mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-27 19:26:06 +00:00

Compared to the generic scalar code, using Arm NEON instructions yields a ~11x speedup: 31 vs 339.5 ms to hash 1 GiB of random data on the Apple M1. This follows the upstream implementation closely, with some simplifications made: - Removed workarounds for suboptimal codegen on older GCC - Removed instruction reordering barriers which seem to have a negligible impact according to my measurements - We do not support WebAssembly's mostly NEON-compatible API - There is no configurable mixing of SIMD and scalar code; according to the upstream comments, this is only relevant for smaller Cortex cores which can dispatch relatively few NEON micro-ops per cycle. This commit intends to use only standard ACLE intrinsics and datatypes, so it should build with all supported versions of GCC, Clang and MSVC. This feature is enabled by default when targeting AArch64, but the `LLVM_XXH_USE_NEON=0` macro can be set to explicitly disable it. XXH3 is used for ICF, string deduplication and computing the UUID in ld64.lld; this commit results in a -1.77% +/- 0.59% speed improvement for a `--threads=8` link of Chromium.framework.
1043 lines
38 KiB
C++
1043 lines
38 KiB
C++
/*
|
|
* xxHash - Extremely Fast Hash algorithm
|
|
* Copyright (C) 2012-2023, Yann Collet
|
|
*
|
|
* BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions are
|
|
* met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following disclaimer
|
|
* in the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* You can contact the author at :
|
|
* - xxHash homepage: http://www.xxhash.com
|
|
* - xxHash source repository : https://github.com/Cyan4973/xxHash
|
|
*/
|
|
|
|
// xxhash64 is based on commit d2df04efcbef7d7f6886d345861e5dfda4edacc1. Removed
|
|
// everything but a simple interface for computing xxh64.
|
|
|
|
// xxh3_64bits is based on commit d5891596637d21366b9b1dcf2c0007a3edb26a9e (July
|
|
// 2023).
|
|
|
|
// xxh3_128bits is based on commit b0adcc54188c3130b1793e7b19c62eb1e669f7df
|
|
// (June 2024).
|
|
|
|
#include "llvm/Support/xxhash.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/Endian.h"
|
|
|
|
#include <stdlib.h>
|
|
|
|
#if !defined(LLVM_XXH_USE_NEON)
|
|
#if (defined(__aarch64__) || defined(_M_ARM64) || defined(_M_ARM64EC)) && \
|
|
!defined(__ARM_BIG_ENDIAN)
