llvm-project/clang/lib/Parse/ParseOpenACC.cpp
erichkeane 1b75b9e665 [OpenACC] Handle sema for gang, worker, vector, seq clauses on routine
These 4 clauses are mutually exclusive, AND require at least one of
them. Additionally, gang has some additional restrictions in that only
the 'dim' specifier is permitted. This patch implements all of this, and
ends up refactoring the handling of each of these clauses for
readabililty.
2025-03-06 11:53:46 -08:00

1581 lines
57 KiB
C++

//===--- ParseOpenACC.cpp - OpenACC-specific parsing support --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the parsing logic for OpenACC language features.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/OpenACCClause.h"
#include "clang/Basic/DiagnosticParse.h"
#include "clang/Basic/OpenACCKinds.h"
#include "clang/Parse/Parser.h"
#include "clang/Parse/RAIIObjectsForParser.h"
#include "clang/Sema/SemaOpenACC.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
using namespace clang;
using namespace llvm;
namespace {
// An enum that contains the extended 'partial' parsed variants. This type
// should never escape the initial parse functionality, but is useful for
// simplifying the implementation.
enum class OpenACCDirectiveKindEx {
Invalid = static_cast<int>(OpenACCDirectiveKind::Invalid),
// 'enter data' and 'exit data'
Enter,
Exit,
};
// Translate single-token string representations to the OpenACC Directive Kind.
// This doesn't completely comprehend 'Compound Constructs' (as it just
// identifies the first token), and doesn't fully handle 'enter data', 'exit
// data', nor any of the 'atomic' variants, just the first token of each. So
// this should only be used by `ParseOpenACCDirectiveKind`.
OpenACCDirectiveKindEx getOpenACCDirectiveKind(Token Tok) {
if (!Tok.is(tok::identifier))
return OpenACCDirectiveKindEx::Invalid;
OpenACCDirectiveKind DirKind =
llvm::StringSwitch<OpenACCDirectiveKind>(
Tok.getIdentifierInfo()->getName())
.Case("parallel", OpenACCDirectiveKind::Parallel)
.Case("serial", OpenACCDirectiveKind::Serial)
.Case("kernels", OpenACCDirectiveKind::Kernels)
.Case("data", OpenACCDirectiveKind::Data)
.Case("host_data", OpenACCDirectiveKind::HostData)
.Case("loop", OpenACCDirectiveKind::Loop)
.Case("cache", OpenACCDirectiveKind::Cache)
.Case("atomic", OpenACCDirectiveKind::Atomic)
.Case("routine", OpenACCDirectiveKind::Routine)
.Case("declare", OpenACCDirectiveKind::Declare)
.Case("init", OpenACCDirectiveKind::Init)
.Case("shutdown", OpenACCDirectiveKind::Shutdown)
.Case("set", OpenACCDirectiveKind::Set)
.Case("update", OpenACCDirectiveKind::Update)
.Case("wait", OpenACCDirectiveKind::Wait)
.Default(OpenACCDirectiveKind::Invalid);
if (DirKind != OpenACCDirectiveKind::Invalid)
return static_cast<OpenACCDirectiveKindEx>(DirKind);
return llvm::StringSwitch<OpenACCDirectiveKindEx>(
Tok.getIdentifierInfo()->getName())
.Case("enter", OpenACCDirectiveKindEx::Enter)
.Case("exit", OpenACCDirectiveKindEx::Exit)
.Default(OpenACCDirectiveKindEx::Invalid);
}
// Translate single-token string representations to the OpenCC Clause Kind.
OpenACCClauseKind getOpenACCClauseKind(Token Tok) {
// auto is a keyword in some language modes, so make sure we parse it
// correctly.
if (Tok.is(tok::kw_auto))
return OpenACCClauseKind::Auto;
// default is a keyword, so make sure we parse it correctly.
if (Tok.is(tok::kw_default))
return OpenACCClauseKind::Default;
// if is also a keyword, make sure we parse it correctly.
if (Tok.is(tok::kw_if))
return OpenACCClauseKind::If;
// 'private' is also a keyword, make sure we parse it correctly.
if (Tok.is(tok::kw_private))
return OpenACCClauseKind::Private;
// 'delete' is a keyword, make sure we parse it correctly.
if (Tok.is(tok::kw_delete))
return OpenACCClauseKind::Delete;
if (!Tok.is(tok::identifier))
return OpenACCClauseKind::Invalid;
return llvm::StringSwitch<OpenACCClauseKind>(
Tok.getIdentifierInfo()->getName())
.Case("async", OpenACCClauseKind::Async)
.Case("attach", OpenACCClauseKind::Attach)
.Case("auto", OpenACCClauseKind::Auto)
.Case("bind", OpenACCClauseKind::Bind)
.Case("create", OpenACCClauseKind::Create)
.Case("pcreate", OpenACCClauseKind::PCreate)
.Case("present_or_create", OpenACCClauseKind::PresentOrCreate)
.Case("collapse", OpenACCClauseKind::Collapse)
.Case("copy", OpenACCClauseKind::Copy)
.Case("pcopy", OpenACCClauseKind::PCopy)
.Case("present_or_copy", OpenACCClauseKind::PresentOrCopy)
.Case("copyin", OpenACCClauseKind::CopyIn)
.Case("pcopyin", OpenACCClauseKind::PCopyIn)
.Case("present_or_copyin", OpenACCClauseKind::PresentOrCopyIn)
.Case("copyout", OpenACCClauseKind::CopyOut)
.Case("pcopyout", OpenACCClauseKind::PCopyOut)
.Case("present_or_copyout", OpenACCClauseKind::PresentOrCopyOut)
.Case("default", OpenACCClauseKind::Default)
.Case("default_async", OpenACCClauseKind::DefaultAsync)
.Case("delete", OpenACCClauseKind::Delete)
.Case("detach", OpenACCClauseKind::Detach)
.Case("device", OpenACCClauseKind::Device)
.Case("device_num", OpenACCClauseKind::DeviceNum)
.Case("device_resident", OpenACCClauseKind::DeviceResident)
.Case("device_type", OpenACCClauseKind::DeviceType)
.Case("deviceptr", OpenACCClauseKind::DevicePtr)
.Case("dtype", OpenACCClauseKind::DType)
.Case("finalize", OpenACCClauseKind::Finalize)
.Case("firstprivate", OpenACCClauseKind::FirstPrivate)
.Case("gang", OpenACCClauseKind::Gang)
.Case("host", OpenACCClauseKind::Host)
.Case("if", OpenACCClauseKind::If)
.Case("if_present", OpenACCClauseKind::IfPresent)
.Case("independent", OpenACCClauseKind::Independent)
.Case("link", OpenACCClauseKind::Link)
.Case("no_create", OpenACCClauseKind::NoCreate)
.Case("num_gangs", OpenACCClauseKind::NumGangs)
.Case("num_workers", OpenACCClauseKind::NumWorkers)
.Case("nohost", OpenACCClauseKind::NoHost)
.Case("present", OpenACCClauseKind::Present)
.Case("private", OpenACCClauseKind::Private)
.Case("reduction", OpenACCClauseKind::Reduction)
.Case("self", OpenACCClauseKind::Self)
.Case("seq", OpenACCClauseKind::Seq)
.Case("tile", OpenACCClauseKind::Tile)
.Case("use_device", OpenACCClauseKind::UseDevice)
.Case("vector", OpenACCClauseKind::Vector)
.Case("vector_length", OpenACCClauseKind::VectorLength)
.Case("wait", OpenACCClauseKind::Wait)
.Case("worker", OpenACCClauseKind::Worker)
.Default(OpenACCClauseKind::Invalid);
}
// Since 'atomic' is effectively a compound directive, this will decode the
// second part of the directive.
