llvm-project/llvm/lib/IR/Intrinsics.cpp
Adrian Kuegel 3c3f19ca5e Revert "[NFC][LLVM] Use namespace Intrinsic in Intrinsics.cpp (#114822)"
This reverts commit c2b61fcb3cd4ffa286b24437b7b6d66f0dee6c25.

Intrinsic namespace contains memcpy which is a naming conflict with
memcpy from string.h header.
2024-11-08 14:32:31 +00:00

1097 lines
39 KiB
C++

//===-- Intrinsics.cpp - Intrinsic Function Handling ------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements functions required for supporting intrinsic functions.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/Intrinsics.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IntrinsicsAArch64.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/IR/IntrinsicsARM.h"
#include "llvm/IR/IntrinsicsBPF.h"
#include "llvm/IR/IntrinsicsHexagon.h"
#include "llvm/IR/IntrinsicsLoongArch.h"
#include "llvm/IR/IntrinsicsMips.h"
#include "llvm/IR/IntrinsicsNVPTX.h"
#include "llvm/IR/IntrinsicsPowerPC.h"
#include "llvm/IR/IntrinsicsR600.h"
#include "llvm/IR/IntrinsicsRISCV.h"
#include "llvm/IR/IntrinsicsS390.h"
#include "llvm/IR/IntrinsicsVE.h"
#include "llvm/IR/IntrinsicsX86.h"
#include "llvm/IR/IntrinsicsXCore.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
using namespace llvm;
/// Table of string intrinsic names indexed by enum value.
static constexpr const char *const IntrinsicNameTable[] = {
"not_intrinsic",
#define GET_INTRINSIC_NAME_TABLE
#include "llvm/IR/IntrinsicImpl.inc"
#undef GET_INTRINSIC_NAME_TABLE
};
StringRef Intrinsic::getBaseName(ID id) {
assert(id < num_intrinsics && "Invalid intrinsic ID!");
return IntrinsicNameTable[id];
}
StringRef Intrinsic::getName(ID id) {
assert(id < num_intrinsics && "Invalid intrinsic ID!");
assert(!Intrinsic::isOverloaded(id) &&
"This version of getName does not support overloading");
return getBaseName(id);
}
/// Returns a stable mangling for the type specified for use in the name
/// mangling scheme used by 'any' types in intrinsic signatures. The mangling
/// of named types is simply their name. Manglings for unnamed types consist
/// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
/// combined with the mangling of their component types. A vararg function
/// type will have a suffix of 'vararg'. Since function types can contain
/// other function types, we close a function type mangling with suffix 'f'
/// which can't be confused with it's prefix. This ensures we don't have
/// collisions between two unrelated function types. Otherwise, you might
/// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.)
/// The HasUnnamedType boolean is set if an unnamed type was encountered,
/// indicating that extra care must be taken to ensure a unique name.
static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
std::string Result;
if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
Result += "p" + utostr(PTyp->getAddressSpace());
} else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
Result += "a" + utostr(ATyp->getNumElements()) +
getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
} else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
if (!STyp->isLiteral()) {
Result += "s_";
if (STyp->hasName())
Result += STyp->getName();
else
HasUnnamedType = true;
} else {
Result += "sl_";
for (auto *Elem : STyp->elements())
Result += getMangledTypeStr(Elem, HasUnnamedType);
}
// Ensure nested structs are distinguishable.
Result += "s";
} else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
for (size_t i = 0; i < FT->getNumParams(); i++)
Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
if (FT->isVarArg())
Result += "vararg";
// Ensure nested function types are distinguishable.
Result += "f";
} else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
ElementCount EC = VTy->getElementCount();
if (EC.isScalable())
Result += "nx";
Result += "v" + utostr(EC.getKnownMinValue()) +
getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
} else if (TargetExtType *TETy = dyn_cast<TargetExtType>(Ty)) {
Result += "t";
Result += TETy->getName();
for (Type *ParamTy : TETy->type_params())
Result += "_" + getMangledTypeStr(ParamTy, HasUnnamedType);
for (unsigned IntParam : TETy->int_params())
Result += "_" + utostr(IntParam);
// Ensure nested target extension types are distinguishable.
