,
|
|
Expr::SE_AllowSideEffects)) {
|
|
// The RHS is not constant. If the RHS has an enum type, make sure the
|
|
// bitfield is wide enough to hold all the values of the enum without
|
|
// truncation.
|
|
if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) {
|
|
EnumDecl *ED = EnumTy->getDecl();
|
|
bool SignedBitfield = BitfieldType->isSignedIntegerType();
|
|
|
|
// Enum types are implicitly signed on Windows, so check if there are any
|
|
// negative enumerators to see if the enum was intended to be signed or
|
|
// not.
|
|
bool SignedEnum = ED->getNumNegativeBits() > 0;
|
|
|
|
// Check for surprising sign changes when assigning enum values to a
|
|
// bitfield of different signedness. If the bitfield is signed and we
|
|
// have exactly the right number of bits to store this unsigned enum,
|
|
// suggest changing the enum to an unsigned type. This typically happens
|
|
// on Windows where unfixed enums always use an underlying type of 'int'.
|
|
unsigned DiagID = 0;
|
|
if (SignedEnum && !SignedBitfield) {
|
|
DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum;
|
|
} else if (SignedBitfield && !SignedEnum &&
|
|
ED->getNumPositiveBits() == FieldWidth) {
|
|
DiagID = diag::warn_signed_bitfield_enum_conversion;
|
|
}
|
|
|
|
if (DiagID) {
|
|
S.Diag(InitLoc, DiagID) << Bitfield << ED;
|
|
TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo();
|
|
SourceRange TypeRange =
|
|
TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange();
|
|
S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign)
|
|
<< SignedEnum << TypeRange;
|
|
}
|
|
|
|
// Compute the required bitwidth. If the enum has negative values, we need
|
|
// one more bit than the normal number of positive bits to represent the
|
|
// sign bit.
|
|
unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1,
|
|
ED->getNumNegativeBits())
|
|
: ED->getNumPositiveBits();
|
|
|
|
// Check the bitwidth.
|
|
if (BitsNeeded > FieldWidth) {
|
|
Expr *WidthExpr = Bitfield->getBitWidth();
|
|
S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum)
|
|
<< Bitfield << ED;
|
|
S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield)
|
|
<< BitsNeeded << ED << WidthExpr->getSourceRange();
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
llvm::APSInt Value = Result.Val.getInt();
|
|
|
|
unsigned OriginalWidth = Value.getBitWidth();
|
|
|
|
// In C, the macro 'true' from stdbool.h will evaluate to '1'; To reduce
|
|
// false positives where the user is demonstrating they intend to use the
|
|
// bit-field as a Boolean, check to see if the value is 1 and we're assigning
|
|
// to a one-bit bit-field to see if the value came from a macro named 'true'.
|
|
bool OneAssignedToOneBitBitfield = FieldWidth == 1 && Value == 1;
|
|
if (OneAssignedToOneBitBitfield && !S.LangOpts.CPlusPlus) {
|
|
SourceLocation MaybeMacroLoc = OriginalInit->getBeginLoc();
|
|
if (S.SourceMgr.isInSystemMacro(MaybeMacroLoc) &&
|
|
S.findMacroSpelling(MaybeMacroLoc, "true"))
|
|
return false;
|
|
}
|
|
|
|
if (!Value.isSigned() || Value.isNegative())
|
|
if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit))
|
|
if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not)
|
|
OriginalWidth = Value.getSignificantBits();
|
|
|
|
if (OriginalWidth <= FieldWidth)
|
|
return false;
|
|
|
|
// Compute the value which the bitfield will contain.
|
|
llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
|
|
TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType());
|
|
|
|
// Check whether the stored value is equal to the original value.
|
|
TruncatedValue = TruncatedValue.extend(OriginalWidth);
|
|
if (llvm::APSInt::isSameValue(Value, TruncatedValue))
|
|
return false;
|
|
|
|
std::string PrettyValue = toString(Value, 10);
|
|
std::string PrettyTrunc = toString(TruncatedValue, 10);
|
|
|
|
S.Diag(InitLoc, OneAssignedToOneBitBitfield
|
|
? diag::warn_impcast_single_bit_bitield_precision_constant
|
|
: diag::warn_impcast_bitfield_precision_constant)
|
|
<< PrettyValue << PrettyTrunc << OriginalInit->getType()
|
|
<< Init->getSourceRange();
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Analyze the given simple or compound assignment for warning-worthy
|
|
/// operations.
|
|
static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
|
|
// Just recurse on the LHS.
|
|
AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
|
|
|
|
// We want to recurse on the RHS as normal unless we're assigning to
|
|
// a bitfield.
|
|
if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
|
|
if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
|
|
E->getOperatorLoc())) {
|
|
// Recurse, ignoring any implicit conversions on the RHS.
|
|
return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
|
|
E->getOperatorLoc());
|
|
}
|
|
}
|
|
|
|
AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
|
|
|
|
// Diagnose implicitly sequentially-consistent atomic assignment.
|
|
if (E->getLHS()->getType()->isAtomicType())
|
|
S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
|
|
}
|
|
|
|
/// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
|
|
static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
|
|
SourceLocation CContext, unsigned diag,
|
|
bool pruneControlFlow = false) {
|
|
if (pruneControlFlow) {
|
|
S.DiagRuntimeBehavior(E->getExprLoc(), E,
|
|
S.PDiag(diag)
|
|
<< SourceType << T << E->getSourceRange()
|
|
<< SourceRange(CContext));
|
|
return;
|
|
}
|
|
S.Diag(E->getExprLoc(), diag)
|
|
<< SourceType << T << E->getSourceRange() << SourceRange(CContext);
|
|
}
|
|
|
|
/// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
|
|
static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
|
|
SourceLocation CContext,
|
|
unsigned diag, bool pruneControlFlow = false) {
|
|
DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
|
|
}
|
|
|
|
/// Diagnose an implicit cast from a floating point value to an integer value.
|
|
static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T,
|
|
SourceLocation CContext) {
|
|
const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool);
|
|
const bool PruneWarnings = S.inTemplateInstantiation();
|
|
|
|
Expr *InnerE = E->IgnoreParenImpCasts();
|
|
// We also want to warn on, e.g., "int i = -1.234"
|
|
if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
|
|
if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
|
|
InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
|
|
|
|
const bool IsLiteral =
|
|
isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE);
|
|
|
|
llvm::APFloat Value(0.0);
|
|
bool IsConstant =
|
|
E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects);
|
|
if (!IsConstant) {
|
|
if (S.ObjC().isSignedCharBool(T)) {
|
|
return S.ObjC().adornBoolConversionDiagWithTernaryFixit(
|
|
E, S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool)
|
|
<< E->getType());
|
|
}
|
|
|
|
return DiagnoseImpCast(S, E, T, CContext,
|
|
diag::warn_impcast_float_integer, PruneWarnings);
|
|
}
|
|
|
|
bool isExact = false;
|
|
|
|
llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
|
|
T->hasUnsignedIntegerRepresentation());
|
|
llvm::APFloat::opStatus Result = Value.convertToInteger(
|
|
IntegerValue, llvm::APFloat::rmTowardZero, &isExact);
|
|
|
|
// FIXME: Force the precision of the source value down so we don't print
|
|
// digits which are usually useless (we don't really care here if we
|
|
// truncate a digit by accident in edge cases). Ideally, APFloat::toString
|
|
// would automatically print the shortest representation, but it's a bit
|
|
// tricky to implement.
|
|
SmallString<16> PrettySourceValue;
|
|
unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
|
|
precision = (precision * 59 + 195) / 196;
|
|
Value.toString(PrettySourceValue, precision);
|
|
|
|
if (S.ObjC().isSignedCharBool(T) && IntegerValue != 0 && IntegerValue != 1) {
|
|
return S.ObjC().adornBoolConversionDiagWithTernaryFixit(
|
|
E, S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool)
|
|
<< PrettySourceValue);
|
|
}
|
|
|
|
if (Result == llvm::APFloat::opOK && isExact) {
|
|
if (IsLiteral) return;
|
|
return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer,
|
|
PruneWarnings);
|
|
}
|
|
|
|
// Conversion of a floating-point value to a non-bool integer where the
|
|
// integral part cannot be represented by the integer type is undefined.
|
|
if (!IsBool && Result == llvm::APFloat::opInvalidOp)
|
|
return DiagnoseImpCast(
|
|
S, E, T, CContext,
|
|
IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range
|
|
: diag::warn_impcast_float_to_integer_out_of_range,
|
|
PruneWarnings);
|
|
|
|
unsigned DiagID = 0;
|
|
if (IsLiteral) {
|
|
// Warn on floating point literal to integer.
|
|
DiagID = diag::warn_impcast_literal_float_to_integer;
|
|
} else if (IntegerValue == 0) {
|
|
if (Value.isZero()) { // Skip -0.0 to 0 conversion.
|
|
return DiagnoseImpCast(S, E, T, CContext,
|
|
diag::warn_impcast_float_integer, PruneWarnings);
|
|
}
|
|
// Warn on non-zero to zero conversion.
|
|
DiagID = diag::warn_impcast_float_to_integer_zero;
|
|
} else {
|
|
if (IntegerValue.isUnsigned()) {
|
|
if (!IntegerValue.isMaxValue()) {
|
|
return DiagnoseImpCast(S, E, T, CContext,
|
|
diag::warn_impcast_float_integer, PruneWarnings);
|
|
}
|
|
} else { // IntegerValue.isSigned()
|
|
if (!IntegerValue.isMaxSignedValue() &&
|
|
!IntegerValue.isMinSignedValue()) {
|
|
return DiagnoseImpCast(S, E, T, CContext,
|
|
diag::warn_impcast_float_integer, PruneWarnings);
|
|
}
|
|
}
|
|
// Warn on evaluatable floating point expression to integer conversion.
|
|
DiagID = diag::warn_impcast_float_to_integer;
|
|
}
|
|
|
|
SmallString<16> PrettyTargetValue;
|
|
if (IsBool)
|
|
PrettyTargetValue = Value.isZero() ? "false" : "true";
|
|
else
|
|
IntegerValue.toString(PrettyTargetValue);
|
|
|
|
if (PruneWarnings) {
|
|
S.DiagRuntimeBehavior(E->getExprLoc(), E,
|
|
S.PDiag(DiagID)
|
|
<< E->getType() << T.getUnqualifiedType()
|
|
<< PrettySourceValue << PrettyTargetValue
|
|
<< E->getSourceRange() << SourceRange(CContext));
|
|
} else {
|
|
S.Diag(E->getExprLoc(), DiagID)
|
|
<< E->getType() << T.getUnqualifiedType() << PrettySourceValue
|
|
<< PrettyTargetValue << E->getSourceRange() << SourceRange(CContext);
|
|
}
|
|
}
|
|
|
|
/// Analyze the given compound assignment for the possible losing of
|
|
/// floating-point precision.
|
|
static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) {
|
|
assert(isa<CompoundAssignOperator>(E) &&
|
|
"Must be compound assignment operation");
|
|
// Recurse on the LHS and RHS in here
|
|
AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
|
|
AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
|
|
|
|
if (E->getLHS()->getType()->isAtomicType())
|
|
S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst);
|
|
|
|
// Now check the outermost expression
|
|
const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>();
|
|
const auto *RBT = cast<CompoundAssignOperator>(E)
|
|
->getComputationResultType()
|
|
->getAs<BuiltinType>();
|
|
|
|
// The below checks assume source is floating point.
|
|
if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return;
|
|
|
|
// If source is floating point but target is an integer.
|
|
if (ResultBT->isInteger())
|
|
return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(),
|
|
E->getExprLoc(), diag::warn_impcast_float_integer);
|
|
|
|
if (!ResultBT->isFloatingPoint())
|
|
return;
|
|
|
|
// If both source and target are floating points, warn about losing precision.
|
|
int Order = S.getASTContext().getFloatingTypeSemanticOrder(
|
|
QualType(ResultBT, 0), QualType(RBT, 0));
|
|
if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc()))
|
|
// warn about dropping FP rank.
|
|
DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(),
|
|
diag::warn_impcast_float_result_precision);
|
|
}
|
|
|
|
static std::string PrettyPrintInRange(const llvm::APSInt &Value,
|
|
IntRange Range) {
|
|
if (!Range.Width) return "0";
|
|
|
|
llvm::APSInt ValueInRange = Value;
|
|
ValueInRange.setIsSigned(!Range.NonNegative);
|
|
ValueInRange = ValueInRange.trunc(Range.Width);
|
|
return toString(ValueInRange, 10);
|
|
}
|
|
|
|
static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
|
|
if (!isa<ImplicitCastExpr>(Ex))
|
|
return false;
|
|
|
|
Expr *InnerE = Ex->IgnoreParenImpCasts();
|
|
const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
|
|
const Type *Source =
|
|
S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
|
|
if (Target->isDependentType())
|
|
return false;
|
|
|
|
const BuiltinType *FloatCandidateBT =
|
|
dyn_cast<BuiltinType>(ToBool ? Source : Target);
|
|
const Type *BoolCandidateType = ToBool ? Target : Source;
|
|
|
|
return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
|
|
FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
|
|
}
|
|
|
|
static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
|
|
SourceLocation CC) {
|
|
unsigned NumArgs = TheCall->getNumArgs();
|
|
for (unsigned i = 0; i < NumArgs; ++i) {
|
|
Expr *CurrA = TheCall->getArg(i);
|
|
if (!IsImplicitBoolFloatConversion(S, CurrA, true))
|
|
continue;
|
|
|
|
bool IsSwapped = ((i > 0) &&
|
|
IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
|
|
IsSwapped |= ((i < (NumArgs - 1)) &&
|
|
IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
|
|
if (IsSwapped) {
|
|
// Warn on this floating-point to bool conversion.
|
|
DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
|
|
CurrA->getType(), CC,
|
|
diag::warn_impcast_floating_point_to_bool);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T,
|
|
SourceLocation CC) {
|
|
if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
|
|
E->getExprLoc()))
|
|
return;
|
|
|
|
// Don't warn on functions which have return type nullptr_t.
|
|
if (isa<CallExpr>(E))
|
|
return;
|
|
|
|
// Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
|
|
const Expr *NewE = E->IgnoreParenImpCasts();
|
|
bool IsGNUNullExpr = isa<GNUNullExpr>(NewE);
|
|
bool HasNullPtrType = NewE->getType()->isNullPtrType();
|
|
if (!IsGNUNullExpr && !HasNullPtrType)
|
|
return;
|
|
|
|
// Return if target type is a safe conversion.
|
|
if (T->isAnyPointerType() || T->isBlockPointerType() ||
|
|
T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
|
|
return;
|
|
|
|
SourceLocation Loc = E->getSourceRange().getBegin();
|
|
|
|
// Venture through the macro stacks to get to the source of macro arguments.
|
|
// The new location is a better location than the complete location that was
|
|
// passed in.
|
|
Loc = S.SourceMgr.getTopMacroCallerLoc(Loc);
|
|
CC = S.SourceMgr.getTopMacroCallerLoc(CC);
|
|
|
|
// __null is usually wrapped in a macro. Go up a macro if that is the case.
|
|
if (IsGNUNullExpr && Loc.isMacroID()) {
|
|
StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
|
|
Loc, S.SourceMgr, S.getLangOpts());
|
|
if (MacroName == "NULL")
|
|
Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin();
|
|
}
|
|
|
|
// Only warn if the null and context location are in the same macro expansion.
|
|
if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
|
|
return;
|
|
|
|
S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
|
|
<< HasNullPtrType << T << SourceRange(CC)
|
|
<< FixItHint::CreateReplacement(Loc,
|
|
S.getFixItZeroLiteralForType(T, Loc));
|
|
}
|
|
|
|
// Helper function to filter out cases for constant width constant conversion.
|
|
// Don't warn on char array initialization or for non-decimal values.
|
|
static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T,
|
|
SourceLocation CC) {
|
|
// If initializing from a constant, and the constant starts with '0',
|
|
// then it is a binary, octal, or hexadecimal. Allow these constants
|
|
// to fill all the bits, even if there is a sign change.
|
|
if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) {
|
|
const char FirstLiteralCharacter =
|
|
S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0];
|
|
if (FirstLiteralCharacter == '0')
|
|
return false;
|
|
}
|
|
|
|
// If the CC location points to a '{', and the type is char, then assume
|
|
// assume it is an array initialization.
|
|
if (CC.isValid() && T->isCharType()) {
|
|
const char FirstContextCharacter =
|
|
S.getSourceManager().getCharacterData(CC)[0];
|
|
if (FirstContextCharacter == '{')
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static const IntegerLiteral *getIntegerLiteral(Expr *E) {
|
|
const auto *IL = dyn_cast<IntegerLiteral>(E);
|
|
if (!IL) {
|
|
if (auto *UO = dyn_cast<UnaryOperator>(E)) {
|
|
if (UO->getOpcode() == UO_Minus)
|
|
return dyn_cast<IntegerLiteral>(UO->getSubExpr());
|
|
}
|
|
}
|
|
|
|
return IL;
|
|
}
|
|
|
|
static void DiagnoseIntInBoolContext(Sema &S, Expr *E) {
|
|
E = E->IgnoreParenImpCasts();
|
|
SourceLocation ExprLoc = E->getExprLoc();
|
|
|
|
if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
|
|
BinaryOperator::Opcode Opc = BO->getOpcode();
|
|
Expr::EvalResult Result;
|
|
// Do not diagnose unsigned shifts.
|
|
if (Opc == BO_Shl) {
|
|
const auto *LHS = getIntegerLiteral(BO->getLHS());
|
|
const auto *RHS = getIntegerLiteral(BO->getRHS());
|
|
if (LHS && LHS->getValue() == 0)
|
|
S.Diag(ExprLoc, diag::warn_left_shift_always) << 0;
|
|
else if (!E->isValueDependent() && LHS && RHS &&
|
|
RHS->getValue().isNonNegative() &&
|
|
E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects))
|
|
S.Diag(ExprLoc, diag::warn_left_shift_always)
|
|
<< (Result.Val.getInt() != 0);
|
|
else if (E->getType()->isSignedIntegerType())
|
|
S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E;
|
|
}
|
|
}
|
|
|
|
if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
|
|
const auto *LHS = getIntegerLiteral(CO->getTrueExpr());
|
|
const auto *RHS = getIntegerLiteral(CO->getFalseExpr());
|
|
if (!LHS || !RHS)
|
|
return;
|
|
if ((LHS->getValue() == 0 || LHS->getValue() == 1) &&
|
|
(RHS->getValue() == 0 || RHS->getValue() == 1))
|
|
// Do not diagnose common idioms.
|
|
return;
|
|
if (LHS->getValue() != 0 && RHS->getValue() != 0)
|
|
S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true);
|
|
}
|
|
}
|
|
|
|
void Sema::CheckImplicitConversion(Expr *E, QualType T, SourceLocation CC,
|
|
bool *ICContext, bool IsListInit) {
|
|
if (E->isTypeDependent() || E->isValueDependent()) return;
|
|
|
|
const Type *Source = Context.getCanonicalType(E->getType()).getTypePtr();
|
|
const Type *Target = Context.getCanonicalType(T).getTypePtr();
|
|
if (Source == Target) return;
|
|
if (Target->isDependentType()) return;
|
|
|
|
// If the conversion context location is invalid don't complain. We also
|
|
// don't want to emit a warning if the issue occurs from the expansion of
|
|
// a system macro. The problem is that 'getSpellingLoc()' is slow, so we
|
|
// delay this check as long as possible. Once we detect we are in that
|
|
// scenario, we just return.
|
|
if (CC.isInvalid())
|
|
return;
|
|
|
|
if (Source->isAtomicType())
|
|
Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst);
|
|
|
|
// Diagnose implicit casts to bool.
|
|
if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
|
|
if (isa<StringLiteral>(E))
|
|
// Warn on string literal to bool. Checks for string literals in logical
|
|
// and expressions, for instance, assert(0 && "error here"), are
|
|
// prevented by a check in AnalyzeImplicitConversions().
|
|
return DiagnoseImpCast(*this, E, T, CC,
|
|
diag::warn_impcast_string_literal_to_bool);
|
|
if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
|
|
isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
|
|
// This covers the literal expressions that evaluate to Objective-C
|
|
// objects.
|
|
return DiagnoseImpCast(*this, E, T, CC,
|
|
diag::warn_impcast_objective_c_literal_to_bool);
|
|
}
|
|
if (Source->isPointerType() || Source->canDecayToPointerType()) {
|
|
// Warn on pointer to bool conversion that is always true.
|
|
DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
|
|
SourceRange(CC));
|
|
}
|
|
}
|
|
|
|
// If the we're converting a constant to an ObjC BOOL on a platform where BOOL
|
|
// is a typedef for signed char (macOS), then that constant value has to be 1
|
|
// or 0.
|
|
if (ObjC().isSignedCharBool(T) && Source->isIntegralType(Context)) {
|
|
Expr::EvalResult Result;
|
|
if (E->EvaluateAsInt(Result, getASTContext(), Expr::SE_AllowSideEffects)) {
|
|
if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) {
|
|
ObjC().adornBoolConversionDiagWithTernaryFixit(
|
|
E, Diag(CC, diag::warn_impcast_constant_value_to_objc_bool)
|
|
<< toString(Result.Val.getInt(), 10));
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Check implicit casts from Objective-C collection literals to specialized
|
|
// collection types, e.g., NSArray<NSString *> *.
|
|
if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E))
|
|
ObjC().checkArrayLiteral(QualType(Target, 0), ArrayLiteral);
|
|
else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E))
|
|
ObjC().checkDictionaryLiteral(QualType(Target, 0), DictionaryLiteral);
|
|
|
|
// Strip vector types.
|
|
if (isa<VectorType>(Source)) {
|
|
if (Target->isSveVLSBuiltinType() &&
|
|
(Context.areCompatibleSveTypes(QualType(Target, 0),
|
|
QualType(Source, 0)) ||
|
|
Context.areLaxCompatibleSveTypes(QualType(Target, 0),
|
|
QualType(Source, 0))))
|
|
return;
|
|
|
|
if (Target->isRVVVLSBuiltinType() &&
|
|
(Context.areCompatibleRVVTypes(QualType(Target, 0),
|
|
QualType(Source, 0)) ||
|
|
Context.areLaxCompatibleRVVTypes(QualType(Target, 0),
|
|
QualType(Source, 0))))
|
|
return;
|
|
|
|
if (!isa<VectorType>(Target)) {
|
|
if (SourceMgr.isInSystemMacro(CC))
|
|
return;
|
|
return DiagnoseImpCast(*this, E, T, CC, diag::warn_impcast_vector_scalar);
|
|
} else if (getLangOpts().HLSL &&
|
|
Target->castAs<VectorType>()->getNumElements() <
|
|
Source->castAs<VectorType>()->getNumElements()) {
|
|
// Diagnose vector truncation but don't return. We may also want to
|
|
// diagnose an element conversion.
