llvm-project/clang/lib/Sema/SemaSYCL.cpp
Kazu Hirata eaaac05058 [Sema] Fix a warning
This patch fixes:

  clang/lib/Sema/SemaSYCL.cpp:428:25: error: unused variable 'SKI'
  [-Werror,-Wunused-variable]
2025-01-22 17:19:17 -08:00

458 lines
17 KiB
C++

//===- SemaSYCL.cpp - Semantic Analysis for SYCL constructs ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This implements Semantic Analysis for SYCL constructs.
//===----------------------------------------------------------------------===//
#include "clang/Sema/SemaSYCL.h"
#include "TreeTransform.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/SYCLKernelInfo.h"
#include "clang/AST/StmtSYCL.h"
#include "clang/AST/TypeOrdering.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Sema/Attr.h"
#include "clang/Sema/ParsedAttr.h"
#include "clang/Sema/Sema.h"
using namespace clang;
// -----------------------------------------------------------------------------
// SYCL device specific diagnostics implementation
// -----------------------------------------------------------------------------
SemaSYCL::SemaSYCL(Sema &S) : SemaBase(S) {}
Sema::SemaDiagnosticBuilder SemaSYCL::DiagIfDeviceCode(SourceLocation Loc,
unsigned DiagID) {
assert(getLangOpts().SYCLIsDevice &&
"Should only be called during SYCL compilation");
FunctionDecl *FD = dyn_cast<FunctionDecl>(SemaRef.getCurLexicalContext());
SemaDiagnosticBuilder::Kind DiagKind = [this, FD] {
if (!FD)
return SemaDiagnosticBuilder::K_Nop;
if (SemaRef.getEmissionStatus(FD) == Sema::FunctionEmissionStatus::Emitted)
return SemaDiagnosticBuilder::K_ImmediateWithCallStack;
return SemaDiagnosticBuilder::K_Deferred;
}();
return SemaDiagnosticBuilder(DiagKind, Loc, DiagID, FD, SemaRef);
}
static bool isZeroSizedArray(SemaSYCL &S, QualType Ty) {
if (const auto *CAT = S.getASTContext().getAsConstantArrayType(Ty))
return CAT->isZeroSize();
return false;
}
void SemaSYCL::deepTypeCheckForDevice(SourceLocation UsedAt,
llvm::DenseSet<QualType> Visited,
ValueDecl *DeclToCheck) {
assert(getLangOpts().SYCLIsDevice &&
"Should only be called during SYCL compilation");
// Emit notes only for the first discovered declaration of unsupported type
// to avoid mess of notes. This flag is to track that error already happened.
bool NeedToEmitNotes = true;
auto Check = [&](QualType TypeToCheck, const ValueDecl *D) {
bool ErrorFound = false;
if (isZeroSizedArray(*this, TypeToCheck)) {
DiagIfDeviceCode(UsedAt, diag::err_typecheck_zero_array_size) << 1;
ErrorFound = true;
}
// Checks for other types can also be done here.
if (ErrorFound) {
if (NeedToEmitNotes) {
if (auto *FD = dyn_cast<FieldDecl>(D))
DiagIfDeviceCode(FD->getLocation(),
diag::note_illegal_field_declared_here)
<< FD->getType()->isPointerType() << FD->getType();
else
DiagIfDeviceCode(D->getLocation(), diag::note_declared_at);
}
}
return ErrorFound;
};
// In case we have a Record used do the DFS for a bad field.
SmallVector<const ValueDecl *, 4> StackForRecursion;
StackForRecursion.push_back(DeclToCheck);
// While doing DFS save how we get there to emit a nice set of notes.
SmallVector<const FieldDecl *, 4> History;
History.push_back(nullptr);
do {
const ValueDecl *Next = StackForRecursion.pop_back_val();
if (!Next) {
assert(!History.empty());
// Found a marker, we have gone up a level.
History.pop_back();
continue;
}
QualType NextTy = Next->getType();
if (!Visited.insert(NextTy).second)
continue;
auto EmitHistory = [&]() {
// The first element is always nullptr.
for (uint64_t Index = 1; Index < History.size(); ++Index) {
DiagIfDeviceCode(History[Index]->getLocation(),
diag::note_within_field_of_type)
<< History[Index]->getType();
}
};
if (Check(NextTy, Next)) {
if (NeedToEmitNotes)
EmitHistory();
NeedToEmitNotes = false;
}
// In case pointer/array/reference type is met get pointee type, then
// proceed with that type.
while (NextTy->isAnyPointerType() || NextTy->isArrayType() ||
NextTy->isReferenceType()) {
if (NextTy->isArrayType())
NextTy = QualType{NextTy->getArrayElementTypeNoTypeQual(), 0};
else
NextTy = NextTy->getPointeeType();
if (Check(NextTy, Next)) {
if (NeedToEmitNotes)
EmitHistory();
NeedToEmitNotes = false;
}
}
if (const auto *RecDecl = NextTy->getAsRecordDecl()) {
if (auto *NextFD = dyn_cast<FieldDecl>(Next))
History.push_back(NextFD);
// When nullptr is discovered, this means we've gone back up a level, so
// the history should be cleaned.
