llvm-project/clang/lib/CodeGen/CGBuiltin.cpp
Chris Lattner dc04654697 reimplement __sync_* builtins to be variadic and to follow the same
semantic rules that gcc and icc use.  This implements the variadic
and concrete versions as builtins and has sema do the 
disambiguation.  There are probably a bunch of details to finish up
but this seems like a large monotonic step forward :)

llvm-svn: 71212
2009-05-08 06:58:22 +00:00

1121 lines
45 KiB
C++

//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This contains code to emit Builtin calls as LLVM code.
//
//===----------------------------------------------------------------------===//
#include "CodeGenFunction.h"
#include "CodeGenModule.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/AST/APValue.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Decl.h"
#include "clang/AST/TargetBuiltins.h"
#include "llvm/Intrinsics.h"
using namespace clang;
using namespace CodeGen;
using namespace llvm;
/// Utility to insert an atomic instruction based on Instrinsic::ID
/// and the expression node.
static RValue EmitBinaryAtomic(CodeGenFunction& CGF,
Intrinsic::ID Id, const CallExpr *E) {
const llvm::Type *ResType[2];
ResType[0] = CGF.ConvertType(E->getType());
ResType[1] = CGF.ConvertType(E->getArg(0)->getType());
Value *AtomF = CGF.CGM.getIntrinsic(Id, ResType, 2);
return RValue::get(CGF.Builder.CreateCall2(AtomF,
CGF.EmitScalarExpr(E->getArg(0)),
CGF.EmitScalarExpr(E->getArg(1))));
}
/// Utility to insert an atomic instruction based Instrinsic::ID and
// the expression node, where the return value is the result of the
// operation.
static RValue EmitBinaryAtomicPost(CodeGenFunction& CGF,
Intrinsic::ID Id, const CallExpr *E,
Instruction::BinaryOps Op) {
const llvm::Type *ResType[2];
ResType[0] = CGF.ConvertType(E->getType());
ResType[1] = CGF.ConvertType(E->getArg(0)->getType());
Value *AtomF = CGF.CGM.getIntrinsic(Id, ResType, 2);
Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
Value *Operand = CGF.EmitScalarExpr(E->getArg(1));
Value *Result = CGF.Builder.CreateCall2(AtomF, Ptr, Operand);
return RValue::get(CGF.Builder.CreateBinOp(Op, Result, Operand));
}
RValue CodeGenFunction::EmitBuiltinExpr(const FunctionDecl *FD,
unsigned BuiltinID, const CallExpr *E) {
// See if we can constant fold this builtin. If so, don't emit it at all.
Expr::EvalResult Result;
if (E->Evaluate(Result, CGM.getContext())) {
if (Result.Val.isInt())
return RValue::get(llvm::ConstantInt::get(Result.Val.getInt()));
else if (Result.Val.isFloat())
return RValue::get(llvm::ConstantFP::get(Result.Val.getFloat()));
}
switch (BuiltinID) {
default: break; // Handle intrinsics and libm functions below.
case Builtin::BI__builtin___CFStringMakeConstantString:
return RValue::get(CGM.EmitConstantExpr(E, E->getType(), 0));
case Builtin::BI__builtin_stdarg_start:
case Builtin::BI__builtin_va_start:
case Builtin::BI__builtin_va_end: {
Value *ArgValue = EmitVAListRef(E->getArg(0));
const llvm::Type *DestType =
llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
if (ArgValue->getType() != DestType)
ArgValue = Builder.CreateBitCast(ArgValue, DestType,
ArgValue->getNameStart());
Intrinsic::ID inst = (BuiltinID == Builtin::BI__builtin_va_end) ?
Intrinsic::vaend : Intrinsic::vastart;
return RValue::get(Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue));
}
case Builtin::BI__builtin_va_copy: {
Value *DstPtr = EmitVAListRef(E->getArg(0));
Value *SrcPtr = EmitVAListRef(E->getArg(1));
const llvm::Type *Type =
llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
DstPtr = Builder.CreateBitCast(DstPtr, Type);
SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
return RValue::get(Builder.CreateCall2(CGM.getIntrinsic(Intrinsic::vacopy),
DstPtr, SrcPtr));
}
case Builtin::BI__builtin_abs: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
Value *NegOp = Builder.CreateNeg(ArgValue, "neg");
Value *CmpResult =
Builder.CreateICmpSGE(ArgValue, Constant::getNullValue(ArgValue->getType()),
"abscond");
Value *Result =
Builder.CreateSelect(CmpResult, ArgValue, NegOp, "abs");
return RValue::get(Result);
}
case Builtin::BI__builtin_ctz:
case Builtin::BI__builtin_ctzl:
case Builtin::BI__builtin_ctzll: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
const llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::cttz, &ArgType, 1);
const llvm::Type *ResultType = ConvertType(E->getType());
Value *Result = Builder.CreateCall(F, ArgValue, "tmp");
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, "cast");
return RValue::get(Result);
}
case Builtin::BI__builtin_clz:
case Builtin::BI__builtin_clzl:
case Builtin::BI__builtin_clzll: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
const llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::ctlz, &ArgType, 1);
const llvm::Type *ResultType = ConvertType(E->getType());
Value *Result = Builder.CreateCall(F, ArgValue, "tmp");
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, "cast");
return RValue::get(Result);
}
case Builtin::BI__builtin_ffs:
case Builtin::BI__builtin_ffsl:
case Builtin::BI__builtin_ffsll: {
// ffs(x) -> x ? cttz(x) + 1 : 0
Value *ArgValue = EmitScalarExpr(E->getArg(0));
const llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::cttz, &ArgType, 1);
const llvm::Type *ResultType = ConvertType(E->getType());
Value *Tmp = Builder.CreateAdd(Builder.CreateCall(F, ArgValue, "tmp"),
ConstantInt::get(ArgType, 1), "tmp");
Value *Zero = llvm::Constant::getNullValue(ArgType);
Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, "cast");
return RValue::get(Result);
}
case Builtin::BI__builtin_parity:
case Builtin::BI__builtin_parityl:
case Builtin::BI__builtin_parityll: {
// parity(x) -> ctpop(x) & 1
Value *ArgValue = EmitScalarExpr(E->getArg(0));
const llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::ctpop, &ArgType, 1);
const llvm::Type *ResultType = ConvertType(E->getType());
Value *Tmp = Builder.CreateCall(F, ArgValue, "tmp");
Value *Result = Builder.CreateAnd(Tmp, ConstantInt::get(ArgType, 1),
"tmp");
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, "cast");
return RValue::get(Result);
}
case Builtin::BI__builtin_popcount:
case Builtin::BI__builtin_popcountl:
case Builtin::BI__builtin_popcountll: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
const llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::ctpop, &ArgType, 1);
const llvm::Type *ResultType = ConvertType(E->getType());
Value *Result = Builder.CreateCall(F, ArgValue, "tmp");
if (Result->getType() != ResultType)
Result = Builder.CreateIntCast(Result, ResultType, "cast");
return RValue::get(Result);
}
case Builtin::BI__builtin_expect:
// FIXME: pass expect through to LLVM
return RValue::get(EmitScalarExpr(E->getArg(0)));
case Builtin::BI__builtin_bswap32:
case Builtin::BI__builtin_bswap64: {
Value *ArgValue = EmitScalarExpr(E->getArg(0));
const llvm::Type *ArgType = ArgValue->getType();
Value *F = CGM.getIntrinsic(Intrinsic::bswap, &ArgType, 1);
return RValue::get(Builder.CreateCall(F, ArgValue, "tmp"));
}
case Builtin::BI__builtin_object_size: {
// FIXME: Implement. For now we just always fail and pretend we
// don't know the object size.