|
|
DiagnoseImpCast(*this, E, T, CC,
|
|
diag::warn_hlsl_impcast_vector_truncation);
|
|
}
|
|
|
|
// If the vector cast is cast between two vectors of the same size, it is
|
|
// a bitcast, not a conversion, except under HLSL where it is a conversion.
|
|
if (!getLangOpts().HLSL &&
|
|
Context.getTypeSize(Source) == Context.getTypeSize(Target))
|
|
return;
|
|
|
|
Source = cast<VectorType>(Source)->getElementType().getTypePtr();
|
|
Target = cast<VectorType>(Target)->getElementType().getTypePtr();
|
|
}
|
|
if (auto VecTy = dyn_cast<VectorType>(Target))
|
|
Target = VecTy->getElementType().getTypePtr();
|
|
|
|
// Strip complex types.
|
|
if (isa<ComplexType>(Source)) {
|
|
if (!isa<ComplexType>(Target)) {
|
|
if (SourceMgr.isInSystemMacro(CC) || Target->isBooleanType())
|
|
return;
|
|
|
|
return DiagnoseImpCast(*this, E, T, CC,
|
|
getLangOpts().CPlusPlus
|
|
? diag::err_impcast_complex_scalar
|
|
: diag::warn_impcast_complex_scalar);
|
|
}
|
|
|
|
Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
|
|
Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
|
|
}
|
|
|
|
const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
|
|
const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
|
|
|
|
// Strip SVE vector types
|
|
if (SourceBT && SourceBT->isSveVLSBuiltinType()) {
|
|
// Need the original target type for vector type checks
|
|
const Type *OriginalTarget = Context.getCanonicalType(T).getTypePtr();
|
|
// Handle conversion from scalable to fixed when msve-vector-bits is
|
|
// specified
|
|
if (Context.areCompatibleSveTypes(QualType(OriginalTarget, 0),
|
|
QualType(Source, 0)) ||
|
|
Context.areLaxCompatibleSveTypes(QualType(OriginalTarget, 0),
|
|
QualType(Source, 0)))
|
|
return;
|
|
|
|
// If the vector cast is cast between two vectors of the same size, it is
|
|
// a bitcast, not a conversion.
|
|
if (Context.getTypeSize(Source) == Context.getTypeSize(Target))
|
|
return;
|
|
|
|
Source = SourceBT->getSveEltType(Context).getTypePtr();
|
|
}
|
|
|
|
if (TargetBT && TargetBT->isSveVLSBuiltinType())
|
|
Target = TargetBT->getSveEltType(Context).getTypePtr();
|
|
|
|
// If the source is floating point...
|
|
if (SourceBT && SourceBT->isFloatingPoint()) {
|
|
// ...and the target is floating point...
|
|
if (TargetBT && TargetBT->isFloatingPoint()) {
|
|
// ...then warn if we're dropping FP rank.
|
|
|
|
int Order = getASTContext().getFloatingTypeSemanticOrder(
|
|
QualType(SourceBT, 0), QualType(TargetBT, 0));
|
|
if (Order > 0) {
|
|
// Don't warn about float constants that are precisely
|
|
// representable in the target type.
|
|
Expr::EvalResult result;
|
|
if (E->EvaluateAsRValue(result, Context)) {
|
|
// Value might be a float, a float vector, or a float complex.
|
|
if (IsSameFloatAfterCast(
|
|
result.Val,
|
|
Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
|
|
Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
|
|
return;
|
|
}
|
|
|
|
if (SourceMgr.isInSystemMacro(CC))
|
|
return;
|
|
|
|
DiagnoseImpCast(*this, E, T, CC, diag::warn_impcast_float_precision);
|
|
}
|
|
// ... or possibly if we're increasing rank, too
|
|
else if (Order < 0) {
|
|
if (SourceMgr.isInSystemMacro(CC))
|
|
return;
|
|
|
|
DiagnoseImpCast(*this, E, T, CC, diag::warn_impcast_double_promotion);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// If the target is integral, always warn.
|
|
if (TargetBT && TargetBT->isInteger()) {
|
|
if (SourceMgr.isInSystemMacro(CC))
|
|
return;
|
|
|
|
DiagnoseFloatingImpCast(*this, E, T, CC);
|
|
}
|
|
|
|
// Detect the case where a call result is converted from floating-point to
|
|
// to bool, and the final argument to the call is converted from bool, to
|
|
// discover this typo:
|
|
//
|
|
// bool b = fabs(x < 1.0); // should be "bool b = fabs(x) < 1.0;"
|
|
//
|
|
// FIXME: This is an incredibly special case; is there some more general
|
|
// way to detect this class of misplaced-parentheses bug?
|
|
if (Target->isBooleanType() && isa<CallExpr>(E)) {
|
|
// Check last argument of function call to see if it is an
|
|
// implicit cast from a type matching the type the result
|
|
// is being cast to.
|
|
CallExpr *CEx = cast<CallExpr>(E);
|
|
if (unsigned NumArgs = CEx->getNumArgs()) {
|
|
Expr *LastA = CEx->getArg(NumArgs - 1);
|
|
Expr *InnerE = LastA->IgnoreParenImpCasts();
|
|
if (isa<ImplicitCastExpr>(LastA) &&
|
|
InnerE->getType()->isBooleanType()) {
|
|
// Warn on this floating-point to bool conversion
|
|
DiagnoseImpCast(*this, E, T, CC,
|
|
diag::warn_impcast_floating_point_to_bool);
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Valid casts involving fixed point types should be accounted for here.
|
|
if (Source->isFixedPointType()) {
|
|
if (Target->isUnsaturatedFixedPointType()) {
|
|
Expr::EvalResult Result;
|
|
if (E->EvaluateAsFixedPoint(Result, Context, Expr::SE_AllowSideEffects,
|
|
isConstantEvaluatedContext())) {
|
|
llvm::APFixedPoint Value = Result.Val.getFixedPoint();
|
|
llvm::APFixedPoint MaxVal = Context.getFixedPointMax(T);
|
|
llvm::APFixedPoint MinVal = Context.getFixedPointMin(T);
|
|
if (Value > MaxVal || Value < MinVal) {
|
|
DiagRuntimeBehavior(E->getExprLoc(), E,
|
|
PDiag(diag::warn_impcast_fixed_point_range)
|
|
<< Value.toString() << T
|
|
<< E->getSourceRange()
|
|
<< clang::SourceRange(CC));
|
|
return;
|
|
}
|
|
}
|
|
} else if (Target->isIntegerType()) {
|
|
Expr::EvalResult Result;
|
|
if (!isConstantEvaluatedContext() &&
|
|
E->EvaluateAsFixedPoint(Result, Context, Expr::SE_AllowSideEffects)) {
|
|
llvm::APFixedPoint FXResult = Result.Val.getFixedPoint();
|
|
|
|
bool Overflowed;
|
|
llvm::APSInt IntResult = FXResult.convertToInt(
|
|
Context.getIntWidth(T), Target->isSignedIntegerOrEnumerationType(),
|
|
&Overflowed);
|
|
|
|
if (Overflowed) {
|
|
DiagRuntimeBehavior(E->getExprLoc(), E,
|
|
PDiag(diag::warn_impcast_fixed_point_range)
|
|
<< FXResult.toString() << T
|
|
<< E->getSourceRange()
|
|
<< clang::SourceRange(CC));
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
} else if (Target->isUnsaturatedFixedPointType()) {
|
|
if (Source->isIntegerType()) {
|
|
Expr::EvalResult Result;
|
|
if (!isConstantEvaluatedContext() &&
|
|
E->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects)) {
|
|
llvm::APSInt Value = Result.Val.getInt();
|
|
|
|
bool Overflowed;
|
|
llvm::APFixedPoint IntResult = llvm::APFixedPoint::getFromIntValue(
|
|
Value, Context.getFixedPointSemantics(T), &Overflowed);
|
|
|
|
if (Overflowed) {
|
|
DiagRuntimeBehavior(E->getExprLoc(), E,
|
|
PDiag(diag::warn_impcast_fixed_point_range)
|
|
<< toString(Value, /*Radix=*/10) << T
|
|
<< E->getSourceRange()
|
|
<< clang::SourceRange(CC));
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we are casting an integer type to a floating point type without
|
|
// initialization-list syntax, we might lose accuracy if the floating
|
|
// point type has a narrower significand than the integer type.
|
|
if (SourceBT && TargetBT && SourceBT->isIntegerType() &&
|
|
TargetBT->isFloatingType() && !IsListInit) {
|
|
// Determine the number of precision bits in the source integer type.
|
|
std::optional<IntRange> SourceRange =
|
|
TryGetExprRange(Context, E, isConstantEvaluatedContext(),
|
|
/*Approximate=*/true);
|
|
if (!SourceRange)
|
|
return;
|
|
unsigned int SourcePrecision = SourceRange->Width;
|
|
|
|
// Determine the number of precision bits in the
|
|
// target floating point type.
|
|
unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision(
|
|
Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
|
|
|
|
if (SourcePrecision > 0 && TargetPrecision > 0 &&
|
|
SourcePrecision > TargetPrecision) {
|
|
|
|
if (std::optional<llvm::APSInt> SourceInt =
|
|
E->getIntegerConstantExpr(Context)) {
|
|
// If the source integer is a constant, convert it to the target
|
|
// floating point type. Issue a warning if the value changes
|
|
// during the whole conversion.
|
|
llvm::APFloat TargetFloatValue(
|
|
Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
|
|
llvm::APFloat::opStatus ConversionStatus =
|
|
TargetFloatValue.convertFromAPInt(
|
|
*SourceInt, SourceBT->isSignedInteger(),
|
|
llvm::APFloat::rmNearestTiesToEven);
|
|
|
|
if (ConversionStatus != llvm::APFloat::opOK) {
|
|
SmallString<32> PrettySourceValue;
|
|
SourceInt->toString(PrettySourceValue, 10);
|
|
SmallString<32> PrettyTargetValue;
|
|
TargetFloatValue.toString(PrettyTargetValue, TargetPrecision);
|
|
|
|
DiagRuntimeBehavior(
|
|
E->getExprLoc(), E,
|
|
PDiag(diag::warn_impcast_integer_float_precision_constant)
|
|
<< PrettySourceValue << PrettyTargetValue << E->getType() << T
|
|
<< E->getSourceRange() << clang::SourceRange(CC));
|
|
}
|
|
} else {
|
|
// Otherwise, the implicit conversion may lose precision.
|
|
DiagnoseImpCast(*this, E, T, CC,
|
|
diag::warn_impcast_integer_float_precision);
|
|
}
|
|
}
|
|
}
|
|
|
|
DiagnoseNullConversion(*this, E, T, CC);
|
|
|
|
DiscardMisalignedMemberAddress(Target, E);
|
|
|
|
if (Target->isBooleanType())
|
|
DiagnoseIntInBoolContext(*this, E);
|
|
|
|
if (!Source->isIntegerType() || !Target->isIntegerType())
|
|
return;
|
|
|
|
// TODO: remove this early return once the false positives for constant->bool
|
|
// in templates, macros, etc, are reduced or removed.
|
|
if (Target->isSpecificBuiltinType(BuiltinType::Bool))
|
|
return;
|
|
|
|
if (ObjC().isSignedCharBool(T) && !Source->isCharType() &&
|
|
!E->isKnownToHaveBooleanValue(/*Semantic=*/false)) {
|
|
return ObjC().adornBoolConversionDiagWithTernaryFixit(
|
|
E, Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool)
|
|
<< E->getType());
|
|
}
|
|
std::optional<IntRange> LikelySourceRange = TryGetExprRange(
|
|
Context, E, isConstantEvaluatedContext(), /*Approximate=*/true);
|
|
if (!LikelySourceRange)
|
|
return;
|
|
|
|
IntRange SourceTypeRange =
|
|
IntRange::forTargetOfCanonicalType(Context, Source);
|
|
IntRange TargetRange = IntRange::forTargetOfCanonicalType(Context, Target);
|
|
|
|
if (LikelySourceRange->Width > TargetRange.Width) {
|
|
// If the source is a constant, use a default-on diagnostic.
|
|
// TODO: this should happen for bitfield stores, too.
|
|
Expr::EvalResult Result;
|
|
if (E->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects,
|
|
isConstantEvaluatedContext())) {
|
|
llvm::APSInt Value(32);
|
|
Value = Result.Val.getInt();
|
|
|
|
if (SourceMgr.isInSystemMacro(CC))
|
|
return;
|
|
|
|
std::string PrettySourceValue = toString(Value, 10);
|
|
std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
|
|
|
|
DiagRuntimeBehavior(E->getExprLoc(), E,
|
|
PDiag(diag::warn_impcast_integer_precision_constant)
|
|
<< PrettySourceValue << PrettyTargetValue
|
|
<< E->getType() << T << E->getSourceRange()
|
|
<< SourceRange(CC));
|
|
return;
|
|
}
|
|
|
|
// People want to build with -Wshorten-64-to-32 and not -Wconversion.
|
|
if (SourceMgr.isInSystemMacro(CC))
|
|
return;
|
|
|
|
if (TargetRange.Width == 32 && Context.getIntWidth(E->getType()) == 64)
|
|
return DiagnoseImpCast(*this, E, T, CC, diag::warn_impcast_integer_64_32,
|
|
/* pruneControlFlow */ true);
|
|
return DiagnoseImpCast(*this, E, T, CC,
|
|
diag::warn_impcast_integer_precision);
|
|
}
|
|
|
|
if (TargetRange.Width > SourceTypeRange.Width) {
|
|
if (auto *UO = dyn_cast<UnaryOperator>(E))
|
|
if (UO->getOpcode() == UO_Minus)
|
|
if (Source->isUnsignedIntegerType()) {
|
|
if (Target->isUnsignedIntegerType())
|
|
return DiagnoseImpCast(*this, E, T, CC,
|
|
diag::warn_impcast_high_order_zero_bits);
|
|
if (Target->isSignedIntegerType())
|
|
return DiagnoseImpCast(*this, E, T, CC,
|
|
diag::warn_impcast_nonnegative_result);
|
|
}
|
|
}
|
|
|
|
if (TargetRange.Width == LikelySourceRange->Width &&
|
|
!TargetRange.NonNegative && LikelySourceRange->NonNegative &&
|
|
Source->isSignedIntegerType()) {
|
|
// Warn when doing a signed to signed conversion, warn if the positive
|
|
// source value is exactly the width of the target type, which will
|
|
// cause a negative value to be stored.
|
|
|
|
Expr::EvalResult Result;
|
|
if (E->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects) &&
|
|
!SourceMgr.isInSystemMacro(CC)) {
|
|
llvm::APSInt Value = Result.Val.getInt();
|
|
if (isSameWidthConstantConversion(*this, E, T, CC)) {
|
|
std::string PrettySourceValue = toString(Value, 10);
|
|
std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
|
|
|
|
Diag(E->getExprLoc(),
|
|
PDiag(diag::warn_impcast_integer_precision_constant)
|
|
<< PrettySourceValue << PrettyTargetValue << E->getType() << T
|
|
<< E->getSourceRange() << SourceRange(CC));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Fall through for non-constants to give a sign conversion warning.
|
|
}
|
|
|
|
if ((!isa<EnumType>(Target) || !isa<EnumType>(Source)) &&
|
|
((TargetRange.NonNegative && !LikelySourceRange->NonNegative) ||
|
|
(!TargetRange.NonNegative && LikelySourceRange->NonNegative &&
|
|
LikelySourceRange->Width == TargetRange.Width))) {
|
|
if (SourceMgr.isInSystemMacro(CC))
|
|
return;
|
|
|
|
if (SourceBT && SourceBT->isInteger() && TargetBT &&
|
|
TargetBT->isInteger() &&
|
|
Source->isSignedIntegerType() == Target->isSignedIntegerType()) {
|
|
return;
|
|
}
|
|
|
|
unsigned DiagID = diag::warn_impcast_integer_sign;
|
|
|
|
// Traditionally, gcc has warned about this under -Wsign-compare.
|
|
// We also want to warn about it in -Wconversion.
|
|
// So if -Wconversion is off, use a completely identical diagnostic
|
|
// in the sign-compare group.
|
|
// The conditional-checking code will
|
|
if (ICContext) {
|
|
DiagID = diag::warn_impcast_integer_sign_conditional;
|
|
*ICContext = true;
|
|
}
|
|
|
|
return DiagnoseImpCast(*this, E, T, CC, DiagID);
|
|
}
|
|
|
|
// Diagnose conversions between different enumeration types.
|
|
// In C, we pretend that the type of an EnumConstantDecl is its enumeration
|
|
// type, to give us better diagnostics.
|
|
QualType SourceType = E->getEnumCoercedType(Context);
|
|
Source = Context.getCanonicalType(SourceType).getTypePtr();
|
|
|
|
if (const EnumType *SourceEnum = Source->getAs<EnumType>())
|
|
if (const EnumType *TargetEnum = Target->getAs<EnumType>())
|
|
if (SourceEnum->getDecl()->hasNameForLinkage() &&
|
|
TargetEnum->getDecl()->hasNameForLinkage() &&
|
|
SourceEnum != TargetEnum) {
|
|
if (SourceMgr.isInSystemMacro(CC))
|
|
return;
|
|
|
|
return DiagnoseImpCast(*this, E, SourceType, T, CC,
|
|
diag::warn_impcast_different_enum_types);
|
|
}
|
|
}
|
|
|
|
static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
|
|
SourceLocation CC, QualType T);
|
|
|
|
static void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
|
|
SourceLocation CC, bool &ICContext) {
|
|
E = E->IgnoreParenImpCasts();
|
|
// Diagnose incomplete type for second or third operand in C.
|
|
if (!S.getLangOpts().CPlusPlus && E->getType()->isRecordType())
|
|
S.RequireCompleteExprType(E, diag::err_incomplete_type);
|
|
|
|
if (auto *CO = dyn_cast<AbstractConditionalOperator>(E))
|
|
return CheckConditionalOperator(S, CO, CC, T);
|
|
|
|
AnalyzeImplicitConversions(S, E, CC);
|
|
if (E->getType() != T)
|
|
return S.CheckImplicitConversion(E, T, CC, &ICContext);
|
|
}
|
|
|
|
static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
|
|
SourceLocation CC, QualType T) {
|
|
AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
|
|
|
|
Expr *TrueExpr = E->getTrueExpr();
|
|
if (auto *BCO = dyn_cast<BinaryConditionalOperator>(E))
|
|
TrueExpr = BCO->getCommon();
|
|
|
|
bool Suspicious = false;
|
|
CheckConditionalOperand(S, TrueExpr, T, CC, Suspicious);
|
|
CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
|
|
|
|
if (T->isBooleanType())
|
|
DiagnoseIntInBoolContext(S, E);
|
|
|
|
// If -Wconversion would have warned about either of the candidates
|
|
// for a signedness conversion to the context type...
|
|
if (!Suspicious) return;
|
|
|
|
// ...but it's currently ignored...
|
|
if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
|
|
return;
|
|
|
|
// ...then check whether it would have warned about either of the
|
|
// candidates for a signedness conversion to the condition type.
|
|
if (E->getType() == T) return;
|
|
|
|
Suspicious = false;
|
|
S.CheckImplicitConversion(TrueExpr->IgnoreParenImpCasts(), E->getType(), CC,
|
|
&Suspicious);
|
|
if (!Suspicious)
|
|
S.CheckImplicitConversion(E->getFalseExpr()->IgnoreParenImpCasts(),
|
|
E->getType(), CC, &Suspicious);
|
|
}
|
|
|
|
/// Check conversion of given expression to boolean.
|
|
/// Input argument E is a logical expression.
|
|
static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
|
|
// Run the bool-like conversion checks only for C since there bools are
|
|
// still not used as the return type from "boolean" operators or as the input
|
|
// type for conditional operators.
|
|
if (S.getLangOpts().CPlusPlus)
|
|
return;
|
|
if (E->IgnoreParenImpCasts()->getType()->isAtomicType())
|
|
return;
|
|
S.CheckImplicitConversion(E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
|
|
}
|
|
|
|
namespace {
|
|
struct AnalyzeImplicitConversionsWorkItem {
|
|
Expr *E;
|
|
SourceLocation CC;
|
|
bool IsListInit;
|
|
};
|
|
}
|
|
|
|
/// Data recursive variant of AnalyzeImplicitConversions. Subexpressions
|
|
/// that should be visited are added to WorkList.
|
|
static void AnalyzeImplicitConversions(
|
|
Sema &S, AnalyzeImplicitConversionsWorkItem Item,
|
|
llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) {
|
|
Expr *OrigE = Item.E;
|
|
SourceLocation CC = Item.CC;
|
|
|
|
QualType T = OrigE->getType();
|
|
Expr *E = OrigE->IgnoreParenImpCasts();
|
|
|
|
// Propagate whether we are in a C++ list initialization expression.
|
|
// If so, we do not issue warnings for implicit int-float conversion
|
|
// precision loss, because C++11 narrowing already handles it.
|
|
//
|
|
// HLSL's initialization lists are special, so they shouldn't observe the C++
|
|
// behavior here.
|
|
bool IsListInit =
|
|
Item.IsListInit || (isa<InitListExpr>(OrigE) &&
|
|
S.getLangOpts().CPlusPlus && !S.getLangOpts().HLSL);
|
|
|
|
if (E->isTypeDependent() || E->isValueDependent())
|
|
return;
|
|
|
|
Expr *SourceExpr = E;
|
|
// Examine, but don't traverse into the source expression of an
|
|
// OpaqueValueExpr, since it may have multiple parents and we don't want to
|
|
// emit duplicate diagnostics. Its fine to examine the form or attempt to
|
|
// evaluate it in the context of checking the specific conversion to T though.