|
|
#define LLVM_XXH_USE_NEON 1
|
|
#else
|
|
#define LLVM_XXH_USE_NEON 0
|
|
#endif
|
|
#endif
|
|
|
|
#if LLVM_XXH_USE_NEON
|
|
#include <arm_neon.h>
|
|
#endif
|
|
|
|
using namespace llvm;
|
|
using namespace support;
|
|
|
|
static uint64_t rotl64(uint64_t X, size_t R) {
|
|
return (X << R) | (X >> (64 - R));
|
|
}
|
|
|
|
constexpr uint32_t PRIME32_1 = 0x9E3779B1;
|
|
constexpr uint32_t PRIME32_2 = 0x85EBCA77;
|
|
constexpr uint32_t PRIME32_3 = 0xC2B2AE3D;
|
|
|
|
static const uint64_t PRIME64_1 = 11400714785074694791ULL;
|
|
static const uint64_t PRIME64_2 = 14029467366897019727ULL;
|
|
static const uint64_t PRIME64_3 = 1609587929392839161ULL;
|
|
static const uint64_t PRIME64_4 = 9650029242287828579ULL;
|
|
static const uint64_t PRIME64_5 = 2870177450012600261ULL;
|
|
|
|
static uint64_t round(uint64_t Acc, uint64_t Input) {
|
|
Acc += Input * PRIME64_2;
|
|
Acc = rotl64(Acc, 31);
|
|
Acc *= PRIME64_1;
|
|
return Acc;
|
|
}
|
|
|
|
static uint64_t mergeRound(uint64_t Acc, uint64_t Val) {
|
|
Val = round(0, Val);
|
|
Acc ^= Val;
|
|
Acc = Acc * PRIME64_1 + PRIME64_4;
|
|
return Acc;
|
|
}
|
|
|
|
static uint64_t XXH64_avalanche(uint64_t hash) {
|
|
hash ^= hash >> 33;
|
|
hash *= PRIME64_2;
|
|
hash ^= hash >> 29;
|
|
hash *= PRIME64_3;
|
|
hash ^= hash >> 32;
|
|
return hash;
|
|
}
|
|
|
|
uint64_t llvm::xxHash64(StringRef Data) {
|
|
size_t Len = Data.size();
|
|
uint64_t Seed = 0;
|
|
const unsigned char *P = Data.bytes_begin();
|
|
const unsigned char *const BEnd = Data.bytes_end();
|
|
uint64_t H64;
|
|
|
|
if (Len >= 32) {
|
|
const unsigned char *const Limit = BEnd - 32;
|
|
uint64_t V1 = Seed + PRIME64_1 + PRIME64_2;
|
|
uint64_t V2 = Seed + PRIME64_2;
|
|
uint64_t V3 = Seed + 0;
|
|
uint64_t V4 = Seed - PRIME64_1;
|
|
|
|
do {
|
|
V1 = round(V1, endian::read64le(P));
|
|
P += 8;
|
|
V2 = round(V2, endian::read64le(P));
|
|
P += 8;
|
|
V3 = round(V3, endian::read64le(P));
|
|
P += 8;
|
|
V4 = round(V4, endian::read64le(P));
|
|
P += 8;
|
|
} while (P <= Limit);
|
|
|
|
H64 = rotl64(V1, 1) + rotl64(V2, 7) + rotl64(V3, 12) + rotl64(V4, 18);
|
|
H64 = mergeRound(H64, V1);
|
|
H64 = mergeRound(H64, V2);
|
|
H64 = mergeRound(H64, V3);
|
|
H64 = mergeRound(H64, V4);
|
|
|
|
} else {
|
|
H64 = Seed + PRIME64_5;
|
|
}
|
|
|
|
H64 += (uint64_t)Len;
|
|
|
|
while (reinterpret_cast<uintptr_t>(P) + 8 <=