Result += "t";
} else if (Ty) {
switch (Ty->getTypeID()) {
default:
llvm_unreachable("Unhandled type");
case Type::VoidTyID:
Result += "isVoid";
break;
case Type::MetadataTyID:
Result += "Metadata";
break;
case Type::HalfTyID:
Result += "f16";
break;
case Type::BFloatTyID:
Result += "bf16";
break;
case Type::FloatTyID:
Result += "f32";
break;
case Type::DoubleTyID:
Result += "f64";
break;
case Type::X86_FP80TyID:
Result += "f80";
break;
case Type::FP128TyID:
Result += "f128";
break;
case Type::PPC_FP128TyID:
Result += "ppcf128";
break;
case Type::X86_AMXTyID:
Result += "x86amx";
break;
case Type::IntegerTyID:
Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
break;
}
}
return Result;
}
static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
Module *M, FunctionType *FT,
bool EarlyModuleCheck) {
assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
"This version of getName is for overloaded intrinsics only");
(void)EarlyModuleCheck;
assert((!EarlyModuleCheck || M ||
!any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
"Intrinsic overloading on pointer types need to provide a Module");
bool HasUnnamedType = false;
std::string Result(Intrinsic::getBaseName(Id));
for (Type *Ty : Tys)
Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
if (HasUnnamedType) {
assert(M && "unnamed types need a module");
if (!FT)
FT = Intrinsic::getType(M->getContext(), Id, Tys);
else
assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
"Provided FunctionType must match arguments");
return M->getUniqueIntrinsicName(Result, Id, FT);
}
return Result;
}
std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
FunctionType *FT) {
assert(M && "We need to have a Module");
return getIntrinsicNameImpl(Id, Tys, M, FT, true);
}
std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
}
/// IIT_Info - These are enumerators that describe the entries returned by the
/// getIntrinsicInfoTableEntries function.
///
/// Defined in Intrinsics.td.
enum IIT_Info {
#define GET_INTRINSIC_IITINFO
#include "llvm/IR/IntrinsicImpl.inc"
#undef GET_INTRINSIC_IITINFO
};
static void
DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
IIT_Info LastInfo,
SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
using namespace Intrinsic;
bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
IIT_Info Info = IIT_Info(Infos[NextElt++]);
unsigned StructElts = 2;
switch (Info) {
case IIT_Done:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
return;
case IIT_VARARG:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
return;
case IIT_MMX:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
return;
case IIT_AMX:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
return;
case IIT_TOKEN:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
return;
case IIT_METADATA:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
return;
case IIT_F16:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
return;
case IIT_BF16:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
return;
case IIT_F32:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
return;
case IIT_F64:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
return;
case IIT_F128:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
return;
case IIT_PPCF128:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0));
return;
case IIT_I1:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
return;
case IIT_I2:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2));
return;
case IIT_I4:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4));
return;
case IIT_AARCH64_SVCOUNT:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::AArch64Svcount, 0));
return;
case IIT_I8:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
return;
case IIT_I16:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 16));
return;
case IIT_I32:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
return;
case IIT_I64:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
return;
case IIT_I128:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
return;
case IIT_V1:
OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
DecodeIITType(NextElt, Infos, Info, OutputTable);
return;
case IIT_V2:
OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
DecodeIITType(NextElt, Infos, Info, OutputTable);
return;
case IIT_V3:
OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector));
DecodeIITType(NextElt, Infos, Info, OutputTable);
return;
case IIT_V4:
OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
DecodeIITType(NextElt, Infos, Info, OutputTable);
return;
case IIT_V6:
OutputTable.push_back(IITDescriptor::getVector(6, IsScalableVector));
DecodeIITType(NextElt, Infos, Info, OutputTable);
return;
case IIT_V8:
OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
DecodeIITType(NextElt, Infos, Info, OutputTable);
return;
case IIT_V10:
OutputTable.push_back(IITDescriptor::getVector(10, IsScalableVector));
DecodeIITType(NextElt, Infos, Info, OutputTable);
return;
case IIT_V16:
OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
DecodeIITType(NextElt, Infos, Info, OutputTable);
return;
case IIT_V32:
OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
DecodeIITType(NextElt, Infos, Info, OutputTable);
return;
case IIT_V64:
OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
DecodeIITType(NextElt, Infos, Info, OutputTable);
return;
case IIT_V128:
OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
DecodeIITType(NextElt, Infos, Info, OutputTable);
return;
case IIT_V256:
OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
DecodeIITType(NextElt, Infos, Info, OutputTable);
return;
case IIT_V512:
OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
DecodeIITType(NextElt, Infos, Info, OutputTable);
return;
case IIT_V1024:
OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
DecodeIITType(NextElt, Infos, Info, OutputTable);
return;
case IIT_EXTERNREF:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10));
return;
case IIT_FUNCREF:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20));
return;
case IIT_PTR:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
return;
case IIT_ANYPTR: // [ANYPTR addrspace]
OutputTable.push_back(
IITDescriptor::get(IITDescriptor::Pointer, Infos[NextElt++]));
return;
case IIT_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
return;
}
case IIT_EXTEND_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(
IITDescriptor::get(IITDescriptor::ExtendArgument, ArgInfo));
return;
}
case IIT_TRUNC_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(
IITDescriptor::get(IITDescriptor::TruncArgument, ArgInfo));
return;
}
case IIT_HALF_VEC_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(
IITDescriptor::get(IITDescriptor::HalfVecArgument, ArgInfo));
return;
}
case IIT_SAME_VEC_WIDTH_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(
IITDescriptor::get(IITDescriptor::SameVecWidthArgument, ArgInfo));
return;
}
case IIT_VEC_OF_ANYPTRS_TO_ELT: {
unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(
IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
return;
}
case IIT_EMPTYSTRUCT:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
return;
case IIT_STRUCT9:
++StructElts;
[[fallthrough]];
case IIT_STRUCT8:
++StructElts;
[[fallthrough]];
case IIT_STRUCT7:
++StructElts;
[[fallthrough]];
case IIT_STRUCT6:
++StructElts;
[[fallthrough]];
case IIT_STRUCT5:
++StructElts;
[[fallthrough]];
case IIT_STRUCT4:
++StructElts;
[[fallthrough]];
case IIT_STRUCT3:
++StructElts;
[[fallthrough]];
case IIT_STRUCT2: {
OutputTable.push_back(
IITDescriptor::get(IITDescriptor::Struct, StructElts));
for (unsigned i = 0; i != StructElts; ++i)
DecodeIITType(NextElt, Infos, Info, OutputTable);
return;
}
case IIT_SUBDIVIDE2_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(
IITDescriptor::get(IITDescriptor::Subdivide2Argument, ArgInfo));
return;
}
case IIT_SUBDIVIDE4_ARG: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(
IITDescriptor::get(IITDescriptor::Subdivide4Argument, ArgInfo));
return;
}
case IIT_VEC_ELEMENT: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(
IITDescriptor::get(IITDescriptor::VecElementArgument, ArgInfo));
return;
}
case IIT_SCALABLE_VEC: {
DecodeIITType(NextElt, Infos, Info, OutputTable);
return;
}
case IIT_VEC_OF_BITCASTS_TO_INT: {
unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
OutputTable.push_back(
IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, ArgInfo));
return;
}
}
llvm_unreachable("unhandled");
}
#define GET_INTRINSIC_GENERATOR_GLOBAL
#include "llvm/IR/IntrinsicImpl.inc"
#undef GET_INTRINSIC_GENERATOR_GLOBAL
void Intrinsic::getIntrinsicInfoTableEntries(
ID id, SmallVectorImpl<IITDescriptor> &T) {
static_assert(sizeof(IIT_Table[0]) == 2,
"Expect 16-bit entries in IIT_Table");
// Check to see if the intrinsic's type was expressible by the table.
uint16_t TableVal = IIT_Table[id - 1];
// Decode the TableVal into an array of IITValues.
SmallVector<unsigned char> IITValues;
ArrayRef<unsigned char> IITEntries;
unsigned NextElt = 0;
if (TableVal >> 15) {
// This is an offset into the IIT_LongEncodingTable.
IITEntries = IIT_LongEncodingTable;
// Strip sentinel bit.