llvm::APSInt TypeArg = E->getArg(1)->EvaluateAsInt(CGM.getContext());
const llvm::Type *ResType = ConvertType(E->getType());
// bool UseSubObject = TypeArg.getZExtValue() & 1;
bool UseMinimum = TypeArg.getZExtValue() & 2;
return RValue::get(ConstantInt::get(ResType, UseMinimum ? 0 : -1LL));
}
case Builtin::BI__builtin_prefetch: {
Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
// FIXME: Technically these constants should of type 'int', yes?
RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
ConstantInt::get(llvm::Type::Int32Ty, 0);
Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
ConstantInt::get(llvm::Type::Int32Ty, 3);
Value *F = CGM.getIntrinsic(Intrinsic::prefetch, 0, 0);
return RValue::get(Builder.CreateCall3(F, Address, RW, Locality));
}
case Builtin::BI__builtin_trap: {
Value *F = CGM.getIntrinsic(Intrinsic::trap, 0, 0);
return RValue::get(Builder.CreateCall(F));
}
case Builtin::BI__builtin_powi:
case Builtin::BI__builtin_powif:
case Builtin::BI__builtin_powil: {
Value *Base = EmitScalarExpr(E->getArg(0));
Value *Exponent = EmitScalarExpr(E->getArg(1));
const llvm::Type *ArgType = Base->getType();
Value *F = CGM.getIntrinsic(Intrinsic::powi, &ArgType, 1);
return RValue::get(Builder.CreateCall2(F, Base, Exponent, "tmp"));
}
case Builtin::BI__builtin_isgreater:
case Builtin::BI__builtin_isgreaterequal:
case Builtin::BI__builtin_isless:
case Builtin::BI__builtin_islessequal:
case Builtin::BI__builtin_islessgreater:
case Builtin::BI__builtin_isunordered: {
// Ordered comparisons: we know the arguments to these are matching scalar
// floating point values.
Value *LHS = EmitScalarExpr(E->getArg(0));
Value *RHS = EmitScalarExpr(E->getArg(1));
switch (BuiltinID) {
default: assert(0 && "Unknown ordered comparison");
case Builtin::BI__builtin_isgreater:
LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_isgreaterequal:
LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_isless:
LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_islessequal:
LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_islessgreater:
LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
break;
case Builtin::BI__builtin_isunordered:
LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
break;
}
// ZExt bool to int type.
return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType()),
"tmp"));
}
case Builtin::BI__builtin_alloca: {
// FIXME: LLVM IR Should allow alloca with an i64 size!
Value *Size = EmitScalarExpr(E->getArg(0));
Size = Builder.CreateIntCast(Size, llvm::Type::Int32Ty, false, "tmp");
return RValue::get(Builder.CreateAlloca(llvm::Type::Int8Ty, Size, "tmp"));
}
case Builtin::BI__builtin_bzero: {
Value *Address = EmitScalarExpr(E->getArg(0));
Builder.CreateCall4(CGM.getMemSetFn(), Address,
llvm::ConstantInt::get(llvm::Type::Int8Ty, 0),
EmitScalarExpr(E->getArg(1)),
llvm::ConstantInt::get(llvm::Type::Int32Ty, 1));
return RValue::get(Address);
}
case Builtin::BI__builtin_memcpy: {
Value *Address = EmitScalarExpr(E->getArg(0));
Builder.CreateCall4(CGM.getMemCpyFn(), Address,
EmitScalarExpr(E->getArg(1)),
EmitScalarExpr(E->getArg(2)),
llvm::ConstantInt::get(llvm::Type::Int32Ty, 1));
return RValue::get(Address);
}
case Builtin::BI__builtin_memmove: {
Value *Address = EmitScalarExpr(E->getArg(0));
Builder.CreateCall4(CGM.getMemMoveFn(), Address,
EmitScalarExpr(E->getArg(1)),
EmitScalarExpr(E->getArg(2)),
llvm::ConstantInt::get(llvm::Type::Int32Ty, 1));
return RValue::get(Address);
}
case Builtin::BI__builtin_memset: {
Value *Address = EmitScalarExpr(E->getArg(0));
Builder.CreateCall4(CGM.getMemSetFn(), Address,
Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
llvm::Type::Int8Ty),
EmitScalarExpr(E->getArg(2)),
llvm::ConstantInt::get(llvm::Type::Int32Ty, 1));
return RValue::get(Address);
}
case Builtin::BI__builtin_return_address: {
Value *F = CGM.getIntrinsic(Intrinsic::returnaddress, 0, 0);
return RValue::get(Builder.CreateCall(F, EmitScalarExpr(E->getArg(0))));
}
case Builtin::BI__builtin_frame_address: {
Value *F = CGM.getIntrinsic(Intrinsic::frameaddress, 0, 0);
return RValue::get(Builder.CreateCall(F, EmitScalarExpr(E->getArg(0))));
}
case Builtin::BI__builtin_extract_return_addr: {
// FIXME: There should be a target hook for this
return RValue::get(EmitScalarExpr(E->getArg(0)));
}
case Builtin::BI__sync_fetch_and_add:
case Builtin::BI__sync_fetch_and_sub:
case Builtin::BI__sync_fetch_and_or:
case Builtin::BI__sync_fetch_and_and:
case Builtin::BI__sync_fetch_and_xor:
case Builtin::BI__sync_add_and_fetch:
case Builtin::BI__sync_sub_and_fetch:
case Builtin::BI__sync_and_and_fetch:
case Builtin::BI__sync_or_and_fetch:
case Builtin::BI__sync_xor_and_fetch:
case Builtin::BI__sync_val_compare_and_swap:
case Builtin::BI__sync_bool_compare_and_swap:
case Builtin::BI__sync_lock_test_and_set:
case Builtin::BI__sync_lock_release:
assert(0 && "Shouldn't make it through sema");
case Builtin::BI__sync_fetch_and_add_1:
case Builtin::BI__sync_fetch_and_add_2:
case Builtin::BI__sync_fetch_and_add_4:
case Builtin::BI__sync_fetch_and_add_8:
case Builtin::BI__sync_fetch_and_add_16:
return EmitBinaryAtomic(*this, Intrinsic::atomic_load_add, E);
case Builtin::BI__sync_fetch_and_sub_1:
case Builtin::BI__sync_fetch_and_sub_2:
case Builtin::BI__sync_fetch_and_sub_4:
case Builtin::BI__sync_fetch_and_sub_8:
case Builtin::BI__sync_fetch_and_sub_16:
return EmitBinaryAtomic(*this, Intrinsic::atomic_load_sub, E);
case Builtin::BI__sync_fetch_and_or_1:
case Builtin::BI__sync_fetch_and_or_2:
case Builtin::BI__sync_fetch_and_or_4:
case Builtin::BI__sync_fetch_and_or_8:
case Builtin::BI__sync_fetch_and_or_16:
return EmitBinaryAtomic(*this, Intrinsic::atomic_load_or, E);
case Builtin::BI__sync_fetch_and_and_1:
case Builtin::BI__sync_fetch_and_and_2:
case Builtin::BI__sync_fetch_and_and_4:
case Builtin::BI__sync_fetch_and_and_8:
case Builtin::BI__sync_fetch_and_and_16:
return EmitBinaryAtomic(*this, Intrinsic::atomic_load_and, E);
case Builtin::BI__sync_fetch_and_xor_1:
case Builtin::BI__sync_fetch_and_xor_2:
case Builtin::BI__sync_fetch_and_xor_4:
case Builtin::BI__sync_fetch_and_xor_8:
case Builtin::BI__sync_fetch_and_xor_16:
return EmitBinaryAtomic(*this, Intrinsic::atomic_load_xor, E);
// Clang extensions: not overloaded yet.
case Builtin::BI__sync_fetch_and_min:
return EmitBinaryAtomic(*this, Intrinsic::atomic_load_min, E);
case Builtin::BI__sync_fetch_and_max:
return EmitBinaryAtomic(*this, Intrinsic::atomic_load_max, E);
case Builtin::BI__sync_fetch_and_umin:
return EmitBinaryAtomic(*this, Intrinsic::atomic_load_umin, E);
case Builtin::BI__sync_fetch_and_umax:
return EmitBinaryAtomic(*this, Intrinsic::atomic_load_umax, E);
case Builtin::BI__sync_add_and_fetch_1:
case Builtin::BI__sync_add_and_fetch_2:
case Builtin::BI__sync_add_and_fetch_4:
case Builtin::BI__sync_add_and_fetch_8:
case Builtin::BI__sync_add_and_fetch_16:
return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_add, E,
llvm::Instruction::Add);
case Builtin::BI__sync_sub_and_fetch_1:
case Builtin::BI__sync_sub_and_fetch_2:
case Builtin::BI__sync_sub_and_fetch_4:
case Builtin::BI__sync_sub_and_fetch_8:
case Builtin::BI__sync_sub_and_fetch_16:
return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_sub, E,
llvm::Instruction::Sub);
case Builtin::BI__sync_and_and_fetch_1:
case Builtin::BI__sync_and_and_fetch_2:
case Builtin::BI__sync_and_and_fetch_4:
case Builtin::BI__sync_and_and_fetch_8:
case Builtin::BI__sync_and_and_fetch_16:
return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_and, E,
llvm::Instruction::And);
case Builtin::BI__sync_or_and_fetch_1:
case Builtin::BI__sync_or_and_fetch_2:
case Builtin::BI__sync_or_and_fetch_4:
case Builtin::BI__sync_or_and_fetch_8:
case Builtin::BI__sync_or_and_fetch_16:
return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_or, E,
llvm::Instruction::Or);
case Builtin::BI__sync_xor_and_fetch_1:
case Builtin::BI__sync_xor_and_fetch_2:
case Builtin::BI__sync_xor_and_fetch_4:
case Builtin::BI__sync_xor_and_fetch_8:
case Builtin::BI__sync_xor_and_fetch_16:
return EmitBinaryAtomicPost(*this, Intrinsic::atomic_load_xor, E,
llvm::Instruction::Xor);
case Builtin::BI__sync_val_compare_and_swap_1:
case Builtin::BI__sync_val_compare_and_swap_2:
case Builtin::BI__sync_val_compare_and_swap_4:
case Builtin::BI__sync_val_compare_and_swap_8:
case Builtin::BI__sync_val_compare_and_swap_16:
{
const llvm::Type *ResType[2];
ResType[0]= ConvertType(E->getType());
ResType[1] = ConvertType(E->getArg(0)->getType());
Value *AtomF = CGM.getIntrinsic(Intrinsic::atomic_cmp_swap, ResType, 2);
return RValue::get(Builder.CreateCall3(AtomF,
EmitScalarExpr(E->getArg(0)),
EmitScalarExpr(E->getArg(1)),
EmitScalarExpr(E->getArg(2))));
}
case Builtin::BI__sync_bool_compare_and_swap_1:
case Builtin::BI__sync_bool_compare_and_swap_2:
case Builtin::BI__sync_bool_compare_and_swap_4:
case Builtin::BI__sync_bool_compare_and_swap_8:
case Builtin::BI__sync_bool_compare_and_swap_16:
{
const llvm::Type *ResType[2];
ResType[0]= ConvertType(E->getArg(1)->getType());
ResType[1] = llvm::PointerType::getUnqual(ResType[0]);
Value *AtomF = CGM.getIntrinsic(Intrinsic::atomic_cmp_swap, ResType, 2);
Value *OldVal = EmitScalarExpr(E->getArg(1));
Value *PrevVal = Builder.CreateCall3(AtomF,
EmitScalarExpr(E->getArg(0)),
OldVal,
EmitScalarExpr(E->getArg(2)));
Value *Result = Builder.CreateICmpEQ(PrevVal, OldVal);
// zext bool to int.