|
|
reinterpret_cast<uintptr_t>(BEnd)) {
|
|
uint64_t const K1 = round(0, endian::read64le(P));
|
|
H64 ^= K1;
|
|
H64 = rotl64(H64, 27) * PRIME64_1 + PRIME64_4;
|
|
P += 8;
|
|
}
|
|
|
|
if (reinterpret_cast<uintptr_t>(P) + 4 <= reinterpret_cast<uintptr_t>(BEnd)) {
|
|
H64 ^= (uint64_t)(endian::read32le(P)) * PRIME64_1;
|
|
H64 = rotl64(H64, 23) * PRIME64_2 + PRIME64_3;
|
|
P += 4;
|
|
}
|
|
|
|
while (P < BEnd) {
|
|
H64 ^= (*P) * PRIME64_5;
|
|
H64 = rotl64(H64, 11) * PRIME64_1;
|
|
P++;
|
|
}
|
|
|
|
return XXH64_avalanche(H64);
|
|
}
|
|
|
|
uint64_t llvm::xxHash64(ArrayRef<uint8_t> Data) {
|
|
return xxHash64({(const char *)Data.data(), Data.size()});
|
|
}
|
|
|
|
constexpr size_t XXH3_SECRETSIZE_MIN = 136;
|
|
constexpr size_t XXH_SECRET_DEFAULT_SIZE = 192;
|
|
|
|
/* Pseudorandom data taken directly from FARSH */
|
|
// clang-format off
|
|
constexpr uint8_t kSecret[XXH_SECRET_DEFAULT_SIZE] = {
|
|
0xb8, 0xfe, 0x6c, 0x39, 0x23, 0xa4, 0x4b, 0xbe, 0x7c, 0x01, 0x81, 0x2c, 0xf7, 0x21, 0xad, 0x1c,
|
|
0xde, 0xd4, 0x6d, 0xe9, 0x83, 0x90, 0x97, 0xdb, 0x72, 0x40, 0xa4, 0xa4, 0xb7, 0xb3, 0x67, 0x1f,
|
|
0xcb, 0x79, 0xe6, 0x4e, 0xcc, 0xc0, 0xe5, 0x78, 0x82, 0x5a, 0xd0, 0x7d, 0xcc, 0xff, 0x72, 0x21,
|
|
0xb8, 0x08, 0x46, 0x74, 0xf7, 0x43, 0x24, 0x8e, 0xe0, 0x35, 0x90, 0xe6, 0x81, 0x3a, 0x26, 0x4c,
|
|
0x3c, 0x28, 0x52, 0xbb, 0x91, 0xc3, 0x00, 0xcb, 0x88, 0xd0, 0x65, 0x8b, 0x1b, 0x53, 0x2e, 0xa3,
|
|
0x71, 0x64, 0x48, 0x97, 0xa2, 0x0d, 0xf9, 0x4e, 0x38, 0x19, 0xef, 0x46, 0xa9, 0xde, 0xac, 0xd8,
|
|
0xa8, 0xfa, 0x76, 0x3f, 0xe3, 0x9c, 0x34, 0x3f, 0xf9, 0xdc, 0xbb, 0xc7, 0xc7, 0x0b, 0x4f, 0x1d,
|
|
0x8a, 0x51, 0xe0, 0x4b, 0xcd, 0xb4, 0x59, 0x31, 0xc8, 0x9f, 0x7e, 0xc9, 0xd9, 0x78, 0x73, 0x64,
|
|
0xea, 0xc5, 0xac, 0x83, 0x34, 0xd3, 0xeb, 0xc3, 0xc5, 0x81, 0xa0, 0xff, 0xfa, 0x13, 0x63, 0xeb,
|
|
0x17, 0x0d, 0xdd, 0x51, 0xb7, 0xf0, 0xda, 0x49, 0xd3, 0x16, 0x55, 0x26, 0x29, 0xd4, 0x68, 0x9e,
|
|
0x2b, 0x16, 0xbe, 0x58, 0x7d, 0x47, 0xa1, 0xfc, 0x8f, 0xf8, 0xb8, 0xd1, 0x7a, 0xd0, 0x31, 0xce,
|
|
0x45, 0xcb, 0x3a, 0x8f, 0x95, 0x16, 0x04, 0x28, 0xaf, 0xd7, 0xfb, 0xca, 0xbb, 0x4b, 0x40, 0x7e,
|
|
};
|
|
// clang-format on
|
|
|
|
constexpr uint64_t PRIME_MX1 = 0x165667919E3779F9;
|
|
constexpr uint64_t PRIME_MX2 = 0x9FB21C651E98DF25;
|
|
|
|
// Calculates a 64-bit to 128-bit multiply, then XOR folds it.