StackForRecursion.push_back(nullptr);
llvm::copy(RecDecl->fields(), std::back_inserter(StackForRecursion));
}
} while (!StackForRecursion.empty());
}
ExprResult SemaSYCL::BuildUniqueStableNameExpr(SourceLocation OpLoc,
SourceLocation LParen,
SourceLocation RParen,
TypeSourceInfo *TSI) {
return SYCLUniqueStableNameExpr::Create(getASTContext(), OpLoc, LParen,
RParen, TSI);
}
ExprResult SemaSYCL::ActOnUniqueStableNameExpr(SourceLocation OpLoc,
SourceLocation LParen,
SourceLocation RParen,
ParsedType ParsedTy) {
TypeSourceInfo *TSI = nullptr;
QualType Ty = SemaRef.GetTypeFromParser(ParsedTy, &TSI);
if (Ty.isNull())
return ExprError();
if (!TSI)
TSI = getASTContext().getTrivialTypeSourceInfo(Ty, LParen);
return BuildUniqueStableNameExpr(OpLoc, LParen, RParen, TSI);
}
void SemaSYCL::handleKernelAttr(Decl *D, const ParsedAttr &AL) {
// The 'sycl_kernel' attribute applies only to function templates.
const auto *FD = cast<FunctionDecl>(D);
const FunctionTemplateDecl *FT = FD->getDescribedFunctionTemplate();
assert(FT && "Function template is expected");
// Function template must have at least two template parameters.
const TemplateParameterList *TL = FT->getTemplateParameters();
if (TL->size() < 2) {
Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_template_params);
return;
}
// Template parameters must be typenames.
for (unsigned I = 0; I < 2; ++I) {
const NamedDecl *TParam = TL->getParam(I);
if (isa<NonTypeTemplateParmDecl>(TParam)) {
Diag(FT->getLocation(),
diag::warn_sycl_kernel_invalid_template_param_type);
return;
}
}
// Function must have at least one argument.
if (getFunctionOrMethodNumParams(D) != 1) {
Diag(FT->getLocation(), diag::warn_sycl_kernel_num_of_function_params);
return;
}
// Function must return void.
QualType RetTy = getFunctionOrMethodResultType(D);
if (!RetTy->isVoidType()) {
Diag(FT->getLocation(), diag::warn_sycl_kernel_return_type);
return;
}
handleSimpleAttribute<SYCLKernelAttr>(*this, D, AL);
}
void SemaSYCL::handleKernelEntryPointAttr(Decl *D, const ParsedAttr &AL) {
ParsedType PT = AL.getTypeArg();
TypeSourceInfo *TSI = nullptr;
(void)SemaRef.GetTypeFromParser(PT, &TSI);
assert(TSI && "no type source info for attribute argument");
D->addAttr(::new (SemaRef.Context)
SYCLKernelEntryPointAttr(SemaRef.Context, AL, TSI));
}
// Given a potentially qualified type, SourceLocationForUserDeclaredType()
// returns the source location of the canonical declaration of the unqualified
// desugared user declared type, if any. For non-user declared types, an
// invalid source location is returned. The intended usage of this function
// is to identify an appropriate source location, if any, for a
// "entity declared here" diagnostic note.
static SourceLocation SourceLocationForUserDeclaredType(QualType QT) {
SourceLocation Loc;
const Type *T = QT->getUnqualifiedDesugaredType();
if (const TagType *TT = dyn_cast<TagType>(T))
Loc = TT->getDecl()->getLocation();
else if (const ObjCInterfaceType *ObjCIT = dyn_cast<ObjCInterfaceType>(T))
Loc = ObjCIT->getDecl()->getLocation();
return Loc;
}
static bool CheckSYCLKernelName(Sema &S, SourceLocation Loc,
QualType KernelName) {
assert(!KernelName->isDependentType());
if (!KernelName->isStructureOrClassType()) {
// SYCL 2020 section 5.2, "Naming of kernels", only requires that the
// kernel name be a C++ typename. However, the definition of "kernel name"
// in the glossary states that a kernel name is a class type. Neither
// section explicitly states whether the kernel name type can be
// cv-qualified. For now, kernel name types are required to be class types
// and that they may be cv-qualified. The following issue requests
// clarification from the SYCL WG.