|
|
if (auto *OVE = dyn_cast<OpaqueValueExpr>(E))
|
|
if (auto *Src = OVE->getSourceExpr())
|
|
SourceExpr = Src;
|
|
|
|
if (const auto *UO = dyn_cast<UnaryOperator>(SourceExpr))
|
|
if (UO->getOpcode() == UO_Not &&
|
|
UO->getSubExpr()->isKnownToHaveBooleanValue())
|
|
S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool)
|
|
<< OrigE->getSourceRange() << T->isBooleanType()
|
|
<< FixItHint::CreateReplacement(UO->getBeginLoc(), "!");
|
|
|
|
if (const auto *BO = dyn_cast<BinaryOperator>(SourceExpr))
|
|
if ((BO->getOpcode() == BO_And || BO->getOpcode() == BO_Or) &&
|
|
BO->getLHS()->isKnownToHaveBooleanValue() &&
|
|
BO->getRHS()->isKnownToHaveBooleanValue() &&
|
|
BO->getLHS()->HasSideEffects(S.Context) &&
|
|
BO->getRHS()->HasSideEffects(S.Context)) {
|
|
SourceManager &SM = S.getSourceManager();
|
|
const LangOptions &LO = S.getLangOpts();
|
|
SourceLocation BLoc = BO->getOperatorLoc();
|
|
SourceLocation ELoc = Lexer::getLocForEndOfToken(BLoc, 0, SM, LO);
|
|
StringRef SR = clang::Lexer::getSourceText(
|
|
clang::CharSourceRange::getTokenRange(BLoc, ELoc), SM, LO);
|
|
// To reduce false positives, only issue the diagnostic if the operator
|
|
// is explicitly spelled as a punctuator. This suppresses the diagnostic
|
|
// when using 'bitand' or 'bitor' either as keywords in C++ or as macros
|
|
// in C, along with other macro spellings the user might invent.
|
|
if (SR.str() == "&" || SR.str() == "|") {
|
|
|
|
S.Diag(BO->getBeginLoc(), diag::warn_bitwise_instead_of_logical)
|
|
<< (BO->getOpcode() == BO_And ? "&" : "|")
|
|
<< OrigE->getSourceRange()
|
|
<< FixItHint::CreateReplacement(
|
|
BO->getOperatorLoc(),
|
|
(BO->getOpcode() == BO_And ? "&&" : "||"));
|
|
S.Diag(BO->getBeginLoc(), diag::note_cast_operand_to_int);
|
|
}
|
|
}
|
|
|
|
// For conditional operators, we analyze the arguments as if they
|
|
// were being fed directly into the output.
|
|
if (auto *CO = dyn_cast<AbstractConditionalOperator>(SourceExpr)) {
|
|
CheckConditionalOperator(S, CO, CC, T);
|
|
return;
|
|
}
|
|
|
|
// Check implicit argument conversions for function calls.
|
|
if (CallExpr *Call = dyn_cast<CallExpr>(SourceExpr))
|
|
CheckImplicitArgumentConversions(S, Call, CC);
|
|
|
|
// Go ahead and check any implicit conversions we might have skipped.
|
|
// The non-canonical typecheck is just an optimization;
|
|
// CheckImplicitConversion will filter out dead implicit conversions.
|
|
if (SourceExpr->getType() != T)
|
|
S.CheckImplicitConversion(SourceExpr, T, CC, nullptr, IsListInit);
|
|
|
|
// Now continue drilling into this expression.
|
|
|
|
if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
|
|
// The bound subexpressions in a PseudoObjectExpr are not reachable
|
|
// as transitive children.
|
|
// FIXME: Use a more uniform representation for this.
|
|
for (auto *SE : POE->semantics())
|
|
if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE))
|
|
WorkList.push_back({OVE->getSourceExpr(), CC, IsListInit});
|
|
}
|
|
|
|
// Skip past explicit casts.
|
|
if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) {
|
|
E = CE->getSubExpr()->IgnoreParenImpCasts();
|
|
if (!CE->getType()->isVoidType() && E->getType()->isAtomicType())
|
|
S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
|
|
WorkList.push_back({E, CC, IsListInit});
|
|
return;
|
|
}
|
|
|
|
if (auto *OutArgE = dyn_cast<HLSLOutArgExpr>(E)) {
|
|
WorkList.push_back({OutArgE->getArgLValue(), CC, IsListInit});
|
|
// The base expression is only used to initialize the parameter for
|
|
// arguments to `inout` parameters, so we only traverse down the base
|
|
// expression for `inout` cases.
|
|
if (OutArgE->isInOut())
|
|
WorkList.push_back(
|
|
{OutArgE->getCastedTemporary()->getSourceExpr(), CC, IsListInit});
|
|
WorkList.push_back({OutArgE->getWritebackCast(), CC, IsListInit});
|
|
return;
|
|
}
|
|
|
|
if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
|
|
// Do a somewhat different check with comparison operators.
|
|
if (BO->isComparisonOp())
|
|
return AnalyzeComparison(S, BO);
|
|
|
|
// And with simple assignments.
|
|
if (BO->getOpcode() == BO_Assign)
|
|
return AnalyzeAssignment(S, BO);
|
|
// And with compound assignments.
|
|
if (BO->isAssignmentOp())
|
|
return AnalyzeCompoundAssignment(S, BO);
|
|
}
|
|
|
|
// These break the otherwise-useful invariant below. Fortunately,
|
|
// we don't really need to recurse into them, because any internal
|
|
// expressions should have been analyzed already when they were
|
|
// built into statements.
|
|
if (isa<StmtExpr>(E)) return;
|
|
|
|
// Don't descend into unevaluated contexts.
|
|
if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
|
|
|
|
// Now just recurse over the expression's children.
|
|
CC = E->getExprLoc();
|
|
BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
|
|
bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
|
|
for (Stmt *SubStmt : E->children()) {
|
|
Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt);
|
|
if (!ChildExpr)
|
|
continue;
|
|
|
|
if (auto *CSE = dyn_cast<CoroutineSuspendExpr>(E))
|
|
if (ChildExpr == CSE->getOperand())
|
|
// Do not recurse over a CoroutineSuspendExpr's operand.
|
|
// The operand is also a subexpression of getCommonExpr(), and
|
|
// recursing into it directly would produce duplicate diagnostics.
|
|
continue;
|
|
|
|
if (IsLogicalAndOperator &&
|
|
isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
|
|
// Ignore checking string literals that are in logical and operators.
|
|
// This is a common pattern for asserts.
|
|
continue;
|
|
WorkList.push_back({ChildExpr, CC, IsListInit});
|
|
}
|
|
|
|
if (BO && BO->isLogicalOp()) {
|
|
Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
|
|
if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
|
|
::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
|
|
|
|
SubExpr = BO->getRHS()->IgnoreParenImpCasts();
|
|
if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
|
|
::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
|
|
}
|
|
|
|
if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) {
|
|
if (U->getOpcode() == UO_LNot) {
|
|
::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
|
|
} else if (U->getOpcode() != UO_AddrOf) {
|
|
if (U->getSubExpr()->getType()->isAtomicType())
|
|
S.Diag(U->getSubExpr()->getBeginLoc(),
|
|
diag::warn_atomic_implicit_seq_cst);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// AnalyzeImplicitConversions - Find and report any interesting
|
|
/// implicit conversions in the given expression. There are a couple
|
|
/// of competing diagnostics here, -Wconversion and -Wsign-compare.
|
|
static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC,
|
|
bool IsListInit/*= false*/) {
|
|
llvm::SmallVector<AnalyzeImplicitConversionsWorkItem, 16> WorkList;
|
|
WorkList.push_back({OrigE, CC, IsListInit});
|
|
while (!WorkList.empty())
|
|
AnalyzeImplicitConversions(S, WorkList.pop_back_val(), WorkList);
|
|
}
|
|
|
|
// Helper function for Sema::DiagnoseAlwaysNonNullPointer.
|
|
// Returns true when emitting a warning about taking the address of a reference.
|
|
static bool CheckForReference(Sema &SemaRef, const Expr *E,
|
|
const PartialDiagnostic &PD) {
|
|
E = E->IgnoreParenImpCasts();
|
|
|
|
const FunctionDecl *FD = nullptr;
|
|
|
|
if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
|
|
if (!DRE->getDecl()->getType()->isReferenceType())
|
|
return false;
|
|
} else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
|
|
if (!M->getMemberDecl()->getType()->isReferenceType())
|
|
return false;
|
|
} else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
|
|
if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType())
|
|
return false;
|
|
FD = Call->getDirectCallee();
|
|
} else {
|
|
return false;
|
|
}
|
|
|
|
SemaRef.Diag(E->getExprLoc(), PD);
|
|
|
|
// If possible, point to location of function.
|
|
if (FD) {
|
|
SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Returns true if the SourceLocation is expanded from any macro body.
|
|
// Returns false if the SourceLocation is invalid, is from not in a macro
|
|
// expansion, or is from expanded from a top-level macro argument.
|
|
static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
|
|
if (Loc.isInvalid())
|
|
return false;
|
|
|
|
while (Loc.isMacroID()) {
|
|
if (SM.isMacroBodyExpansion(Loc))
|
|
return true;
|
|
Loc = SM.getImmediateMacroCallerLoc(Loc);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
|
|
Expr::NullPointerConstantKind NullKind,
|
|
bool IsEqual, SourceRange Range) {
|
|
if (!E)
|
|
return;
|
|
|
|
// Don't warn inside macros.
|
|
if (E->getExprLoc().isMacroID()) {
|
|
const SourceManager &SM = getSourceManager();
|
|
if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
|
|
IsInAnyMacroBody(SM, Range.getBegin()))
|
|
return;
|
|
}
|
|
E = E->IgnoreImpCasts();
|
|
|
|
const bool IsCompare = NullKind != Expr::NPCK_NotNull;
|
|
|
|
if (isa<CXXThisExpr>(E)) {
|
|
unsigned DiagID = IsCompare ? diag::warn_this_null_compare
|
|
: diag::warn_this_bool_conversion;
|
|
Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
|
|
return;
|
|
}
|
|
|
|
bool IsAddressOf = false;
|
|
|
|
if (auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) {
|
|
if (UO->getOpcode() != UO_AddrOf)
|
|
return;
|
|
IsAddressOf = true;
|
|
E = UO->getSubExpr();
|
|
}
|
|
|
|
if (IsAddressOf) {
|
|
unsigned DiagID = IsCompare
|
|
? diag::warn_address_of_reference_null_compare
|
|
: diag::warn_address_of_reference_bool_conversion;
|
|
PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
|
|
<< IsEqual;
|
|
if (CheckForReference(*this, E, PD)) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) {
|
|
bool IsParam = isa<NonNullAttr>(NonnullAttr);
|
|
std::string Str;
|
|
llvm::raw_string_ostream S(Str);
|
|
E->printPretty(S, nullptr, getPrintingPolicy());
|
|
unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare
|
|
: diag::warn_cast_nonnull_to_bool;
|
|
Diag(E->getExprLoc(), DiagID) << IsParam << S.str()
|
|
<< E->getSourceRange() << Range << IsEqual;
|
|
Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam;
|
|
};
|
|
|
|
// If we have a CallExpr that is tagged with returns_nonnull, we can complain.
|
|
if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) {
|
|
if (auto *Callee = Call->getDirectCallee()) {
|
|
if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) {
|
|
ComplainAboutNonnullParamOrCall(A);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Complain if we are converting a lambda expression to a boolean value
|
|
// outside of instantiation.
|
|
if (!inTemplateInstantiation()) {
|
|
if (const auto *MCallExpr = dyn_cast<CXXMemberCallExpr>(E)) {
|
|
if (const auto *MRecordDecl = MCallExpr->getRecordDecl();
|
|
MRecordDecl && MRecordDecl->isLambda()) {
|
|
Diag(E->getExprLoc(), diag::warn_impcast_pointer_to_bool)
|
|
<< /*LambdaPointerConversionOperatorType=*/3
|
|
<< MRecordDecl->getSourceRange() << Range << IsEqual;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Expect to find a single Decl. Skip anything more complicated.
|
|
ValueDecl *D = nullptr;
|
|
if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
|
|
D = R->getDecl();
|
|
} else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
|
|
D = M->getMemberDecl();
|
|
}
|
|
|
|
// Weak Decls can be null.
|
|
if (!D || D->isWeak())
|
|
return;
|
|
|
|
// Check for parameter decl with nonnull attribute
|
|
if (const auto* PV = dyn_cast<ParmVarDecl>(D)) {
|
|
if (getCurFunction() &&
|
|
!getCurFunction()->ModifiedNonNullParams.count(PV)) {
|
|
if (const Attr *A = PV->getAttr<NonNullAttr>()) {
|
|
ComplainAboutNonnullParamOrCall(A);
|
|
return;
|
|
}
|
|
|
|
if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
|
|
// Skip function template not specialized yet.
|
|
if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
|
|
return;
|
|
auto ParamIter = llvm::find(FD->parameters(), PV);
|
|
assert(ParamIter != FD->param_end());
|
|
unsigned ParamNo = std::distance(FD->param_begin(), ParamIter);
|
|
|
|
for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
|
|
if (!NonNull->args_size()) {
|
|
ComplainAboutNonnullParamOrCall(NonNull);
|
|
return;
|
|
}
|
|
|
|
for (const ParamIdx &ArgNo : NonNull->args()) {
|
|
if (ArgNo.getASTIndex() == ParamNo) {
|
|
ComplainAboutNonnullParamOrCall(NonNull);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
QualType T = D->getType();
|
|
const bool IsArray = T->isArrayType();
|
|
const bool IsFunction = T->isFunctionType();
|
|
|
|
// Address of function is used to silence the function warning.
|
|
if (IsAddressOf && IsFunction) {
|
|
return;
|
|
}
|
|
|
|
// Found nothing.
|
|
if (!IsAddressOf && !IsFunction && !IsArray)
|
|
return;
|
|
|
|
// Pretty print the expression for the diagnostic.
|
|
std::string Str;
|
|
llvm::raw_string_ostream S(Str);
|
|
E->printPretty(S, nullptr, getPrintingPolicy());
|
|
|
|
unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
|
|
: diag::warn_impcast_pointer_to_bool;
|
|
enum {
|
|
AddressOf,
|
|
FunctionPointer,
|
|
ArrayPointer
|
|
} DiagType;
|
|
if (IsAddressOf)
|
|
DiagType = AddressOf;
|
|
else if (IsFunction)
|
|
DiagType = FunctionPointer;
|
|
else if (IsArray)
|
|
DiagType = ArrayPointer;
|
|
else
|
|
llvm_unreachable("Could not determine diagnostic.");
|
|
Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
|
|
<< Range << IsEqual;
|
|
|
|
if (!IsFunction)
|
|
return;
|
|
|
|
// Suggest '&' to silence the function warning.
|
|
Diag(E->getExprLoc(), diag::note_function_warning_silence)
|
|
<< FixItHint::CreateInsertion(E->getBeginLoc(), "&");
|
|
|
|
// Check to see if '()' fixit should be emitted.
|
|
QualType ReturnType;
|
|
UnresolvedSet<4> NonTemplateOverloads;
|
|
tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
|
|
if (ReturnType.isNull())
|
|
return;
|
|
|
|
if (IsCompare) {
|
|
// There are two cases here. If there is null constant, the only suggest
|
|
// for a pointer return type. If the null is 0, then suggest if the return
|
|
// type is a pointer or an integer type.
|
|
if (!ReturnType->isPointerType()) {
|
|
if (NullKind == Expr::NPCK_ZeroExpression ||
|
|
NullKind == Expr::NPCK_ZeroLiteral) {
|
|
if (!ReturnType->isIntegerType())
|
|
return;
|
|
} else {
|
|
return;
|
|
}
|
|
}
|
|
} else { // !IsCompare
|
|
// For function to bool, only suggest if the function pointer has bool
|
|
// return type.
|
|
if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
|
|
return;
|
|
}
|
|
Diag(E->getExprLoc(), diag::note_function_to_function_call)
|
|
<< FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()");
|
|
}
|
|
|
|
void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
|
|
// Don't diagnose in unevaluated contexts.
|
|
if (isUnevaluatedContext())
|
|
return;
|
|
|
|
// Don't diagnose for value- or type-dependent expressions.
|
|
if (E->isTypeDependent() || E->isValueDependent())
|
|
return;
|
|
|
|
// Check for array bounds violations in cases where the check isn't triggered
|
|
// elsewhere for other Expr types (like BinaryOperators), e.g. when an
|
|
// ArraySubscriptExpr is on the RHS of a variable initialization.
|
|
CheckArrayAccess(E);
|
|
|
|
// This is not the right CC for (e.g.) a variable initialization.
|
|
AnalyzeImplicitConversions(*this, E, CC);
|
|
}
|
|
|
|
void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
|
|
::CheckBoolLikeConversion(*this, E, CC);
|
|
}
|
|
|
|
void Sema::CheckForIntOverflow (const Expr *E) {
|
|
// Use a work list to deal with nested struct initializers.
|
|
SmallVector<const Expr *, 2> Exprs(1, E);
|
|
|
|
do {
|
|
const Expr *OriginalE = Exprs.pop_back_val();
|
|
const Expr *E = OriginalE->IgnoreParenCasts();
|
|
|
|
if (isa<BinaryOperator, UnaryOperator>(E)) {
|
|
E->EvaluateForOverflow(Context);
|
|
continue;
|
|
}
|
|
|
|
if (const auto *InitList = dyn_cast<InitListExpr>(OriginalE))
|
|
Exprs.append(InitList->inits().begin(), InitList->inits().end());
|
|
else if (isa<ObjCBoxedExpr>(OriginalE))
|
|
E->EvaluateForOverflow(Context);
|
|
else if (const auto *Call = dyn_cast<CallExpr>(E))
|
|
Exprs.append(Call->arg_begin(), Call->arg_end());
|
|
else if (const auto *Message = dyn_cast<ObjCMessageExpr>(E))
|
|
Exprs.append(Message->arg_begin(), Message->arg_end());
|
|
else if (const auto *Construct = dyn_cast<CXXConstructExpr>(E))
|
|
Exprs.append(Construct->arg_begin(), Construct->arg_end());
|
|
else if (const auto *Temporary = dyn_cast<CXXBindTemporaryExpr>(E))
|
|
Exprs.push_back(Temporary->getSubExpr());
|
|
else if (const auto *Array = dyn_cast<ArraySubscriptExpr>(E))
|
|
Exprs.push_back(Array->getIdx());
|
|
else if (const auto *Compound = dyn_cast<CompoundLiteralExpr>(E))
|
|
Exprs.push_back(Compound->getInitializer());
|
|
else if (const auto *New = dyn_cast<CXXNewExpr>(E);
|
|
New && New->isArray()) {
|
|
if (auto ArraySize = New->getArraySize())
|
|
Exprs.push_back(*ArraySize);
|
|
} else if (const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(OriginalE))
|
|
Exprs.push_back(MTE->getSubExpr());
|
|
} while (!Exprs.empty());
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Visitor for expressions which looks for unsequenced operations on the
|
|
/// same object.
|
|
class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> {
|
|
using Base = ConstEvaluatedExprVisitor<SequenceChecker>;
|
|
|
|
/// A tree of sequenced regions within an expression. Two regions are
|
|
/// unsequenced if one is an ancestor or a descendent of the other. When we
|
|
/// finish processing an expression with sequencing, such as a comma
|
|
/// expression, we fold its tree nodes into its parent, since they are
|
|
/// unsequenced with respect to nodes we will visit later.
|
|
class SequenceTree {
|
|
struct Value {
|
|
explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
|
|
unsigned Parent : 31;
|
|
LLVM_PREFERRED_TYPE(bool)
|
|
unsigned Merged : 1;
|
|
};
|
|
SmallVector<Value, 8> Values;
|
|
|
|
public:
|
|
/// A region within an expression which may be sequenced with respect
|
|
/// to some other region.
|
|
class Seq {
|
|
friend class SequenceTree;
|
|
|
|
unsigned Index;
|
|
|
|
explicit Seq(unsigned N) : Index(N) {}
|
|
|
|
public:
|
|
Seq() : Index(0) {}
|
|
};
|
|
|
|
SequenceTree() { Values.push_back(Value(0)); }
|
|
Seq root() const { return Seq(0); }
|
|
|
|
/// Create a new sequence of operations, which is an unsequenced
|
|
/// subset of \p Parent. This sequence of operations is sequenced with
|
|
/// respect to other children of \p Parent.
|
|
Seq allocate(Seq Parent) {
|
|
Values.push_back(Value(Parent.Index));
|
|
return Seq(Values.size() - 1);
|
|
}
|
|
|
|
/// Merge a sequence of operations into its parent.
|
|
void merge(Seq S) {
|
|
Values[S.Index].Merged = true;
|
|
}
|
|
|
|
/// Determine whether two operations are unsequenced. This operation
|
|
/// is asymmetric: \p Cur should be the more recent sequence, and \p Old
|
|
/// should have been merged into its parent as appropriate.
|
|
bool isUnsequenced(Seq Cur, Seq Old) {
|
|
unsigned C = representative(Cur.Index);
|
|
unsigned Target = representative(Old.Index);
|
|
while (C >= Target) {
|
|
if (C == Target)
|
|
return true;
|
|
C = Values[C].Parent;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
private:
|
|
/// Pick a representative for a sequence.
|
|
unsigned representative(unsigned K) {
|
|
if (Values[K].Merged)
|
|
// Perform path compression as we go.
|
|
return Values[K].Parent = representative(Values[K].Parent);
|
|
return K;
|
|
}
|
|
};
|
|
|
|
/// An object for which we can track unsequenced uses.
|
|
using Object = const NamedDecl *;
|
|
|
|
/// Different flavors of object usage which we track. We only track the
|
|
/// least-sequenced usage of each kind.
|
|
enum UsageKind {
|
|
/// A read of an object. Multiple unsequenced reads are OK.
|
|
UK_Use,
|
|
|
|
/// A modification of an object which is sequenced before the value
|
|
/// computation of the expression, such as ++n in C++.
|
|
UK_ModAsValue,
|
|
|
|
/// A modification of an object which is not sequenced before the value
|
|
/// computation of the expression, such as n++.
|
|
UK_ModAsSideEffect,
|
|
|
|
UK_Count = UK_ModAsSideEffect + 1
|
|
};
|
|
|
|
/// Bundle together a sequencing region and the expression corresponding
|
|
/// to a specific usage. One Usage is stored for each usage kind in UsageInfo.
|
|
struct Usage {
|
|
const Expr *UsageExpr = nullptr;
|
|
SequenceTree::Seq Seq;
|
|
|
|
Usage() = default;
|
|
};
|
|
|
|
struct UsageInfo {
|
|
Usage Uses[UK_Count];
|
|
|
|
/// Have we issued a diagnostic for this object already?
|
|
bool Diagnosed = false;
|
|
|
|
UsageInfo();
|
|
};
|
|
using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>;
|
|
|
|
Sema &SemaRef;
|
|
|
|
/// Sequenced regions within the expression.
|
|
SequenceTree Tree;
|
|
|
|
/// Declaration modifications and references which we have seen.
|
|
UsageInfoMap UsageMap;
|
|
|
|
/// The region we are currently within.