|
|
static uint64_t XXH3_mul128_fold64(uint64_t lhs, uint64_t rhs) {
|
|
#if defined(__SIZEOF_INT128__) || \
|
|
(defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
|
|
__uint128_t product = (__uint128_t)lhs * (__uint128_t)rhs;
|
|
return uint64_t(product) ^ uint64_t(product >> 64);
|
|
|
|
#else
|
|
/* First calculate all of the cross products. */
|
|
const uint64_t lo_lo = (lhs & 0xFFFFFFFF) * (rhs & 0xFFFFFFFF);
|
|
const uint64_t hi_lo = (lhs >> 32) * (rhs & 0xFFFFFFFF);
|
|
const uint64_t lo_hi = (lhs & 0xFFFFFFFF) * (rhs >> 32);
|
|
const uint64_t hi_hi = (lhs >> 32) * (rhs >> 32);
|
|
|
|
/* Now add the products together. These will never overflow. */
|
|
const uint64_t cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
|
|
const uint64_t upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
|
|
const uint64_t lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
|
|
|
|
return upper ^ lower;
|
|
#endif
|
|
}
|
|
|
|
constexpr size_t XXH_STRIPE_LEN = 64;
|
|
constexpr size_t XXH_SECRET_CONSUME_RATE = 8;
|
|
constexpr size_t XXH_ACC_NB = XXH_STRIPE_LEN / sizeof(uint64_t);
|
|
|
|
static uint64_t XXH3_avalanche(uint64_t hash) {
|
|
hash ^= hash >> 37;
|
|
hash *= PRIME_MX1;
|
|
hash ^= hash >> 32;
|
|
return hash;
|
|
}
|
|
|
|
static uint64_t XXH3_len_1to3_64b(const uint8_t *input, size_t len,
|
|
const uint8_t *secret, uint64_t seed) {
|
|
const uint8_t c1 = input[0];
|
|
const uint8_t c2 = input[len >> 1];
|
|
const uint8_t c3 = input[len - 1];
|
|
uint32_t combined = ((uint32_t)c1 << 16) | ((uint32_t)c2 << 24) |
|
|
((uint32_t)c3 << 0) | ((uint32_t)len << 8);
|
|
uint64_t bitflip =
|
|
(uint64_t)(endian::read32le(secret) ^ endian::read32le(secret + 4)) +
|
|
seed;
|
|
return XXH64_avalanche(uint64_t(combined) ^ bitflip);
|
|
}
|
|
|
|
static uint64_t XXH3_len_4to8_64b(const uint8_t *input, size_t len,
|
|
const uint8_t *secret, uint64_t seed) {
|
|
seed ^= (uint64_t)byteswap(uint32_t(seed)) << 32;
|
|
const uint32_t input1 = endian::read32le(input);
|
|
const uint32_t input2 = endian::read32le(input + len - 4);
|
|
uint64_t acc =
|
|
(endian::read64le(secret + 8) ^ endian::read64le(secret + 16)) - seed;
|
|
const uint64_t input64 = (uint64_t)input2 | ((uint64_t)input1 << 32);
|
|
acc ^= input64;
|
|
// XXH3_rrmxmx(acc, len)
|
|
acc ^= rotl64(acc, 49) ^ rotl64(acc, 24);
|
|
acc *= PRIME_MX2;
|
|
acc ^= (acc >> 35) + (uint64_t)len;
|
|
acc *= PRIME_MX2;
|
|
return acc ^ (acc >> 28);
|
|
}
|
|
|
|
static uint64_t XXH3_len_9to16_64b(const uint8_t *input, size_t len,
|
|
const uint8_t *secret, uint64_t const seed) {
|
|
uint64_t input_lo =
|
|
(endian::read64le(secret + 24) ^ endian::read64le(secret + 32)) + seed;
|
|
uint64_t input_hi =
|
|
(endian::read64le(secret + 40) ^ endian::read64le(secret + 48)) - seed;
|
|
input_lo ^= endian::read64le(input);
|
|
input_hi ^= endian::read64le(input + len - 8);
|
|
uint64_t acc = uint64_t(len) + byteswap(input_lo) + input_hi +
|
|