NextElt = TableVal & 0x7fff;
} else {
// If the entry was encoded into a single word in the table itself, decode
// it from an array of nibbles to an array of bytes.
do {
IITValues.push_back(TableVal & 0xF);
TableVal >>= 4;
} while (TableVal);
IITEntries = IITValues;
NextElt = 0;
}
// Okay, decode the table into the output vector of IITDescriptors.
DecodeIITType(NextElt, IITEntries, IIT_Done, T);
while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
DecodeIITType(NextElt, IITEntries, IIT_Done, T);
}
static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
ArrayRef<Type *> Tys, LLVMContext &Context) {
using namespace Intrinsic;
IITDescriptor D = Infos.front();
Infos = Infos.slice(1);
switch (D.Kind) {
case IITDescriptor::Void:
return Type::getVoidTy(Context);
case IITDescriptor::VarArg:
return Type::getVoidTy(Context);
case IITDescriptor::MMX:
return llvm::FixedVectorType::get(llvm::IntegerType::get(Context, 64), 1);
case IITDescriptor::AMX:
return Type::getX86_AMXTy(Context);
case IITDescriptor::Token:
return Type::getTokenTy(Context);
case IITDescriptor::Metadata:
return Type::getMetadataTy(Context);
case IITDescriptor::Half:
return Type::getHalfTy(Context);
case IITDescriptor::BFloat:
return Type::getBFloatTy(Context);
case IITDescriptor::Float:
return Type::getFloatTy(Context);
case IITDescriptor::Double:
return Type::getDoubleTy(Context);
case IITDescriptor::Quad:
return Type::getFP128Ty(Context);
case IITDescriptor::PPCQuad:
return Type::getPPC_FP128Ty(Context);
case IITDescriptor::AArch64Svcount:
return TargetExtType::get(Context, "aarch64.svcount");
case IITDescriptor::Integer:
return IntegerType::get(Context, D.Integer_Width);
case IITDescriptor::Vector:
return VectorType::get(DecodeFixedType(Infos, Tys, Context),
D.Vector_Width);
case IITDescriptor::Pointer:
return PointerType::get(Context, D.Pointer_AddressSpace);
case IITDescriptor::Struct: {
SmallVector<Type *, 8> Elts;
for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
Elts.push_back(DecodeFixedType(Infos, Tys, Context));
return StructType::get(Context, Elts);
}
case IITDescriptor::Argument:
return Tys[D.getArgumentNumber()];
case IITDescriptor::ExtendArgument: {
Type *Ty = Tys[D.getArgumentNumber()];
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
return VectorType::getExtendedElementVectorType(VTy);
return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
}
case IITDescriptor::TruncArgument: {
Type *Ty = Tys[D.getArgumentNumber()];
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
return VectorType::getTruncatedElementVectorType(VTy);
IntegerType *ITy = cast<IntegerType>(Ty);
assert(ITy->getBitWidth() % 2 == 0);
return IntegerType::get(Context, ITy->getBitWidth() / 2);
}
case IITDescriptor::Subdivide2Argument:
case IITDescriptor::Subdivide4Argument: {
Type *Ty = Tys[D.getArgumentNumber()];
VectorType *VTy = dyn_cast<VectorType>(Ty);
assert(VTy && "Expected an argument of Vector Type");
int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
return VectorType::getSubdividedVectorType(VTy, SubDivs);
}
case IITDescriptor::HalfVecArgument:
return VectorType::getHalfElementsVectorType(
cast<VectorType>(Tys[D.getArgumentNumber()]));
case IITDescriptor::SameVecWidthArgument: {
Type *EltTy = DecodeFixedType(Infos, Tys, Context);
Type *Ty = Tys[D.getArgumentNumber()];
if (auto *VTy = dyn_cast<VectorType>(Ty))
return VectorType::get(EltTy, VTy->getElementCount());
return EltTy;
}
case IITDescriptor::VecElementArgument: {
Type *Ty = Tys[D.getArgumentNumber()];
if (VectorType *VTy = dyn_cast<VectorType>(Ty))
return VTy->getElementType();
llvm_unreachable("Expected an argument of Vector Type");
}
case IITDescriptor::VecOfBitcastsToInt: {
Type *Ty = Tys[D.getArgumentNumber()];
VectorType *VTy = dyn_cast<VectorType>(Ty);
assert(VTy && "Expected an argument of Vector Type");
return VectorType::getInteger(VTy);
}
case IITDescriptor::VecOfAnyPtrsToElt:
// Return the overloaded type (which determines the pointers address space)
return Tys[D.getOverloadArgNumber()];
}
llvm_unreachable("unhandled");
}
FunctionType *Intrinsic::getType(LLVMContext &Context, ID id,
ArrayRef<Type *> Tys) {
SmallVector<IITDescriptor, 8> Table;
getIntrinsicInfoTableEntries(id, Table);
ArrayRef<IITDescriptor> TableRef = Table;
Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
SmallVector<Type *, 8> ArgTys;
while (!TableRef.empty())
ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
// DecodeFixedType returns Void for IITDescriptor::Void and
// IITDescriptor::VarArg If we see void type as the type of the last argument,
// it is vararg intrinsic
if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
ArgTys.pop_back();
return FunctionType::get(ResultTy, ArgTys, true);
}
return FunctionType::get(ResultTy, ArgTys, false);
}
bool Intrinsic::isOverloaded(ID id) {
#define GET_INTRINSIC_OVERLOAD_TABLE
#include "llvm/IR/IntrinsicImpl.inc"
#undef GET_INTRINSIC_OVERLOAD_TABLE
}
/// Table of per-target intrinsic name tables.
#define GET_INTRINSIC_TARGET_DATA
#include "llvm/IR/IntrinsicImpl.inc"
#undef GET_INTRINSIC_TARGET_DATA
bool Intrinsic::isTargetIntrinsic(Intrinsic::ID IID) {
return IID > TargetInfos[0].Count;
}
int llvm::Intrinsic::lookupLLVMIntrinsicByName(ArrayRef<const char *> NameTable,
StringRef Name,
StringRef Target) {
assert(Name.starts_with("llvm.") && "Unexpected intrinsic prefix");
assert(Name.drop_front(5).starts_with(Target) && "Unexpected target");
// Do successive binary searches of the dotted name components. For
// "llvm.gc.experimental.statepoint.p1i8.p1i32", we will find the range of
// intrinsics starting with "llvm.gc", then "llvm.gc.experimental", then
// "llvm.gc.experimental.statepoint", and then we will stop as the range is
// size 1. During the search, we can skip the prefix that we already know is
// identical. By using strncmp we consider names with differing suffixes to
// be part of the equal range.
size_t CmpEnd = 4; // Skip the "llvm" component.
if (!Target.empty())
CmpEnd += 1 + Target.size(); // skip the .target component.
const char *const *Low = NameTable.begin();
const char *const *High = NameTable.end();
const char *const *LastLow = Low;
while (CmpEnd < Name.size() && High - Low > 0) {
size_t CmpStart = CmpEnd;
CmpEnd = Name.find('.', CmpStart + 1);
CmpEnd = CmpEnd == StringRef::npos ? Name.size() : CmpEnd;
auto Cmp = [CmpStart, CmpEnd](const char *LHS, const char *RHS) {
return strncmp(LHS + CmpStart, RHS + CmpStart, CmpEnd - CmpStart) < 0;
};
LastLow = Low;
std::tie(Low, High) = std::equal_range(Low, High, Name.data(), Cmp);
}
if (High - Low > 0)
LastLow = Low;
if (LastLow == NameTable.end())
return -1;
StringRef NameFound = *LastLow;
if (Name == NameFound ||
(Name.starts_with(NameFound) && Name[NameFound.size()] == '.'))
return LastLow - NameTable.begin();
return -1;
}
/// Find the segment of \c IntrinsicNameTable for intrinsics with the same
/// target as \c Name, or the generic table if \c Name is not target specific.
///
/// Returns the relevant slice of \c IntrinsicNameTable and the target name.
static std::pair<ArrayRef<const char *>, StringRef>
findTargetSubtable(StringRef Name) {
assert(Name.starts_with("llvm."));
ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
// Drop "llvm." and take the first dotted component. That will be the target
// if this is target specific.
StringRef Target = Name.drop_front(5).split('.').first;
auto It = partition_point(
Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
// We've either found the target or just fall back to the generic set, which
// is always first.
const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
return {ArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count), TI.Name};
}
/// This does the actual lookup of an intrinsic ID which matches the given
/// function name.