return RValue::get(Builder.CreateZExt(Result, ConvertType(E->getType())));
}
case Builtin::BI__sync_lock_test_and_set_1:
case Builtin::BI__sync_lock_test_and_set_2:
case Builtin::BI__sync_lock_test_and_set_4:
case Builtin::BI__sync_lock_test_and_set_8:
case Builtin::BI__sync_lock_test_and_set_16:
return EmitBinaryAtomic(*this, Intrinsic::atomic_swap, E);
case Builtin::BI__sync_lock_release_1:
case Builtin::BI__sync_lock_release_2:
case Builtin::BI__sync_lock_release_4:
case Builtin::BI__sync_lock_release_8:
case Builtin::BI__sync_lock_release_16:
assert(0 && "FIXME: Implement");
// Library functions with special handling.
case Builtin::BIsqrt:
case Builtin::BIsqrtf:
case Builtin::BIsqrtl: {
// Rewrite sqrt to intrinsic if allowed.
if (!FD->hasAttr<ConstAttr>())
break;
Value *Arg0 = EmitScalarExpr(E->getArg(0));
const llvm::Type *ArgType = Arg0->getType();
Value *F = CGM.getIntrinsic(Intrinsic::sqrt, &ArgType, 1);
return RValue::get(Builder.CreateCall(F, Arg0, "tmp"));
}
case Builtin::BIpow:
case Builtin::BIpowf:
case Builtin::BIpowl: {
// Rewrite sqrt to intrinsic if allowed.
if (!FD->hasAttr<ConstAttr>())
break;
Value *Base = EmitScalarExpr(E->getArg(0));
Value *Exponent = EmitScalarExpr(E->getArg(1));
const llvm::Type *ArgType = Base->getType();
Value *F = CGM.getIntrinsic(Intrinsic::pow, &ArgType, 1);
return RValue::get(Builder.CreateCall2(F, Base, Exponent, "tmp"));
}
}
// If this is an alias for a libm function (e.g. __builtin_sin) turn it into
// that function.
if (getContext().BuiltinInfo.isLibFunction(BuiltinID) ||
getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
return EmitCallExpr(CGM.getBuiltinLibFunction(BuiltinID),
E->getCallee()->getType(), E->arg_begin(),
E->arg_end());
// See if we have a target specific intrinsic.
const char *Name = getContext().BuiltinInfo.GetName(BuiltinID);
Intrinsic::ID IntrinsicID =
Intrinsic::getIntrinsicForGCCBuiltin(Target.getTargetPrefix(), Name);
if (IntrinsicID != Intrinsic::not_intrinsic) {
SmallVector<Value*, 16> Args;
Function *F = CGM.getIntrinsic(IntrinsicID);
const llvm::FunctionType *FTy = F->getFunctionType();
for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
Value *ArgValue = EmitScalarExpr(E->getArg(i));
// If the intrinsic arg type is different from the builtin arg type
// we need to do a bit cast.
const llvm::Type *PTy = FTy->getParamType(i);
if (PTy != ArgValue->getType()) {
assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
"Must be able to losslessly bit cast to param");
ArgValue = Builder.CreateBitCast(ArgValue, PTy);
}
Args.push_back(ArgValue);
}
Value *V = Builder.CreateCall(F, &Args[0], &Args[0] + Args.size());
QualType BuiltinRetType = E->getType();
const llvm::Type *RetTy = llvm::Type::VoidTy;
if (!BuiltinRetType->isVoidType()) RetTy = ConvertType(BuiltinRetType);
if (RetTy != V->getType()) {
assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
"Must be able to losslessly bit cast result type");
V = Builder.CreateBitCast(V, RetTy);
}
return RValue::get(V);
}
// See if we have a target specific builtin that needs to be lowered.
if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
return RValue::get(V);
ErrorUnsupported(E, "builtin function");
// Unknown builtin, for now just dump it out and return undef.
if (hasAggregateLLVMType(E->getType()))
return RValue::getAggregate(CreateTempAlloca(ConvertType(E->getType())));
return RValue::get(UndefValue::get(ConvertType(E->getType())));
}
Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
const char *TargetPrefix = Target.getTargetPrefix();
if (strcmp(TargetPrefix, "x86") == 0)
return EmitX86BuiltinExpr(BuiltinID, E);
else if (strcmp(TargetPrefix, "ppc") == 0)
return EmitPPCBuiltinExpr(BuiltinID, E);
return 0;
}
Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
llvm::SmallVector<Value*, 4> Ops;
for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
Ops.push_back(EmitScalarExpr(E->getArg(i)));
switch (BuiltinID) {
default: return 0;
case X86::BI__builtin_ia32_mulps:
return Builder.CreateMul(Ops[0], Ops[1], "mulps");
case X86::BI__builtin_ia32_mulpd:
return Builder.CreateMul(Ops[0], Ops[1], "mulpd");
case X86::BI__builtin_ia32_pand:
case X86::BI__builtin_ia32_pand128:
return Builder.CreateAnd(Ops[0], Ops[1], "pand");
case X86::BI__builtin_ia32_por:
case X86::BI__builtin_ia32_por128:
return Builder.CreateOr(Ops[0], Ops[1], "por");
case X86::BI__builtin_ia32_pxor:
case X86::BI__builtin_ia32_pxor128:
return Builder.CreateXor(Ops[0], Ops[1], "pxor");
case X86::BI__builtin_ia32_pandn:
case X86::BI__builtin_ia32_pandn128:
Ops[0] = Builder.CreateNot(Ops[0], "tmp");
return Builder.CreateAnd(Ops[0], Ops[1], "pandn");
