mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-26 21:56:04 +00:00

This is step 2/N of removing the temporary operator-> method as part of the de-const transition. PiperOrigin-RevId: 240200792
396 lines
14 KiB
C++
396 lines
14 KiB
C++
//===- LoopAnalysis.cpp - Misc loop analysis routines //-------------------===//
|
|
//
|
|
// Copyright 2019 The MLIR Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
// =============================================================================
|
|
//
|
|
// This file implements miscellaneous loop analysis routines.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Analysis/LoopAnalysis.h"
|
|
|
|
#include "mlir/AffineOps/AffineOps.h"
|
|
#include "mlir/Analysis/AffineAnalysis.h"
|
|
#include "mlir/Analysis/AffineStructures.h"
|
|
#include "mlir/Analysis/NestedMatcher.h"
|
|
#include "mlir/Analysis/VectorAnalysis.h"
|
|
#include "mlir/IR/AffineMap.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/Instruction.h"
|
|
#include "mlir/StandardOps/Ops.h"
|
|
#include "mlir/SuperVectorOps/SuperVectorOps.h"
|
|
#include "mlir/Support/Functional.h"
|
|
#include "mlir/Support/MathExtras.h"
|
|
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include <type_traits>
|
|
|
|
using namespace mlir;
|
|
|
|
/// Returns the trip count of the loop as an affine expression if the latter is
|
|
/// expressible as an affine expression, and nullptr otherwise. The trip count
|
|
/// expression is simplified before returning. This method only utilizes map
|
|
/// composition to construct lower and upper bounds before computing the trip
|
|
/// count expressions.
|
|
// TODO(mlir-team): this should be moved into 'Transforms/' and be replaced by a
|
|
// pure analysis method relying on FlatAffineConstraints; the latter will also
|
|
// be more powerful (since both inequalities and equalities will be considered).
|
|
void mlir::buildTripCountMapAndOperands(
|
|
AffineForOp forOp, AffineMap *map,
|
|
SmallVectorImpl<Value *> *tripCountOperands) {
|
|
int64_t loopSpan;
|
|
|
|
int64_t step = forOp.getStep();
|
|
FuncBuilder b(forOp.getInstruction());
|
|
|
|
if (forOp.hasConstantBounds()) {
|
|
int64_t lb = forOp.getConstantLowerBound();
|
|
int64_t ub = forOp.getConstantUpperBound();
|
|
loopSpan = ub - lb;
|
|
if (loopSpan < 0)
|
|
loopSpan = 0;
|
|
*map = b.getConstantAffineMap(ceilDiv(loopSpan, step));
|
|
tripCountOperands->clear();
|
|
return;
|
|
}
|
|
auto lbMap = forOp.getLowerBoundMap();
|
|
auto ubMap = forOp.getUpperBoundMap();
|
|
if (lbMap.getNumResults() != 1) {
|
|
*map = AffineMap();
|
|
return;
|
|
}
|
|
SmallVector<Value *, 4> lbOperands(forOp.getLowerBoundOperands());
|
|
SmallVector<Value *, 4> ubOperands(forOp.getUpperBoundOperands());
|
|
auto lb = b.create<AffineApplyOp>(forOp.getLoc(), lbMap, lbOperands);
|
|
SmallVector<Value *, 4> ubs;
|
|
ubs.reserve(ubMap.getNumResults());
|
|
for (auto ubExpr : ubMap.getResults())
|
|
ubs.push_back(b.create<AffineApplyOp>(
|
|
forOp.getLoc(),
|
|
b.getAffineMap(ubMap.getNumDims(), ubMap.getNumSymbols(), {ubExpr}, {}),
|
|
ubOperands));
|
|
|
|
tripCountOperands->clear();
|
|
tripCountOperands->reserve(1 + ubs.size());
|
|
tripCountOperands->push_back(lb);
|
|
tripCountOperands->append(ubs.begin(), ubs.end());
|
|
|
|
SmallVector<AffineExpr, 4> tripCountExprs(ubs.size());
|
|
for (unsigned i = 0, e = ubs.size(); i < e; i++)
|
|
tripCountExprs[i] =
|
|
(b.getAffineDimExpr(1 + i) - b.getAffineDimExpr(0)).ceilDiv(step);
|
|
*map = b.getAffineMap(1 + ubs.size(), 0, tripCountExprs, {});
|
|
|
|
fullyComposeAffineMapAndOperands(map, tripCountOperands);
|
|
*map = simplifyAffineMap(*map);
|
|
canonicalizeMapAndOperands(map, tripCountOperands);
|
|
// Remove any affine.apply's that became dead as a result of composition,
|
|
// simplification, and canonicalization above.