OpenACCAtomicKind getOpenACCAtomicKind(Token Tok) {
if (!Tok.is(tok::identifier))
return OpenACCAtomicKind::None;
return llvm::StringSwitch<OpenACCAtomicKind>(
Tok.getIdentifierInfo()->getName())
.Case("read", OpenACCAtomicKind::Read)
.Case("write", OpenACCAtomicKind::Write)
.Case("update", OpenACCAtomicKind::Update)
.Case("capture", OpenACCAtomicKind::Capture)
.Default(OpenACCAtomicKind::None);
}
OpenACCDefaultClauseKind getOpenACCDefaultClauseKind(Token Tok) {
if (!Tok.is(tok::identifier))
return OpenACCDefaultClauseKind::Invalid;
return llvm::StringSwitch<OpenACCDefaultClauseKind>(
Tok.getIdentifierInfo()->getName())
.Case("none", OpenACCDefaultClauseKind::None)
.Case("present", OpenACCDefaultClauseKind::Present)
.Default(OpenACCDefaultClauseKind::Invalid);
}
enum class OpenACCSpecialTokenKind {
ReadOnly,
DevNum,
Queues,
Zero,
Force,
Num,
Length,
Dim,
Static,
};
bool isOpenACCSpecialToken(OpenACCSpecialTokenKind Kind, Token Tok) {
if (Tok.is(tok::kw_static) && Kind == OpenACCSpecialTokenKind::Static)
return true;
if (!Tok.is(tok::identifier))
return false;
switch (Kind) {
case OpenACCSpecialTokenKind::ReadOnly:
return Tok.getIdentifierInfo()->isStr("readonly");
case OpenACCSpecialTokenKind::DevNum:
return Tok.getIdentifierInfo()->isStr("devnum");
case OpenACCSpecialTokenKind::Queues:
return Tok.getIdentifierInfo()->isStr("queues");
case OpenACCSpecialTokenKind::Zero:
return Tok.getIdentifierInfo()->isStr("zero");
case OpenACCSpecialTokenKind::Force:
return Tok.getIdentifierInfo()->isStr("force");
case OpenACCSpecialTokenKind::Num:
return Tok.getIdentifierInfo()->isStr("num");
case OpenACCSpecialTokenKind::Length:
return Tok.getIdentifierInfo()->isStr("length");
case OpenACCSpecialTokenKind::Dim:
return Tok.getIdentifierInfo()->isStr("dim");
case OpenACCSpecialTokenKind::Static:
return Tok.getIdentifierInfo()->isStr("static");
}
llvm_unreachable("Unknown 'Kind' Passed");
}
/// Used for cases where we have a token we want to check against an
/// 'identifier-like' token, but don't want to give awkward error messages in
/// cases where it is accidentially a keyword.
bool isTokenIdentifierOrKeyword(Parser &P, Token Tok) {
if (Tok.is(tok::identifier))
return true;
if (!Tok.isAnnotation() && Tok.getIdentifierInfo() &&
Tok.getIdentifierInfo()->isKeyword(P.getLangOpts()))
return true;
return false;
}
/// Parses and consumes an identifer followed immediately by a single colon, and
/// diagnoses if it is not the 'special token' kind that we require. Used when
/// the tag is the only valid value.
/// Return 'true' if the special token was matched, false if no special token,
/// or an invalid special token was found.
template <typename DirOrClauseTy>
bool tryParseAndConsumeSpecialTokenKind(Parser &P, OpenACCSpecialTokenKind Kind,
DirOrClauseTy DirOrClause) {
Token IdentTok = P.getCurToken();
// If this is an identifier-like thing followed by ':', it is one of the
// OpenACC 'special' name tags, so consume it.
if (isTokenIdentifierOrKeyword(P, IdentTok) && P.NextToken().is(tok::colon)) {
P.ConsumeToken();
P.ConsumeToken();
if (!isOpenACCSpecialToken(Kind, IdentTok)) {
P.Diag(IdentTok, diag::err_acc_invalid_tag_kind)
<< IdentTok.getIdentifierInfo() << DirOrClause
<< std::is_same_v<DirOrClauseTy, OpenACCClauseKind>;
return false;
}
return true;
}
return false;
}
bool isOpenACCDirectiveKind(OpenACCDirectiveKind Kind, Token Tok) {
if (!Tok.is(tok::identifier))
return false;
switch (Kind) {
case OpenACCDirectiveKind::Parallel:
return Tok.getIdentifierInfo()->isStr("parallel");
case OpenACCDirectiveKind::Serial:
return Tok.getIdentifierInfo()->isStr("serial");
case OpenACCDirectiveKind::Kernels:
return Tok.getIdentifierInfo()->isStr("kernels");
case OpenACCDirectiveKind::Data:
return Tok.getIdentifierInfo()->isStr("data");
case OpenACCDirectiveKind::HostData:
return Tok.getIdentifierInfo()->isStr("host_data");
case OpenACCDirectiveKind::Loop:
return Tok.getIdentifierInfo()->isStr("loop");
case OpenACCDirectiveKind::Cache:
return Tok.getIdentifierInfo()->isStr("cache");
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
case OpenACCDirectiveKind::EnterData:
case OpenACCDirectiveKind::ExitData:
return false;
case OpenACCDirectiveKind::Atomic:
return Tok.getIdentifierInfo()->isStr("atomic");
case OpenACCDirectiveKind::Routine:
return Tok.getIdentifierInfo()->isStr("routine");
case OpenACCDirectiveKind::Declare:
return Tok.getIdentifierInfo()->isStr("declare");
case OpenACCDirectiveKind::Init:
return Tok.getIdentifierInfo()->isStr("init");
case OpenACCDirectiveKind::Shutdown:
return Tok.getIdentifierInfo()->isStr("shutdown");
case OpenACCDirectiveKind::Set:
return Tok.getIdentifierInfo()->isStr("set");
case OpenACCDirectiveKind::Update:
return Tok.getIdentifierInfo()->isStr("update");
case OpenACCDirectiveKind::Wait:
return Tok.getIdentifierInfo()->isStr("wait");
case OpenACCDirectiveKind::Invalid:
return false;
}
llvm_unreachable("Unknown 'Kind' Passed");
}
OpenACCReductionOperator ParseReductionOperator(Parser &P) {
// If there is no colon, treat as if the reduction operator was missing, else
// we probably will not recover from it in the case where an expression starts
// with one of the operator tokens.
if (P.NextToken().isNot(tok::colon)) {
P.Diag(P.getCurToken(), diag::err_acc_expected_reduction_operator);
return OpenACCReductionOperator::Invalid;
}
Token ReductionKindTok = P.getCurToken();
// Consume both the kind and the colon.
P.ConsumeToken();
P.ConsumeToken();
switch (ReductionKindTok.getKind()) {
case tok::plus:
return OpenACCReductionOperator::Addition;
case tok::star:
return OpenACCReductionOperator::Multiplication;
case tok::amp:
return OpenACCReductionOperator::BitwiseAnd;
case tok::pipe:
return OpenACCReductionOperator::BitwiseOr;
case tok::caret:
return OpenACCReductionOperator::BitwiseXOr;
case tok::ampamp:
return OpenACCReductionOperator::And;
case tok::pipepipe:
return OpenACCReductionOperator::Or;
case tok::identifier:
if (ReductionKindTok.getIdentifierInfo()->isStr("max"))
return OpenACCReductionOperator::Max;
if (ReductionKindTok.getIdentifierInfo()->isStr("min"))
return OpenACCReductionOperator::Min;
[[fallthrough]];
default:
P.Diag(ReductionKindTok, diag::err_acc_invalid_reduction_operator);
return OpenACCReductionOperator::Invalid;
}
llvm_unreachable("Reduction op token kind not caught by 'default'?");
}
/// Used for cases where we expect an identifier-like token, but don't want to
/// give awkward error messages in cases where it is accidentially a keyword.
bool expectIdentifierOrKeyword(Parser &P) {
Token Tok = P.getCurToken();
if (isTokenIdentifierOrKeyword(P, Tok))
return false;
P.Diag(P.getCurToken(), diag::err_expected) << tok::identifier;
return true;
}
OpenACCDirectiveKind
ParseOpenACCEnterExitDataDirective(Parser &P, Token FirstTok,
OpenACCDirectiveKindEx ExtDirKind) {
Token SecondTok = P.getCurToken();
if (SecondTok.isAnnotation()) {
P.Diag(FirstTok, diag::err_acc_invalid_directive)
<< 0 << FirstTok.getIdentifierInfo();
return OpenACCDirectiveKind::Invalid;
}
// Consume the second name anyway, this way we can continue on without making
// this oddly look like a clause.