// https://github.com/KhronosGroup/SYCL-Docs/issues/568
S.Diag(Loc, diag::warn_sycl_kernel_name_not_a_class_type) << KernelName;
SourceLocation DeclTypeLoc = SourceLocationForUserDeclaredType(KernelName);
if (DeclTypeLoc.isValid())
S.Diag(DeclTypeLoc, diag::note_entity_declared_at) << KernelName;
return true;
}
return false;
}
void SemaSYCL::CheckSYCLEntryPointFunctionDecl(FunctionDecl *FD) {
// Ensure that all attributes present on the declaration are consistent
// and warn about any redundant ones.
SYCLKernelEntryPointAttr *SKEPAttr = nullptr;
for (auto *SAI : FD->specific_attrs<SYCLKernelEntryPointAttr>()) {
if (!SKEPAttr) {
SKEPAttr = SAI;
continue;
}
if (!getASTContext().hasSameType(SAI->getKernelName(),
SKEPAttr->getKernelName())) {
Diag(SAI->getLocation(), diag::err_sycl_entry_point_invalid_redeclaration)
<< SAI->getKernelName() << SKEPAttr->getKernelName();
Diag(SKEPAttr->getLocation(), diag::note_previous_attribute);
SAI->setInvalidAttr();
} else {
Diag(SAI->getLocation(),
diag::warn_sycl_entry_point_redundant_declaration);
Diag(SKEPAttr->getLocation(), diag::note_previous_attribute);
}
}
assert(SKEPAttr && "Missing sycl_kernel_entry_point attribute");
// Ensure the kernel name type is valid.
if (!SKEPAttr->getKernelName()->isDependentType() &&
CheckSYCLKernelName(SemaRef, SKEPAttr->getLocation(),
SKEPAttr->getKernelName()))
SKEPAttr->setInvalidAttr();
// Ensure that an attribute present on the previous declaration
// matches the one on this declaration.
FunctionDecl *PrevFD = FD->getPreviousDecl();
if (PrevFD && !PrevFD->isInvalidDecl()) {
const auto *PrevSKEPAttr = PrevFD->getAttr<SYCLKernelEntryPointAttr>();
if (PrevSKEPAttr && !PrevSKEPAttr->isInvalidAttr()) {
if (!getASTContext().hasSameType(SKEPAttr->getKernelName(),
PrevSKEPAttr->getKernelName())) {
Diag(SKEPAttr->getLocation(),
diag::err_sycl_entry_point_invalid_redeclaration)
<< SKEPAttr->getKernelName() << PrevSKEPAttr->getKernelName();
Diag(PrevSKEPAttr->getLocation(), diag::note_previous_decl) << PrevFD;
SKEPAttr->setInvalidAttr();
}
}
}
if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
if (!MD->isStatic()) {
Diag(SKEPAttr->getLocation(), diag::err_sycl_entry_point_invalid)
<< /*non-static member function*/ 0;
SKEPAttr->setInvalidAttr();
}
}
if (FD->isVariadic()) {
Diag(SKEPAttr->getLocation(), diag::err_sycl_entry_point_invalid)
<< /*variadic function*/ 1;
SKEPAttr->setInvalidAttr();
}
if (FD->isDefaulted()) {
Diag(SKEPAttr->getLocation(), diag::err_sycl_entry_point_invalid)
<< /*defaulted function*/ 3;
SKEPAttr->setInvalidAttr();
} else if (FD->isDeleted()) {
Diag(SKEPAttr->getLocation(), diag::err_sycl_entry_point_invalid)
<< /*deleted function*/ 2;
SKEPAttr->setInvalidAttr();
}
if (FD->isConsteval()) {
Diag(SKEPAttr->getLocation(), diag::err_sycl_entry_point_invalid)
<< /*consteval function*/ 5;
SKEPAttr->setInvalidAttr();
} else if (FD->isConstexpr()) {
Diag(SKEPAttr->getLocation(), diag::err_sycl_entry_point_invalid)
<< /*constexpr function*/ 4;
SKEPAttr->setInvalidAttr();
}
if (FD->isNoReturn()) {
Diag(SKEPAttr->getLocation(), diag::err_sycl_entry_point_invalid)
<< /*function declared with the 'noreturn' attribute*/ 6;
SKEPAttr->setInvalidAttr();
}
if (FD->getReturnType()->isUndeducedType()) {
Diag(SKEPAttr->getLocation(),
diag::err_sycl_entry_point_deduced_return_type);
SKEPAttr->setInvalidAttr();
} else if (!FD->getReturnType()->isDependentType() &&
!FD->getReturnType()->isVoidType()) {
Diag(SKEPAttr->getLocation(), diag::err_sycl_entry_point_return_type);
SKEPAttr->setInvalidAttr();
}
if (!FD->isInvalidDecl() && !FD->isTemplated() &&
!SKEPAttr->isInvalidAttr()) {
const SYCLKernelInfo *SKI =
getASTContext().findSYCLKernelInfo(SKEPAttr->getKernelName());
if (SKI) {
if (!declaresSameEntity(FD, SKI->getKernelEntryPointDecl())) {
// FIXME: This diagnostic should include the origin of the kernel
// FIXME: names; not just the locations of the conflicting declarations.