case X86::BI__builtin_ia32_paddb:
case X86::BI__builtin_ia32_paddb128:
case X86::BI__builtin_ia32_paddd:
case X86::BI__builtin_ia32_paddd128:
case X86::BI__builtin_ia32_paddq:
case X86::BI__builtin_ia32_paddq128:
case X86::BI__builtin_ia32_paddw:
case X86::BI__builtin_ia32_paddw128:
case X86::BI__builtin_ia32_addps:
case X86::BI__builtin_ia32_addpd:
return Builder.CreateAdd(Ops[0], Ops[1], "add");
case X86::BI__builtin_ia32_psubb:
case X86::BI__builtin_ia32_psubb128:
case X86::BI__builtin_ia32_psubd:
case X86::BI__builtin_ia32_psubd128:
case X86::BI__builtin_ia32_psubq:
case X86::BI__builtin_ia32_psubq128:
case X86::BI__builtin_ia32_psubw:
case X86::BI__builtin_ia32_psubw128:
case X86::BI__builtin_ia32_subps:
case X86::BI__builtin_ia32_subpd:
return Builder.CreateSub(Ops[0], Ops[1], "sub");
case X86::BI__builtin_ia32_divps:
return Builder.CreateFDiv(Ops[0], Ops[1], "divps");
case X86::BI__builtin_ia32_divpd:
return Builder.CreateFDiv(Ops[0], Ops[1], "divpd");
case X86::BI__builtin_ia32_pmullw:
case X86::BI__builtin_ia32_pmullw128:
return Builder.CreateMul(Ops[0], Ops[1], "pmul");
case X86::BI__builtin_ia32_punpckhbw:
return EmitShuffleVector(Ops[0], Ops[1], 4, 12, 5, 13, 6, 14, 7, 15,
"punpckhbw");
case X86::BI__builtin_ia32_punpckhbw128:
return EmitShuffleVector(Ops[0], Ops[1], 8, 24, 9, 25, 10, 26, 11, 27,
12, 28, 13, 29, 14, 30, 15, 31,
"punpckhbw");
case X86::BI__builtin_ia32_punpckhwd:
return EmitShuffleVector(Ops[0], Ops[1], 2, 6, 3, 7, "punpckhwd");
case X86::BI__builtin_ia32_punpckhwd128:
return EmitShuffleVector(Ops[0], Ops[1], 4, 12, 5, 13, 6, 14, 7, 15,
"punpckhwd");
case X86::BI__builtin_ia32_punpckhdq:
return EmitShuffleVector(Ops[0], Ops[1], 1, 3, "punpckhdq");
case X86::BI__builtin_ia32_punpckhdq128:
return EmitShuffleVector(Ops[0], Ops[1], 2, 6, 3, 7, "punpckhdq");
case X86::BI__builtin_ia32_punpckhqdq128:
return EmitShuffleVector(Ops[0], Ops[1], 1, 3, "punpckhqdq");
case X86::BI__builtin_ia32_punpcklbw:
return EmitShuffleVector(Ops[0], Ops[1], 0, 8, 1, 9, 2, 10, 3, 11,
"punpcklbw");
case X86::BI__builtin_ia32_punpcklwd:
return EmitShuffleVector(Ops[0], Ops[1], 0, 4, 1, 5, "punpcklwd");
case X86::BI__builtin_ia32_punpckldq:
return EmitShuffleVector(Ops[0], Ops[1], 0, 2, "punpckldq");
case X86::BI__builtin_ia32_punpckldq128:
return EmitShuffleVector(Ops[0], Ops[1], 0, 4, 1, 5, "punpckldq");
case X86::BI__builtin_ia32_punpcklqdq128:
return EmitShuffleVector(Ops[0], Ops[1], 0, 2, "punpcklqdq");
case X86::BI__builtin_ia32_pslldi128:
case X86::BI__builtin_ia32_psllqi128:
case X86::BI__builtin_ia32_psllwi128:
case X86::BI__builtin_ia32_psradi128:
case X86::BI__builtin_ia32_psrawi128:
case X86::BI__builtin_ia32_psrldi128:
case X86::BI__builtin_ia32_psrlqi128:
case X86::BI__builtin_ia32_psrlwi128: {
Ops[1] = Builder.CreateZExt(Ops[1], llvm::Type::Int64Ty, "zext");
const llvm::Type *Ty = llvm::VectorType::get(llvm::Type::Int64Ty, 2);
llvm::Value *Zero = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
Ops[1] = Builder.CreateInsertElement(llvm::UndefValue::get(Ty),
Ops[1], Zero, "insert");
Ops[1] = Builder.CreateBitCast(Ops[1], Ops[0]->getType(), "bitcast");
const char *name = 0;
Intrinsic::ID ID = Intrinsic::not_intrinsic;
switch (BuiltinID) {
default: assert(0 && "Unsupported shift intrinsic!");
case X86::BI__builtin_ia32_pslldi128:
name = "pslldi";
ID = Intrinsic::x86_sse2_psll_d;
break;
case X86::BI__builtin_ia32_psllqi128:
name = "psllqi";
ID = Intrinsic::x86_sse2_psll_q;
break;
case X86::BI__builtin_ia32_psllwi128:
name = "psllwi";
ID = Intrinsic::x86_sse2_psll_w;
break;
case X86::BI__builtin_ia32_psradi128:
name = "psradi";
ID = Intrinsic::x86_sse2_psra_d;
break;
case X86::BI__builtin_ia32_psrawi128:
name = "psrawi";
ID = Intrinsic::x86_sse2_psra_w;
break;
case X86::BI__builtin_ia32_psrldi128:
name = "psrldi";
ID = Intrinsic::x86_sse2_psrl_d;
break;
case X86::BI__builtin_ia32_psrlqi128:
name = "psrlqi";
ID = Intrinsic::x86_sse2_psrl_q;
break;
case X86::BI__builtin_ia32_psrlwi128:
name = "psrlwi";
ID = Intrinsic::x86_sse2_psrl_w;
break;
}
llvm::Function *F = CGM.getIntrinsic(ID);
return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), name);
}
case X86::BI__builtin_ia32_pslldi:
case X86::BI__builtin_ia32_psllqi:
case X86::BI__builtin_ia32_psllwi:
case X86::BI__builtin_ia32_psradi:
case X86::BI__builtin_ia32_psrawi:
case X86::BI__builtin_ia32_psrldi:
case X86::BI__builtin_ia32_psrlqi:
case X86::BI__builtin_ia32_psrlwi: {
Ops[1] = Builder.CreateZExt(Ops[1], llvm::Type::Int64Ty, "zext");
const llvm::Type *Ty = llvm::VectorType::get(llvm::Type::Int64Ty, 1);
Ops[1] = Builder.CreateBitCast(Ops[1], Ty, "bitcast");