|
|
SequenceTree::Seq Region;
|
|
|
|
/// Filled in with declarations which were modified as a side-effect
|
|
/// (that is, post-increment operations).
|
|
SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr;
|
|
|
|
/// Expressions to check later. We defer checking these to reduce
|
|
/// stack usage.
|
|
SmallVectorImpl<const Expr *> &WorkList;
|
|
|
|
/// RAII object wrapping the visitation of a sequenced subexpression of an
|
|
/// expression. At the end of this process, the side-effects of the evaluation
|
|
/// become sequenced with respect to the value computation of the result, so
|
|
/// we downgrade any UK_ModAsSideEffect within the evaluation to
|
|
/// UK_ModAsValue.
|
|
struct SequencedSubexpression {
|
|
SequencedSubexpression(SequenceChecker &Self)
|
|
: Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
|
|
Self.ModAsSideEffect = &ModAsSideEffect;
|
|
}
|
|
|
|
~SequencedSubexpression() {
|
|
for (const std::pair<Object, Usage> &M : llvm::reverse(ModAsSideEffect)) {
|
|
// Add a new usage with usage kind UK_ModAsValue, and then restore
|
|
// the previous usage with UK_ModAsSideEffect (thus clearing it if
|
|
// the previous one was empty).
|
|
UsageInfo &UI = Self.UsageMap[M.first];
|
|
auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect];
|
|
Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue);
|
|
SideEffectUsage = M.second;
|
|
}
|
|
Self.ModAsSideEffect = OldModAsSideEffect;
|
|
}
|
|
|
|
SequenceChecker &Self;
|
|
SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
|
|
SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect;
|
|
};
|
|
|
|
/// RAII object wrapping the visitation of a subexpression which we might
|
|
/// choose to evaluate as a constant. If any subexpression is evaluated and
|
|
/// found to be non-constant, this allows us to suppress the evaluation of
|
|
/// the outer expression.
|
|
class EvaluationTracker {
|
|
public:
|
|
EvaluationTracker(SequenceChecker &Self)
|
|
: Self(Self), Prev(Self.EvalTracker) {
|
|
Self.EvalTracker = this;
|
|
}
|
|
|
|
~EvaluationTracker() {
|
|
Self.EvalTracker = Prev;
|
|
if (Prev)
|
|
Prev->EvalOK &= EvalOK;
|
|
}
|
|
|
|
bool evaluate(const Expr *E, bool &Result) {
|
|
if (!EvalOK || E->isValueDependent())
|
|
return false;
|
|
EvalOK = E->EvaluateAsBooleanCondition(
|
|
Result, Self.SemaRef.Context,
|
|
Self.SemaRef.isConstantEvaluatedContext());
|
|
return EvalOK;
|
|
}
|
|
|
|
private:
|
|
SequenceChecker &Self;
|
|
EvaluationTracker *Prev;
|
|
bool EvalOK = true;
|
|
} *EvalTracker = nullptr;
|
|
|
|
/// Find the object which is produced by the specified expression,
|
|
/// if any.
|
|
Object getObject(const Expr *E, bool Mod) const {
|
|
E = E->IgnoreParenCasts();
|
|
if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
|
|
if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
|
|
return getObject(UO->getSubExpr(), Mod);
|
|
} else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
|
|
if (BO->getOpcode() == BO_Comma)
|
|
return getObject(BO->getRHS(), Mod);
|
|
if (Mod && BO->isAssignmentOp())
|
|
return getObject(BO->getLHS(), Mod);
|
|
} else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
|
|
// FIXME: Check for more interesting cases, like "x.n = ++x.n".
|
|
if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
|
|
return ME->getMemberDecl();
|
|
} else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
|
|
// FIXME: If this is a reference, map through to its value.
|
|
return DRE->getDecl();
|
|
return nullptr;
|
|
}
|
|
|
|
/// Note that an object \p O was modified or used by an expression
|
|
/// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for
|
|
/// the object \p O as obtained via the \p UsageMap.
|
|
void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) {
|
|
// Get the old usage for the given object and usage kind.
|
|
Usage &U = UI.Uses[UK];
|
|
if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) {
|
|
// If we have a modification as side effect and are in a sequenced
|
|
// subexpression, save the old Usage so that we can restore it later
|
|
// in SequencedSubexpression::~SequencedSubexpression.
|
|
if (UK == UK_ModAsSideEffect && ModAsSideEffect)
|
|
ModAsSideEffect->push_back(std::make_pair(O, U));
|
|
// Then record the new usage with the current sequencing region.
|
|
U.UsageExpr = UsageExpr;
|
|
U.Seq = Region;
|
|
}
|
|
}
|
|
|
|
/// Check whether a modification or use of an object \p O in an expression
|
|
/// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is
|
|
/// the \p UsageInfo for the object \p O as obtained via the \p UsageMap.
|
|
/// \p IsModMod is true when we are checking for a mod-mod unsequenced
|
|
/// usage and false we are checking for a mod-use unsequenced usage.
|
|
void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr,
|
|
UsageKind OtherKind, bool IsModMod) {
|
|
if (UI.Diagnosed)
|
|
return;
|
|
|
|
const Usage &U = UI.Uses[OtherKind];
|
|
if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq))
|
|
return;
|
|
|
|
const Expr *Mod = U.UsageExpr;
|
|
const Expr *ModOrUse = UsageExpr;
|
|
if (OtherKind == UK_Use)
|
|
std::swap(Mod, ModOrUse);
|
|
|
|
SemaRef.DiagRuntimeBehavior(
|
|
Mod->getExprLoc(), {Mod, ModOrUse},
|
|
SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod
|
|
: diag::warn_unsequenced_mod_use)
|
|
<< O << SourceRange(ModOrUse->getExprLoc()));
|
|
UI.Diagnosed = true;
|
|
}
|
|
|
|
// A note on note{Pre, Post}{Use, Mod}:
|
|
//
|
|
// (It helps to follow the algorithm with an expression such as
|
|
// "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced
|
|
// operations before C++17 and both are well-defined in C++17).
|
|
//
|
|
// When visiting a node which uses/modify an object we first call notePreUse
|
|
// or notePreMod before visiting its sub-expression(s). At this point the
|
|
// children of the current node have not yet been visited and so the eventual
|
|
// uses/modifications resulting from the children of the current node have not
|
|
// been recorded yet.
|
|
//
|
|
// We then visit the children of the current node. After that notePostUse or
|
|
// notePostMod is called. These will 1) detect an unsequenced modification
|
|
// as side effect (as in "k++ + k") and 2) add a new usage with the
|
|
// appropriate usage kind.
|
|
//
|
|
// We also have to be careful that some operation sequences modification as
|
|
// side effect as well (for example: || or ,). To account for this we wrap
|
|
// the visitation of such a sub-expression (for example: the LHS of || or ,)
|
|
// with SequencedSubexpression. SequencedSubexpression is an RAII object
|
|
// which record usages which are modifications as side effect, and then
|
|
// downgrade them (or more accurately restore the previous usage which was a
|
|
// modification as side effect) when exiting the scope of the sequenced
|
|
// subexpression.
|
|
|
|
void notePreUse(Object O, const Expr *UseExpr) {
|
|
UsageInfo &UI = UsageMap[O];
|
|
// Uses conflict with other modifications.
|
|
checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false);
|
|
}
|
|
|
|
void notePostUse(Object O, const Expr *UseExpr) {
|
|
UsageInfo &UI = UsageMap[O];
|
|
checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect,
|
|
/*IsModMod=*/false);
|
|
addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use);
|
|
}
|
|
|
|
void notePreMod(Object O, const Expr *ModExpr) {
|
|
UsageInfo &UI = UsageMap[O];
|
|
// Modifications conflict with other modifications and with uses.
|
|
checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true);
|
|
checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false);
|
|
}
|
|
|
|
void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) {
|
|
UsageInfo &UI = UsageMap[O];
|
|
checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect,
|
|
/*IsModMod=*/true);
|
|
addUsage(O, UI, ModExpr, /*UsageKind=*/UK);
|
|
}
|
|
|
|
public:
|
|
SequenceChecker(Sema &S, const Expr *E,
|
|
SmallVectorImpl<const Expr *> &WorkList)
|
|
: Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) {
|
|
Visit(E);
|
|
// Silence a -Wunused-private-field since WorkList is now unused.
|
|
// TODO: Evaluate if it can be used, and if not remove it.
|
|
(void)this->WorkList;
|
|
}
|
|
|
|
void VisitStmt(const Stmt *S) {
|
|
// Skip all statements which aren't expressions for now.
|
|
}
|
|
|
|
void VisitExpr(const Expr *E) {
|
|
// By default, just recurse to evaluated subexpressions.
|
|
Base::VisitStmt(E);
|
|
}
|
|
|
|
void VisitCoroutineSuspendExpr(const CoroutineSuspendExpr *CSE) {
|
|
for (auto *Sub : CSE->children()) {
|
|
const Expr *ChildExpr = dyn_cast_or_null<Expr>(Sub);
|
|
if (!ChildExpr)
|
|
continue;
|
|
|
|
if (ChildExpr == CSE->getOperand())
|
|
// Do not recurse over a CoroutineSuspendExpr's operand.
|
|
// The operand is also a subexpression of getCommonExpr(), and
|
|
// recursing into it directly could confuse object management
|
|
// for the sake of sequence tracking.
|
|
continue;
|
|
|
|
Visit(Sub);
|
|
}
|
|
}
|
|
|
|
void VisitCastExpr(const CastExpr *E) {
|
|
Object O = Object();
|
|
if (E->getCastKind() == CK_LValueToRValue)
|
|
O = getObject(E->getSubExpr(), false);
|
|
|
|
if (O)
|
|
notePreUse(O, E);
|
|
VisitExpr(E);
|
|
if (O)
|
|
notePostUse(O, E);
|
|
}
|
|
|
|
void VisitSequencedExpressions(const Expr *SequencedBefore,
|
|
const Expr *SequencedAfter) {
|
|
SequenceTree::Seq BeforeRegion = Tree.allocate(Region);
|
|
SequenceTree::Seq AfterRegion = Tree.allocate(Region);
|
|
SequenceTree::Seq OldRegion = Region;
|
|
|
|
{
|
|
SequencedSubexpression SeqBefore(*this);
|
|
Region = BeforeRegion;
|
|
Visit(SequencedBefore);
|
|
}
|
|
|
|
Region = AfterRegion;
|
|
Visit(SequencedAfter);
|
|
|
|
Region = OldRegion;
|
|
|
|
Tree.merge(BeforeRegion);
|
|
Tree.merge(AfterRegion);
|
|
}
|
|
|
|
void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) {
|
|
// C++17 [expr.sub]p1:
|
|
// The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The
|
|
// expression E1 is sequenced before the expression E2.
|
|
if (SemaRef.getLangOpts().CPlusPlus17)
|
|
VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS());
|
|
else {
|
|
Visit(ASE->getLHS());
|
|
Visit(ASE->getRHS());
|
|
}
|
|
}
|
|
|
|
void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
|
|
void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
|
|
void VisitBinPtrMem(const BinaryOperator *BO) {
|
|
// C++17 [expr.mptr.oper]p4:
|
|
// Abbreviating pm-expression.*cast-expression as E1.*E2, [...]
|
|
// the expression E1 is sequenced before the expression E2.
|
|
if (SemaRef.getLangOpts().CPlusPlus17)
|
|
VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
|
|
else {
|
|
Visit(BO->getLHS());
|
|
Visit(BO->getRHS());
|
|
}
|
|
}
|
|
|
|
void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); }
|
|
void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); }
|
|
void VisitBinShlShr(const BinaryOperator *BO) {
|
|
// C++17 [expr.shift]p4:
|
|
// The expression E1 is sequenced before the expression E2.
|
|
if (SemaRef.getLangOpts().CPlusPlus17)
|
|
VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
|
|
else {
|
|
Visit(BO->getLHS());
|
|
Visit(BO->getRHS());
|
|
}
|
|
}
|
|
|
|
void VisitBinComma(const BinaryOperator *BO) {
|
|
// C++11 [expr.comma]p1:
|
|
// Every value computation and side effect associated with the left
|
|
// expression is sequenced before every value computation and side
|
|
// effect associated with the right expression.
|
|
VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
|
|
}
|
|
|
|
void VisitBinAssign(const BinaryOperator *BO) {
|
|
SequenceTree::Seq RHSRegion;
|
|
SequenceTree::Seq LHSRegion;
|
|
if (SemaRef.getLangOpts().CPlusPlus17) {
|
|
RHSRegion = Tree.allocate(Region);
|
|
LHSRegion = Tree.allocate(Region);
|
|
} else {
|
|
RHSRegion = Region;
|
|
LHSRegion = Region;
|
|
}
|
|
SequenceTree::Seq OldRegion = Region;
|
|
|
|
// C++11 [expr.ass]p1:
|
|
// [...] the assignment is sequenced after the value computation
|
|
// of the right and left operands, [...]
|
|
//
|
|
// so check it before inspecting the operands and update the
|
|
// map afterwards.
|
|
Object O = getObject(BO->getLHS(), /*Mod=*/true);
|
|
if (O)
|
|
notePreMod(O, BO);
|
|
|
|
if (SemaRef.getLangOpts().CPlusPlus17) {
|
|
// C++17 [expr.ass]p1:
|
|
// [...] The right operand is sequenced before the left operand. [...]
|
|
{
|
|
SequencedSubexpression SeqBefore(*this);
|
|
Region = RHSRegion;
|
|
Visit(BO->getRHS());
|
|
}
|
|
|
|
Region = LHSRegion;
|
|
Visit(BO->getLHS());
|
|
|
|
if (O && isa<CompoundAssignOperator>(BO))
|
|
notePostUse(O, BO);
|
|
|
|
} else {
|
|
// C++11 does not specify any sequencing between the LHS and RHS.
|
|
Region = LHSRegion;
|
|
Visit(BO->getLHS());
|
|
|
|
if (O && isa<CompoundAssignOperator>(BO))
|
|
notePostUse(O, BO);
|
|
|
|
Region = RHSRegion;
|
|
Visit(BO->getRHS());
|
|
}
|
|
|
|
// C++11 [expr.ass]p1:
|
|
// the assignment is sequenced [...] before the value computation of the
|
|
// assignment expression.
|
|
// C11 6.5.16/3 has no such rule.
|
|
Region = OldRegion;
|
|
if (O)
|
|
notePostMod(O, BO,
|
|
SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
|
|
: UK_ModAsSideEffect);
|
|
if (SemaRef.getLangOpts().CPlusPlus17) {
|
|
Tree.merge(RHSRegion);
|
|
Tree.merge(LHSRegion);
|
|
}
|
|
}
|
|
|
|
void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) {
|
|
VisitBinAssign(CAO);
|
|
}
|
|
|
|
void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
|
|
void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
|
|
void VisitUnaryPreIncDec(const UnaryOperator *UO) {
|
|
Object O = getObject(UO->getSubExpr(), true);
|
|
if (!O)
|
|
return VisitExpr(UO);
|
|
|
|
notePreMod(O, UO);
|
|
Visit(UO->getSubExpr());
|
|
// C++11 [expr.pre.incr]p1:
|
|
// the expression ++x is equivalent to x+=1
|
|
notePostMod(O, UO,
|
|
SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
|
|
: UK_ModAsSideEffect);
|
|
}
|
|
|
|
void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
|
|
void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
|
|
void VisitUnaryPostIncDec(const UnaryOperator *UO) {
|
|
Object O = getObject(UO->getSubExpr(), true);
|
|
if (!O)
|
|
return VisitExpr(UO);
|
|
|
|
notePreMod(O, UO);
|
|
Visit(UO->getSubExpr());
|
|
notePostMod(O, UO, UK_ModAsSideEffect);
|
|
}
|
|
|
|
void VisitBinLOr(const BinaryOperator *BO) {
|
|
// C++11 [expr.log.or]p2:
|
|
// If the second expression is evaluated, every value computation and
|
|
// side effect associated with the first expression is sequenced before
|
|
// every value computation and side effect associated with the
|
|
// second expression.
|
|
SequenceTree::Seq LHSRegion = Tree.allocate(Region);
|
|
SequenceTree::Seq RHSRegion = Tree.allocate(Region);
|
|
SequenceTree::Seq OldRegion = Region;
|
|
|
|
EvaluationTracker Eval(*this);
|
|
{
|
|
SequencedSubexpression Sequenced(*this);
|
|
Region = LHSRegion;
|
|
Visit(BO->getLHS());
|
|
}
|
|
|
|
// C++11 [expr.log.or]p1:
|
|
// [...] the second operand is not evaluated if the first operand
|
|
// evaluates to true.
|
|
bool EvalResult = false;
|
|
bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
|
|
bool ShouldVisitRHS = !EvalOK || !EvalResult;
|
|
if (ShouldVisitRHS) {
|
|
Region = RHSRegion;
|
|
Visit(BO->getRHS());
|
|
}
|
|
|
|
Region = OldRegion;
|
|
Tree.merge(LHSRegion);
|
|
Tree.merge(RHSRegion);
|
|
}
|
|
|
|
void VisitBinLAnd(const BinaryOperator *BO) {
|
|
// C++11 [expr.log.and]p2:
|
|
// If the second expression is evaluated, every value computation and
|
|
// side effect associated with the first expression is sequenced before
|
|
// every value computation and side effect associated with the
|
|
// second expression.
|
|
SequenceTree::Seq LHSRegion = Tree.allocate(Region);
|
|
SequenceTree::Seq RHSRegion = Tree.allocate(Region);
|
|
SequenceTree::Seq OldRegion = Region;
|
|
|
|
EvaluationTracker Eval(*this);
|
|
{
|
|
SequencedSubexpression Sequenced(*this);
|
|
Region = LHSRegion;
|
|
Visit(BO->getLHS());
|
|
}
|
|
|
|
// C++11 [expr.log.and]p1:
|
|
// [...] the second operand is not evaluated if the first operand is false.
|
|
bool EvalResult = false;
|
|
bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
|
|
bool ShouldVisitRHS = !EvalOK || EvalResult;
|
|
if (ShouldVisitRHS) {
|
|
Region = RHSRegion;
|
|
Visit(BO->getRHS());
|
|
}
|
|
|
|
Region = OldRegion;
|
|
Tree.merge(LHSRegion);
|
|
Tree.merge(RHSRegion);
|
|
}
|
|
|
|
void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) {
|
|
// C++11 [expr.cond]p1:
|
|
// [...] Every value computation and side effect associated with the first
|
|
// expression is sequenced before every value computation and side effect
|
|
// associated with the second or third expression.
|
|
SequenceTree::Seq ConditionRegion = Tree.allocate(Region);
|
|
|
|
// No sequencing is specified between the true and false expression.
|
|
// However since exactly one of both is going to be evaluated we can
|
|
// consider them to be sequenced. This is needed to avoid warning on
|
|
// something like "x ? y+= 1 : y += 2;" in the case where we will visit
|
|
// both the true and false expressions because we can't evaluate x.
|
|
// This will still allow us to detect an expression like (pre C++17)
|
|
// "(x ? y += 1 : y += 2) = y".
|
|
//
|
|
// We don't wrap the visitation of the true and false expression with
|
|
// SequencedSubexpression because we don't want to downgrade modifications
|
|
// as side effect in the true and false expressions after the visition
|
|
// is done. (for example in the expression "(x ? y++ : y++) + y" we should
|
|
// not warn between the two "y++", but we should warn between the "y++"
|
|
// and the "y".
|
|
SequenceTree::Seq TrueRegion = Tree.allocate(Region);
|
|
SequenceTree::Seq FalseRegion = Tree.allocate(Region);
|
|
SequenceTree::Seq OldRegion = Region;
|
|
|
|
EvaluationTracker Eval(*this);
|
|
{
|
|
SequencedSubexpression Sequenced(*this);
|
|
Region = ConditionRegion;
|
|
Visit(CO->getCond());
|
|
}
|
|
|
|
// C++11 [expr.cond]p1:
|
|
// [...] The first expression is contextually converted to bool (Clause 4).
|
|
// It is evaluated and if it is true, the result of the conditional
|
|
// expression is the value of the second expression, otherwise that of the
|
|
// third expression. Only one of the second and third expressions is
|
|
// evaluated. [...]
|
|
bool EvalResult = false;
|
|
bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult);
|
|
bool ShouldVisitTrueExpr = !EvalOK || EvalResult;
|
|
bool ShouldVisitFalseExpr = !EvalOK || !EvalResult;
|
|
if (ShouldVisitTrueExpr) {
|
|
Region = TrueRegion;
|
|
Visit(CO->getTrueExpr());
|
|
}
|
|
if (ShouldVisitFalseExpr) {
|
|
Region = FalseRegion;
|
|
Visit(CO->getFalseExpr());
|
|
}
|
|
|
|
Region = OldRegion;
|
|
Tree.merge(ConditionRegion);
|
|
Tree.merge(TrueRegion);
|
|
Tree.merge(FalseRegion);
|
|
}
|
|
|
|
void VisitCallExpr(const CallExpr *CE) {
|
|
// FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
|
|
|
|
if (CE->isUnevaluatedBuiltinCall(Context))
|
|
return;
|
|
|
|
// C++11 [intro.execution]p15:
|
|
// When calling a function [...], every value computation and side effect
|
|
// associated with any argument expression, or with the postfix expression
|
|
// designating the called function, is sequenced before execution of every
|
|
// expression or statement in the body of the function [and thus before
|
|
// the value computation of its result].
|
|
SequencedSubexpression Sequenced(*this);
|
|
SemaRef.runWithSufficientStackSpace(CE->getExprLoc(), [&] {
|
|
// C++17 [expr.call]p5
|
|
// The postfix-expression is sequenced before each expression in the
|
|
// expression-list and any default argument. [...]
|
|
SequenceTree::Seq CalleeRegion;
|
|
SequenceTree::Seq OtherRegion;
|
|
if (SemaRef.getLangOpts().CPlusPlus17) {
|
|
CalleeRegion = Tree.allocate(Region);
|
|
OtherRegion = Tree.allocate(Region);
|
|
} else {
|
|
CalleeRegion = Region;
|
|
OtherRegion = Region;
|
|
}
|
|
SequenceTree::Seq OldRegion = Region;
|
|
|
|
// Visit the callee expression first.
|
|
Region = CalleeRegion;
|
|
if (SemaRef.getLangOpts().CPlusPlus17) {
|
|
SequencedSubexpression Sequenced(*this);
|
|
Visit(CE->getCallee());
|
|
} else {
|
|
Visit(CE->getCallee());
|
|
}
|
|
|
|
// Then visit the argument expressions.