P.ConsumeAnyToken();
if (!isOpenACCDirectiveKind(OpenACCDirectiveKind::Data, SecondTok)) {
if (!SecondTok.is(tok::identifier))
P.Diag(SecondTok, diag::err_expected) << tok::identifier;
else
P.Diag(FirstTok, diag::err_acc_invalid_directive)
<< 1 << FirstTok.getIdentifierInfo()->getName()
<< SecondTok.getIdentifierInfo()->getName();
return OpenACCDirectiveKind::Invalid;
}
return ExtDirKind == OpenACCDirectiveKindEx::Enter
? OpenACCDirectiveKind::EnterData
: OpenACCDirectiveKind::ExitData;
}
OpenACCAtomicKind ParseOpenACCAtomicKind(Parser &P) {
Token AtomicClauseToken = P.getCurToken();
// #pragma acc atomic is equivilent to update:
if (AtomicClauseToken.isAnnotation())
return OpenACCAtomicKind::None;
OpenACCAtomicKind AtomicKind = getOpenACCAtomicKind(AtomicClauseToken);
// If this isn't a valid atomic-kind, don't consume the token, and treat the
// rest as a clause list, which despite there being no permissible clauses,
// will diagnose as a clause.
if (AtomicKind != OpenACCAtomicKind::None)
P.ConsumeToken();
return AtomicKind;
}
// Parse and consume the tokens for OpenACC Directive/Construct kinds.
OpenACCDirectiveKind ParseOpenACCDirectiveKind(Parser &P) {
Token FirstTok = P.getCurToken();
// Just #pragma acc can get us immediately to the end, make sure we don't
// introspect on the spelling before then.
if (FirstTok.isNot(tok::identifier)) {
P.Diag(FirstTok, diag::err_acc_missing_directive);
if (P.getCurToken().isNot(tok::annot_pragma_openacc_end))
P.ConsumeAnyToken();
return OpenACCDirectiveKind::Invalid;
}
P.ConsumeToken();
OpenACCDirectiveKindEx ExDirKind = getOpenACCDirectiveKind(FirstTok);
// OpenACCDirectiveKindEx is meant to be an extended list
// over OpenACCDirectiveKind, so any value below Invalid is one of the
// OpenACCDirectiveKind values. This switch takes care of all of the extra
// parsing required for the Extended values. At the end of this block,
// ExDirKind can be assumed to be a valid OpenACCDirectiveKind, so we can
// immediately cast it and use it as that.
if (ExDirKind >= OpenACCDirectiveKindEx::Invalid) {
switch (ExDirKind) {
case OpenACCDirectiveKindEx::Invalid: {
P.Diag(FirstTok, diag::err_acc_invalid_directive)
<< 0 << FirstTok.getIdentifierInfo();
return OpenACCDirectiveKind::Invalid;
}
case OpenACCDirectiveKindEx::Enter:
case OpenACCDirectiveKindEx::Exit:
return ParseOpenACCEnterExitDataDirective(P, FirstTok, ExDirKind);
}
}
OpenACCDirectiveKind DirKind = static_cast<OpenACCDirectiveKind>(ExDirKind);
// Combined Constructs allows parallel loop, serial loop, or kernels loop. Any
// other attempt at a combined construct will be diagnosed as an invalid
// clause.
Token SecondTok = P.getCurToken();
if (!SecondTok.isAnnotation() &&
isOpenACCDirectiveKind(OpenACCDirectiveKind::Loop, SecondTok)) {
switch (DirKind) {
default:
// Nothing to do except in the below cases, as they should be diagnosed as
// a clause.
break;
case OpenACCDirectiveKind::Parallel:
P.ConsumeToken();
return OpenACCDirectiveKind::ParallelLoop;
case OpenACCDirectiveKind::Serial:
P.ConsumeToken();
return OpenACCDirectiveKind::SerialLoop;
case OpenACCDirectiveKind::Kernels:
P.ConsumeToken();
return OpenACCDirectiveKind::KernelsLoop;
}
}
return DirKind;
}
enum ClauseParensKind {
None,
Optional,
Required
};
ClauseParensKind getClauseParensKind(OpenACCDirectiveKind DirKind,
OpenACCClauseKind Kind) {
switch (Kind) {
case OpenACCClauseKind::Self:
return DirKind == OpenACCDirectiveKind::Update ? ClauseParensKind::Required
: ClauseParensKind::Optional;
case OpenACCClauseKind::Async:
case OpenACCClauseKind::Worker:
case OpenACCClauseKind::Vector:
case OpenACCClauseKind::Gang:
case OpenACCClauseKind::Wait:
return ClauseParensKind::Optional;
case OpenACCClauseKind::Default:
case OpenACCClauseKind::If:
case OpenACCClauseKind::Create:
case OpenACCClauseKind::PCreate:
case OpenACCClauseKind::PresentOrCreate:
case OpenACCClauseKind::Copy:
case OpenACCClauseKind::PCopy:
case OpenACCClauseKind::PresentOrCopy:
case OpenACCClauseKind::CopyIn:
case OpenACCClauseKind::PCopyIn:
case OpenACCClauseKind::PresentOrCopyIn:
case OpenACCClauseKind::CopyOut:
case OpenACCClauseKind::PCopyOut:
case OpenACCClauseKind::PresentOrCopyOut:
case OpenACCClauseKind::UseDevice:
case OpenACCClauseKind::NoCreate:
case OpenACCClauseKind::Present:
case OpenACCClauseKind::DevicePtr:
case OpenACCClauseKind::Attach:
case OpenACCClauseKind::Detach:
case OpenACCClauseKind::Private:
case OpenACCClauseKind::FirstPrivate:
case OpenACCClauseKind::Delete:
case OpenACCClauseKind::DeviceResident:
case OpenACCClauseKind::Device:
case OpenACCClauseKind::Link:
case OpenACCClauseKind::Host:
case OpenACCClauseKind::Reduction:
case OpenACCClauseKind::Collapse:
case OpenACCClauseKind::Bind:
case OpenACCClauseKind::VectorLength:
case OpenACCClauseKind::NumGangs:
case OpenACCClauseKind::NumWorkers:
case OpenACCClauseKind::DeviceNum:
case OpenACCClauseKind::DefaultAsync:
case OpenACCClauseKind::DeviceType:
case OpenACCClauseKind::DType:
case OpenACCClauseKind::Tile:
return ClauseParensKind::Required;
case OpenACCClauseKind::Auto:
case OpenACCClauseKind::Finalize:
case OpenACCClauseKind::IfPresent:
case OpenACCClauseKind::Independent:
case OpenACCClauseKind::Invalid:
case OpenACCClauseKind::NoHost:
case OpenACCClauseKind::Seq:
return ClauseParensKind::None;
}
llvm_unreachable("Unhandled clause kind");
}
bool ClauseHasOptionalParens(OpenACCDirectiveKind DirKind,
OpenACCClauseKind Kind) {
return getClauseParensKind(DirKind, Kind) == ClauseParensKind::Optional;
}
bool ClauseHasRequiredParens(OpenACCDirectiveKind DirKind,
OpenACCClauseKind Kind) {
return getClauseParensKind(DirKind, Kind) == ClauseParensKind::Required;
}
// Skip until we see the end of pragma token, but don't consume it. This is us
// just giving up on the rest of the pragma so we can continue executing. We
// have to do this because 'SkipUntil' considers paren balancing, which isn't
// what we want.