|
|
for (auto *v : ubs)
|
|
if (v->use_empty())
|
|
v->getDefiningInst()->erase();
|
|
if (lb.use_empty())
|
|
lb.erase();
|
|
}
|
|
|
|
/// Returns the trip count of the loop if it's a constant, None otherwise. This
|
|
/// method uses affine expression analysis (in turn using getTripCount) and is
|
|
/// able to determine constant trip count in non-trivial cases.
|
|
// FIXME(mlir-team): this is really relying on buildTripCountMapAndOperands;
|
|
// being an analysis utility, it shouldn't. Replace with a version that just
|
|
// works with analysis structures (FlatAffineConstraints) and thus doesn't
|
|
// update the IR.
|
|
llvm::Optional<uint64_t> mlir::getConstantTripCount(AffineForOp forOp) {
|
|
SmallVector<Value *, 4> operands;
|
|
AffineMap map;
|
|
buildTripCountMapAndOperands(forOp, &map, &operands);
|
|
|
|
if (!map)
|
|
return None;
|
|
|
|
// Take the min if all trip counts are constant.
|
|
Optional<uint64_t> tripCount;
|
|
for (auto resultExpr : map.getResults()) {
|
|
if (auto constExpr = resultExpr.dyn_cast<AffineConstantExpr>()) {
|
|
if (tripCount.hasValue())
|
|
tripCount = std::min(tripCount.getValue(),
|
|
static_cast<uint64_t>(constExpr.getValue()));
|
|
else
|
|
tripCount = constExpr.getValue();
|
|
} else
|
|
return None;
|
|
}
|
|
return tripCount;
|
|
}
|
|
|
|
/// Returns the greatest known integral divisor of the trip count. Affine
|
|
/// expression analysis is used (indirectly through getTripCount), and
|
|
/// this method is thus able to determine non-trivial divisors.
|
|
uint64_t mlir::getLargestDivisorOfTripCount(AffineForOp forOp) {
|
|
SmallVector<Value *, 4> operands;
|
|
AffineMap map;
|
|
buildTripCountMapAndOperands(forOp, &map, &operands);
|
|
|
|
if (!map)
|
|
return 1;
|
|
|
|
// The largest divisor of the trip count is the GCD of the individual largest
|
|
// divisors.
|
|
assert(map.getNumResults() >= 1 && "expected one or more results");
|
|
Optional<uint64_t> gcd;
|
|
for (auto resultExpr : map.getResults()) {
|
|
uint64_t thisGcd;
|
|
if (auto constExpr = resultExpr.dyn_cast<AffineConstantExpr>()) {
|
|
uint64_t tripCount = constExpr.getValue();
|
|
// 0 iteration loops (greatest divisor is 2^64 - 1).
|
|
if (tripCount == 0)
|
|
thisGcd = std::numeric_limits<uint64_t>::max();
|
|
else
|
|
// The greatest divisor is the trip count.
|
|
thisGcd = tripCount;
|
|
} else {
|
|
// Trip count is not a known constant; return its largest known divisor.
|
|
thisGcd = resultExpr.getLargestKnownDivisor();
|
|
}
|
|
if (gcd.hasValue())
|
|
gcd = llvm::GreatestCommonDivisor64(gcd.getValue(), thisGcd);
|
|
else
|
|
gcd = thisGcd;
|
|
}
|
|
assert(gcd.hasValue() && "value expected per above logic");
|
|
return gcd.getValue();
|
|
}
|
|
|
|
bool mlir::isAccessInvariant(Value &iv, Value &index) {
|
|
assert(isForInductionVar(&iv) && "iv must be a AffineForOp");
|
|
assert(index.getType().isa<IndexType>() && "index must be of IndexType");
|
|
SmallVector<Instruction *, 4> affineApplyOps;
|
|
getReachableAffineApplyOps({&index}, affineApplyOps);
|
|
|
|
if (affineApplyOps.empty()) {
|
|
// Pointer equality test because of Value pointer semantics.
|
|
return &index != &iv;
|
|
}
|
|
|
|
if (affineApplyOps.size() > 1) {
|
|
affineApplyOps[0]->emitError(
|
|
"CompositionAffineMapsPass must have been run: there should be at most "
|
|
"one AffineApplyOp");
|
|
return false;
|
|
}
|
|
|
|
auto composeOp = affineApplyOps[0]->cast<AffineApplyOp>();
|
|
// We need yet another level of indirection because the `dim` index of the
|
|
// access may not correspond to the `dim` index of composeOp.