|
|
Region = OtherRegion;
|
|
for (const Expr *Argument : CE->arguments())
|
|
Visit(Argument);
|
|
|
|
Region = OldRegion;
|
|
if (SemaRef.getLangOpts().CPlusPlus17) {
|
|
Tree.merge(CalleeRegion);
|
|
Tree.merge(OtherRegion);
|
|
}
|
|
});
|
|
}
|
|
|
|
void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CXXOCE) {
|
|
// C++17 [over.match.oper]p2:
|
|
// [...] the operator notation is first transformed to the equivalent
|
|
// function-call notation as summarized in Table 12 (where @ denotes one
|
|
// of the operators covered in the specified subclause). However, the
|
|
// operands are sequenced in the order prescribed for the built-in
|
|
// operator (Clause 8).
|
|
//
|
|
// From the above only overloaded binary operators and overloaded call
|
|
// operators have sequencing rules in C++17 that we need to handle
|
|
// separately.
|
|
if (!SemaRef.getLangOpts().CPlusPlus17 ||
|
|
(CXXOCE->getNumArgs() != 2 && CXXOCE->getOperator() != OO_Call))
|
|
return VisitCallExpr(CXXOCE);
|
|
|
|
enum {
|
|
NoSequencing,
|
|
LHSBeforeRHS,
|
|
RHSBeforeLHS,
|
|
LHSBeforeRest
|
|
} SequencingKind;
|
|
switch (CXXOCE->getOperator()) {
|
|
case OO_Equal:
|
|
case OO_PlusEqual:
|
|
case OO_MinusEqual:
|
|
case OO_StarEqual:
|
|
case OO_SlashEqual:
|
|
case OO_PercentEqual:
|
|
case OO_CaretEqual:
|
|
case OO_AmpEqual:
|
|
case OO_PipeEqual:
|
|
case OO_LessLessEqual:
|
|
case OO_GreaterGreaterEqual:
|
|
SequencingKind = RHSBeforeLHS;
|
|
break;
|
|
|
|
case OO_LessLess:
|
|
case OO_GreaterGreater:
|
|
case OO_AmpAmp:
|
|
case OO_PipePipe:
|
|
case OO_Comma:
|
|
case OO_ArrowStar:
|
|
case OO_Subscript:
|
|
SequencingKind = LHSBeforeRHS;
|
|
break;
|
|
|
|
case OO_Call:
|
|
SequencingKind = LHSBeforeRest;
|
|
break;
|
|
|
|
default:
|
|
SequencingKind = NoSequencing;
|
|
break;
|
|
}
|
|
|
|
if (SequencingKind == NoSequencing)
|
|
return VisitCallExpr(CXXOCE);
|
|
|
|
// This is a call, so all subexpressions are sequenced before the result.
|
|
SequencedSubexpression Sequenced(*this);
|
|
|
|
SemaRef.runWithSufficientStackSpace(CXXOCE->getExprLoc(), [&] {
|
|
assert(SemaRef.getLangOpts().CPlusPlus17 &&
|
|
"Should only get there with C++17 and above!");
|
|
assert((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) &&
|
|
"Should only get there with an overloaded binary operator"
|
|
" or an overloaded call operator!");
|
|
|
|
if (SequencingKind == LHSBeforeRest) {
|
|
assert(CXXOCE->getOperator() == OO_Call &&
|
|
"We should only have an overloaded call operator here!");
|
|
|
|
// This is very similar to VisitCallExpr, except that we only have the
|
|
// C++17 case. The postfix-expression is the first argument of the
|
|
// CXXOperatorCallExpr. The expressions in the expression-list, if any,
|
|
// are in the following arguments.
|
|
//
|
|
// Note that we intentionally do not visit the callee expression since
|
|
// it is just a decayed reference to a function.
|
|
SequenceTree::Seq PostfixExprRegion = Tree.allocate(Region);
|
|
SequenceTree::Seq ArgsRegion = Tree.allocate(Region);
|
|
SequenceTree::Seq OldRegion = Region;
|
|
|
|
assert(CXXOCE->getNumArgs() >= 1 &&
|
|
"An overloaded call operator must have at least one argument"
|
|
" for the postfix-expression!");
|
|
const Expr *PostfixExpr = CXXOCE->getArgs()[0];
|
|
llvm::ArrayRef<const Expr *> Args(CXXOCE->getArgs() + 1,
|
|
CXXOCE->getNumArgs() - 1);
|
|
|
|
// Visit the postfix-expression first.
|
|
{
|
|
Region = PostfixExprRegion;
|
|
SequencedSubexpression Sequenced(*this);
|
|
Visit(PostfixExpr);
|
|
}
|
|
|
|
// Then visit the argument expressions.
|
|
Region = ArgsRegion;
|
|
for (const Expr *Arg : Args)
|
|
Visit(Arg);
|
|
|
|
Region = OldRegion;
|
|
Tree.merge(PostfixExprRegion);
|
|
Tree.merge(ArgsRegion);
|
|
} else {
|
|
assert(CXXOCE->getNumArgs() == 2 &&
|
|
"Should only have two arguments here!");
|
|
assert((SequencingKind == LHSBeforeRHS ||
|
|
SequencingKind == RHSBeforeLHS) &&
|
|
"Unexpected sequencing kind!");
|
|
|
|
// We do not visit the callee expression since it is just a decayed
|
|
// reference to a function.
|
|
const Expr *E1 = CXXOCE->getArg(0);
|
|
const Expr *E2 = CXXOCE->getArg(1);
|
|
if (SequencingKind == RHSBeforeLHS)
|
|
std::swap(E1, E2);
|
|
|
|
return VisitSequencedExpressions(E1, E2);
|
|
}
|
|
});
|
|
}
|
|
|
|
void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
|
|
// This is a call, so all subexpressions are sequenced before the result.
|
|
SequencedSubexpression Sequenced(*this);
|
|
|
|
if (!CCE->isListInitialization())
|
|
return VisitExpr(CCE);
|
|
|
|
// In C++11, list initializations are sequenced.
|
|
SequenceExpressionsInOrder(
|
|
llvm::ArrayRef(CCE->getArgs(), CCE->getNumArgs()));
|
|
}
|
|
|
|
void VisitInitListExpr(const InitListExpr *ILE) {
|
|
if (!SemaRef.getLangOpts().CPlusPlus11)
|
|
return VisitExpr(ILE);
|
|
|
|
// In C++11, list initializations are sequenced.
|
|
SequenceExpressionsInOrder(ILE->inits());
|
|
}
|
|
|
|
void VisitCXXParenListInitExpr(const CXXParenListInitExpr *PLIE) {
|
|
// C++20 parenthesized list initializations are sequenced. See C++20
|
|
// [decl.init.general]p16.5 and [decl.init.general]p16.6.2.2.
|
|
SequenceExpressionsInOrder(PLIE->getInitExprs());
|
|
}
|
|
|
|
private:
|
|
void SequenceExpressionsInOrder(ArrayRef<const Expr *> ExpressionList) {
|
|
SmallVector<SequenceTree::Seq, 32> Elts;
|
|
SequenceTree::Seq Parent = Region;
|
|
for (const Expr *E : ExpressionList) {
|
|
if (!E)
|
|
continue;
|
|
Region = Tree.allocate(Parent);
|
|
Elts.push_back(Region);
|
|
Visit(E);
|
|
}
|
|
|
|
// Forget that the initializers are sequenced.
|
|
Region = Parent;
|
|
for (unsigned I = 0; I < Elts.size(); ++I)
|
|
Tree.merge(Elts[I]);
|
|
}
|
|
};
|
|
|
|
SequenceChecker::UsageInfo::UsageInfo() = default;
|
|
|
|
} // namespace
|
|
|
|
void Sema::CheckUnsequencedOperations(const Expr *E) {
|
|
SmallVector<const Expr *, 8> WorkList;
|
|
WorkList.push_back(E);
|
|
while (!WorkList.empty()) {
|
|
const Expr *Item = WorkList.pop_back_val();
|
|
SequenceChecker(*this, Item, WorkList);
|
|
}
|
|
}
|
|
|
|
void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
|
|
bool IsConstexpr) {
|
|
llvm::SaveAndRestore ConstantContext(isConstantEvaluatedOverride,
|
|
IsConstexpr || isa<ConstantExpr>(E));
|
|
CheckImplicitConversions(E, CheckLoc);
|
|
if (!E->isInstantiationDependent())
|
|
CheckUnsequencedOperations(E);
|
|
if (!IsConstexpr && !E->isValueDependent())
|
|
CheckForIntOverflow(E);
|
|
DiagnoseMisalignedMembers();
|
|
}
|
|
|
|
void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
|
|
FieldDecl *BitField,
|
|
Expr *Init) {
|
|
(void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
|
|
}
|
|
|
|
static void diagnoseArrayStarInParamType(Sema &S, QualType PType,
|
|
SourceLocation Loc) {
|
|
if (!PType->isVariablyModifiedType())
|
|
return;
|
|
if (const auto *PointerTy = dyn_cast<PointerType>(PType)) {
|
|
diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc);
|
|
return;
|
|
}
|
|
if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) {
|
|
diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc);
|
|
return;
|
|
}
|
|
if (const auto *ParenTy = dyn_cast<ParenType>(PType)) {
|
|
diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc);
|
|
return;
|
|
}
|
|
|
|
const ArrayType *AT = S.Context.getAsArrayType(PType);
|
|
if (!AT)
|
|
return;
|
|
|
|
if (AT->getSizeModifier() != ArraySizeModifier::Star) {
|
|
diagnoseArrayStarInParamType(S, AT->getElementType(), Loc);
|
|
return;
|
|
}
|
|
|
|
S.Diag(Loc, diag::err_array_star_in_function_definition);
|
|
}
|
|
|
|
bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
|
|
bool CheckParameterNames) {
|
|
bool HasInvalidParm = false;
|
|
for (ParmVarDecl *Param : Parameters) {
|
|
assert(Param && "null in a parameter list");
|
|
// C99 6.7.5.3p4: the parameters in a parameter type list in a
|
|
// function declarator that is part of a function definition of
|
|
// that function shall not have incomplete type.
|
|
//
|
|
// C++23 [dcl.fct.def.general]/p2
|
|
// The type of a parameter [...] for a function definition
|
|
// shall not be a (possibly cv-qualified) class type that is incomplete
|
|
// or abstract within the function body unless the function is deleted.
|
|
if (!Param->isInvalidDecl() &&
|
|
(RequireCompleteType(Param->getLocation(), Param->getType(),
|
|
diag::err_typecheck_decl_incomplete_type) ||
|
|
RequireNonAbstractType(Param->getBeginLoc(), Param->getOriginalType(),
|
|
diag::err_abstract_type_in_decl,
|
|
AbstractParamType))) {
|
|
Param->setInvalidDecl();
|
|
HasInvalidParm = true;
|
|
}
|
|
|
|
// C99 6.9.1p5: If the declarator includes a parameter type list, the
|
|
// declaration of each parameter shall include an identifier.
|
|
if (CheckParameterNames && Param->getIdentifier() == nullptr &&
|
|
!Param->isImplicit() && !getLangOpts().CPlusPlus) {
|
|
// Diagnose this as an extension in C17 and earlier.
|
|
if (!getLangOpts().C23)
|
|
Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c23);
|
|
}
|
|
|
|
// C99 6.7.5.3p12:
|
|
// If the function declarator is not part of a definition of that
|
|
// function, parameters may have incomplete type and may use the [*]
|
|
// notation in their sequences of declarator specifiers to specify
|
|
// variable length array types.
|
|
QualType PType = Param->getOriginalType();
|
|
// FIXME: This diagnostic should point the '[*]' if source-location
|
|
// information is added for it.
|
|
diagnoseArrayStarInParamType(*this, PType, Param->getLocation());
|
|
|
|
// If the parameter is a c++ class type and it has to be destructed in the
|
|
// callee function, declare the destructor so that it can be called by the
|
|
// callee function. Do not perform any direct access check on the dtor here.
|
|
if (!Param->isInvalidDecl()) {
|
|
if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) {
|
|
if (!ClassDecl->isInvalidDecl() &&
|
|
!ClassDecl->hasIrrelevantDestructor() &&
|
|
!ClassDecl->isDependentContext() &&
|
|
ClassDecl->isParamDestroyedInCallee()) {
|
|
CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
|
|
MarkFunctionReferenced(Param->getLocation(), Destructor);
|
|
DiagnoseUseOfDecl(Destructor, Param->getLocation());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Parameters with the pass_object_size attribute only need to be marked
|
|
// constant at function definitions. Because we lack information about
|
|
// whether we're on a declaration or definition when we're instantiating the
|
|
// attribute, we need to check for constness here.
|
|
if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>())
|
|
if (!Param->getType().isConstQualified())
|
|
Diag(Param->getLocation(), diag::err_attribute_pointers_only)
|
|
<< Attr->getSpelling() << 1;
|
|
|
|
// Check for parameter names shadowing fields from the class.
|
|
if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) {
|
|
// The owning context for the parameter should be the function, but we
|
|
// want to see if this function's declaration context is a record.
|
|
DeclContext *DC = Param->getDeclContext();
|
|
if (DC && DC->isFunctionOrMethod()) {
|
|
if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
|
|
CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(),
|
|
RD, /*DeclIsField*/ false);
|
|
}
|
|
}
|
|
|
|
if (!Param->isInvalidDecl() &&
|
|
Param->getOriginalType()->isWebAssemblyTableType()) {
|
|
Param->setInvalidDecl();
|
|
HasInvalidParm = true;
|
|
Diag(Param->getLocation(), diag::err_wasm_table_as_function_parameter);
|
|
}
|
|
}
|
|
|
|
return HasInvalidParm;
|
|
}
|
|
|
|
std::optional<std::pair<
|
|
CharUnits, CharUnits>> static getBaseAlignmentAndOffsetFromPtr(const Expr
|
|
*E,
|
|
ASTContext
|
|
&Ctx);
|
|
|
|
/// Compute the alignment and offset of the base class object given the
|
|
/// derived-to-base cast expression and the alignment and offset of the derived
|
|
/// class object.
|
|
static std::pair<CharUnits, CharUnits>
|
|
getDerivedToBaseAlignmentAndOffset(const CastExpr *CE, QualType DerivedType,
|
|
CharUnits BaseAlignment, CharUnits Offset,
|
|
ASTContext &Ctx) {
|
|
for (auto PathI = CE->path_begin(), PathE = CE->path_end(); PathI != PathE;
|
|
++PathI) {
|
|
const CXXBaseSpecifier *Base = *PathI;
|
|
const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
|
|
if (Base->isVirtual()) {
|
|
// The complete object may have a lower alignment than the non-virtual
|
|
// alignment of the base, in which case the base may be misaligned. Choose
|
|
// the smaller of the non-virtual alignment and BaseAlignment, which is a
|
|
// conservative lower bound of the complete object alignment.
|
|
CharUnits NonVirtualAlignment =
|
|
Ctx.getASTRecordLayout(BaseDecl).getNonVirtualAlignment();
|
|
BaseAlignment = std::min(BaseAlignment, NonVirtualAlignment);
|
|
Offset = CharUnits::Zero();
|
|
} else {
|
|
const ASTRecordLayout &RL =
|
|
Ctx.getASTRecordLayout(DerivedType->getAsCXXRecordDecl());
|
|
Offset += RL.getBaseClassOffset(BaseDecl);
|
|
}
|
|
DerivedType = Base->getType();
|
|
}
|
|
|
|
return std::make_pair(BaseAlignment, Offset);
|
|
}
|
|
|
|
/// Compute the alignment and offset of a binary additive operator.
|
|
static std::optional<std::pair<CharUnits, CharUnits>>
|
|
getAlignmentAndOffsetFromBinAddOrSub(const Expr *PtrE, const Expr *IntE,
|
|
bool IsSub, ASTContext &Ctx) {
|
|
QualType PointeeType = PtrE->getType()->getPointeeType();
|
|
|
|
if (!PointeeType->isConstantSizeType())
|
|
return std::nullopt;
|
|
|
|
auto P = getBaseAlignmentAndOffsetFromPtr(PtrE, Ctx);
|
|
|
|
if (!P)
|
|
return std::nullopt;
|
|
|
|
CharUnits EltSize = Ctx.getTypeSizeInChars(PointeeType);
|
|
if (std::optional<llvm::APSInt> IdxRes = IntE->getIntegerConstantExpr(Ctx)) {
|
|
CharUnits Offset = EltSize * IdxRes->getExtValue();
|
|
if (IsSub)
|
|
Offset = -Offset;
|
|
return std::make_pair(P->first, P->second + Offset);
|
|
}
|
|
|
|
// If the integer expression isn't a constant expression, compute the lower
|
|
// bound of the alignment using the alignment and offset of the pointer
|
|
// expression and the element size.
|
|
return std::make_pair(
|
|
P->first.alignmentAtOffset(P->second).alignmentAtOffset(EltSize),
|
|
CharUnits::Zero());
|
|
}
|
|
|
|
/// This helper function takes an lvalue expression and returns the alignment of
|
|
/// a VarDecl and a constant offset from the VarDecl.
|
|
std::optional<std::pair<
|
|
CharUnits,
|
|
CharUnits>> static getBaseAlignmentAndOffsetFromLValue(const Expr *E,
|
|
ASTContext &Ctx) {
|
|
E = E->IgnoreParens();
|
|
switch (E->getStmtClass()) {
|
|
default:
|
|
break;
|
|
case Stmt::CStyleCastExprClass:
|
|
case Stmt::CXXStaticCastExprClass:
|
|
case Stmt::ImplicitCastExprClass: {
|
|
auto *CE = cast<CastExpr>(E);
|
|
const Expr *From = CE->getSubExpr();
|
|
switch (CE->getCastKind()) {
|
|
default:
|
|
break;
|
|
case CK_NoOp:
|
|
return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
|
|
case CK_UncheckedDerivedToBase:
|
|
case CK_DerivedToBase: {
|
|
auto P = getBaseAlignmentAndOffsetFromLValue(From, Ctx);
|
|
if (!P)
|
|
break;
|
|
return getDerivedToBaseAlignmentAndOffset(CE, From->getType(), P->first,
|
|
P->second, Ctx);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case Stmt::ArraySubscriptExprClass: {
|
|
auto *ASE = cast<ArraySubscriptExpr>(E);
|
|
return getAlignmentAndOffsetFromBinAddOrSub(ASE->getBase(), ASE->getIdx(),
|
|
false, Ctx);
|
|
}
|
|
case Stmt::DeclRefExprClass: {
|
|
if (auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
|
|
// FIXME: If VD is captured by copy or is an escaping __block variable,
|
|
// use the alignment of VD's type.
|
|
if (!VD->getType()->isReferenceType()) {
|
|
// Dependent alignment cannot be resolved -> bail out.
|
|
if (VD->hasDependentAlignment())
|
|
break;
|
|
return std::make_pair(Ctx.getDeclAlign(VD), CharUnits::Zero());
|
|
}
|
|
if (VD->hasInit())
|
|
return getBaseAlignmentAndOffsetFromLValue(VD->getInit(), Ctx);
|
|
}
|
|
break;
|
|
}
|
|
case Stmt::MemberExprClass: {
|
|
auto *ME = cast<MemberExpr>(E);
|
|
auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
|
|
if (!FD || FD->getType()->isReferenceType() ||
|
|
FD->getParent()->isInvalidDecl())
|
|
break;
|
|
std::optional<std::pair<CharUnits, CharUnits>> P;
|
|
if (ME->isArrow())
|
|
P = getBaseAlignmentAndOffsetFromPtr(ME->getBase(), Ctx);
|
|
else
|
|
P = getBaseAlignmentAndOffsetFromLValue(ME->getBase(), Ctx);
|
|
if (!P)
|
|
break;
|
|
const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent());
|
|
uint64_t Offset = Layout.getFieldOffset(FD->getFieldIndex());
|
|
return std::make_pair(P->first,
|
|
P->second + CharUnits::fromQuantity(Offset));
|
|
}
|
|
case Stmt::UnaryOperatorClass: {
|
|
auto *UO = cast<UnaryOperator>(E);
|
|
switch (UO->getOpcode()) {
|
|
default:
|
|
break;
|
|
case UO_Deref:
|
|
return getBaseAlignmentAndOffsetFromPtr(UO->getSubExpr(), Ctx);
|
|
}
|
|
break;
|
|
}
|
|
case Stmt::BinaryOperatorClass: {
|
|
auto *BO = cast<BinaryOperator>(E);
|
|
auto Opcode = BO->getOpcode();
|
|
switch (Opcode) {
|
|
default:
|
|
break;
|
|
case BO_Comma:
|
|
return getBaseAlignmentAndOffsetFromLValue(BO->getRHS(), Ctx);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
/// This helper function takes a pointer expression and returns the alignment of
|
|
/// a VarDecl and a constant offset from the VarDecl.
|
|
std::optional<std::pair<
|
|
CharUnits, CharUnits>> static getBaseAlignmentAndOffsetFromPtr(const Expr
|
|
*E,
|
|
ASTContext
|
|
&Ctx) {
|
|
E = E->IgnoreParens();
|
|
switch (E->getStmtClass()) {
|
|
default:
|
|
break;
|
|
case Stmt::CStyleCastExprClass:
|
|
case Stmt::CXXStaticCastExprClass:
|
|
case Stmt::ImplicitCastExprClass: {
|
|
auto *CE = cast<CastExpr>(E);
|
|
const Expr *From = CE->getSubExpr();
|
|
switch (CE->getCastKind()) {
|
|
default:
|
|
break;
|
|
case CK_NoOp:
|
|
return getBaseAlignmentAndOffsetFromPtr(From, Ctx);
|
|
case CK_ArrayToPointerDecay:
|
|
return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
|
|
case CK_UncheckedDerivedToBase:
|
|
case CK_DerivedToBase: {
|
|
auto P = getBaseAlignmentAndOffsetFromPtr(From, Ctx);
|
|
if (!P)
|
|
break;
|
|
return getDerivedToBaseAlignmentAndOffset(
|
|
CE, From->getType()->getPointeeType(), P->first, P->second, Ctx);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case Stmt::CXXThisExprClass: {
|
|
auto *RD = E->getType()->getPointeeType()->getAsCXXRecordDecl();
|
|
CharUnits Alignment = Ctx.getASTRecordLayout(RD).getNonVirtualAlignment();
|
|
return std::make_pair(Alignment, CharUnits::Zero());
|
|
}
|
|
case Stmt::UnaryOperatorClass: {
|
|
auto *UO = cast<UnaryOperator>(E);
|
|
if (UO->getOpcode() == UO_AddrOf)
|
|
return getBaseAlignmentAndOffsetFromLValue(UO->getSubExpr(), Ctx);
|
|
break;
|
|
}
|
|
case Stmt::BinaryOperatorClass: {
|
|
auto *BO = cast<BinaryOperator>(E);
|
|
auto Opcode = BO->getOpcode();
|
|
switch (Opcode) {
|
|
default:
|
|
break;
|
|
case BO_Add:
|
|
case BO_Sub: {
|
|
const Expr *LHS = BO->getLHS(), *RHS = BO->getRHS();
|
|
if (Opcode == BO_Add && !RHS->getType()->isIntegralOrEnumerationType())
|
|
std::swap(LHS, RHS);
|
|
return getAlignmentAndOffsetFromBinAddOrSub(LHS, RHS, Opcode == BO_Sub,
|
|
Ctx);
|
|
}
|
|
case BO_Comma:
|
|
return getBaseAlignmentAndOffsetFromPtr(BO->getRHS(), Ctx);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return std::nullopt;
|
|
}
|
|
|
|
static CharUnits getPresumedAlignmentOfPointer(const Expr *E, Sema &S) {
|
|
// See if we can compute the alignment of a VarDecl and an offset from it.