void SkipUntilEndOfDirective(Parser &P) {
while (P.getCurToken().isNot(tok::annot_pragma_openacc_end))
P.ConsumeAnyToken();
}
bool doesDirectiveHaveAssociatedStmt(OpenACCDirectiveKind DirKind) {
switch (DirKind) {
case OpenACCDirectiveKind::Routine:
// FIXME: Routine MIGHT end up needing to be 'true' here, as it needs a way
// to capture a lambda-expression on the next line.
case OpenACCDirectiveKind::Cache:
case OpenACCDirectiveKind::Declare:
case OpenACCDirectiveKind::Set:
case OpenACCDirectiveKind::EnterData:
case OpenACCDirectiveKind::ExitData:
case OpenACCDirectiveKind::Wait:
case OpenACCDirectiveKind::Init:
case OpenACCDirectiveKind::Shutdown:
case OpenACCDirectiveKind::Update:
case OpenACCDirectiveKind::Invalid:
return false;
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
case OpenACCDirectiveKind::Loop:
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::HostData:
case OpenACCDirectiveKind::Atomic:
return true;
}
llvm_unreachable("Unhandled directive->assoc stmt");
}
unsigned getOpenACCScopeFlags(OpenACCDirectiveKind DirKind) {
switch (DirKind) {
case OpenACCDirectiveKind::Parallel:
case OpenACCDirectiveKind::Serial:
case OpenACCDirectiveKind::Kernels:
case OpenACCDirectiveKind::ParallelLoop:
case OpenACCDirectiveKind::SerialLoop:
case OpenACCDirectiveKind::KernelsLoop:
// Mark this as a BreakScope/ContinueScope as well as a compute construct
// so that we can diagnose trying to 'break'/'continue' inside of one.
return Scope::BreakScope | Scope::ContinueScope |
Scope::OpenACCComputeConstructScope;
case OpenACCDirectiveKind::Data:
case OpenACCDirectiveKind::EnterData:
case OpenACCDirectiveKind::ExitData:
case OpenACCDirectiveKind::HostData:
case OpenACCDirectiveKind::Wait:
case OpenACCDirectiveKind::Init:
case OpenACCDirectiveKind::Shutdown:
case OpenACCDirectiveKind::Cache:
case OpenACCDirectiveKind::Loop:
case OpenACCDirectiveKind::Atomic:
case OpenACCDirectiveKind::Declare:
case OpenACCDirectiveKind::Routine:
case OpenACCDirectiveKind::Set:
case OpenACCDirectiveKind::Update:
return 0;
case OpenACCDirectiveKind::Invalid:
llvm_unreachable("Shouldn't be creating a scope for an invalid construct");
}
llvm_unreachable("Shouldn't be creating a scope for an invalid construct");
}
} // namespace
Parser::OpenACCClauseParseResult Parser::OpenACCCanContinue() {
return {nullptr, OpenACCParseCanContinue::Can};
}
Parser::OpenACCClauseParseResult Parser::OpenACCCannotContinue() {
return {nullptr, OpenACCParseCanContinue::Cannot};
}
Parser::OpenACCClauseParseResult Parser::OpenACCSuccess(OpenACCClause *Clause) {
return {Clause, OpenACCParseCanContinue::Can};
}
ExprResult Parser::ParseOpenACCConditionExpr() {
// FIXME: It isn't clear if the spec saying 'condition' means the same as
// it does in an if/while/etc (See ParseCXXCondition), however as it was
// written with Fortran/C in mind, we're going to assume it just means an
// 'expression evaluating to boolean'.
ExprResult ER = getActions().CorrectDelayedTyposInExpr(ParseExpression());
if (!ER.isUsable())
return ER;
Sema::ConditionResult R =
getActions().ActOnCondition(getCurScope(), ER.get()->getExprLoc(),
ER.get(), Sema::ConditionKind::Boolean);
return R.isInvalid() ? ExprError() : R.get().second;
}
// OpenACC 3.3, section 1.7:
// To simplify the specification and convey appropriate constraint information,
// a pqr-list is a comma-separated list of pdr items. The one exception is a
// clause-list, which is a list of one or more clauses optionally separated by
// commas.
SmallVector<OpenACCClause *>
Parser::ParseOpenACCClauseList(OpenACCDirectiveKind DirKind) {
SmallVector<OpenACCClause *> Clauses;
bool FirstClause = true;
while (getCurToken().isNot(tok::annot_pragma_openacc_end)) {
// Comma is optional in a clause-list.
if (!FirstClause && getCurToken().is(tok::comma))
ConsumeToken();
FirstClause = false;
OpenACCClauseParseResult Result = ParseOpenACCClause(Clauses, DirKind);
if (OpenACCClause *Clause = Result.getPointer()) {
Clauses.push_back(Clause);
} else if (Result.getInt() == OpenACCParseCanContinue::Cannot) {
// Recovering from a bad clause is really difficult, so we just give up on
// error.
SkipUntilEndOfDirective(*this);
return Clauses;
}
}
return Clauses;
}
Parser::OpenACCIntExprParseResult
Parser::ParseOpenACCIntExpr(OpenACCDirectiveKind DK, OpenACCClauseKind CK,
SourceLocation Loc) {
ExprResult ER = ParseAssignmentExpression();
// If the actual parsing failed, we don't know the state of the parse, so
// don't try to continue.
if (!ER.isUsable())
return {ER, OpenACCParseCanContinue::Cannot};
// Parsing can continue after the initial assignment expression parsing, so
// even if there was a typo, we can continue.
ER = getActions().CorrectDelayedTyposInExpr(ER);
if (!ER.isUsable())
return {ER, OpenACCParseCanContinue::Can};
return {getActions().OpenACC().ActOnIntExpr(DK, CK, Loc, ER.get()),
OpenACCParseCanContinue::Can};
}
bool Parser::ParseOpenACCIntExprList(OpenACCDirectiveKind DK,
OpenACCClauseKind CK, SourceLocation Loc,
llvm::SmallVectorImpl<Expr *> &IntExprs) {
OpenACCIntExprParseResult CurResult = ParseOpenACCIntExpr(DK, CK, Loc);
if (!CurResult.first.isUsable() &&
CurResult.second == OpenACCParseCanContinue::Cannot) {
SkipUntil(tok::r_paren, tok::annot_pragma_openacc_end,
Parser::StopBeforeMatch);
return true;
}
IntExprs.push_back(CurResult.first.get());
while (!getCurToken().isOneOf(tok::r_paren, tok::annot_pragma_openacc_end)) {
ExpectAndConsume(tok::comma);
CurResult = ParseOpenACCIntExpr(DK, CK, Loc);
if (!CurResult.first.isUsable() &&
CurResult.second == OpenACCParseCanContinue::Cannot) {
SkipUntil(tok::r_paren, tok::annot_pragma_openacc_end,
Parser::StopBeforeMatch);
return true;
}
IntExprs.push_back(CurResult.first.get());
}
return false;
}
/// OpenACC 3.3 Section 2.4:
/// The argument to the device_type clause is a comma-separated list of one or
/// more device architecture name identifiers, or an asterisk.
///
/// The syntax of the device_type clause is
/// device_type( * )
/// device_type( device-type-list )
///
/// The device_type clause may be abbreviated to dtype.
bool Parser::ParseOpenACCDeviceTypeList(
llvm::SmallVector<std::pair<IdentifierInfo *, SourceLocation>> &Archs) {
if (expectIdentifierOrKeyword(*this)) {
SkipUntil(tok::r_paren, tok::annot_pragma_openacc_end,
Parser::StopBeforeMatch);
return true;
}
IdentifierInfo *Ident = getCurToken().getIdentifierInfo();
Archs.emplace_back(Ident, ConsumeToken());
while (!getCurToken().isOneOf(tok::r_paren, tok::annot_pragma_openacc_end)) {
ExpectAndConsume(tok::comma);
if (expectIdentifierOrKeyword(*this)) {
SkipUntil(tok::r_paren, tok::annot_pragma_openacc_end,
Parser::StopBeforeMatch);
return true;
}
Ident = getCurToken().getIdentifierInfo();
Archs.emplace_back(Ident, ConsumeToken());
}
return false;
}
/// OpenACC 3.3 Section 2.9:
/// size-expr is one of:
// *
// int-expr
// Note that this is specified under 'gang-arg-list', but also applies to 'tile'
// via reference.