|
|
return !(AffineValueMap(composeOp).isFunctionOf(0, &iv));
|
|
}
|
|
|
|
llvm::DenseSet<Value *>
|
|
mlir::getInvariantAccesses(Value &iv, llvm::ArrayRef<Value *> indices) {
|
|
llvm::DenseSet<Value *> res;
|
|
for (unsigned idx = 0, n = indices.size(); idx < n; ++idx) {
|
|
auto *val = indices[idx];
|
|
if (isAccessInvariant(iv, *val)) {
|
|
res.insert(val);
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/// Given:
|
|
/// 1. an induction variable `iv` of type AffineForOp;
|
|
/// 2. a `memoryOp` of type const LoadOp& or const StoreOp&;
|
|
/// 3. the index of the `fastestVaryingDim` along which to check;
|
|
/// determines whether `memoryOp`[`fastestVaryingDim`] is a contiguous access
|
|
/// along `iv`.
|
|
/// Contiguous is defined as either invariant or varying only along
|
|
/// `fastestVaryingDim`.
|
|
///
|
|
/// Prerequisites:
|
|
/// 1. `iv` of the proper type;
|
|
/// 2. the MemRef accessed by `memoryOp` has no layout map or at most an
|
|
/// identity layout map.
|
|
///
|
|
/// Currently only supports no layoutMap or identity layoutMap in the MemRef.
|
|
/// Returns false if the MemRef has a non-identity layoutMap or more than
|
|
/// 1 layoutMap. This is conservative.
|
|
///
|
|
// TODO(ntv): check strides.
|
|
template <typename LoadOrStoreOp>
|
|
static bool isContiguousAccess(Value &iv, LoadOrStoreOp memoryOp,
|
|
unsigned fastestVaryingDim) {
|
|
static_assert(std::is_same<LoadOrStoreOp, LoadOp>::value ||
|
|
std::is_same<LoadOrStoreOp, StoreOp>::value,
|
|
"Must be called on either const LoadOp & or const StoreOp &");
|
|
auto memRefType = memoryOp.getMemRefType();
|
|
if (fastestVaryingDim >= memRefType.getRank()) {
|
|
memoryOp.emitError("fastest varying dim out of bounds");
|
|
return false;
|
|
}
|
|
|
|
auto layoutMap = memRefType.getAffineMaps();
|
|
// TODO(ntv): remove dependence on Builder once we support non-identity
|
|
// layout map.
|
|
Builder b(memoryOp.getContext());
|
|
if (layoutMap.size() >= 2 ||
|
|
(layoutMap.size() == 1 &&
|
|
!(layoutMap[0] ==
|
|
b.getMultiDimIdentityMap(layoutMap[0].getNumDims())))) {
|
|
return memoryOp.emitError("NYI: non-trivial layoutMap"), false;
|
|
}
|
|
|
|
auto indices = memoryOp.getIndices();
|
|
auto numIndices = llvm::size(indices);
|
|
unsigned d = 0;
|
|
for (auto index : indices) {
|
|
if (fastestVaryingDim == (numIndices - 1) - d++) {
|
|
continue;
|
|
}
|
|
if (!isAccessInvariant(iv, *index)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <typename LoadOrStoreOpPointer>
|
|
static bool isVectorElement(LoadOrStoreOpPointer memoryOp) {
|
|
auto memRefType = memoryOp.getMemRefType();
|
|
return memRefType.getElementType().template isa<VectorType>();
|
|
}
|
|
|
|
static bool isVectorTransferReadOrWrite(Instruction &inst) {
|
|
return inst.isa<VectorTransferReadOp>() || inst.isa<VectorTransferWriteOp>();
|
|
}
|
|
|
|
using VectorizableInstFun = std::function<bool(AffineForOp, Instruction &)>;
|
|
|
|
static bool isVectorizableLoopWithCond(AffineForOp loop,
|
|
VectorizableInstFun isVectorizableInst) {
|
|
auto *forInst = loop.getInstruction();
|
|
if (!matcher::isParallelLoop(*forInst) &&
|
|
!matcher::isReductionLoop(*forInst)) {
|
|
return false;
|
|
}
|
|
|
|
// No vectorization across conditionals for now.
|
|
auto conditionals = matcher::If();
|
|
SmallVector<NestedMatch, 8> conditionalsMatched;
|
|
conditionals.match(forInst, &conditionalsMatched);
|
|
if (!conditionalsMatched.empty()) {
|
|
return false;
|
|
}
|
|
|
|
// No vectorization across unknown regions.