|
|
std::optional<std::pair<CharUnits, CharUnits>> P =
|
|
getBaseAlignmentAndOffsetFromPtr(E, S.Context);
|
|
|
|
if (P)
|
|
return P->first.alignmentAtOffset(P->second);
|
|
|
|
// If that failed, return the type's alignment.
|
|
return S.Context.getTypeAlignInChars(E->getType()->getPointeeType());
|
|
}
|
|
|
|
void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
|
|
// This is actually a lot of work to potentially be doing on every
|
|
// cast; don't do it if we're ignoring -Wcast_align (as is the default).
|
|
if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
|
|
return;
|
|
|
|
// Ignore dependent types.
|
|
if (T->isDependentType() || Op->getType()->isDependentType())
|
|
return;
|
|
|
|
// Require that the destination be a pointer type.
|
|
const PointerType *DestPtr = T->getAs<PointerType>();
|
|
if (!DestPtr) return;
|
|
|
|
// If the destination has alignment 1, we're done.
|
|
QualType DestPointee = DestPtr->getPointeeType();
|
|
if (DestPointee->isIncompleteType()) return;
|
|
CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
|
|
if (DestAlign.isOne()) return;
|
|
|
|
// Require that the source be a pointer type.
|
|
const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
|
|
if (!SrcPtr) return;
|
|
QualType SrcPointee = SrcPtr->getPointeeType();
|
|
|
|
// Explicitly allow casts from cv void*. We already implicitly
|
|
// allowed casts to cv void*, since they have alignment 1.
|
|
// Also allow casts involving incomplete types, which implicitly
|
|
// includes 'void'.
|
|
if (SrcPointee->isIncompleteType()) return;
|
|
|
|
CharUnits SrcAlign = getPresumedAlignmentOfPointer(Op, *this);
|
|
|
|
if (SrcAlign >= DestAlign) return;
|
|
|
|
Diag(TRange.getBegin(), diag::warn_cast_align)
|
|
<< Op->getType() << T
|
|
<< static_cast<unsigned>(SrcAlign.getQuantity())
|
|
<< static_cast<unsigned>(DestAlign.getQuantity())
|
|
<< TRange << Op->getSourceRange();
|
|
}
|
|
|
|
void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
|
|
const ArraySubscriptExpr *ASE,
|
|
bool AllowOnePastEnd, bool IndexNegated) {
|
|
// Already diagnosed by the constant evaluator.
|
|
if (isConstantEvaluatedContext())
|
|
return;
|
|
|
|
IndexExpr = IndexExpr->IgnoreParenImpCasts();
|
|
if (IndexExpr->isValueDependent())
|
|
return;
|
|
|
|
const Type *EffectiveType =
|
|
BaseExpr->getType()->getPointeeOrArrayElementType();
|
|
BaseExpr = BaseExpr->IgnoreParenCasts();
|
|
const ConstantArrayType *ArrayTy =
|
|
Context.getAsConstantArrayType(BaseExpr->getType());
|
|
|
|
LangOptions::StrictFlexArraysLevelKind
|
|
StrictFlexArraysLevel = getLangOpts().getStrictFlexArraysLevel();
|
|
|
|
const Type *BaseType =
|
|
ArrayTy == nullptr ? nullptr : ArrayTy->getElementType().getTypePtr();
|
|
bool IsUnboundedArray =
|
|
BaseType == nullptr || BaseExpr->isFlexibleArrayMemberLike(
|
|
Context, StrictFlexArraysLevel,
|
|
/*IgnoreTemplateOrMacroSubstitution=*/true);
|
|
if (EffectiveType->isDependentType() ||
|
|
(!IsUnboundedArray && BaseType->isDependentType()))
|
|
return;
|
|
|
|
Expr::EvalResult Result;
|
|
if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects))
|
|
return;
|
|
|
|
llvm::APSInt index = Result.Val.getInt();
|
|
if (IndexNegated) {
|
|
index.setIsUnsigned(false);
|
|
index = -index;
|
|
}
|
|
|
|
if (IsUnboundedArray) {
|
|
if (EffectiveType->isFunctionType())
|
|
return;
|
|
if (index.isUnsigned() || !index.isNegative()) {
|
|
const auto &ASTC = getASTContext();
|
|
unsigned AddrBits = ASTC.getTargetInfo().getPointerWidth(
|
|
EffectiveType->getCanonicalTypeInternal().getAddressSpace());
|
|
if (index.getBitWidth() < AddrBits)
|
|
index = index.zext(AddrBits);
|
|
std::optional<CharUnits> ElemCharUnits =
|
|
ASTC.getTypeSizeInCharsIfKnown(EffectiveType);
|
|
// PR50741 - If EffectiveType has unknown size (e.g., if it's a void
|
|
// pointer) bounds-checking isn't meaningful.
|
|
if (!ElemCharUnits || ElemCharUnits->isZero())
|
|
return;
|
|
llvm::APInt ElemBytes(index.getBitWidth(), ElemCharUnits->getQuantity());
|
|
// If index has more active bits than address space, we already know
|
|
// we have a bounds violation to warn about. Otherwise, compute
|
|
// address of (index + 1)th element, and warn about bounds violation
|
|
// only if that address exceeds address space.
|
|
if (index.getActiveBits() <= AddrBits) {
|
|
bool Overflow;
|
|
llvm::APInt Product(index);
|
|
Product += 1;
|
|
Product = Product.umul_ov(ElemBytes, Overflow);
|
|
if (!Overflow && Product.getActiveBits() <= AddrBits)
|
|
return;
|
|
}
|
|
|
|
// Need to compute max possible elements in address space, since that
|
|
// is included in diag message.
|
|
llvm::APInt MaxElems = llvm::APInt::getMaxValue(AddrBits);
|
|
MaxElems = MaxElems.zext(std::max(AddrBits + 1, ElemBytes.getBitWidth()));
|
|
MaxElems += 1;
|
|
ElemBytes = ElemBytes.zextOrTrunc(MaxElems.getBitWidth());
|
|
MaxElems = MaxElems.udiv(ElemBytes);
|
|
|
|
unsigned DiagID =
|
|
ASE ? diag::warn_array_index_exceeds_max_addressable_bounds
|
|
: diag::warn_ptr_arith_exceeds_max_addressable_bounds;
|
|
|
|
// Diag message shows element size in bits and in "bytes" (platform-
|
|
// dependent CharUnits)
|
|
DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
|
|
PDiag(DiagID)
|
|
<< toString(index, 10, true) << AddrBits
|
|
<< (unsigned)ASTC.toBits(*ElemCharUnits)
|
|
<< toString(ElemBytes, 10, false)
|
|
<< toString(MaxElems, 10, false)
|
|
<< (unsigned)MaxElems.getLimitedValue(~0U)
|
|
<< IndexExpr->getSourceRange());
|
|
|
|
const NamedDecl *ND = nullptr;
|
|
// Try harder to find a NamedDecl to point at in the note.
|
|
while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr))
|
|
BaseExpr = ASE->getBase()->IgnoreParenCasts();
|
|
if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
|
|
ND = DRE->getDecl();
|
|
if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr))
|
|
ND = ME->getMemberDecl();
|
|
|
|
if (ND)
|
|
DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
|
|
PDiag(diag::note_array_declared_here) << ND);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (index.isUnsigned() || !index.isNegative()) {
|
|
// It is possible that the type of the base expression after
|
|
// IgnoreParenCasts is incomplete, even though the type of the base
|
|
// expression before IgnoreParenCasts is complete (see PR39746 for an
|
|
// example). In this case we have no information about whether the array
|
|
// access exceeds the array bounds. However we can still diagnose an array
|
|
// access which precedes the array bounds.
|
|
if (BaseType->isIncompleteType())
|
|
return;
|
|
|
|
llvm::APInt size = ArrayTy->getSize();
|
|
|
|
if (BaseType != EffectiveType) {
|
|
// Make sure we're comparing apples to apples when comparing index to
|
|
// size.
|
|
uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
|
|
uint64_t array_typesize = Context.getTypeSize(BaseType);
|
|
|
|
// Handle ptrarith_typesize being zero, such as when casting to void*.
|
|
// Use the size in bits (what "getTypeSize()" returns) rather than bytes.
|
|
if (!ptrarith_typesize)
|
|
ptrarith_typesize = Context.getCharWidth();
|
|
|
|
if (ptrarith_typesize != array_typesize) {
|
|
// There's a cast to a different size type involved.
|
|
uint64_t ratio = array_typesize / ptrarith_typesize;
|
|
|
|
// TODO: Be smarter about handling cases where array_typesize is not a
|
|
// multiple of ptrarith_typesize.
|
|
if (ptrarith_typesize * ratio == array_typesize)
|
|
size *= llvm::APInt(size.getBitWidth(), ratio);
|
|
}
|
|
}
|
|
|
|
if (size.getBitWidth() > index.getBitWidth())
|
|
index = index.zext(size.getBitWidth());
|
|
else if (size.getBitWidth() < index.getBitWidth())
|
|
size = size.zext(index.getBitWidth());
|
|
|
|
// For array subscripting the index must be less than size, but for pointer
|
|
// arithmetic also allow the index (offset) to be equal to size since
|
|
// computing the next address after the end of the array is legal and
|
|
// commonly done e.g. in C++ iterators and range-based for loops.
|
|
if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
|
|
return;
|
|
|
|
// Suppress the warning if the subscript expression (as identified by the
|
|
// ']' location) and the index expression are both from macro expansions
|
|
// within a system header.
|
|
if (ASE) {
|
|
SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
|
|
ASE->getRBracketLoc());
|
|
if (SourceMgr.isInSystemHeader(RBracketLoc)) {
|
|
SourceLocation IndexLoc =
|
|
SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc());
|
|
if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
|
|
return;
|
|
}
|
|
}
|
|
|
|
unsigned DiagID = ASE ? diag::warn_array_index_exceeds_bounds
|
|
: diag::warn_ptr_arith_exceeds_bounds;
|
|
unsigned CastMsg = (!ASE || BaseType == EffectiveType) ? 0 : 1;
|
|
QualType CastMsgTy = ASE ? ASE->getLHS()->getType() : QualType();
|
|
|
|
DiagRuntimeBehavior(
|
|
BaseExpr->getBeginLoc(), BaseExpr,
|
|
PDiag(DiagID) << toString(index, 10, true) << ArrayTy->desugar()
|
|
<< CastMsg << CastMsgTy << IndexExpr->getSourceRange());
|
|
} else {
|
|
unsigned DiagID = diag::warn_array_index_precedes_bounds;
|
|
if (!ASE) {
|
|
DiagID = diag::warn_ptr_arith_precedes_bounds;
|
|
if (index.isNegative()) index = -index;
|
|
}
|
|
|
|
DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
|
|
PDiag(DiagID) << toString(index, 10, true)
|
|
<< IndexExpr->getSourceRange());
|
|
}
|
|
|
|
const NamedDecl *ND = nullptr;
|
|
// Try harder to find a NamedDecl to point at in the note.
|
|
while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr))
|
|
BaseExpr = ASE->getBase()->IgnoreParenCasts();
|
|
if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
|
|
ND = DRE->getDecl();
|
|
if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr))
|
|
ND = ME->getMemberDecl();
|
|
|
|
if (ND)
|
|
DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
|
|
PDiag(diag::note_array_declared_here) << ND);
|
|
}
|
|
|
|
void Sema::CheckArrayAccess(const Expr *expr) {
|
|
int AllowOnePastEnd = 0;
|
|
while (expr) {
|
|
expr = expr->IgnoreParenImpCasts();
|
|
switch (expr->getStmtClass()) {
|
|
case Stmt::ArraySubscriptExprClass: {
|
|
const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
|
|
CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
|
|
AllowOnePastEnd > 0);
|
|
expr = ASE->getBase();
|
|
break;
|
|
}
|
|
case Stmt::MemberExprClass: {
|
|
expr = cast<MemberExpr>(expr)->getBase();
|
|
break;
|
|
}
|
|
case Stmt::ArraySectionExprClass: {
|
|
const ArraySectionExpr *ASE = cast<ArraySectionExpr>(expr);
|
|
// FIXME: We should probably be checking all of the elements to the
|
|
// 'length' here as well.
|
|
if (ASE->getLowerBound())
|
|
CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(),
|
|
/*ASE=*/nullptr, AllowOnePastEnd > 0);
|
|
return;
|
|
}
|
|
case Stmt::UnaryOperatorClass: {
|
|
// Only unwrap the * and & unary operators
|
|
const UnaryOperator *UO = cast<UnaryOperator>(expr);
|
|
expr = UO->getSubExpr();
|
|
switch (UO->getOpcode()) {
|
|
case UO_AddrOf:
|
|
AllowOnePastEnd++;
|
|
break;
|
|
case UO_Deref:
|
|
AllowOnePastEnd--;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
case Stmt::ConditionalOperatorClass: {
|
|
const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
|
|
if (const Expr *lhs = cond->getLHS())
|
|
CheckArrayAccess(lhs);
|
|
if (const Expr *rhs = cond->getRHS())
|
|
CheckArrayAccess(rhs);
|
|
return;
|
|
}
|
|
case Stmt::CXXOperatorCallExprClass: {
|
|
const auto *OCE = cast<CXXOperatorCallExpr>(expr);
|
|
for (const auto *Arg : OCE->arguments())
|
|
CheckArrayAccess(Arg);
|
|
return;
|
|
}
|
|
default:
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
|
|
Expr *RHS, bool isProperty) {
|
|
// Check if RHS is an Objective-C object literal, which also can get
|
|
// immediately zapped in a weak reference. Note that we explicitly
|
|
// allow ObjCStringLiterals, since those are designed to never really die.
|
|
RHS = RHS->IgnoreParenImpCasts();
|
|
|
|
// This enum needs to match with the 'select' in
|
|
// warn_objc_arc_literal_assign (off-by-1).
|
|
SemaObjC::ObjCLiteralKind Kind = S.ObjC().CheckLiteralKind(RHS);
|
|
if (Kind == SemaObjC::LK_String || Kind == SemaObjC::LK_None)
|
|
return false;
|
|
|
|
S.Diag(Loc, diag::warn_arc_literal_assign)
|
|
<< (unsigned) Kind
|
|
<< (isProperty ? 0 : 1)
|
|
<< RHS->getSourceRange();
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
|
|
Qualifiers::ObjCLifetime LT,
|
|
Expr *RHS, bool isProperty) {
|
|
// Strip off any implicit cast added to get to the one ARC-specific.
|
|
while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
|
|
if (cast->getCastKind() == CK_ARCConsumeObject) {
|
|
S.Diag(Loc, diag::warn_arc_retained_assign)
|
|
<< (LT == Qualifiers::OCL_ExplicitNone)
|
|
<< (isProperty ? 0 : 1)
|
|
<< RHS->getSourceRange();
|
|
return true;
|
|
}
|
|
RHS = cast->getSubExpr();
|
|
}
|
|
|
|
if (LT == Qualifiers::OCL_Weak &&
|
|
checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::checkUnsafeAssigns(SourceLocation Loc,
|
|
QualType LHS, Expr *RHS) {
|
|
Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
|
|
|
|
if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
|
|
return false;
|
|
|
|
if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
|
|
Expr *LHS, Expr *RHS) {
|
|
QualType LHSType;
|
|
// PropertyRef on LHS type need be directly obtained from
|
|
// its declaration as it has a PseudoType.
|
|
ObjCPropertyRefExpr *PRE
|
|
= dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
|
|
if (PRE && !PRE->isImplicitProperty()) {
|
|
const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
|
|
if (PD)
|
|
LHSType = PD->getType();
|
|
}
|
|
|
|
if (LHSType.isNull())
|
|
LHSType = LHS->getType();
|
|
|
|
Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
|
|
|
|
if (LT == Qualifiers::OCL_Weak) {
|
|
if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
|
|
getCurFunction()->markSafeWeakUse(LHS);
|
|
}
|
|
|
|
if (checkUnsafeAssigns(Loc, LHSType, RHS))
|
|
return;
|
|
|
|
// FIXME. Check for other life times.
|
|
if (LT != Qualifiers::OCL_None)
|
|
return;
|
|
|
|
if (PRE) {
|
|
if (PRE->isImplicitProperty())
|
|
return;
|
|
const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
|
|
if (!PD)
|
|
return;
|
|
|
|
unsigned Attributes = PD->getPropertyAttributes();
|
|
if (Attributes & ObjCPropertyAttribute::kind_assign) {
|
|
// when 'assign' attribute was not explicitly specified
|
|
// by user, ignore it and rely on property type itself
|
|
// for lifetime info.
|
|
unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
|
|
if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) &&
|
|
LHSType->isObjCRetainableType())
|
|
return;
|
|
|
|
while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
|
|
if (cast->getCastKind() == CK_ARCConsumeObject) {
|
|
Diag(Loc, diag::warn_arc_retained_property_assign)
|
|
<< RHS->getSourceRange();
|
|
return;
|
|
}
|
|
RHS = cast->getSubExpr();
|
|
}
|
|
} else if (Attributes & ObjCPropertyAttribute::kind_weak) {
|
|
if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
//===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
|
|
|
|
static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
|
|
SourceLocation StmtLoc,
|
|
const NullStmt *Body) {
|
|
// Do not warn if the body is a macro that expands to nothing, e.g:
|
|
//
|
|
// #define CALL(x)
|
|
// if (condition)
|
|
// CALL(0);
|
|
if (Body->hasLeadingEmptyMacro())
|
|
return false;
|
|
|
|
// Get line numbers of statement and body.
|
|
bool StmtLineInvalid;
|
|
unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc,
|
|
&StmtLineInvalid);
|
|
if (StmtLineInvalid)
|
|
return false;
|
|
|
|
bool BodyLineInvalid;
|
|
unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
|
|
&BodyLineInvalid);
|
|
if (BodyLineInvalid)
|
|
return false;
|
|
|
|
// Warn if null statement and body are on the same line.
|
|
if (StmtLine != BodyLine)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
|
|
const Stmt *Body,
|
|
unsigned DiagID) {
|
|
// Since this is a syntactic check, don't emit diagnostic for template
|
|
// instantiations, this just adds noise.
|
|
if (CurrentInstantiationScope)
|
|
return;
|
|
|
|
// The body should be a null statement.
|
|
const NullStmt *NBody = dyn_cast<NullStmt>(Body);
|
|
if (!NBody)
|
|
return;
|
|
|
|
// Do the usual checks.
|
|
if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
|
|
return;
|
|
|
|
Diag(NBody->getSemiLoc(), DiagID);
|
|
Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
|
|
}
|
|
|
|
void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
|
|
const Stmt *PossibleBody) {
|
|
assert(!CurrentInstantiationScope); // Ensured by caller
|
|
|
|
SourceLocation StmtLoc;
|
|
const Stmt *Body;
|
|
unsigned DiagID;
|
|
if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
|
|
StmtLoc = FS->getRParenLoc();
|
|
Body = FS->getBody();
|
|
DiagID = diag::warn_empty_for_body;
|
|
} else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
|
|
StmtLoc = WS->getRParenLoc();
|
|
Body = WS->getBody();
|
|
DiagID = diag::warn_empty_while_body;
|
|
} else
|
|
return; // Neither `for' nor `while'.
|
|
|
|
// The body should be a null statement.
|
|
const NullStmt *NBody = dyn_cast<NullStmt>(Body);
|
|
if (!NBody)
|
|
return;
|
|
|
|
// Skip expensive checks if diagnostic is disabled.
|
|
if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
|
|
return;
|
|
|
|
// Do the usual checks.
|
|
if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
|
|
return;
|
|
|
|
// `for(...);' and `while(...);' are popular idioms, so in order to keep
|
|
// noise level low, emit diagnostics only if for/while is followed by a
|
|
// CompoundStmt, e.g.:
|
|
// for (int i = 0; i < n; i++);
|
|
// {
|
|
// a(i);
|
|
// }
|
|
// or if for/while is followed by a statement with more indentation
|
|
// than for/while itself:
|
|
// for (int i = 0; i < n; i++);
|
|
// a(i);
|
|
bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
|
|
if (!ProbableTypo) {
|
|
bool BodyColInvalid;
|
|
unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
|
|
PossibleBody->getBeginLoc(), &BodyColInvalid);
|
|
if (BodyColInvalid)
|
|
return;
|
|
|
|
bool StmtColInvalid;
|
|
unsigned StmtCol =
|
|
SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid);
|
|
if (StmtColInvalid)
|
|
return;
|
|
|
|
if (BodyCol > StmtCol)
|
|
ProbableTypo = true;
|
|
}
|
|
|
|
if (ProbableTypo) {
|
|
Diag(NBody->getSemiLoc(), DiagID);
|
|
Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
|
|
}
|
|
}
|
|
|
|
//===--- CHECK: Warn on self move with std::move. -------------------------===//
|
|
|
|
void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
|
|
SourceLocation OpLoc) {
|
|
if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
|
|
return;
|
|
|
|
if (inTemplateInstantiation())
|
|
return;
|
|
|
|
// Strip parens and casts away.
|
|
LHSExpr = LHSExpr->IgnoreParenImpCasts();
|
|
RHSExpr = RHSExpr->IgnoreParenImpCasts();
|
|
|
|
// Check for a call to std::move or for a static_cast<T&&>(..) to an xvalue
|
|
// which we can treat as an inlined std::move
|
|
if (const auto *CE = dyn_cast<CallExpr>(RHSExpr);
|
|
CE && CE->getNumArgs() == 1 && CE->isCallToStdMove())
|
|
RHSExpr = CE->getArg(0);
|
|
else if (const auto *CXXSCE = dyn_cast<CXXStaticCastExpr>(RHSExpr);
|
|
CXXSCE && CXXSCE->isXValue())
|
|
RHSExpr = CXXSCE->getSubExpr();
|
|
else
|
|
return;
|
|
|
|
const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
|
|
const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
|
|
|
|
// Two DeclRefExpr's, check that the decls are the same.