const char *name = 0;
Intrinsic::ID ID = Intrinsic::not_intrinsic;
switch (BuiltinID) {
default: assert(0 && "Unsupported shift intrinsic!");
case X86::BI__builtin_ia32_pslldi:
name = "pslldi";
ID = Intrinsic::x86_mmx_psll_d;
break;
case X86::BI__builtin_ia32_psllqi:
name = "psllqi";
ID = Intrinsic::x86_mmx_psll_q;
break;
case X86::BI__builtin_ia32_psllwi:
name = "psllwi";
ID = Intrinsic::x86_mmx_psll_w;
break;
case X86::BI__builtin_ia32_psradi:
name = "psradi";
ID = Intrinsic::x86_mmx_psra_d;
break;
case X86::BI__builtin_ia32_psrawi:
name = "psrawi";
ID = Intrinsic::x86_mmx_psra_w;
break;
case X86::BI__builtin_ia32_psrldi:
name = "psrldi";
ID = Intrinsic::x86_mmx_psrl_d;
break;
case X86::BI__builtin_ia32_psrlqi:
name = "psrlqi";
ID = Intrinsic::x86_mmx_psrl_q;
break;
case X86::BI__builtin_ia32_psrlwi:
name = "psrlwi";
ID = Intrinsic::x86_mmx_psrl_w;
break;
}
llvm::Function *F = CGM.getIntrinsic(ID);
return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), name);
}
case X86::BI__builtin_ia32_pshufw: {
unsigned i = cast<ConstantInt>(Ops[1])->getZExtValue();
return EmitShuffleVector(Ops[0], Ops[0],
i & 0x3, (i & 0xc) >> 2,
(i & 0x30) >> 4, (i & 0xc0) >> 6,
"pshufw");
}
case X86::BI__builtin_ia32_pshuflw: {
unsigned i = cast<ConstantInt>(Ops[1])->getZExtValue();
return EmitShuffleVector(Ops[0], Ops[0],
i & 0x3, (i & 0xc) >> 2,
(i & 0x30) >> 4, (i & 0xc0) >> 6, 4, 5, 6, 7,
"pshuflw");
}
case X86::BI__builtin_ia32_pshufhw: {
unsigned i = cast<ConstantInt>(Ops[1])->getZExtValue();
return EmitShuffleVector(Ops[0], Ops[0], 0, 1, 2, 3,
4 + (i & 0x3), 4 + ((i & 0xc) >> 2),
4 + ((i & 0x30) >> 4), 4 + ((i & 0xc0) >> 6),
"pshufhw");
}
case X86::BI__builtin_ia32_pshufd: {
unsigned i = cast<ConstantInt>(Ops[1])->getZExtValue();
return EmitShuffleVector(Ops[0], Ops[0],
i & 0x3, (i & 0xc) >> 2,
(i & 0x30) >> 4, (i & 0xc0) >> 6,
"pshufd");
}
case X86::BI__builtin_ia32_vec_init_v4hi:
case X86::BI__builtin_ia32_vec_init_v8qi:
case X86::BI__builtin_ia32_vec_init_v2si:
return EmitVector(&Ops[0], Ops.size());
case X86::BI__builtin_ia32_vec_ext_v2si:
case X86::BI__builtin_ia32_vec_ext_v2di:
case X86::BI__builtin_ia32_vec_ext_v4sf:
case X86::BI__builtin_ia32_vec_ext_v4si:
case X86::BI__builtin_ia32_vec_ext_v8hi:
case X86::BI__builtin_ia32_vec_ext_v4hi:
case X86::BI__builtin_ia32_vec_ext_v2df:
return Builder.CreateExtractElement(Ops[0], Ops[1], "result");
case X86::BI__builtin_ia32_cmpordss:
case X86::BI__builtin_ia32_cmpordsd:
case X86::BI__builtin_ia32_cmpunordss:
case X86::BI__builtin_ia32_cmpunordsd:
case X86::BI__builtin_ia32_cmpeqss:
case X86::BI__builtin_ia32_cmpeqsd:
case X86::BI__builtin_ia32_cmpltss:
case X86::BI__builtin_ia32_cmpltsd:
case X86::BI__builtin_ia32_cmpless:
case X86::BI__builtin_ia32_cmplesd:
case X86::BI__builtin_ia32_cmpneqss:
case X86::BI__builtin_ia32_cmpneqsd:
case X86::BI__builtin_ia32_cmpnltss:
case X86::BI__builtin_ia32_cmpnltsd:
case X86::BI__builtin_ia32_cmpnless:
case X86::BI__builtin_ia32_cmpnlesd: {
unsigned i = 0;
const char *name = 0;
switch (BuiltinID) {
default: assert(0 && "Unknown compare builtin!");
case X86::BI__builtin_ia32_cmpeqss:
case X86::BI__builtin_ia32_cmpeqsd:
i = 0;
name = "cmpeq";
break;
case X86::BI__builtin_ia32_cmpltss:
case X86::BI__builtin_ia32_cmpltsd:
i = 1;
name = "cmplt";
break;
case X86::BI__builtin_ia32_cmpless:
case X86::BI__builtin_ia32_cmplesd:
i = 2;
name = "cmple";
break;
case X86::BI__builtin_ia32_cmpunordss:
case X86::BI__builtin_ia32_cmpunordsd:
i = 3;
name = "cmpunord";
break;
case X86::BI__builtin_ia32_cmpneqss:
case X86::BI__builtin_ia32_cmpneqsd:
i = 4;
name = "cmpneq";
break;
case X86::BI__builtin_ia32_cmpnltss:
case X86::BI__builtin_ia32_cmpnltsd:
i = 5;
name = "cmpntl";
break;
case X86::BI__builtin_ia32_cmpnless:
case X86::BI__builtin_ia32_cmpnlesd:
i = 6;
name = "cmpnle";
break;
case X86::BI__builtin_ia32_cmpordss:
case X86::BI__builtin_ia32_cmpordsd:
i = 7;
name = "cmpord";
break;
}
llvm::Function *F;
if (cast<llvm::VectorType>(Ops[0]->getType())->getElementType() ==
llvm::Type::FloatTy)
F = CGM.getIntrinsic(Intrinsic::x86_sse_cmp_ss);
else
F = CGM.getIntrinsic(Intrinsic::x86_sse2_cmp_sd);
Ops.push_back(llvm::ConstantInt::get(llvm::Type::Int8Ty, i));
return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), name);
}
case X86::BI__builtin_ia32_ldmxcsr: {
llvm::Type *PtrTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
Value *One = llvm::ConstantInt::get(llvm::Type::Int32Ty, 1);
Value *Tmp = Builder.CreateAlloca(llvm::Type::Int32Ty, One, "tmp");
Builder.CreateStore(Ops[0], Tmp);
return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
Builder.CreateBitCast(Tmp, PtrTy));