|
|
auto regions = matcher::Op([](Instruction &inst) -> bool {
|
|
return inst.getNumRegions() != 0 &&
|
|
!(inst.isa<AffineIfOp>() || inst.isa<AffineForOp>());
|
|
});
|
|
SmallVector<NestedMatch, 8> regionsMatched;
|
|
regions.match(forInst, ®ionsMatched);
|
|
if (!regionsMatched.empty()) {
|
|
return false;
|
|
}
|
|
|
|
auto vectorTransfers = matcher::Op(isVectorTransferReadOrWrite);
|
|
SmallVector<NestedMatch, 8> vectorTransfersMatched;
|
|
vectorTransfers.match(forInst, &vectorTransfersMatched);
|
|
if (!vectorTransfersMatched.empty()) {
|
|
return false;
|
|
}
|
|
|
|
auto loadAndStores = matcher::Op(matcher::isLoadOrStore);
|
|
SmallVector<NestedMatch, 8> loadAndStoresMatched;
|
|
loadAndStores.match(forInst, &loadAndStoresMatched);
|
|
for (auto ls : loadAndStoresMatched) {
|
|
auto *op = ls.getMatchedInstruction();
|
|
auto load = op->dyn_cast<LoadOp>();
|
|
auto store = op->dyn_cast<StoreOp>();
|
|
// Only scalar types are considered vectorizable, all load/store must be
|
|
// vectorizable for a loop to qualify as vectorizable.
|
|
// TODO(ntv): ponder whether we want to be more general here.
|
|
bool vector = load ? isVectorElement(load) : isVectorElement(store);
|
|
if (vector) {
|
|
return false;
|
|
}
|
|
if (!isVectorizableInst(loop, *op)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool mlir::isVectorizableLoopAlongFastestVaryingMemRefDim(
|
|
AffineForOp loop, unsigned fastestVaryingDim) {
|
|
VectorizableInstFun fun(
|
|
[fastestVaryingDim](AffineForOp loop, Instruction &op) {
|
|
auto load = op.dyn_cast<LoadOp>();
|
|
auto store = op.dyn_cast<StoreOp>();
|
|
return load ? isContiguousAccess(*loop.getInductionVar(), load,
|
|
fastestVaryingDim)
|
|
: isContiguousAccess(*loop.getInductionVar(), store,
|
|
fastestVaryingDim);
|
|
});
|
|
return isVectorizableLoopWithCond(loop, fun);
|
|
}
|
|
|
|
bool mlir::isVectorizableLoop(AffineForOp loop) {
|
|
VectorizableInstFun fun(
|
|
// TODO: implement me
|
|
[](AffineForOp loop, Instruction &op) { return true; });
|
|
return isVectorizableLoopWithCond(loop, fun);
|
|
}
|
|
|
|
/// Checks whether SSA dominance would be violated if a for inst's body
|
|
/// instructions are shifted by the specified shifts. This method checks if a
|
|
/// 'def' and all its uses have the same shift factor.
|
|
// TODO(mlir-team): extend this to check for memory-based dependence
|
|
// violation when we have the support.
|
|
bool mlir::isInstwiseShiftValid(AffineForOp forOp, ArrayRef<uint64_t> shifts) {
|
|
auto *forBody = forOp.getBody();
|
|
assert(shifts.size() == forBody->getInstructions().size());
|
|
|
|
// Work backwards over the body of the block so that the shift of a use's
|
|
// ancestor instruction in the block gets recorded before it's looked up.
|
|
DenseMap<Instruction *, uint64_t> forBodyShift;
|
|
for (auto it : llvm::enumerate(llvm::reverse(forBody->getInstructions()))) {
|
|
auto &inst = it.value();
|
|
|
|
// Get the index of the current instruction, note that we are iterating in
|
|
// reverse so we need to fix it up.
|
|
size_t index = shifts.size() - it.index() - 1;
|
|
|
|
// Remember the shift of this instruction.
|
|
uint64_t shift = shifts[index];
|
|
forBodyShift.try_emplace(&inst, shift);
|
|
|
|
// Validate the results of this instruction if it were to be shifted.
|
|
for (unsigned i = 0, e = inst.getNumResults(); i < e; ++i) {
|
|
Value *result = inst.getResult(i);
|
|
for (const InstOperand &use : result->getUses()) {
|
|
// If an ancestor instruction doesn't lie in the block of forOp,
|
|
// there is no shift to check.
|
|
if (auto *ancInst = forBody->findAncestorInstInBlock(*use.getOwner())) {
|
|
assert(forBodyShift.count(ancInst) > 0 && "ancestor expected in map");
|
|
if (shift != forBodyShift[ancInst])
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|