|
|
if (LHSDeclRef && RHSDeclRef) {
|
|
if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
|
|
return;
|
|
if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
|
|
RHSDeclRef->getDecl()->getCanonicalDecl())
|
|
return;
|
|
|
|
auto D = Diag(OpLoc, diag::warn_self_move)
|
|
<< LHSExpr->getType() << LHSExpr->getSourceRange()
|
|
<< RHSExpr->getSourceRange();
|
|
if (const FieldDecl *F =
|
|
getSelfAssignmentClassMemberCandidate(RHSDeclRef->getDecl()))
|
|
D << 1 << F
|
|
<< FixItHint::CreateInsertion(LHSDeclRef->getBeginLoc(), "this->");
|
|
else
|
|
D << 0;
|
|
return;
|
|
}
|
|
|
|
// Member variables require a different approach to check for self moves.
|
|
// MemberExpr's are the same if every nested MemberExpr refers to the same
|
|
// Decl and that the base Expr's are DeclRefExpr's with the same Decl or
|
|
// the base Expr's are CXXThisExpr's.
|
|
const Expr *LHSBase = LHSExpr;
|
|
const Expr *RHSBase = RHSExpr;
|
|
const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
|
|
const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
|
|
if (!LHSME || !RHSME)
|
|
return;
|
|
|
|
while (LHSME && RHSME) {
|
|
if (LHSME->getMemberDecl()->getCanonicalDecl() !=
|
|
RHSME->getMemberDecl()->getCanonicalDecl())
|
|
return;
|
|
|
|
LHSBase = LHSME->getBase();
|
|
RHSBase = RHSME->getBase();
|
|
LHSME = dyn_cast<MemberExpr>(LHSBase);
|
|
RHSME = dyn_cast<MemberExpr>(RHSBase);
|
|
}
|
|
|
|
LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
|
|
RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
|
|
if (LHSDeclRef && RHSDeclRef) {
|
|
if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
|
|
return;
|
|
if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
|
|
RHSDeclRef->getDecl()->getCanonicalDecl())
|
|
return;
|
|
|
|
Diag(OpLoc, diag::warn_self_move)
|
|
<< LHSExpr->getType() << 0 << LHSExpr->getSourceRange()
|
|
<< RHSExpr->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
|
|
Diag(OpLoc, diag::warn_self_move)
|
|
<< LHSExpr->getType() << 0 << LHSExpr->getSourceRange()
|
|
<< RHSExpr->getSourceRange();
|
|
}
|
|
|
|
//===--- Layout compatibility ----------------------------------------------//
|
|
|
|
static bool isLayoutCompatible(const ASTContext &C, QualType T1, QualType T2);
|
|
|
|
/// Check if two enumeration types are layout-compatible.
|
|
static bool isLayoutCompatible(const ASTContext &C, const EnumDecl *ED1,
|
|
const EnumDecl *ED2) {
|
|
// C++11 [dcl.enum] p8:
|
|
// Two enumeration types are layout-compatible if they have the same
|
|
// underlying type.
|
|
return ED1->isComplete() && ED2->isComplete() &&
|
|
C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
|
|
}
|
|
|
|
/// Check if two fields are layout-compatible.
|
|
/// Can be used on union members, which are exempt from alignment requirement
|
|
/// of common initial sequence.
|
|
static bool isLayoutCompatible(const ASTContext &C, const FieldDecl *Field1,
|
|
const FieldDecl *Field2,
|
|
bool AreUnionMembers = false) {
|
|
[[maybe_unused]] const Type *Field1Parent =
|
|
Field1->getParent()->getTypeForDecl();
|
|
[[maybe_unused]] const Type *Field2Parent =
|
|
Field2->getParent()->getTypeForDecl();
|
|
assert(((Field1Parent->isStructureOrClassType() &&
|
|
Field2Parent->isStructureOrClassType()) ||
|
|
(Field1Parent->isUnionType() && Field2Parent->isUnionType())) &&
|
|
"Can't evaluate layout compatibility between a struct field and a "
|
|
"union field.");
|
|
assert(((!AreUnionMembers && Field1Parent->isStructureOrClassType()) ||
|
|
(AreUnionMembers && Field1Parent->isUnionType())) &&
|
|
"AreUnionMembers should be 'true' for union fields (only).");
|
|
|
|
if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
|
|
return false;
|
|
|
|
if (Field1->isBitField() != Field2->isBitField())
|
|
return false;
|
|
|
|
if (Field1->isBitField()) {
|
|
// Make sure that the bit-fields are the same length.
|
|
unsigned Bits1 = Field1->getBitWidthValue();
|
|
unsigned Bits2 = Field2->getBitWidthValue();
|
|
|
|
if (Bits1 != Bits2)
|
|
return false;
|
|
}
|
|
|
|
if (Field1->hasAttr<clang::NoUniqueAddressAttr>() ||
|
|
Field2->hasAttr<clang::NoUniqueAddressAttr>())
|
|
return false;
|
|
|
|
if (!AreUnionMembers &&
|
|
Field1->getMaxAlignment() != Field2->getMaxAlignment())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Check if two standard-layout structs are layout-compatible.
|
|
/// (C++11 [class.mem] p17)
|
|
static bool isLayoutCompatibleStruct(const ASTContext &C, const RecordDecl *RD1,
|
|
const RecordDecl *RD2) {
|
|
// Get to the class where the fields are declared
|
|
if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1))
|
|
RD1 = D1CXX->getStandardLayoutBaseWithFields();
|
|
|
|
if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2))
|
|
RD2 = D2CXX->getStandardLayoutBaseWithFields();
|
|
|
|
// Check the fields.
|
|
return llvm::equal(RD1->fields(), RD2->fields(),
|
|
[&C](const FieldDecl *F1, const FieldDecl *F2) -> bool {
|
|
return isLayoutCompatible(C, F1, F2);
|
|
});
|
|
}
|
|
|
|
/// Check if two standard-layout unions are layout-compatible.
|
|
/// (C++11 [class.mem] p18)
|
|
static bool isLayoutCompatibleUnion(const ASTContext &C, const RecordDecl *RD1,
|
|
const RecordDecl *RD2) {
|
|
llvm::SmallPtrSet<const FieldDecl *, 8> UnmatchedFields(llvm::from_range,
|
|
RD2->fields());
|
|
|
|
for (auto *Field1 : RD1->fields()) {
|
|
auto I = UnmatchedFields.begin();
|
|
auto E = UnmatchedFields.end();
|
|
|
|
for ( ; I != E; ++I) {
|
|
if (isLayoutCompatible(C, Field1, *I, /*IsUnionMember=*/true)) {
|
|
bool Result = UnmatchedFields.erase(*I);
|
|
(void) Result;
|
|
assert(Result);
|
|
break;
|
|
}
|
|
}
|
|
if (I == E)
|
|
return false;
|
|
}
|
|
|
|
return UnmatchedFields.empty();
|
|
}
|
|
|
|
static bool isLayoutCompatible(const ASTContext &C, const RecordDecl *RD1,
|
|
const RecordDecl *RD2) {
|
|
if (RD1->isUnion() != RD2->isUnion())
|
|
return false;
|
|
|
|
if (RD1->isUnion())
|
|
return isLayoutCompatibleUnion(C, RD1, RD2);
|
|
else
|
|
return isLayoutCompatibleStruct(C, RD1, RD2);
|
|
}
|
|
|
|
/// Check if two types are layout-compatible in C++11 sense.
|
|
static bool isLayoutCompatible(const ASTContext &C, QualType T1, QualType T2) {
|
|
if (T1.isNull() || T2.isNull())
|
|
return false;
|
|
|
|
// C++20 [basic.types] p11:
|
|
// Two types cv1 T1 and cv2 T2 are layout-compatible types
|
|
// if T1 and T2 are the same type, layout-compatible enumerations (9.7.1),
|
|
// or layout-compatible standard-layout class types (11.4).
|
|
T1 = T1.getCanonicalType().getUnqualifiedType();
|
|
T2 = T2.getCanonicalType().getUnqualifiedType();
|
|
|
|
if (C.hasSameType(T1, T2))
|
|
return true;
|
|
|
|
const Type::TypeClass TC1 = T1->getTypeClass();
|
|
const Type::TypeClass TC2 = T2->getTypeClass();
|
|
|
|
if (TC1 != TC2)
|
|
return false;
|
|
|
|
if (TC1 == Type::Enum) {
|
|
return isLayoutCompatible(C,
|
|
cast<EnumType>(T1)->getDecl(),
|
|
cast<EnumType>(T2)->getDecl());
|
|
} else if (TC1 == Type::Record) {
|
|
if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
|
|
return false;
|
|
|
|
return isLayoutCompatible(C,
|
|
cast<RecordType>(T1)->getDecl(),
|
|
cast<RecordType>(T2)->getDecl());
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool Sema::IsLayoutCompatible(QualType T1, QualType T2) const {
|
|
return isLayoutCompatible(getASTContext(), T1, T2);
|
|
}
|
|
|
|
//===-------------- Pointer interconvertibility ----------------------------//
|
|
|
|
bool Sema::IsPointerInterconvertibleBaseOf(const TypeSourceInfo *Base,
|
|
const TypeSourceInfo *Derived) {
|
|
QualType BaseT = Base->getType()->getCanonicalTypeUnqualified();
|
|
QualType DerivedT = Derived->getType()->getCanonicalTypeUnqualified();
|
|
|
|
if (BaseT->isStructureOrClassType() && DerivedT->isStructureOrClassType() &&
|
|
getASTContext().hasSameType(BaseT, DerivedT))
|
|
return true;
|
|
|
|
if (!IsDerivedFrom(Derived->getTypeLoc().getBeginLoc(), DerivedT, BaseT))
|
|
return false;
|
|
|
|
// Per [basic.compound]/4.3, containing object has to be standard-layout.
|
|
if (DerivedT->getAsCXXRecordDecl()->isStandardLayout())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
//===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
|
|
|
|
/// Given a type tag expression find the type tag itself.
|
|
///
|
|
/// \param TypeExpr Type tag expression, as it appears in user's code.
|
|
///
|
|
/// \param VD Declaration of an identifier that appears in a type tag.
|
|
///
|
|
/// \param MagicValue Type tag magic value.
|
|
///
|
|
/// \param isConstantEvaluated whether the evalaution should be performed in
|
|
|
|
/// constant context.
|
|
static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
|
|
const ValueDecl **VD, uint64_t *MagicValue,
|
|
bool isConstantEvaluated) {
|
|
while(true) {
|
|
if (!TypeExpr)
|
|
return false;
|
|
|
|
TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
|
|
|
|
switch (TypeExpr->getStmtClass()) {
|
|
case Stmt::UnaryOperatorClass: {
|
|
const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
|
|
if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
|
|
TypeExpr = UO->getSubExpr();
|
|
continue;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
case Stmt::DeclRefExprClass: {
|
|
const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
|
|
*VD = DRE->getDecl();
|
|
return true;
|
|
}
|
|
|
|
case Stmt::IntegerLiteralClass: {
|
|
const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
|
|
llvm::APInt MagicValueAPInt = IL->getValue();
|
|
if (MagicValueAPInt.getActiveBits() <= 64) {
|
|
*MagicValue = MagicValueAPInt.getZExtValue();
|
|
return true;
|
|
} else
|
|
return false;
|
|
}
|
|
|
|
case Stmt::BinaryConditionalOperatorClass:
|
|
case Stmt::ConditionalOperatorClass: {
|
|
const AbstractConditionalOperator *ACO =
|
|
cast<AbstractConditionalOperator>(TypeExpr);
|
|
bool Result;
|
|
if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx,
|
|
isConstantEvaluated)) {
|
|
if (Result)
|
|
TypeExpr = ACO->getTrueExpr();
|
|
else
|
|
TypeExpr = ACO->getFalseExpr();
|
|
continue;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
case Stmt::BinaryOperatorClass: {
|
|
const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
|
|
if (BO->getOpcode() == BO_Comma) {
|
|
TypeExpr = BO->getRHS();
|
|
continue;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Retrieve the C type corresponding to type tag TypeExpr.
|
|
///
|
|
/// \param TypeExpr Expression that specifies a type tag.
|
|
///
|
|
/// \param MagicValues Registered magic values.
|
|
///
|
|
/// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
|
|
/// kind.
|
|
///
|
|
/// \param TypeInfo Information about the corresponding C type.
|
|
///
|
|
/// \param isConstantEvaluated whether the evalaution should be performed in
|
|
/// constant context.
|
|
///
|
|
/// \returns true if the corresponding C type was found.
|
|
static bool GetMatchingCType(
|
|
const IdentifierInfo *ArgumentKind, const Expr *TypeExpr,
|
|
const ASTContext &Ctx,
|
|
const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData>
|
|
*MagicValues,
|
|
bool &FoundWrongKind, Sema::TypeTagData &TypeInfo,
|
|
bool isConstantEvaluated) {
|
|
FoundWrongKind = false;
|
|
|
|
// Variable declaration that has type_tag_for_datatype attribute.
|
|
const ValueDecl *VD = nullptr;
|
|
|
|
uint64_t MagicValue;
|
|
|
|
if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated))
|
|
return false;
|
|
|
|
if (VD) {
|
|
if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
|
|
if (I->getArgumentKind() != ArgumentKind) {
|
|
FoundWrongKind = true;
|
|
return false;
|
|
}
|
|
TypeInfo.Type = I->getMatchingCType();
|
|
TypeInfo.LayoutCompatible = I->getLayoutCompatible();
|
|
TypeInfo.MustBeNull = I->getMustBeNull();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (!MagicValues)
|
|
return false;
|
|
|
|
llvm::DenseMap<Sema::TypeTagMagicValue,
|
|
Sema::TypeTagData>::const_iterator I =
|
|
MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
|
|
if (I == MagicValues->end())
|
|
return false;
|
|
|
|
TypeInfo = I->second;
|
|
return true;
|
|
}
|
|
|
|
void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
|
|
uint64_t MagicValue, QualType Type,
|
|
bool LayoutCompatible,
|
|
bool MustBeNull) {
|
|
if (!TypeTagForDatatypeMagicValues)
|
|
TypeTagForDatatypeMagicValues.reset(
|
|
new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
|
|
|
|
TypeTagMagicValue Magic(ArgumentKind, MagicValue);
|
|
(*TypeTagForDatatypeMagicValues)[Magic] =
|
|
TypeTagData(Type, LayoutCompatible, MustBeNull);
|
|
}
|
|
|
|
static bool IsSameCharType(QualType T1, QualType T2) {
|
|
const BuiltinType *BT1 = T1->getAs<BuiltinType>();
|
|
if (!BT1)
|
|
return false;
|
|
|
|
const BuiltinType *BT2 = T2->getAs<BuiltinType>();
|
|
if (!BT2)
|
|
return false;
|
|
|
|
BuiltinType::Kind T1Kind = BT1->getKind();
|
|
BuiltinType::Kind T2Kind = BT2->getKind();
|
|
|
|
return (T1Kind == BuiltinType::SChar && T2Kind == BuiltinType::Char_S) ||
|
|
(T1Kind == BuiltinType::UChar && T2Kind == BuiltinType::Char_U) ||
|
|
(T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
|
|
(T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
|
|
}
|
|
|
|
void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
|
|
const ArrayRef<const Expr *> ExprArgs,
|
|
SourceLocation CallSiteLoc) {
|
|
const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
|
|
bool IsPointerAttr = Attr->getIsPointer();
|
|
|
|
// Retrieve the argument representing the 'type_tag'.
|
|
unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex();
|
|
if (TypeTagIdxAST >= ExprArgs.size()) {
|
|
Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
|
|
<< 0 << Attr->getTypeTagIdx().getSourceIndex();
|
|
return;
|
|
}
|
|
const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST];
|
|
bool FoundWrongKind;
|
|
TypeTagData TypeInfo;
|
|
if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
|
|
TypeTagForDatatypeMagicValues.get(), FoundWrongKind,
|
|
TypeInfo, isConstantEvaluatedContext())) {
|
|
if (FoundWrongKind)
|
|
Diag(TypeTagExpr->getExprLoc(),
|
|
diag::warn_type_tag_for_datatype_wrong_kind)
|
|
<< TypeTagExpr->getSourceRange();
|
|
return;
|
|
}
|
|
|
|
// Retrieve the argument representing the 'arg_idx'.
|
|
unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex();
|
|
if (ArgumentIdxAST >= ExprArgs.size()) {
|
|
Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
|
|
<< 1 << Attr->getArgumentIdx().getSourceIndex();
|
|
return;
|
|
}
|
|
const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST];
|
|
if (IsPointerAttr) {
|
|
// Skip implicit cast of pointer to `void *' (as a function argument).
|
|
if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
|
|
if (ICE->getType()->isVoidPointerType() &&
|
|
ICE->getCastKind() == CK_BitCast)
|
|
ArgumentExpr = ICE->getSubExpr();
|
|
}
|
|
QualType ArgumentType = ArgumentExpr->getType();
|
|
|
|
// Passing a `void*' pointer shouldn't trigger a warning.
|
|
if (IsPointerAttr && ArgumentType->isVoidPointerType())
|
|
return;
|
|
|
|
if (TypeInfo.MustBeNull) {
|
|
// Type tag with matching void type requires a null pointer.
|
|
if (!ArgumentExpr->isNullPointerConstant(Context,
|
|
Expr::NPC_ValueDependentIsNotNull)) {
|
|
Diag(ArgumentExpr->getExprLoc(),
|
|
diag::warn_type_safety_null_pointer_required)
|
|
<< ArgumentKind->getName()
|
|
<< ArgumentExpr->getSourceRange()
|
|
<< TypeTagExpr->getSourceRange();
|
|
}
|
|
return;
|
|
}
|
|
|
|
QualType RequiredType = TypeInfo.Type;
|
|
if (IsPointerAttr)
|
|
RequiredType = Context.getPointerType(RequiredType);
|
|
|
|
bool mismatch = false;
|
|
if (!TypeInfo.LayoutCompatible) {
|
|
mismatch = !Context.hasSameType(ArgumentType, RequiredType);
|
|
|
|
// C++11 [basic.fundamental] p1:
|
|
// Plain char, signed char, and unsigned char are three distinct types.
|
|
//
|
|
// But we treat plain `char' as equivalent to `signed char' or `unsigned
|
|
// char' depending on the current char signedness mode.
|
|
if (mismatch)
|
|
if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
|
|
RequiredType->getPointeeType())) ||
|
|
(!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
|
|
mismatch = false;
|
|
} else
|
|
if (IsPointerAttr)
|
|
mismatch = !isLayoutCompatible(Context,
|
|
ArgumentType->getPointeeType(),
|
|
RequiredType->getPointeeType());
|
|
else
|
|
mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
|
|
|
|
if (mismatch)
|
|
Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
|
|
<< ArgumentType << ArgumentKind
|
|
<< TypeInfo.LayoutCompatible << RequiredType
|
|
<< ArgumentExpr->getSourceRange()
|
|
<< TypeTagExpr->getSourceRange();
|
|
}
|
|
|
|
void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
|
|
CharUnits Alignment) {
|
|
MisalignedMembers.emplace_back(E, RD, MD, Alignment);
|
|
}
|
|
|
|
void Sema::DiagnoseMisalignedMembers() {
|
|
for (MisalignedMember &m : MisalignedMembers) {
|
|
const NamedDecl *ND = m.RD;
|
|
if (ND->getName().empty()) {
|
|
if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl())
|
|
ND = TD;
|
|
}
|
|
Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member)
|
|
<< m.MD << ND << m.E->getSourceRange();
|
|
}
|
|
MisalignedMembers.clear();
|
|
}
|
|
|
|
void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) {
|
|
E = E->IgnoreParens();
|
|
if (!T->isPointerType() && !T->isIntegerType() && !T->isDependentType())
|
|
return;
|
|
if (isa<UnaryOperator>(E) &&
|
|
cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) {
|
|
auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
|
|
if (isa<MemberExpr>(Op)) {
|
|
auto *MA = llvm::find(MisalignedMembers, MisalignedMember(Op));
|
|
if (MA != MisalignedMembers.end() &&
|
|
(T->isDependentType() || T->isIntegerType() ||
|
|
(T->isPointerType() && (T->getPointeeType()->isIncompleteType() ||
|
|
Context.getTypeAlignInChars(
|
|
T->getPointeeType()) <= MA->Alignment))))
|
|
MisalignedMembers.erase(MA);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Sema::RefersToMemberWithReducedAlignment(
|
|
Expr *E,
|
|
llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
|
|
Action) {
|
|
const auto *ME = dyn_cast<MemberExpr>(E);
|
|
if (!ME)
|
|
return;
|
|
|
|
// No need to check expressions with an __unaligned-qualified type.
|
|
if (E->getType().getQualifiers().hasUnaligned())
|
|
return;
|
|
|
|
// For a chain of MemberExpr like "a.b.c.d" this list
|
|
// will keep FieldDecl's like [d, c, b].
|
|
SmallVector<FieldDecl *, 4> ReverseMemberChain;
|
|
const MemberExpr *TopME = nullptr;
|
|
bool AnyIsPacked = false;
|
|
do {
|
|
QualType BaseType = ME->getBase()->getType();
|
|
if (BaseType->isDependentType())
|
|
return;
|
|
if (ME->isArrow())
|
|
BaseType = BaseType->getPointeeType();
|
|
RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl();
|
|
if (RD->isInvalidDecl())
|
|
return;
|
|
|
|
ValueDecl *MD = ME->getMemberDecl();
|
|
auto *FD = dyn_cast<FieldDecl>(MD);
|
|
// We do not care about non-data members.
|
|
if (!FD || FD->isInvalidDecl())
|
|
return;
|
|
|
|
AnyIsPacked =
|
|
AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>());
|
|
ReverseMemberChain.push_back(FD);
|
|
|
|
TopME = ME;
|
|
ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens());
|
|
} while (ME);
|
|
assert(TopME && "We did not compute a topmost MemberExpr!");
|
|
|
|
// Not the scope of this diagnostic.
|
|
if (!AnyIsPacked)
|
|
return;
|
|
|
|
const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts();
|
|
const auto *DRE = dyn_cast<DeclRefExpr>(TopBase);
|
|
// TODO: The innermost base of the member expression may be too complicated.