ExprResult Parser::ParseOpenACCSizeExpr(OpenACCClauseKind CK) {
// The size-expr ends up being ambiguous when only looking at the current
// token, as it could be a deref of a variable/expression.
if (getCurToken().is(tok::star) &&
NextToken().isOneOf(tok::comma, tok::r_paren,
tok::annot_pragma_openacc_end)) {
SourceLocation AsteriskLoc = ConsumeToken();
return getActions().OpenACC().ActOnOpenACCAsteriskSizeExpr(AsteriskLoc);
}
ExprResult SizeExpr =
getActions().CorrectDelayedTyposInExpr(ParseConstantExpression());
if (!SizeExpr.isUsable())
return SizeExpr;
SizeExpr = getActions().OpenACC().ActOnIntExpr(
OpenACCDirectiveKind::Invalid, CK, SizeExpr.get()->getBeginLoc(),
SizeExpr.get());
return SizeExpr;
}
bool Parser::ParseOpenACCSizeExprList(
OpenACCClauseKind CK, llvm::SmallVectorImpl<Expr *> &SizeExprs) {
ExprResult SizeExpr = ParseOpenACCSizeExpr(CK);
if (!SizeExpr.isUsable()) {
SkipUntil(tok::r_paren, tok::annot_pragma_openacc_end,
Parser::StopBeforeMatch);
return true;
}
SizeExprs.push_back(SizeExpr.get());
while (!getCurToken().isOneOf(tok::r_paren, tok::annot_pragma_openacc_end)) {
ExpectAndConsume(tok::comma);
SizeExpr = ParseOpenACCSizeExpr(CK);
if (!SizeExpr.isUsable()) {
SkipUntil(tok::r_paren, tok::annot_pragma_openacc_end,
Parser::StopBeforeMatch);
return true;
}
SizeExprs.push_back(SizeExpr.get());
}
return false;
}
/// OpenACC 3.3 Section 2.9:
///
/// where gang-arg is one of:
/// [num:]int-expr
/// dim:int-expr
/// static:size-expr
Parser::OpenACCGangArgRes Parser::ParseOpenACCGangArg(SourceLocation GangLoc) {
if (isOpenACCSpecialToken(OpenACCSpecialTokenKind::Static, getCurToken()) &&
NextToken().is(tok::colon)) {
// 'static' just takes a size-expr, which is an int-expr or an asterisk.
ConsumeToken();
ConsumeToken();
ExprResult Res = ParseOpenACCSizeExpr(OpenACCClauseKind::Gang);
return {OpenACCGangKind::Static, Res};
}
if (isOpenACCSpecialToken(OpenACCSpecialTokenKind::Dim, getCurToken()) &&
NextToken().is(tok::colon)) {
ConsumeToken();
ConsumeToken();
// Parse this as a const-expression, and we'll check its integer-ness/value
// in CheckGangExpr.
ExprResult Res =
getActions().CorrectDelayedTyposInExpr(ParseConstantExpression());
return {OpenACCGangKind::Dim, Res};
}
if (isOpenACCSpecialToken(OpenACCSpecialTokenKind::Num, getCurToken()) &&
NextToken().is(tok::colon)) {
ConsumeToken();
ConsumeToken();
// Fallthrough to the 'int-expr' handling for when 'num' is omitted.
}
// This is just the 'num' case where 'num' is optional.
ExprResult Res = ParseOpenACCIntExpr(OpenACCDirectiveKind::Invalid,
OpenACCClauseKind::Gang, GangLoc)
.first;
return {OpenACCGangKind::Num, Res};
}
bool Parser::ParseOpenACCGangArgList(
SourceLocation GangLoc, llvm::SmallVectorImpl<OpenACCGangKind> &GKs,
llvm::SmallVectorImpl<Expr *> &IntExprs) {
Parser::OpenACCGangArgRes Res = ParseOpenACCGangArg(GangLoc);
if (!Res.second.isUsable()) {
SkipUntil(tok::r_paren, tok::annot_pragma_openacc_end,
Parser::StopBeforeMatch);
return true;
}
GKs.push_back(Res.first);
IntExprs.push_back(Res.second.get());
while (!getCurToken().isOneOf(tok::r_paren, tok::annot_pragma_openacc_end)) {
ExpectAndConsume(tok::comma);
Res = ParseOpenACCGangArg(GangLoc);
if (!Res.second.isUsable()) {
SkipUntil(tok::r_paren, tok::annot_pragma_openacc_end,
Parser::StopBeforeMatch);
return true;
}
GKs.push_back(Res.first);
IntExprs.push_back(Res.second.get());
}
return false;
}
// The OpenACC Clause List is a comma or space-delimited list of clauses (see
// the comment on ParseOpenACCClauseList). The concept of a 'clause' doesn't
// really have its owner grammar and each individual one has its own definition.
// However, they all are named with a single-identifier (or auto/default!)
// token, followed in some cases by either braces or parens.
Parser::OpenACCClauseParseResult
Parser::ParseOpenACCClause(ArrayRef<const OpenACCClause *> ExistingClauses,
OpenACCDirectiveKind DirKind) {
// A number of clause names are actually keywords, so accept a keyword that
// can be converted to a name.
if (expectIdentifierOrKeyword(*this))
return OpenACCCannotContinue();
OpenACCClauseKind Kind = getOpenACCClauseKind(getCurToken());
if (Kind == OpenACCClauseKind::Invalid) {
Diag(getCurToken(), diag::err_acc_invalid_clause)
<< getCurToken().getIdentifierInfo();
return OpenACCCannotContinue();
}
// Consume the clause name.
SourceLocation ClauseLoc = ConsumeToken();
return ParseOpenACCClauseParams(ExistingClauses, DirKind, Kind, ClauseLoc);
}
Parser::OpenACCClauseParseResult Parser::ParseOpenACCClauseParams(
ArrayRef<const OpenACCClause *> ExistingClauses,
OpenACCDirectiveKind DirKind, OpenACCClauseKind ClauseKind,
SourceLocation ClauseLoc) {
BalancedDelimiterTracker Parens(*this, tok::l_paren,
tok::annot_pragma_openacc_end);
SemaOpenACC::OpenACCParsedClause ParsedClause(DirKind, ClauseKind, ClauseLoc);
if (ClauseHasRequiredParens(DirKind, ClauseKind)) {
if (Parens.expectAndConsume()) {
// We are missing a paren, so assume that the person just forgot the
// parameter. Return 'false' so we try to continue on and parse the next
// clause.