XXH3_mul128_fold64(input_lo, input_hi);
|
|
return XXH3_avalanche(acc);
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE
|
|
static uint64_t XXH3_len_0to16_64b(const uint8_t *input, size_t len,
|
|
const uint8_t *secret, uint64_t const seed) {
|
|
if (LLVM_LIKELY(len > 8))
|
|
return XXH3_len_9to16_64b(input, len, secret, seed);
|
|
if (LLVM_LIKELY(len >= 4))
|
|
return XXH3_len_4to8_64b(input, len, secret, seed);
|
|
if (len != 0)
|
|
return XXH3_len_1to3_64b(input, len, secret, seed);
|
|
return XXH64_avalanche(seed ^ endian::read64le(secret + 56) ^
|
|
endian::read64le(secret + 64));
|
|
}
|
|
|
|
static uint64_t XXH3_mix16B(const uint8_t *input, uint8_t const *secret,
|
|
uint64_t seed) {
|
|
uint64_t lhs = seed;
|
|
uint64_t rhs = 0U - seed;
|
|
lhs += endian::read64le(secret);
|
|
rhs += endian::read64le(secret + 8);
|
|
lhs ^= endian::read64le(input);
|
|
rhs ^= endian::read64le(input + 8);
|
|
return XXH3_mul128_fold64(lhs, rhs);
|
|
}
|
|
|
|
/* For mid range keys, XXH3 uses a Mum-hash variant. */
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE
|
|
static uint64_t XXH3_len_17to128_64b(const uint8_t *input, size_t len,
|
|
const uint8_t *secret,
|
|
uint64_t const seed) {
|
|
uint64_t acc = len * PRIME64_1, acc_end;
|
|
acc += XXH3_mix16B(input + 0, secret + 0, seed);
|
|
acc_end = XXH3_mix16B(input + len - 16, secret + 16, seed);
|
|
if (len > 32) {
|
|
acc += XXH3_mix16B(input + 16, secret + 32, seed);
|
|
acc_end += XXH3_mix16B(input + len - 32, secret + 48, seed);
|
|
if (len > 64) {
|
|
acc += XXH3_mix16B(input + 32, secret + 64, seed);
|
|
acc_end += XXH3_mix16B(input + len - 48, secret + 80, seed);
|
|
if (len > 96) {
|
|
acc += XXH3_mix16B(input + 48, secret + 96, seed);
|
|
acc_end += XXH3_mix16B(input + len - 64, secret + 112, seed);
|
|
}
|
|
}
|
|
}
|
|
return XXH3_avalanche(acc + acc_end);
|
|
}
|
|
|
|
constexpr size_t XXH3_MIDSIZE_MAX = 240;
|
|
constexpr size_t XXH3_MIDSIZE_STARTOFFSET = 3;
|
|
constexpr size_t XXH3_MIDSIZE_LASTOFFSET = 17;
|
|
|
|
LLVM_ATTRIBUTE_NOINLINE
|
|
static uint64_t XXH3_len_129to240_64b(const uint8_t *input, size_t len,
|
|
const uint8_t *secret, uint64_t seed) {
|
|
uint64_t acc = (uint64_t)len * PRIME64_1;
|
|
const unsigned nbRounds = len / 16;
|
|
for (unsigned i = 0; i < 8; ++i)
|
|
acc += XXH3_mix16B(input + 16 * i, secret + 16 * i, seed);
|
|
acc = XXH3_avalanche(acc);
|
|
|
|
for (unsigned i = 8; i < nbRounds; ++i) {
|
|
acc += XXH3_mix16B(input + 16 * i,
|
|
secret + 16 * (i - 8) + XXH3_MIDSIZE_STARTOFFSET, seed);
|
|
}
|
|
/* last bytes */
|
|
acc +=
|
|
XXH3_mix16B(input + len - 16,
|
|
secret + XXH3_SECRETSIZE_MIN - XXH3_MIDSIZE_LASTOFFSET, seed);
|
|
return XXH3_avalanche(acc);
|
|
}
|
|
|
|
#if LLVM_XXH_USE_NEON
|
|
|
|
#define XXH3_accumulate_512 XXH3_accumulate_512_neon
|
|
#define XXH3_scrambleAcc XXH3_scrambleAcc_neon
|
|
|
|
// NEON implementation based on commit a57f6cce2698049863af8c25787084ae0489d849
|
|