|
|
// For now, just disregard these cases. This is left for future
|
|
// improvement.
|
|
if (!DRE && !isa<CXXThisExpr>(TopBase))
|
|
return;
|
|
|
|
// Alignment expected by the whole expression.
|
|
CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType());
|
|
|
|
// No need to do anything else with this case.
|
|
if (ExpectedAlignment.isOne())
|
|
return;
|
|
|
|
// Synthesize offset of the whole access.
|
|
CharUnits Offset;
|
|
for (const FieldDecl *FD : llvm::reverse(ReverseMemberChain))
|
|
Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(FD));
|
|
|
|
// Compute the CompleteObjectAlignment as the alignment of the whole chain.
|
|
CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars(
|
|
ReverseMemberChain.back()->getParent()->getTypeForDecl());
|
|
|
|
// The base expression of the innermost MemberExpr may give
|
|
// stronger guarantees than the class containing the member.
|
|
if (DRE && !TopME->isArrow()) {
|
|
const ValueDecl *VD = DRE->getDecl();
|
|
if (!VD->getType()->isReferenceType())
|
|
CompleteObjectAlignment =
|
|
std::max(CompleteObjectAlignment, Context.getDeclAlign(VD));
|
|
}
|
|
|
|
// Check if the synthesized offset fulfills the alignment.
|
|
if (Offset % ExpectedAlignment != 0 ||
|
|
// It may fulfill the offset it but the effective alignment may still be
|
|
// lower than the expected expression alignment.
|
|
CompleteObjectAlignment < ExpectedAlignment) {
|
|
// If this happens, we want to determine a sensible culprit of this.
|
|
// Intuitively, watching the chain of member expressions from right to
|
|
// left, we start with the required alignment (as required by the field
|
|
// type) but some packed attribute in that chain has reduced the alignment.
|
|
// It may happen that another packed structure increases it again. But if
|
|
// we are here such increase has not been enough. So pointing the first
|
|
// FieldDecl that either is packed or else its RecordDecl is,
|
|
// seems reasonable.
|
|
FieldDecl *FD = nullptr;
|
|
CharUnits Alignment;
|
|
for (FieldDecl *FDI : ReverseMemberChain) {
|
|
if (FDI->hasAttr<PackedAttr>() ||
|
|
FDI->getParent()->hasAttr<PackedAttr>()) {
|
|
FD = FDI;
|
|
Alignment = std::min(
|
|
Context.getTypeAlignInChars(FD->getType()),
|
|
Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl()));
|
|
break;
|
|
}
|
|
}
|
|
assert(FD && "We did not find a packed FieldDecl!");
|
|
Action(E, FD->getParent(), FD, Alignment);
|
|
}
|
|
}
|
|
|
|
void Sema::CheckAddressOfPackedMember(Expr *rhs) {
|
|
using namespace std::placeholders;
|
|
|
|
RefersToMemberWithReducedAlignment(
|
|
rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1,
|
|
_2, _3, _4));
|
|
}
|
|
|
|
// Performs a similar job to Sema::UsualUnaryConversions, but without any
|
|
// implicit promotion of integral/enumeration types.
|
|
static ExprResult BuiltinVectorMathConversions(Sema &S, Expr *E) {
|
|
// First, convert to an r-value.
|
|
ExprResult Res = S.DefaultFunctionArrayLvalueConversion(E);
|
|
if (Res.isInvalid())
|
|
return ExprError();
|
|
|
|
// Promote floating-point types.
|
|
return S.UsualUnaryFPConversions(Res.get());
|
|
}
|
|
|
|
bool Sema::PrepareBuiltinElementwiseMathOneArgCall(
|
|
CallExpr *TheCall, EltwiseBuiltinArgTyRestriction ArgTyRestr) {
|
|
if (checkArgCount(TheCall, 1))
|
|
return true;
|
|
|
|
ExprResult A = BuiltinVectorMathConversions(*this, TheCall->getArg(0));
|
|
if (A.isInvalid())
|
|
return true;
|
|
|
|
TheCall->setArg(0, A.get());
|
|
QualType TyA = A.get()->getType();
|
|
|
|
if (checkMathBuiltinElementType(*this, A.get()->getBeginLoc(), TyA,
|
|
ArgTyRestr, 1))
|
|
return true;
|
|
|
|
TheCall->setType(TyA);
|
|
return false;
|
|
}
|
|
|
|
bool Sema::BuiltinElementwiseMath(CallExpr *TheCall,
|
|
EltwiseBuiltinArgTyRestriction ArgTyRestr) {
|
|
if (auto Res = BuiltinVectorMath(TheCall, ArgTyRestr); Res.has_value()) {
|
|
TheCall->setType(*Res);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Sema::BuiltinVectorToScalarMath(CallExpr *TheCall) {
|
|
std::optional<QualType> Res = BuiltinVectorMath(TheCall);
|
|
if (!Res)
|
|
return true;
|
|
|
|
if (auto *VecTy0 = (*Res)->getAs<VectorType>())
|
|
TheCall->setType(VecTy0->getElementType());
|
|
else
|
|
TheCall->setType(*Res);
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool checkBuiltinVectorMathMixedEnums(Sema &S, Expr *LHS, Expr *RHS,
|
|
SourceLocation Loc) {
|
|
QualType L = LHS->getEnumCoercedType(S.Context),
|
|
R = RHS->getEnumCoercedType(S.Context);
|
|
if (L->isUnscopedEnumerationType() && R->isUnscopedEnumerationType() &&
|
|
!S.Context.hasSameUnqualifiedType(L, R)) {
|
|
return S.Diag(Loc, diag::err_conv_mixed_enum_types)
|
|
<< LHS->getSourceRange() << RHS->getSourceRange()
|
|
<< /*Arithmetic Between*/ 0 << L << R;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
std::optional<QualType>
|
|
Sema::BuiltinVectorMath(CallExpr *TheCall,
|
|
EltwiseBuiltinArgTyRestriction ArgTyRestr) {
|
|
if (checkArgCount(TheCall, 2))
|
|
return std::nullopt;
|
|
|
|
if (checkBuiltinVectorMathMixedEnums(
|
|
*this, TheCall->getArg(0), TheCall->getArg(1), TheCall->getExprLoc()))
|
|
return std::nullopt;
|
|
|
|
Expr *Args[2];
|
|
for (int I = 0; I < 2; ++I) {
|
|
ExprResult Converted =
|
|
BuiltinVectorMathConversions(*this, TheCall->getArg(I));
|
|
if (Converted.isInvalid())
|
|
return std::nullopt;
|
|
Args[I] = Converted.get();
|
|
}
|
|
|
|
SourceLocation LocA = Args[0]->getBeginLoc();
|
|
QualType TyA = Args[0]->getType();
|
|
QualType TyB = Args[1]->getType();
|
|
|
|
if (checkMathBuiltinElementType(*this, LocA, TyA, ArgTyRestr, 1))
|
|
return std::nullopt;
|
|
|
|
if (TyA.getCanonicalType() != TyB.getCanonicalType()) {
|
|
Diag(LocA, diag::err_typecheck_call_different_arg_types) << TyA << TyB;
|
|
return std::nullopt;
|
|
}
|
|
|
|
TheCall->setArg(0, Args[0]);
|
|
TheCall->setArg(1, Args[1]);
|
|
return TyA;
|
|
}
|
|
|
|
bool Sema::BuiltinElementwiseTernaryMath(
|
|
CallExpr *TheCall, EltwiseBuiltinArgTyRestriction ArgTyRestr) {
|
|
if (checkArgCount(TheCall, 3))
|
|
return true;
|
|
|
|
SourceLocation Loc = TheCall->getExprLoc();
|
|
if (checkBuiltinVectorMathMixedEnums(*this, TheCall->getArg(0),
|
|
TheCall->getArg(1), Loc) ||
|
|
checkBuiltinVectorMathMixedEnums(*this, TheCall->getArg(1),
|
|
TheCall->getArg(2), Loc))
|
|
return true;
|
|
|
|
Expr *Args[3];
|
|
for (int I = 0; I < 3; ++I) {
|
|
ExprResult Converted =
|
|
BuiltinVectorMathConversions(*this, TheCall->getArg(I));
|
|
if (Converted.isInvalid())
|
|
return true;
|
|
Args[I] = Converted.get();
|
|
}
|
|
|
|
int ArgOrdinal = 1;
|
|
for (Expr *Arg : Args) {
|
|
if (checkMathBuiltinElementType(*this, Arg->getBeginLoc(), Arg->getType(),
|
|
ArgTyRestr, ArgOrdinal++))
|
|
return true;
|
|
}
|
|
|
|
for (int I = 1; I < 3; ++I) {
|
|
if (Args[0]->getType().getCanonicalType() !=
|
|
Args[I]->getType().getCanonicalType()) {
|
|
return Diag(Args[0]->getBeginLoc(),
|
|
diag::err_typecheck_call_different_arg_types)
|
|
<< Args[0]->getType() << Args[I]->getType();
|
|
}
|
|
|
|
TheCall->setArg(I, Args[I]);
|
|
}
|
|
|
|
TheCall->setType(Args[0]->getType());
|
|
return false;
|
|
}
|
|
|
|
bool Sema::PrepareBuiltinReduceMathOneArgCall(CallExpr *TheCall) {
|
|
if (checkArgCount(TheCall, 1))
|
|
return true;
|
|
|
|
ExprResult A = UsualUnaryConversions(TheCall->getArg(0));
|
|
if (A.isInvalid())
|
|
return true;
|
|
|
|
TheCall->setArg(0, A.get());
|
|
return false;
|
|
}
|
|
|
|
bool Sema::BuiltinNonDeterministicValue(CallExpr *TheCall) {
|
|
if (checkArgCount(TheCall, 1))
|
|
return true;
|
|
|
|
ExprResult Arg = TheCall->getArg(0);
|
|
QualType TyArg = Arg.get()->getType();
|
|
|
|
if (!TyArg->isBuiltinType() && !TyArg->isVectorType())
|
|
return Diag(TheCall->getArg(0)->getBeginLoc(),
|
|
diag::err_builtin_invalid_arg_type)
|
|
<< 1 << /* vector */ 2 << /* integer */ 1 << /* fp */ 1 << TyArg;
|
|
|
|
TheCall->setType(TyArg);
|
|
return false;
|
|
}
|
|
|
|
ExprResult Sema::BuiltinMatrixTranspose(CallExpr *TheCall,
|
|
ExprResult CallResult) {
|
|
if (checkArgCount(TheCall, 1))
|
|
return ExprError();
|
|
|
|
ExprResult MatrixArg = DefaultLvalueConversion(TheCall->getArg(0));
|
|
if (MatrixArg.isInvalid())
|
|
return MatrixArg;
|
|
Expr *Matrix = MatrixArg.get();
|
|
|
|
auto *MType = Matrix->getType()->getAs<ConstantMatrixType>();
|
|
if (!MType) {
|
|
Diag(Matrix->getBeginLoc(), diag::err_builtin_invalid_arg_type)
|
|
<< 1 << /* matrix */ 3 << /* no int */ 0 << /* no fp */ 0
|
|
<< Matrix->getType();
|
|
return ExprError();
|
|
}
|
|
|
|
// Create returned matrix type by swapping rows and columns of the argument
|
|
// matrix type.
|
|
QualType ResultType = Context.getConstantMatrixType(
|
|
MType->getElementType(), MType->getNumColumns(), MType->getNumRows());
|
|
|
|
// Change the return type to the type of the returned matrix.
|
|
TheCall->setType(ResultType);
|
|
|
|
// Update call argument to use the possibly converted matrix argument.
|
|
TheCall->setArg(0, Matrix);
|
|
return CallResult;
|
|
}
|
|
|
|
// Get and verify the matrix dimensions.
|
|
static std::optional<unsigned>
|
|
getAndVerifyMatrixDimension(Expr *Expr, StringRef Name, Sema &S) {
|
|
SourceLocation ErrorPos;
|
|
std::optional<llvm::APSInt> Value =
|
|
Expr->getIntegerConstantExpr(S.Context, &ErrorPos);
|
|
if (!Value) {
|
|
S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_scalar_unsigned_arg)
|
|
<< Name;
|
|
return {};
|
|
}
|
|
uint64_t Dim = Value->getZExtValue();
|
|
if (!ConstantMatrixType::isDimensionValid(Dim)) {
|
|
S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_invalid_dimension)
|
|
<< Name << ConstantMatrixType::getMaxElementsPerDimension();
|
|
return {};
|
|
}
|
|
return Dim;
|
|
}
|
|
|
|
ExprResult Sema::BuiltinMatrixColumnMajorLoad(CallExpr *TheCall,
|
|
ExprResult CallResult) {
|
|
if (!getLangOpts().MatrixTypes) {
|
|
Diag(TheCall->getBeginLoc(), diag::err_builtin_matrix_disabled);
|
|
return ExprError();
|
|
}
|
|
|
|
if (checkArgCount(TheCall, 4))
|
|
return ExprError();
|
|
|
|
unsigned PtrArgIdx = 0;
|
|
Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
|
|
Expr *RowsExpr = TheCall->getArg(1);
|
|
Expr *ColumnsExpr = TheCall->getArg(2);
|
|
Expr *StrideExpr = TheCall->getArg(3);
|
|
|
|
bool ArgError = false;
|
|
|
|
// Check pointer argument.
|
|
{
|
|
ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
|
|
if (PtrConv.isInvalid())
|
|
return PtrConv;
|
|
PtrExpr = PtrConv.get();
|
|
TheCall->setArg(0, PtrExpr);
|
|
if (PtrExpr->isTypeDependent()) {
|
|
TheCall->setType(Context.DependentTy);
|
|
return TheCall;
|
|
}
|
|
}
|
|
|
|
auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
|
|
QualType ElementTy;
|
|
if (!PtrTy) {
|
|
Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
|
|
<< PtrArgIdx + 1 << 0 << /* pointer to element ty */ 5 << /* no fp */ 0
|
|
<< PtrExpr->getType();
|
|
ArgError = true;
|
|
} else {
|
|
ElementTy = PtrTy->getPointeeType().getUnqualifiedType();
|
|
|
|
if (!ConstantMatrixType::isValidElementType(ElementTy)) {
|
|
Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
|
|
<< PtrArgIdx + 1 << 0 << /* pointer to element ty */ 5
|
|
<< /* no fp */ 0 << PtrExpr->getType();
|
|
ArgError = true;
|
|
}
|
|
}
|
|
|
|
// Apply default Lvalue conversions and convert the expression to size_t.
|
|
auto ApplyArgumentConversions = [this](Expr *E) {
|
|
ExprResult Conv = DefaultLvalueConversion(E);
|
|
if (Conv.isInvalid())
|
|
return Conv;
|
|
|
|
return tryConvertExprToType(Conv.get(), Context.getSizeType());
|
|
};
|
|
|
|
// Apply conversion to row and column expressions.
|
|
ExprResult RowsConv = ApplyArgumentConversions(RowsExpr);
|
|
if (!RowsConv.isInvalid()) {
|
|
RowsExpr = RowsConv.get();
|
|
TheCall->setArg(1, RowsExpr);
|
|
} else
|
|
RowsExpr = nullptr;
|
|
|
|
ExprResult ColumnsConv = ApplyArgumentConversions(ColumnsExpr);
|
|
if (!ColumnsConv.isInvalid()) {
|
|
ColumnsExpr = ColumnsConv.get();
|
|
TheCall->setArg(2, ColumnsExpr);
|
|
} else
|
|
ColumnsExpr = nullptr;
|
|
|
|
// If any part of the result matrix type is still pending, just use
|
|
// Context.DependentTy, until all parts are resolved.
|
|
if ((RowsExpr && RowsExpr->isTypeDependent()) ||
|
|
(ColumnsExpr && ColumnsExpr->isTypeDependent())) {
|
|
TheCall->setType(Context.DependentTy);
|
|
return CallResult;
|
|
}
|
|
|
|
// Check row and column dimensions.
|
|
std::optional<unsigned> MaybeRows;
|
|
if (RowsExpr)
|
|
MaybeRows = getAndVerifyMatrixDimension(RowsExpr, "row", *this);
|
|
|
|
std::optional<unsigned> MaybeColumns;
|
|
if (ColumnsExpr)
|
|
MaybeColumns = getAndVerifyMatrixDimension(ColumnsExpr, "column", *this);
|
|
|
|
// Check stride argument.
|
|
ExprResult StrideConv = ApplyArgumentConversions(StrideExpr);
|
|
if (StrideConv.isInvalid())
|
|
return ExprError();
|
|
StrideExpr = StrideConv.get();
|
|
TheCall->setArg(3, StrideExpr);
|
|
|
|
if (MaybeRows) {
|
|
if (std::optional<llvm::APSInt> Value =
|
|
StrideExpr->getIntegerConstantExpr(Context)) {
|
|
uint64_t Stride = Value->getZExtValue();
|
|
if (Stride < *MaybeRows) {
|
|
Diag(StrideExpr->getBeginLoc(),
|
|
diag::err_builtin_matrix_stride_too_small);
|
|
ArgError = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ArgError || !MaybeRows || !MaybeColumns)
|
|
return ExprError();
|
|
|
|
TheCall->setType(
|
|
Context.getConstantMatrixType(ElementTy, *MaybeRows, *MaybeColumns));
|
|
return CallResult;
|
|
}
|
|
|
|
ExprResult Sema::BuiltinMatrixColumnMajorStore(CallExpr *TheCall,
|
|
ExprResult CallResult) {
|
|
if (checkArgCount(TheCall, 3))
|
|
return ExprError();
|
|
|
|
unsigned PtrArgIdx = 1;
|
|
Expr *MatrixExpr = TheCall->getArg(0);
|
|
Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
|
|
Expr *StrideExpr = TheCall->getArg(2);
|
|
|
|
bool ArgError = false;
|
|
|
|
{
|
|
ExprResult MatrixConv = DefaultLvalueConversion(MatrixExpr);
|
|
if (MatrixConv.isInvalid())
|
|
return MatrixConv;
|
|
MatrixExpr = MatrixConv.get();
|
|
TheCall->setArg(0, MatrixExpr);
|
|
}
|
|
if (MatrixExpr->isTypeDependent()) {
|
|
TheCall->setType(Context.DependentTy);
|
|
return TheCall;
|
|
}
|
|
|
|
auto *MatrixTy = MatrixExpr->getType()->getAs<ConstantMatrixType>();
|
|
if (!MatrixTy) {
|
|
Diag(MatrixExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
|
|
<< 1 << /* matrix ty */ 3 << 0 << 0 << MatrixExpr->getType();
|
|
ArgError = true;
|
|
}
|
|
|
|
{
|
|
ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
|
|
if (PtrConv.isInvalid())
|
|
return PtrConv;
|
|
PtrExpr = PtrConv.get();
|
|
TheCall->setArg(1, PtrExpr);
|
|
if (PtrExpr->isTypeDependent()) {
|
|
TheCall->setType(Context.DependentTy);
|
|
return TheCall;
|
|
}
|
|
}
|
|
|
|
// Check pointer argument.
|
|
auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
|
|
if (!PtrTy) {
|
|
Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
|
|
<< PtrArgIdx + 1 << 0 << /* pointer to element ty */ 5 << 0
|
|
<< PtrExpr->getType();
|
|
ArgError = true;
|
|
} else {
|
|
QualType ElementTy = PtrTy->getPointeeType();
|
|
if (ElementTy.isConstQualified()) {
|
|
Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_store_to_const);
|
|
ArgError = true;
|
|
}
|
|
ElementTy = ElementTy.getUnqualifiedType().getCanonicalType();
|
|
if (MatrixTy &&
|
|
!Context.hasSameType(ElementTy, MatrixTy->getElementType())) {
|
|
Diag(PtrExpr->getBeginLoc(),
|
|
diag::err_builtin_matrix_pointer_arg_mismatch)
|
|
<< ElementTy << MatrixTy->getElementType();
|
|
ArgError = true;
|
|
}
|
|
}
|
|
|
|
// Apply default Lvalue conversions and convert the stride expression to
|
|
// size_t.
|
|
{
|
|
ExprResult StrideConv = DefaultLvalueConversion(StrideExpr);
|
|
if (StrideConv.isInvalid())
|
|
return StrideConv;
|
|
|
|
StrideConv = tryConvertExprToType(StrideConv.get(), Context.getSizeType());
|
|
if (StrideConv.isInvalid())
|
|
return StrideConv;
|
|
StrideExpr = StrideConv.get();
|
|
TheCall->setArg(2, StrideExpr);
|
|
}
|
|
|
|
// Check stride argument.
|
|
if (MatrixTy) {
|
|
if (std::optional<llvm::APSInt> Value =
|
|
StrideExpr->getIntegerConstantExpr(Context)) {
|
|
uint64_t Stride = Value->getZExtValue();
|
|
if (Stride < MatrixTy->getNumRows()) {
|
|
Diag(StrideExpr->getBeginLoc(),
|
|
diag::err_builtin_matrix_stride_too_small);
|
|
ArgError = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ArgError)
|
|
return ExprError();
|
|
|
|
return CallResult;
|
|
}
|
|
|
|
void Sema::CheckTCBEnforcement(const SourceLocation CallExprLoc,
|
|
const NamedDecl *Callee) {
|
|
// This warning does not make sense in code that has no runtime behavior.
|
|
if (isUnevaluatedContext())
|
|
return;
|
|
|
|
const NamedDecl *Caller = getCurFunctionOrMethodDecl();
|
|
|
|
if (!Caller || !Caller->hasAttr<EnforceTCBAttr>())
|
|
return;
|
|
|
|
// Search through the enforce_tcb and enforce_tcb_leaf attributes to find
|
|
// all TCBs the callee is a part of.
|
|
llvm::StringSet<> CalleeTCBs;
|
|
for (const auto *A : Callee->specific_attrs<EnforceTCBAttr>())
|
|
CalleeTCBs.insert(A->getTCBName());
|
|
for (const auto *A : Callee->specific_attrs<EnforceTCBLeafAttr>())
|
|
CalleeTCBs.insert(A->getTCBName());
|
|
|
|
// Go through the TCBs the caller is a part of and emit warnings if Caller
|
|
// is in a TCB that the Callee is not.
|
|
for (const auto *A : Caller->specific_attrs<EnforceTCBAttr>()) {
|
|
StringRef CallerTCB = A->getTCBName();
|
|
if (CalleeTCBs.count(CallerTCB) == 0) {
|
|
this->Diag(CallExprLoc, diag::warn_tcb_enforcement_violation)
|
|
<< Callee << CallerTCB;
|
|
}
|
|
}
|
|
}
|