Intrinsic::ID Intrinsic::lookupIntrinsicID(StringRef Name) {
auto [NameTable, Target] = findTargetSubtable(Name);
int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name, Target);
if (Idx == -1)
return Intrinsic::not_intrinsic;
// Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
// an index into a sub-table.
int Adjust = NameTable.data() - IntrinsicNameTable;
Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
// If the intrinsic is not overloaded, require an exact match. If it is
// overloaded, require either exact or prefix match.
const auto MatchSize = strlen(NameTable[Idx]);
assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
bool IsExactMatch = Name.size() == MatchSize;
return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
: Intrinsic::not_intrinsic;
}
/// This defines the "Intrinsic::getAttributes(ID id)" method.
#define GET_INTRINSIC_ATTRIBUTES
#include "llvm/IR/IntrinsicImpl.inc"
#undef GET_INTRINSIC_ATTRIBUTES
Function *Intrinsic::getOrInsertDeclaration(Module *M, ID id,
ArrayRef<Type *> Tys) {
// There can never be multiple globals with the same name of different types,
// because intrinsics must be a specific type.
auto *FT = getType(M->getContext(), id, Tys);
return cast<Function>(
M->getOrInsertFunction(
Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT)
.getCallee());
}
Function *Intrinsic::getDeclarationIfExists(const Module *M, ID id) {
return M->getFunction(getName(id));
}
Function *Intrinsic::getDeclarationIfExists(Module *M, ID id,
ArrayRef<Type *> Tys,
FunctionType *FT) {
return M->getFunction(getName(id, Tys, M, FT));
}
// This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method.
#define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
#include "llvm/IR/IntrinsicImpl.inc"
#undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
// This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
#define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
#include "llvm/IR/IntrinsicImpl.inc"
#undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
bool Intrinsic::isConstrainedFPIntrinsic(ID QID) {
switch (QID) {
#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
case Intrinsic::INTRINSIC:
#include "llvm/IR/ConstrainedOps.def"
#undef INSTRUCTION
return true;
default:
return false;
}
}
bool Intrinsic::hasConstrainedFPRoundingModeOperand(Intrinsic::ID QID) {
switch (QID) {
#define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
case Intrinsic::INTRINSIC: \
return ROUND_MODE == 1;
#include "llvm/IR/ConstrainedOps.def"
#undef INSTRUCTION
default:
return false;
}
}
using DeferredIntrinsicMatchPair =
std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
static bool
matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
SmallVectorImpl<Type *> &ArgTys,
SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
bool IsDeferredCheck) {
using namespace Intrinsic;
// If we ran out of descriptors, there are too many arguments.
if (Infos.empty())
return true;
// Do this before slicing off the 'front' part
auto InfosRef = Infos;
auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
DeferredChecks.emplace_back(T, InfosRef);
return false;
};
IITDescriptor D = Infos.front();
Infos = Infos.slice(1);
switch (D.Kind) {
case IITDescriptor::Void:
return !Ty->isVoidTy();
case IITDescriptor::VarArg:
return true;
case IITDescriptor::MMX: {
FixedVectorType *VT = dyn_cast<FixedVectorType>(Ty);
return !VT || VT->getNumElements() != 1 ||
!VT->getElementType()->isIntegerTy(64);
}
case IITDescriptor::AMX:
return !Ty->isX86_AMXTy();
case IITDescriptor::Token:
return !Ty->isTokenTy();
case IITDescriptor::Metadata:
return !Ty->isMetadataTy();
case IITDescriptor::Half:
return !Ty->isHalfTy();
case IITDescriptor::BFloat:
return !Ty->isBFloatTy();
case IITDescriptor::Float:
return !Ty->isFloatTy();
case IITDescriptor::Double:
return !Ty->isDoubleTy();
case IITDescriptor::Quad:
return !Ty->isFP128Ty();
case IITDescriptor::PPCQuad:
return !Ty->isPPC_FP128Ty();
case IITDescriptor::Integer:
return !Ty->isIntegerTy(D.Integer_Width);
case IITDescriptor::AArch64Svcount:
return !isa<TargetExtType>(Ty) ||
cast<TargetExtType>(Ty)->getName() != "aarch64.svcount";
case IITDescriptor::Vector: {
VectorType *VT = dyn_cast<VectorType>(Ty);
return !VT || VT->getElementCount() != D.Vector_Width ||
matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
DeferredChecks, IsDeferredCheck);
}
case IITDescriptor::Pointer: {
PointerType *PT = dyn_cast<PointerType>(Ty);
return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace;
}
case IITDescriptor::Struct: {
StructType *ST = dyn_cast<StructType>(Ty);
if (!ST || !ST->isLiteral() || ST->isPacked() ||
ST->getNumElements() != D.Struct_NumElements)
return true;
for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
DeferredChecks, IsDeferredCheck))
return true;
return false;
}
case IITDescriptor::Argument:
// If this is the second occurrence of an argument,
// verify that the later instance matches the previous instance.