}
case X86::BI__builtin_ia32_stmxcsr: {
llvm::Type *PtrTy = llvm::PointerType::getUnqual(llvm::Type::Int8Ty);
Value *One = llvm::ConstantInt::get(llvm::Type::Int32Ty, 1);
Value *Tmp = Builder.CreateAlloca(llvm::Type::Int32Ty, One, "tmp");
One = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
Builder.CreateBitCast(Tmp, PtrTy));
return Builder.CreateLoad(Tmp, "stmxcsr");
}
case X86::BI__builtin_ia32_cmpordps:
case X86::BI__builtin_ia32_cmpordpd:
case X86::BI__builtin_ia32_cmpunordps:
case X86::BI__builtin_ia32_cmpunordpd:
case X86::BI__builtin_ia32_cmpeqps:
case X86::BI__builtin_ia32_cmpeqpd:
case X86::BI__builtin_ia32_cmpltps:
case X86::BI__builtin_ia32_cmpltpd:
case X86::BI__builtin_ia32_cmpleps:
case X86::BI__builtin_ia32_cmplepd:
case X86::BI__builtin_ia32_cmpneqps:
case X86::BI__builtin_ia32_cmpneqpd:
case X86::BI__builtin_ia32_cmpngtps:
case X86::BI__builtin_ia32_cmpngtpd:
case X86::BI__builtin_ia32_cmpnltps:
case X86::BI__builtin_ia32_cmpnltpd:
case X86::BI__builtin_ia32_cmpgtps:
case X86::BI__builtin_ia32_cmpgtpd:
case X86::BI__builtin_ia32_cmpgeps:
case X86::BI__builtin_ia32_cmpgepd:
case X86::BI__builtin_ia32_cmpngeps:
case X86::BI__builtin_ia32_cmpngepd:
case X86::BI__builtin_ia32_cmpnleps:
case X86::BI__builtin_ia32_cmpnlepd: {
unsigned i = 0;
const char *name = 0;
bool ShouldSwap = false;
switch (BuiltinID) {
default: assert(0 && "Unknown compare builtin!");
case X86::BI__builtin_ia32_cmpeqps:
case X86::BI__builtin_ia32_cmpeqpd: i = 0; name = "cmpeq"; break;
case X86::BI__builtin_ia32_cmpltps:
case X86::BI__builtin_ia32_cmpltpd: i = 1; name = "cmplt"; break;
case X86::BI__builtin_ia32_cmpleps:
case X86::BI__builtin_ia32_cmplepd: i = 2; name = "cmple"; break;
case X86::BI__builtin_ia32_cmpunordps:
case X86::BI__builtin_ia32_cmpunordpd: i = 3; name = "cmpunord"; break;
case X86::BI__builtin_ia32_cmpneqps:
case X86::BI__builtin_ia32_cmpneqpd: i = 4; name = "cmpneq"; break;
case X86::BI__builtin_ia32_cmpnltps:
case X86::BI__builtin_ia32_cmpnltpd: i = 5; name = "cmpntl"; break;
case X86::BI__builtin_ia32_cmpnleps:
case X86::BI__builtin_ia32_cmpnlepd: i = 6; name = "cmpnle"; break;
case X86::BI__builtin_ia32_cmpordps:
case X86::BI__builtin_ia32_cmpordpd: i = 7; name = "cmpord"; break;
case X86::BI__builtin_ia32_cmpgtps:
case X86::BI__builtin_ia32_cmpgtpd:
ShouldSwap = true;
i = 1;
name = "cmpgt";
break;
case X86::BI__builtin_ia32_cmpgeps:
case X86::BI__builtin_ia32_cmpgepd:
i = 2;
name = "cmpge";
ShouldSwap = true;
break;
case X86::BI__builtin_ia32_cmpngtps:
case X86::BI__builtin_ia32_cmpngtpd:
i = 5;
name = "cmpngt";
ShouldSwap = true;
break;
case X86::BI__builtin_ia32_cmpngeps:
case X86::BI__builtin_ia32_cmpngepd:
i = 6;
name = "cmpnge";
ShouldSwap = true;
break;
}
if (ShouldSwap)
std::swap(Ops[0], Ops[1]);
llvm::Function *F;
if (cast<llvm::VectorType>(Ops[0]->getType())->getElementType() ==
llvm::Type::FloatTy)
F = CGM.getIntrinsic(Intrinsic::x86_sse_cmp_ps);
else
F = CGM.getIntrinsic(Intrinsic::x86_sse2_cmp_pd);
Ops.push_back(llvm::ConstantInt::get(llvm::Type::Int8Ty, i));
return Builder.CreateCall(F, &Ops[0], &Ops[0] + Ops.size(), name);
}
case X86::BI__builtin_ia32_movss:
return EmitShuffleVector(Ops[0], Ops[1], 4, 1, 2, 3, "movss");
case X86::BI__builtin_ia32_shufps: {
unsigned i = cast<ConstantInt>(Ops[2])->getZExtValue();
return EmitShuffleVector(Ops[0], Ops[1],
i & 0x3, (i & 0xc) >> 2,
((i & 0x30) >> 4) + 4,
((i & 0xc0) >> 6) + 4, "shufps");
}
case X86::BI__builtin_ia32_shufpd: {
unsigned i = cast<ConstantInt>(Ops[2])->getZExtValue();
return EmitShuffleVector(Ops[0], Ops[1], i & 1,
((i & 2) >> 1)+2, "shufpd");
}
case X86::BI__builtin_ia32_punpcklbw128:
return EmitShuffleVector(Ops[0], Ops[1], 0, 16, 1, 17, 2, 18, 3, 19,
4, 20, 5, 21, 6, 22, 7, 23,
"punpcklbw");
case X86::BI__builtin_ia32_punpcklwd128:
return EmitShuffleVector(Ops[0], Ops[1], 0, 8, 1, 9, 2, 10, 3, 11,
"punpcklwd");
case X86::BI__builtin_ia32_movlhps:
return EmitShuffleVector(Ops[0], Ops[1], 0, 1, 4, 5, "movlhps");
case X86::BI__builtin_ia32_movhlps:
return EmitShuffleVector(Ops[0], Ops[1], 6, 7, 2, 3, "movhlps");
case X86::BI__builtin_ia32_unpckhps:
return EmitShuffleVector(Ops[0], Ops[1], 2, 6, 3, 7, "unpckhps");
case X86::BI__builtin_ia32_unpcklps:
return EmitShuffleVector(Ops[0], Ops[1], 0, 4, 1, 5, "unpcklps");
case X86::BI__builtin_ia32_unpckhpd:
return EmitShuffleVector(Ops[0], Ops[1], 1, 3, "unpckhpd");
case X86::BI__builtin_ia32_unpcklpd:
return EmitShuffleVector(Ops[0], Ops[1], 0, 2, "unpcklpd");
case X86::BI__builtin_ia32_movsd:
return EmitShuffleVector(Ops[0], Ops[1], 2, 1, "movsd");
case X86::BI__builtin_ia32_movqv4si: {