Diag(FD->getLocation(), diag::err_sycl_kernel_name_conflict);
Diag(SKI->getKernelEntryPointDecl()->getLocation(),
diag::note_previous_declaration);
SKEPAttr->setInvalidAttr();
}
} else {
getASTContext().registerSYCLEntryPointFunction(FD);
}
}
}
namespace {
// The body of a function declared with the [[sycl_kernel_entry_point]]
// attribute is cloned and transformed to substitute references to the original
// function parameters with references to replacement variables that stand in
// for SYCL kernel parameters or local variables that reconstitute a decomposed
// SYCL kernel argument.
class OutlinedFunctionDeclBodyInstantiator
: public TreeTransform<OutlinedFunctionDeclBodyInstantiator> {
public:
using ParmDeclMap = llvm::DenseMap<ParmVarDecl *, VarDecl *>;
OutlinedFunctionDeclBodyInstantiator(Sema &S, ParmDeclMap &M)
: TreeTransform<OutlinedFunctionDeclBodyInstantiator>(S), SemaRef(S),
MapRef(M) {}
// A new set of AST nodes is always required.
bool AlwaysRebuild() { return true; }
// Transform ParmVarDecl references to the supplied replacement variables.
ExprResult TransformDeclRefExpr(DeclRefExpr *DRE) {
const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl());
if (PVD) {
ParmDeclMap::iterator I = MapRef.find(PVD);
if (I != MapRef.end()) {
VarDecl *VD = I->second;
assert(SemaRef.getASTContext().hasSameUnqualifiedType(PVD->getType(),
VD->getType()));
assert(!VD->getType().isMoreQualifiedThan(PVD->getType(),
SemaRef.getASTContext()));
VD->setIsUsed();
return DeclRefExpr::Create(
SemaRef.getASTContext(), DRE->getQualifierLoc(),
DRE->getTemplateKeywordLoc(), VD, false, DRE->getNameInfo(),
DRE->getType(), DRE->getValueKind());
}
}
return DRE;
}
private:
Sema &SemaRef;
ParmDeclMap &MapRef;
};
} // unnamed namespace
StmtResult SemaSYCL::BuildSYCLKernelCallStmt(FunctionDecl *FD,
CompoundStmt *Body) {
assert(!FD->isInvalidDecl());
assert(!FD->isTemplated());
assert(FD->hasPrototype());
const auto *SKEPAttr = FD->getAttr<SYCLKernelEntryPointAttr>();
assert(SKEPAttr && "Missing sycl_kernel_entry_point attribute");
assert(!SKEPAttr->isInvalidAttr() &&
"sycl_kernel_entry_point attribute is invalid");
// Ensure that the kernel name was previously registered and that the
// stored declaration matches.
const SYCLKernelInfo &SKI =
getASTContext().getSYCLKernelInfo(SKEPAttr->getKernelName());
assert(declaresSameEntity(SKI.getKernelEntryPointDecl(), FD) &&
"SYCL kernel name conflict");
(void)SKI;
using ParmDeclMap = OutlinedFunctionDeclBodyInstantiator::ParmDeclMap;
ParmDeclMap ParmMap;
assert(SemaRef.CurContext == FD);
OutlinedFunctionDecl *OFD =
OutlinedFunctionDecl::Create(getASTContext(), FD, FD->getNumParams());
unsigned i = 0;
for (ParmVarDecl *PVD : FD->parameters()) {
ImplicitParamDecl *IPD = ImplicitParamDecl::Create(
getASTContext(), OFD, SourceLocation(), PVD->getIdentifier(),
PVD->getType(), ImplicitParamKind::Other);
OFD->setParam(i, IPD);
ParmMap[PVD] = IPD;
++i;
}
OutlinedFunctionDeclBodyInstantiator OFDBodyInstantiator(SemaRef, ParmMap);
Stmt *OFDBody = OFDBodyInstantiator.TransformStmt(Body).get();
OFD->setBody(OFDBody);
OFD->setNothrow();
Stmt *NewBody = new (getASTContext()) SYCLKernelCallStmt(Body, OFD);
return NewBody;
}