if (D.getArgumentNumber() < ArgTys.size())
return Ty != ArgTys[D.getArgumentNumber()];
if (D.getArgumentNumber() > ArgTys.size() ||
D.getArgumentKind() == IITDescriptor::AK_MatchType)
return IsDeferredCheck || DeferCheck(Ty);
assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
"Table consistency error");
ArgTys.push_back(Ty);
switch (D.getArgumentKind()) {
case IITDescriptor::AK_Any:
return false; // Success
case IITDescriptor::AK_AnyInteger:
return !Ty->isIntOrIntVectorTy();
case IITDescriptor::AK_AnyFloat:
return !Ty->isFPOrFPVectorTy();
case IITDescriptor::AK_AnyVector:
return !isa<VectorType>(Ty);
case IITDescriptor::AK_AnyPointer:
return !isa<PointerType>(Ty);
default:
break;
}
llvm_unreachable("all argument kinds not covered");
case IITDescriptor::ExtendArgument: {
// If this is a forward reference, defer the check for later.
if (D.getArgumentNumber() >= ArgTys.size())
return IsDeferredCheck || DeferCheck(Ty);
Type *NewTy = ArgTys[D.getArgumentNumber()];
if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
NewTy = VectorType::getExtendedElementVectorType(VTy);
else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
else
return true;
return Ty != NewTy;
}
case IITDescriptor::TruncArgument: {
// If this is a forward reference, defer the check for later.
if (D.getArgumentNumber() >= ArgTys.size())
return IsDeferredCheck || DeferCheck(Ty);
Type *NewTy = ArgTys[D.getArgumentNumber()];
if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
NewTy = VectorType::getTruncatedElementVectorType(VTy);
else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
else
return true;
return Ty != NewTy;
}
case IITDescriptor::HalfVecArgument:
// If this is a forward reference, defer the check for later.
if (D.getArgumentNumber() >= ArgTys.size())
return IsDeferredCheck || DeferCheck(Ty);
return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
VectorType::getHalfElementsVectorType(
cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
case IITDescriptor::SameVecWidthArgument: {
if (D.getArgumentNumber() >= ArgTys.size()) {
// Defer check and subsequent check for the vector element type.
Infos = Infos.slice(1);
return IsDeferredCheck || DeferCheck(Ty);
}
auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
auto *ThisArgType = dyn_cast<VectorType>(Ty);
// Both must be vectors of the same number of elements or neither.
if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
return true;
Type *EltTy = Ty;
if (ThisArgType) {
if (ReferenceType->getElementCount() != ThisArgType->getElementCount())
return true;
EltTy = ThisArgType->getElementType();
}
return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
IsDeferredCheck);
}
case IITDescriptor::VecOfAnyPtrsToElt: {
unsigned RefArgNumber = D.getRefArgNumber();
if (RefArgNumber >= ArgTys.size()) {
if (IsDeferredCheck)
return true;
// If forward referencing, already add the pointer-vector type and
// defer the checks for later.
ArgTys.push_back(Ty);
return DeferCheck(Ty);
}
if (!IsDeferredCheck) {
assert(D.getOverloadArgNumber() == ArgTys.size() &&
"Table consistency error");
ArgTys.push_back(Ty);
}
// Verify the overloaded type "matches" the Ref type.
// i.e. Ty is a vector with the same width as Ref.