llvm::Type *Ty = llvm::VectorType::get(llvm::Type::Int64Ty, 2);
return Builder.CreateBitCast(Ops[0], Ty);
}
case X86::BI__builtin_ia32_loadlps:
case X86::BI__builtin_ia32_loadhps: {
// FIXME: This should probably be represented as
// shuffle (dst, (v4f32 (insert undef, (load i64), 0)), shuf mask hi/lo)
const llvm::Type *EltTy = llvm::Type::DoubleTy;
const llvm::Type *VecTy = llvm::VectorType::get(EltTy, 2);
const llvm::Type *OrigTy = Ops[0]->getType();
unsigned Index = BuiltinID == X86::BI__builtin_ia32_loadlps ? 0 : 1;
llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, Index);
Ops[1] = Builder.CreateBitCast(Ops[1], llvm::PointerType::getUnqual(EltTy));
Ops[1] = Builder.CreateLoad(Ops[1], "tmp");
Ops[0] = Builder.CreateBitCast(Ops[0], VecTy, "cast");
Ops[0] = Builder.CreateInsertElement(Ops[0], Ops[1], Idx, "loadps");
return Builder.CreateBitCast(Ops[0], OrigTy, "loadps");
}
case X86::BI__builtin_ia32_loadlpd:
case X86::BI__builtin_ia32_loadhpd: {
Ops[1] = Builder.CreateLoad(Ops[1], "tmp");
unsigned Index = BuiltinID == X86::BI__builtin_ia32_loadlpd ? 0 : 1;
llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, Index);
return Builder.CreateInsertElement(Ops[0], Ops[1], Idx, "loadpd");
}
case X86::BI__builtin_ia32_storehps:
case X86::BI__builtin_ia32_storelps: {
const llvm::Type *EltTy = llvm::Type::Int64Ty;
llvm::Type *PtrTy = llvm::PointerType::getUnqual(EltTy);
llvm::Type *VecTy = llvm::VectorType::get(EltTy, 2);
// cast val v2i64
Ops[1] = Builder.CreateBitCast(Ops[1], VecTy, "cast");
// extract (0, 1)
unsigned Index = BuiltinID == X86::BI__builtin_ia32_storelps ? 0 : 1;
llvm::Value *Idx = llvm::ConstantInt::get(llvm::Type::Int32Ty, Index);
Ops[1] = Builder.CreateExtractElement(Ops[1], Idx, "extract");
// cast pointer to i64 & store
Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy);
return Builder.CreateStore(Ops[1], Ops[0]);
}
case X86::BI__builtin_ia32_loadlv4si: {
// load i64
const llvm::Type *EltTy = llvm::Type::Int64Ty;
llvm::Type *PtrTy = llvm::PointerType::getUnqual(EltTy);
Ops[0] = Builder.CreateBitCast(Ops[0], PtrTy);
Ops[0] = Builder.CreateLoad(Ops[0], "load");
// scalar to vector: insert i64 into 2 x i64 undef
llvm::Type *VecTy = llvm::VectorType::get(EltTy, 2);
llvm::Value *Zero = llvm::ConstantInt::get(llvm::Type::Int32Ty, 0);
Ops[0] = Builder.CreateInsertElement(llvm::UndefValue::get(VecTy),
Ops[0], Zero, "s2v");
// shuffle into zero vector.
std::vector<llvm::Constant *>Elts;
Elts.resize(2, llvm::ConstantInt::get(EltTy, 0));
llvm::Value *ZV = ConstantVector::get(Elts);
Ops[0] = EmitShuffleVector(ZV, Ops[0], 2, 1, "loadl");
// bitcast to result.
return Builder.CreateBitCast(Ops[0],
llvm::VectorType::get(llvm::Type::Int32Ty, 4));
}
case X86::BI__builtin_ia32_vec_set_v4hi:
case X86::BI__builtin_ia32_vec_set_v8hi:
return Builder.CreateInsertElement(Ops[0], Ops[1], Ops[2], "pinsrw");
case X86::BI__builtin_ia32_vec_set_v4si:
return Builder.CreateInsertElement(Ops[0], Ops[1], Ops[2], "pinsrd");
case X86::BI__builtin_ia32_vec_set_v2di:
return Builder.CreateInsertElement(Ops[0], Ops[1], Ops[2], "pinsrq");
case X86::BI__builtin_ia32_andps:
case X86::BI__builtin_ia32_andpd:
case X86::BI__builtin_ia32_andnps:
case X86::BI__builtin_ia32_andnpd:
case X86::BI__builtin_ia32_orps:
case X86::BI__builtin_ia32_orpd:
case X86::BI__builtin_ia32_xorpd:
case X86::BI__builtin_ia32_xorps: {
const llvm::Type *ITy = llvm::VectorType::get(llvm::Type::Int32Ty, 4);
const llvm::Type *FTy = Ops[0]->getType();
Ops[0] = Builder.CreateBitCast(Ops[0], ITy, "bitcast");
Ops[1] = Builder.CreateBitCast(Ops[1], ITy, "bitcast");
switch (BuiltinID) {
case X86::BI__builtin_ia32_andps:
Ops[0] = Builder.CreateAnd(Ops[0], Ops[1], "andps");
break;
case X86::BI__builtin_ia32_andpd:
Ops[0] = Builder.CreateAnd(Ops[0], Ops[1], "andpd");
break;
case X86::BI__builtin_ia32_andnps:
Ops[0] = Builder.CreateNot(Ops[0], "not");
Ops[0] = Builder.CreateAnd(Ops[0], Ops[1], "andnps");
break;
case X86::BI__builtin_ia32_andnpd:
Ops[0] = Builder.CreateNot(Ops[0], "not");
Ops[0] = Builder.CreateAnd(Ops[0], Ops[1], "andnpd");
break;
case X86::BI__builtin_ia32_orps:
Ops[0] = Builder.CreateOr(Ops[0], Ops[1], "orps");
break;
case X86::BI__builtin_ia32_orpd:
Ops[0] = Builder.CreateOr(Ops[0], Ops[1], "orpd");
break;
case X86::BI__builtin_ia32_xorps:
Ops[0] = Builder.CreateXor(Ops[0], Ops[1], "xorps");
break;
case X86::BI__builtin_ia32_xorpd:
Ops[0] = Builder.CreateXor(Ops[0], Ops[1], "xorpd");
break;
}
return Builder.CreateBitCast(Ops[0], FTy, "bitcast");
}
}
}
Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
const CallExpr *E) {
switch (BuiltinID) {
default: return 0;
}
}