// (July 2024), with the following removed:
|
|
// - workaround for suboptimal codegen on older GCC
|
|
// - compiler barriers against instruction reordering
|
|
// - WebAssembly SIMD support
|
|
// - configurable split between NEON and scalar lanes (benchmarking shows no
|
|
// penalty when fully doing SIMD on the Apple M1)
|
|
|
|
#if defined(__GNUC__) || defined(__clang__)
|
|
#define XXH_ALIASING __attribute__((__may_alias__))
|
|
#else
|
|
#define XXH_ALIASING /* nothing */
|
|
#endif
|
|
|
|
typedef uint64x2_t xxh_aliasing_uint64x2_t XXH_ALIASING;
|
|
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE static uint64x2_t XXH_vld1q_u64(void const *ptr) {
|
|
return vreinterpretq_u64_u8(vld1q_u8((uint8_t const *)ptr));
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE
|
|
static void XXH3_accumulate_512_neon(uint64_t *acc, const uint8_t *input,
|
|
const uint8_t *secret) {
|
|
xxh_aliasing_uint64x2_t *const xacc = (xxh_aliasing_uint64x2_t *)acc;
|
|
|
|
#ifdef __clang__
|
|
#pragma clang loop unroll(full)
|
|
#endif
|
|
for (size_t i = 0; i < XXH_ACC_NB / 2; i += 2) {
|
|
/* data_vec = input[i]; */
|
|
uint64x2_t data_vec_1 = XXH_vld1q_u64(input + (i * 16));
|
|
uint64x2_t data_vec_2 = XXH_vld1q_u64(input + ((i + 1) * 16));
|
|
|
|
/* key_vec = secret[i]; */
|
|
uint64x2_t key_vec_1 = XXH_vld1q_u64(secret + (i * 16));
|
|
uint64x2_t key_vec_2 = XXH_vld1q_u64(secret + ((i + 1) * 16));
|
|
|
|
/* data_swap = swap(data_vec) */
|
|
uint64x2_t data_swap_1 = vextq_u64(data_vec_1, data_vec_1, 1);
|
|
uint64x2_t data_swap_2 = vextq_u64(data_vec_2, data_vec_2, 1);
|
|
|
|
/* data_key = data_vec ^ key_vec; */
|
|
uint64x2_t data_key_1 = veorq_u64(data_vec_1, key_vec_1);
|
|
uint64x2_t data_key_2 = veorq_u64(data_vec_2, key_vec_2);
|
|
|
|
/*
|
|
* If we reinterpret the 64x2 vectors as 32x4 vectors, we can use a
|
|
* de-interleave operation for 4 lanes in 1 step with `vuzpq_u32` to
|
|
* get one vector with the low 32 bits of each lane, and one vector
|
|
* with the high 32 bits of each lane.
|
|
*
|
|
* The intrinsic returns a double vector because the original ARMv7-a
|
|
* instruction modified both arguments in place. AArch64 and SIMD128 emit
|
|
* two instructions from this intrinsic.
|
|
*
|
|
* [ dk11L | dk11H | dk12L | dk12H ] -> [ dk11L | dk12L | dk21L | dk22L ]
|
|
* [ dk21L | dk21H | dk22L | dk22H ] -> [ dk11H | dk12H | dk21H | dk22H ]
|
|
*/
|
|
uint32x4x2_t unzipped = vuzpq_u32(vreinterpretq_u32_u64(data_key_1),
|
|
vreinterpretq_u32_u64(data_key_2));
|
|
|
|
/* data_key_lo = data_key & 0xFFFFFFFF */
|
|
uint32x4_t data_key_lo = unzipped.val[0];
|
|
/* data_key_hi = data_key >> 32 */
|
|
uint32x4_t data_key_hi = unzipped.val[1];
|
|
|
|
/*
|
|
* Then, we can split the vectors horizontally and multiply which, as for
|
|
* most widening intrinsics, have a variant that works on both high half
|
|
* vectors for free on AArch64. A similar instruction is available on
|
|
* SIMD128.