SkipUntil(tok::comma, tok::r_paren, tok::annot_pragma_openacc_end,
Parser::StopBeforeMatch);
return OpenACCCanContinue();
}
ParsedClause.setLParenLoc(Parens.getOpenLocation());
switch (ClauseKind) {
case OpenACCClauseKind::Default: {
Token DefKindTok = getCurToken();
if (expectIdentifierOrKeyword(*this)) {
Parens.skipToEnd();
return OpenACCCanContinue();
}
ConsumeToken();
OpenACCDefaultClauseKind DefKind =
getOpenACCDefaultClauseKind(DefKindTok);
if (DefKind == OpenACCDefaultClauseKind::Invalid) {
Diag(DefKindTok, diag::err_acc_invalid_default_clause_kind);
Parens.skipToEnd();
return OpenACCCanContinue();
}
ParsedClause.setDefaultDetails(DefKind);
break;
}
case OpenACCClauseKind::If: {
ExprResult CondExpr = ParseOpenACCConditionExpr();
ParsedClause.setConditionDetails(CondExpr.isUsable() ? CondExpr.get()
: nullptr);
if (CondExpr.isInvalid()) {
Parens.skipToEnd();
return OpenACCCanContinue();
}
break;
}
case OpenACCClauseKind::CopyIn:
case OpenACCClauseKind::PCopyIn:
case OpenACCClauseKind::PresentOrCopyIn: {
bool IsReadOnly = tryParseAndConsumeSpecialTokenKind(
*this, OpenACCSpecialTokenKind::ReadOnly, ClauseKind);
ParsedClause.setVarListDetails(ParseOpenACCVarList(DirKind, ClauseKind),
IsReadOnly,
/*IsZero=*/false);
break;
}
case OpenACCClauseKind::Create:
case OpenACCClauseKind::PCreate:
case OpenACCClauseKind::PresentOrCreate:
case OpenACCClauseKind::CopyOut:
case OpenACCClauseKind::PCopyOut:
case OpenACCClauseKind::PresentOrCopyOut: {
bool IsZero = tryParseAndConsumeSpecialTokenKind(
*this, OpenACCSpecialTokenKind::Zero, ClauseKind);
ParsedClause.setVarListDetails(ParseOpenACCVarList(DirKind, ClauseKind),
/*IsReadOnly=*/false, IsZero);
break;
}
case OpenACCClauseKind::Reduction: {
// If we're missing a clause-kind (or it is invalid), see if we can parse
// the var-list anyway.
OpenACCReductionOperator Op = ParseReductionOperator(*this);
ParsedClause.setReductionDetails(
Op, ParseOpenACCVarList(DirKind, ClauseKind));
break;
}
case OpenACCClauseKind::Self:
// The 'self' clause is a var-list instead of a 'condition' in the case of
// the 'update' clause, so we have to handle it here. Use an assert to
// make sure we get the right differentiator.
assert(DirKind == OpenACCDirectiveKind::Update);
[[fallthrough]];
case OpenACCClauseKind::Device:
case OpenACCClauseKind::Host:
case OpenACCClauseKind::DeviceResident:
case OpenACCClauseKind::Link:
case OpenACCClauseKind::Attach:
case OpenACCClauseKind::Delete:
case OpenACCClauseKind::Detach:
case OpenACCClauseKind::DevicePtr:
case OpenACCClauseKind::UseDevice:
case OpenACCClauseKind::Copy:
case OpenACCClauseKind::PCopy:
case OpenACCClauseKind::PresentOrCopy:
case OpenACCClauseKind::FirstPrivate:
case OpenACCClauseKind::NoCreate:
case OpenACCClauseKind::Present:
case OpenACCClauseKind::Private:
ParsedClause.setVarListDetails(ParseOpenACCVarList(DirKind, ClauseKind),
/*IsReadOnly=*/false, /*IsZero=*/false);
break;
case OpenACCClauseKind::Collapse: {
bool HasForce = tryParseAndConsumeSpecialTokenKind(
*this, OpenACCSpecialTokenKind::Force, ClauseKind);
ExprResult LoopCount =
getActions().CorrectDelayedTyposInExpr(ParseConstantExpression());
if (LoopCount.isInvalid()) {
Parens.skipToEnd();
return OpenACCCanContinue();
}
LoopCount = getActions().OpenACC().ActOnIntExpr(
OpenACCDirectiveKind::Invalid, ClauseKind,
LoopCount.get()->getBeginLoc(), LoopCount.get());
if (LoopCount.isInvalid()) {
Parens.skipToEnd();
return OpenACCCanContinue();
}
ParsedClause.setCollapseDetails(HasForce, LoopCount.get());
break;
}
case OpenACCClauseKind::Bind: {
ExprResult BindArg = ParseOpenACCBindClauseArgument();
if (BindArg.isInvalid()) {
Parens.skipToEnd();
return OpenACCCanContinue();
}
break;
}
case OpenACCClauseKind::NumGangs: {
llvm::SmallVector<Expr *> IntExprs;
if (ParseOpenACCIntExprList(OpenACCDirectiveKind::Invalid,
OpenACCClauseKind::NumGangs, ClauseLoc,
IntExprs)) {
Parens.skipToEnd();
return OpenACCCanContinue();
}
ParsedClause.setIntExprDetails(std::move(IntExprs));
break;
}
case OpenACCClauseKind::NumWorkers:
case OpenACCClauseKind::DeviceNum:
case OpenACCClauseKind::DefaultAsync:
case OpenACCClauseKind::VectorLength: {
ExprResult IntExpr = ParseOpenACCIntExpr(OpenACCDirectiveKind::Invalid,
ClauseKind, ClauseLoc)
.first;
if (IntExpr.isInvalid()) {
Parens.skipToEnd();
return OpenACCCanContinue();
}
ParsedClause.setIntExprDetails(IntExpr.get());
break;
}
case OpenACCClauseKind::DType:
case OpenACCClauseKind::DeviceType: {
llvm::SmallVector<std::pair<IdentifierInfo *, SourceLocation>> Archs;
if (getCurToken().is(tok::star)) {
// FIXME: We want to mark that this is an 'everything else' type of
// device_type in Sema.
ParsedClause.setDeviceTypeDetails({{nullptr, ConsumeToken()}});
} else if (!ParseOpenACCDeviceTypeList(Archs)) {
ParsedClause.setDeviceTypeDetails(std::move(Archs));
} else {
Parens.skipToEnd();
return OpenACCCanContinue();
}
break;
}
case OpenACCClauseKind::Tile: {
llvm::SmallVector<Expr *> SizeExprs;
if (ParseOpenACCSizeExprList(OpenACCClauseKind::Tile, SizeExprs)) {
Parens.skipToEnd();
return OpenACCCanContinue();
}
ParsedClause.setIntExprDetails(std::move(SizeExprs));
break;
}
default:
llvm_unreachable("Not a required parens type?");
}
ParsedClause.setEndLoc(getCurToken().getLocation());
if (Parens.consumeClose())
return OpenACCCannotContinue();
} else if (ClauseHasOptionalParens(DirKind, ClauseKind)) {
if (!Parens.consumeOpen()) {
ParsedClause.setLParenLoc(Parens.getOpenLocation());
switch (ClauseKind) {
case OpenACCClauseKind::Self: {
assert(DirKind != OpenACCDirectiveKind::Update);
ExprResult CondExpr = ParseOpenACCConditionExpr();
ParsedClause.setConditionDetails(CondExpr.isUsable() ? CondExpr.get()
: nullptr);
if (CondExpr.isInvalid()) {
Parens.skipToEnd();
return OpenACCCanContinue();
}
break;
}
case OpenACCClauseKind::Vector:
case OpenACCClauseKind::Worker: {
tryParseAndConsumeSpecialTokenKind(*this,
ClauseKind ==
OpenACCClauseKind::Vector
? OpenACCSpecialTokenKind::Length
: OpenACCSpecialTokenKind::Num,
ClauseKind);
ExprResult IntExpr = ParseOpenACCIntExpr(OpenACCDirectiveKind::Invalid,
ClauseKind, ClauseLoc)
.first;
if (IntExpr.isInvalid()) {
Parens.skipToEnd();
return OpenACCCanContinue();
}
ParsedClause.setIntExprDetails(IntExpr.get());
break;
}
case OpenACCClauseKind::Async: {
ExprResult AsyncArg =
ParseOpenACCAsyncArgument(OpenACCDirectiveKind::Invalid,
OpenACCClauseKind::Async, ClauseLoc)
.first;
ParsedClause.setIntExprDetails(AsyncArg.isUsable() ? AsyncArg.get()
: nullptr);
if (AsyncArg.isInvalid()) {
Parens.skipToEnd();
return OpenACCCanContinue();
}
break;
}
case OpenACCClauseKind::Gang: {
llvm::SmallVector<OpenACCGangKind> GKs;
llvm::SmallVector<Expr *> IntExprs;
if (ParseOpenACCGangArgList(ClauseLoc, GKs, IntExprs)) {
Parens.skipToEnd();
return OpenACCCanContinue();
}
ParsedClause.setGangDetails(std::move(GKs), std::move(IntExprs));
break;
}
case OpenACCClauseKind::Wait: {
OpenACCWaitParseInfo Info =
ParseOpenACCWaitArgument(ClauseLoc,
/*IsDirective=*/false);
if (Info.Failed) {
Parens.skipToEnd();
return OpenACCCanContinue();
}
ParsedClause.setWaitDetails(Info.DevNumExpr, Info.QueuesLoc,
std::move(Info.QueueIdExprs));
break;
}
default:
llvm_unreachable("Not an optional parens type?");
}
ParsedClause.setEndLoc(getCurToken().getLocation());
if (Parens.consumeClose())
return OpenACCCannotContinue();
} else {
// If we have optional parens, make sure we set the end-location to the
// clause, as we are a 'single token' clause.