// Composed of pointers to the same element type as Ref.
auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
if (!ThisArgVecTy || !ReferenceType ||
(ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
return true;
return !ThisArgVecTy->getElementType()->isPointerTy();
}
case IITDescriptor::VecElementArgument: {
if (D.getArgumentNumber() >= ArgTys.size())
return IsDeferredCheck ? true : DeferCheck(Ty);
auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
return !ReferenceType || Ty != ReferenceType->getElementType();
}
case IITDescriptor::Subdivide2Argument:
case IITDescriptor::Subdivide4Argument: {
// If this is a forward reference, defer the check for later.
if (D.getArgumentNumber() >= ArgTys.size())
return IsDeferredCheck || DeferCheck(Ty);
Type *NewTy = ArgTys[D.getArgumentNumber()];
if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
return Ty != NewTy;
}
return true;
}
case IITDescriptor::VecOfBitcastsToInt: {
if (D.getArgumentNumber() >= ArgTys.size())
return IsDeferredCheck || DeferCheck(Ty);
auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
if (!ThisArgVecTy || !ReferenceType)
return true;
return ThisArgVecTy != VectorType::getInteger(ReferenceType);
}
}
llvm_unreachable("unhandled");
}
Intrinsic::MatchIntrinsicTypesResult
Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
ArrayRef<Intrinsic::IITDescriptor> &Infos,
SmallVectorImpl<Type *> &ArgTys) {
SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
false))
return MatchIntrinsicTypes_NoMatchRet;
unsigned NumDeferredReturnChecks = DeferredChecks.size();
for (auto *Ty : FTy->params())
if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
return MatchIntrinsicTypes_NoMatchArg;
for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
true))
return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
: MatchIntrinsicTypes_NoMatchArg;
}
return MatchIntrinsicTypes_Match;
}
bool Intrinsic::matchIntrinsicVarArg(
bool isVarArg, ArrayRef<Intrinsic::IITDescriptor> &Infos) {
// If there are no descriptors left, then it can't be a vararg.
if (Infos.empty())
return isVarArg;
// There should be only one descriptor remaining at this point.
if (Infos.size() != 1)
return true;
// Check and verify the descriptor.
IITDescriptor D = Infos.front();
Infos = Infos.slice(1);
if (D.Kind == IITDescriptor::VarArg)
return !isVarArg;
return true;
}
bool Intrinsic::getIntrinsicSignature(Intrinsic::ID ID, FunctionType *FT,
SmallVectorImpl<Type *> &ArgTys) {
if (!ID)
return false;
SmallVector<Intrinsic::IITDescriptor, 8> Table;
getIntrinsicInfoTableEntries(ID, Table);
ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
if (Intrinsic::matchIntrinsicSignature(FT, TableRef, ArgTys) !=
Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
return false;
}
if (Intrinsic::matchIntrinsicVarArg(FT->isVarArg(), TableRef))
return false;
return true;
}
bool Intrinsic::getIntrinsicSignature(Function *F,
SmallVectorImpl<Type *> &ArgTys) {
return getIntrinsicSignature(F->getIntrinsicID(), F->getFunctionType(),
ArgTys);
}
std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
SmallVector<Type *, 4> ArgTys;
if (!getIntrinsicSignature(F, ArgTys))
return std::nullopt;
Intrinsic::ID ID = F->getIntrinsicID();
StringRef Name = F->getName();
std::string WantedName =
Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType());
if (Name == WantedName)
return std::nullopt;
Function *NewDecl = [&] {
if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) {
if (auto *ExistingF = dyn_cast<Function>(ExistingGV))
if (ExistingF->getFunctionType() == F->getFunctionType())
return ExistingF;
// The name already exists, but is not a function or has the wrong
// prototype. Make place for the new one by renaming the old version.
// Either this old version will be removed later on or the module is
// invalid and we'll get an error.
ExistingGV->setName(WantedName + ".renamed");
}
return Intrinsic::getOrInsertDeclaration(F->getParent(), ID, ArgTys);
}();
NewDecl->setCallingConv(F->getCallingConv());
assert(NewDecl->getFunctionType() == F->getFunctionType() &&
"Shouldn't change the signature");
return NewDecl;
}