|
|
*
|
|
* sum = data_swap + (u64x2) data_key_lo * (u64x2) data_key_hi
|
|
*/
|
|
uint64x2_t sum_1 = vmlal_u32(data_swap_1, vget_low_u32(data_key_lo),
|
|
vget_low_u32(data_key_hi));
|
|
uint64x2_t sum_2 = vmlal_u32(data_swap_2, vget_high_u32(data_key_lo),
|
|
vget_high_u32(data_key_hi));
|
|
|
|
/* xacc[i] = acc_vec + sum; */
|
|
xacc[i] = vaddq_u64(xacc[i], sum_1);
|
|
xacc[i + 1] = vaddq_u64(xacc[i + 1], sum_2);
|
|
}
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE
|
|
static void XXH3_scrambleAcc_neon(uint64_t *acc, const uint8_t *secret) {
|
|
xxh_aliasing_uint64x2_t *const xacc = (xxh_aliasing_uint64x2_t *)acc;
|
|
|
|
/* { prime32_1, prime32_1 } */
|
|
uint32x2_t const kPrimeLo = vdup_n_u32(PRIME32_1);
|
|
/* { 0, prime32_1, 0, prime32_1 } */
|
|
uint32x4_t const kPrimeHi =
|
|
vreinterpretq_u32_u64(vdupq_n_u64((uint64_t)PRIME32_1 << 32));
|
|
|
|
for (size_t i = 0; i < XXH_ACC_NB / 2; ++i) {
|
|
/* xacc[i] ^= (xacc[i] >> 47); */
|
|
uint64x2_t acc_vec = XXH_vld1q_u64(acc + (2 * i));
|
|
uint64x2_t shifted = vshrq_n_u64(acc_vec, 47);
|
|
uint64x2_t data_vec = veorq_u64(acc_vec, shifted);
|
|
|
|
/* xacc[i] ^= secret[i]; */
|
|
uint64x2_t key_vec = XXH_vld1q_u64(secret + (i * 16));
|
|
uint64x2_t data_key = veorq_u64(data_vec, key_vec);
|
|
|
|
/*
|
|
* xacc[i] *= XXH_PRIME32_1
|
|
*
|
|
* Expanded version with portable NEON intrinsics
|
|
*
|
|
* lo(x) * lo(y) + (hi(x) * lo(y) << 32)
|
|
*
|
|
* prod_hi = hi(data_key) * lo(prime) << 32
|
|
*
|
|
* Since we only need 32 bits of this multiply a trick can be used,
|
|
* reinterpreting the vector as a uint32x4_t and multiplying by
|
|
* { 0, prime, 0, prime } to cancel out the unwanted bits and avoid the
|
|
* shift.
|
|
*/
|
|
uint32x4_t prod_hi = vmulq_u32(vreinterpretq_u32_u64(data_key), kPrimeHi);
|
|
|
|
/* Extract low bits for vmlal_u32 */
|
|
uint32x2_t data_key_lo = vmovn_u64(data_key);
|
|
|
|
/* xacc[i] = prod_hi + lo(data_key) * XXH_PRIME32_1; */
|
|
xacc[i] = vmlal_u32(vreinterpretq_u64_u32(prod_hi), data_key_lo, kPrimeLo);
|
|
}
|
|
}
|
|
#else
|
|
|
|
#define XXH3_accumulate_512 XXH3_accumulate_512_scalar
|
|
#define XXH3_scrambleAcc XXH3_scrambleAcc_scalar
|
|
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE
|
|
static void XXH3_accumulate_512_scalar(uint64_t *acc, const uint8_t *input,
|
|
const uint8_t *secret) {
|
|
for (size_t i = 0; i < XXH_ACC_NB; ++i) {
|
|
uint64_t data_val = endian::read64le(input + 8 * i);
|
|
uint64_t data_key = data_val ^ endian::read64le(secret + 8 * i);
|
|
acc[i ^ 1] += data_val;
|
|
acc[i] += uint32_t(data_key) * (data_key >> 32);
|
|
}
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE
|
|
static void XXH3_scrambleAcc_scalar(uint64_t *acc, const uint8_t *secret) {
|
|
for (size_t i = 0; i < XXH_ACC_NB; ++i) {
|
|
acc[i] ^= acc[i] >> 47;
|
|
acc[i] ^= endian::read64le(secret + 8 * i);
|
|
acc[i] *= PRIME32_1;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE
|
|
static void XXH3_accumulate(uint64_t *acc, const uint8_t *input,
|
|
const uint8_t *secret, size_t nbStripes) {
|
|
for (size_t n = 0; n < nbStripes; ++n) {
|
|
XXH3_accumulate_512(acc, input + n * XXH_STRIPE_LEN,