ParsedClause.setEndLoc(ClauseLoc);
}
} else {
ParsedClause.setEndLoc(ClauseLoc);
}
return OpenACCSuccess(
Actions.OpenACC().ActOnClause(ExistingClauses, ParsedClause));
}
/// OpenACC 3.3 section 2.16:
/// In this section and throughout the specification, the term async-argument
/// means a nonnegative scalar integer expression (int for C or C++, integer for
/// Fortran), or one of the special values acc_async_noval or acc_async_sync, as
/// defined in the C header file and the Fortran openacc module. The special
/// values are negative values, so as not to conflict with a user-specified
/// nonnegative async-argument.
Parser::OpenACCIntExprParseResult
Parser::ParseOpenACCAsyncArgument(OpenACCDirectiveKind DK, OpenACCClauseKind CK,
SourceLocation Loc) {
return ParseOpenACCIntExpr(DK, CK, Loc);
}
/// OpenACC 3.3, section 2.16:
/// In this section and throughout the specification, the term wait-argument
/// means:
/// [ devnum : int-expr : ] [ queues : ] async-argument-list
Parser::OpenACCWaitParseInfo
Parser::ParseOpenACCWaitArgument(SourceLocation Loc, bool IsDirective) {
OpenACCWaitParseInfo Result;
// [devnum : int-expr : ]
if (isOpenACCSpecialToken(OpenACCSpecialTokenKind::DevNum, Tok) &&
NextToken().is(tok::colon)) {
// Consume devnum.
ConsumeToken();
// Consume colon.
ConsumeToken();
OpenACCIntExprParseResult Res = ParseOpenACCIntExpr(
IsDirective ? OpenACCDirectiveKind::Wait
: OpenACCDirectiveKind::Invalid,
IsDirective ? OpenACCClauseKind::Invalid : OpenACCClauseKind::Wait,
Loc);
if (Res.first.isInvalid() &&
Res.second == OpenACCParseCanContinue::Cannot) {
Result.Failed = true;
return Result;
}
if (ExpectAndConsume(tok::colon)) {
Result.Failed = true;
return Result;
}
Result.DevNumExpr = Res.first.get();
}
// [ queues : ]
if (isOpenACCSpecialToken(OpenACCSpecialTokenKind::Queues, Tok) &&
NextToken().is(tok::colon)) {
// Consume queues.
Result.QueuesLoc = ConsumeToken();
// Consume colon.
ConsumeToken();
}
// OpenACC 3.3, section 2.16:
// the term 'async-argument' means a nonnegative scalar integer expression, or
// one of the special values 'acc_async_noval' or 'acc_async_sync', as defined
// in the C header file and the Fortran opacc module.
bool FirstArg = true;
while (!getCurToken().isOneOf(tok::r_paren, tok::annot_pragma_openacc_end)) {
if (!FirstArg) {
if (ExpectAndConsume(tok::comma)) {
Result.Failed = true;
return Result;
}
}
FirstArg = false;
OpenACCIntExprParseResult Res = ParseOpenACCAsyncArgument(
IsDirective ? OpenACCDirectiveKind::Wait
: OpenACCDirectiveKind::Invalid,
IsDirective ? OpenACCClauseKind::Invalid : OpenACCClauseKind::Wait,
Loc);
if (Res.first.isInvalid() &&
Res.second == OpenACCParseCanContinue::Cannot) {
Result.Failed = true;
return Result;
}
if (Res.first.isUsable())
Result.QueueIdExprs.push_back(Res.first.get());
}
return Result;
}
ExprResult Parser::ParseOpenACCIDExpression() {
ExprResult Res;
if (getLangOpts().CPlusPlus) {
Res = ParseCXXIdExpression(/*isAddressOfOperand=*/true);
} else {
// There isn't anything quite the same as ParseCXXIdExpression for C, so we
// need to get the identifier, then call into Sema ourselves.
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_expected) << tok::identifier;
return ExprError();
}
Token FuncName = getCurToken();
UnqualifiedId Name;
CXXScopeSpec ScopeSpec;
SourceLocation TemplateKWLoc;
Name.setIdentifier(FuncName.getIdentifierInfo(), ConsumeToken());
// Ensure this is a valid identifier. We don't accept causing implicit
// function declarations per the spec, so always claim to not have trailing
// L Paren.
Res = Actions.ActOnIdExpression(getCurScope(), ScopeSpec, TemplateKWLoc,
Name, /*HasTrailingLParen=*/false,
/*isAddressOfOperand=*/false);
}
return getActions().CorrectDelayedTyposInExpr(Res);
}
ExprResult Parser::ParseOpenACCBindClauseArgument() {
// OpenACC 3.3 section 2.15:
// The bind clause specifies the name to use when calling the procedure on a
// device other than the host. If the name is specified as an identifier, it
// is called as if that name were specified in the language being compiled. If
// the name is specified as a string, the string is used for the procedure
// name unmodified.
if (getCurToken().is(tok::r_paren)) {
Diag(getCurToken(), diag::err_acc_incorrect_bind_arg);
return ExprError();
}
if (tok::isStringLiteral(getCurToken().getKind()))
return getActions().CorrectDelayedTyposInExpr(ParseStringLiteralExpression(
/*AllowUserDefinedLiteral=*/false, /*Unevaluated=*/true));
return ParseOpenACCIDExpression();
}
/// OpenACC 3.3, section 1.6:
/// In this spec, a 'var' (in italics) is one of the following:
/// - a variable name (a scalar, array, or composite variable name)
/// - a subarray specification with subscript ranges
/// - an array element
/// - a member of a composite variable
/// - a common block name between slashes (fortran only)
Parser::OpenACCVarParseResult Parser::ParseOpenACCVar(OpenACCDirectiveKind DK,
OpenACCClauseKind CK) {
OpenACCArraySectionRAII ArraySections(*this);
ExprResult Res = ParseAssignmentExpression();
if (!Res.isUsable())
return {Res, OpenACCParseCanContinue::Cannot};
Res = getActions().CorrectDelayedTyposInExpr(Res.get());
if (!Res.isUsable())
return {Res, OpenACCParseCanContinue::Can};
Res = getActions().OpenACC().ActOnVar(DK, CK, Res.get());
return {Res, OpenACCParseCanContinue::Can};
}
llvm::SmallVector<Expr *> Parser::ParseOpenACCVarList(OpenACCDirectiveKind DK,
OpenACCClauseKind CK) {
llvm::SmallVector<Expr *> Vars;
auto [Res, CanContinue] = ParseOpenACCVar(DK, CK);
if (Res.isUsable()) {
Vars.push_back(Res.get());
} else if (CanContinue == OpenACCParseCanContinue::Cannot) {
SkipUntil(tok::r_paren, tok::annot_pragma_openacc_end, StopBeforeMatch);
return Vars;
}
while (!getCurToken().isOneOf(tok::r_paren, tok::annot_pragma_openacc_end)) {
ExpectAndConsume(tok::comma);
auto [Res, CanContinue] = ParseOpenACCVar(DK, CK);
if (Res.isUsable()) {
Vars.push_back(Res.get());
} else if (CanContinue == OpenACCParseCanContinue::Cannot) {
SkipUntil(tok::r_paren, tok::annot_pragma_openacc_end, StopBeforeMatch);
return Vars;
}
}
return Vars;
}
/// OpenACC 3.3, section 2.10:
/// In C and C++, the syntax of the cache directive is:
///
/// #pragma acc cache ([readonly:]var-list) new-line
Parser::OpenACCCacheParseInfo Parser::ParseOpenACCCacheVarList() {
// If this is the end of the line, just return 'false' and count on the close
// paren diagnostic to catch the issue.
if (getCurToken().isAnnotation())
return {};
OpenACCCacheParseInfo CacheInfo;
SourceLocation ReadOnlyLoc = getCurToken().getLocation();
// The VarList is an optional `readonly:` followed by a list of a variable
// specifications. Consume something that looks like a 'tag', and diagnose if
// it isn't 'readonly'.
if (tryParseAndConsumeSpecialTokenKind(*this,
OpenACCSpecialTokenKind::ReadOnly,
OpenACCDirectiveKind::Cache))
CacheInfo.ReadOnlyLoc = ReadOnlyLoc;
// ParseOpenACCVarList should leave us before a r-paren, so no need to skip
// anything here.
CacheInfo.Vars = ParseOpenACCVarList(OpenACCDirectiveKind::Cache,
OpenACCClauseKind::Invalid);
return CacheInfo;
}
Parser::OpenACCDirectiveParseInfo
Parser::ParseOpenACCDirective() {
SourceLocation StartLoc = ConsumeAnnotationToken();
SourceLocation DirLoc = getCurToken().getLocation();
OpenACCDirectiveKind DirKind = ParseOpenACCDirectiveKind(*this);
Parser::OpenACCWaitParseInfo WaitInfo;
Parser::OpenACCCacheParseInfo CacheInfo;
OpenACCAtomicKind AtomicKind = OpenACCAtomicKind::None;
ExprResult RoutineName;
getActions().OpenACC().ActOnConstruct(DirKind, DirLoc);
// Once we've parsed the construct/directive name, some have additional
// specifiers that need to be taken care of. Atomic has an 'atomic-clause'
// that needs to be parsed.
if (DirKind == OpenACCDirectiveKind::Atomic)
AtomicKind = ParseOpenACCAtomicKind(*this);
// We've successfully parsed the construct/directive name, however a few of
// the constructs have optional parens that contain further details.
BalancedDelimiterTracker T(*this, tok::l_paren,
tok::annot_pragma_openacc_end);
if (!T.consumeOpen()) {
switch (DirKind) {
default:
Diag(T.getOpenLocation(), diag::err_acc_invalid_open_paren);
T.skipToEnd();
break;
case OpenACCDirectiveKind::Routine: {
// Routine has an optional paren-wrapped name of a function in the local
// scope. We parse the name, emitting any diagnostics
RoutineName = ParseOpenACCIDExpression();
// If the routine name is invalid, just skip until the closing paren to
// recover more gracefully.
if (!RoutineName.isUsable()) {
T.skipToEnd();
} else {
T.consumeClose();
RoutineName =
getActions().OpenACC().ActOnRoutineName(RoutineName.get());
}
break;
}
case OpenACCDirectiveKind::Cache:
CacheInfo = ParseOpenACCCacheVarList();
// The ParseOpenACCCacheVarList function manages to recover from failures,
// so we can always consume the close.
T.consumeClose();
break;
case OpenACCDirectiveKind::Wait:
// OpenACC has an optional paren-wrapped 'wait-argument'.
WaitInfo = ParseOpenACCWaitArgument(DirLoc, /*IsDirective=*/true);
if (WaitInfo.Failed)
T.skipToEnd();
else
T.consumeClose();
break;
}
} else if (DirKind == OpenACCDirectiveKind::Cache) {
// Cache's paren var-list is required, so error here if it isn't provided.
// We know that the consumeOpen above left the first non-paren here, so
// diagnose, then continue as if it was completely omitted.
Diag(Tok, diag::err_expected) << tok::l_paren;
}
// Parses the list of clauses, if present, plus set up return value.
OpenACCDirectiveParseInfo ParseInfo{DirKind,
StartLoc,
DirLoc,
T.getOpenLocation(),
T.getCloseLocation(),
/*EndLoc=*/SourceLocation{},
(DirKind == OpenACCDirectiveKind::Wait
? WaitInfo.QueuesLoc
: CacheInfo.ReadOnlyLoc),
AtomicKind,
{},
{}};
if (DirKind == OpenACCDirectiveKind::Wait)
ParseInfo.Exprs = WaitInfo.getAllExprs();
else if (DirKind == OpenACCDirectiveKind::Cache)
ParseInfo.Exprs = std::move(CacheInfo.Vars);
else if (DirKind == OpenACCDirectiveKind::Routine && RoutineName.isUsable())
ParseInfo.Exprs = llvm::SmallVector<Expr *>(1, RoutineName.get());
ParseInfo.Clauses = ParseOpenACCClauseList(DirKind);
assert(Tok.is(tok::annot_pragma_openacc_end) &&
"Didn't parse all OpenACC Clauses");
ParseInfo.EndLoc = ConsumeAnnotationToken();
assert(ParseInfo.EndLoc.isValid() &&
"Terminating annotation token not present");
return ParseInfo;
}
// Parse OpenACC directive on a declaration.
Parser::DeclGroupPtrTy Parser::ParseOpenACCDirectiveDecl() {
assert(Tok.is(tok::annot_pragma_openacc) && "expected OpenACC Start Token");
ParsingOpenACCDirectiveRAII DirScope(*this);
OpenACCDirectiveParseInfo DirInfo = ParseOpenACCDirective();
if (getActions().OpenACC().ActOnStartDeclDirective(
DirInfo.DirKind, DirInfo.StartLoc, DirInfo.Clauses))
return nullptr;
return DeclGroupPtrTy::make(getActions().OpenACC().ActOnEndDeclDirective(
DirInfo.DirKind, DirInfo.StartLoc, DirInfo.DirLoc, DirInfo.LParenLoc,
DirInfo.Exprs.empty() ? nullptr : DirInfo.Exprs.front(),
DirInfo.RParenLoc, DirInfo.EndLoc, DirInfo.Clauses));
}
// Parse OpenACC Directive on a Statement.
StmtResult Parser::ParseOpenACCDirectiveStmt() {
assert(Tok.is(tok::annot_pragma_openacc) && "expected OpenACC Start Token");
ParsingOpenACCDirectiveRAII DirScope(*this);
OpenACCDirectiveParseInfo DirInfo = ParseOpenACCDirective();
if (getActions().OpenACC().ActOnStartStmtDirective(
DirInfo.DirKind, DirInfo.StartLoc, DirInfo.Clauses))
return StmtError();
StmtResult AssocStmt;
if (doesDirectiveHaveAssociatedStmt(DirInfo.DirKind)) {
SemaOpenACC::AssociatedStmtRAII AssocStmtRAII(
getActions().OpenACC(), DirInfo.DirKind, DirInfo.DirLoc, {},
DirInfo.Clauses);
ParsingOpenACCDirectiveRAII DirScope(*this, /*Value=*/false);
ParseScope ACCScope(this, getOpenACCScopeFlags(DirInfo.DirKind));
AssocStmt = getActions().OpenACC().ActOnAssociatedStmt(
DirInfo.StartLoc, DirInfo.DirKind, DirInfo.AtomicKind, DirInfo.Clauses,
ParseStatement());
}
return getActions().OpenACC().ActOnEndStmtDirective(
DirInfo.DirKind, DirInfo.StartLoc, DirInfo.DirLoc, DirInfo.LParenLoc,
DirInfo.MiscLoc, DirInfo.Exprs, DirInfo.AtomicKind, DirInfo.RParenLoc,
DirInfo.EndLoc, DirInfo.Clauses, AssocStmt);
}