|
|
secret + n * XXH_SECRET_CONSUME_RATE);
|
|
}
|
|
}
|
|
|
|
static uint64_t XXH3_mix2Accs(const uint64_t *acc, const uint8_t *secret) {
|
|
return XXH3_mul128_fold64(acc[0] ^ endian::read64le(secret),
|
|
acc[1] ^ endian::read64le(secret + 8));
|
|
}
|
|
|
|
static uint64_t XXH3_mergeAccs(const uint64_t *acc, const uint8_t *key,
|
|
uint64_t start) {
|
|
uint64_t result64 = start;
|
|
for (size_t i = 0; i < 4; ++i)
|
|
result64 += XXH3_mix2Accs(acc + 2 * i, key + 16 * i);
|
|
return XXH3_avalanche(result64);
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_NOINLINE
|
|
static uint64_t XXH3_hashLong_64b(const uint8_t *input, size_t len,
|
|
const uint8_t *secret, size_t secretSize) {
|
|
const size_t nbStripesPerBlock =
|
|
(secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
|
|
const size_t block_len = XXH_STRIPE_LEN * nbStripesPerBlock;
|
|
const size_t nb_blocks = (len - 1) / block_len;
|
|
alignas(16) uint64_t acc[XXH_ACC_NB] = {
|
|
PRIME32_3, PRIME64_1, PRIME64_2, PRIME64_3,
|
|
PRIME64_4, PRIME32_2, PRIME64_5, PRIME32_1,
|
|
};
|
|
for (size_t n = 0; n < nb_blocks; ++n) {
|
|
XXH3_accumulate(acc, input + n * block_len, secret, nbStripesPerBlock);
|
|
XXH3_scrambleAcc(acc, secret + secretSize - XXH_STRIPE_LEN);
|
|
}
|
|
|
|
/* last partial block */
|
|
const size_t nbStripes = (len - 1 - (block_len * nb_blocks)) / XXH_STRIPE_LEN;
|
|
assert(nbStripes <= secretSize / XXH_SECRET_CONSUME_RATE);
|
|
XXH3_accumulate(acc, input + nb_blocks * block_len, secret, nbStripes);
|
|
|
|
/* last stripe */
|
|
constexpr size_t XXH_SECRET_LASTACC_START = 7;
|
|
XXH3_accumulate_512(acc, input + len - XXH_STRIPE_LEN,
|
|
secret + secretSize - XXH_STRIPE_LEN -
|
|
XXH_SECRET_LASTACC_START);
|
|
|
|
/* converge into final hash */
|
|
constexpr size_t XXH_SECRET_MERGEACCS_START = 11;
|
|
return XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START,
|
|
(uint64_t)len * PRIME64_1);
|
|
}
|
|
|
|
uint64_t llvm::xxh3_64bits(ArrayRef<uint8_t> data) {
|
|
auto *in = data.data();
|
|
size_t len = data.size();
|
|
if (len <= 16)
|
|
return XXH3_len_0to16_64b(in, len, kSecret, 0);
|
|
if (len <= 128)
|
|
return XXH3_len_17to128_64b(in, len, kSecret, 0);
|
|
if (len <= XXH3_MIDSIZE_MAX)
|
|
return XXH3_len_129to240_64b(in, len, kSecret, 0);
|
|
return XXH3_hashLong_64b(in, len, kSecret, sizeof(kSecret));
|
|
}
|
|
|
|
/* ==========================================
|
|
* XXH3 128 bits (a.k.a XXH128)
|
|
* ==========================================
|
|
* XXH3's 128-bit variant has better mixing and strength than the 64-bit
|
|
* variant, even without counting the significantly larger output size.
|
|
*
|
|
* For example, extra steps are taken to avoid the seed-dependent collisions
|
|
* in 17-240 byte inputs (See XXH3_mix16B and XXH128_mix32B).
|
|
*
|
|
* This strength naturally comes at the cost of some speed, especially on short
|
|
* lengths. Note that longer hashes are about as fast as the 64-bit version
|
|
* due to it using only a slight modification of the 64-bit loop.
|
|
*
|
|
* XXH128 is also more oriented towards 64-bit machines. It is still extremely
|
|
* fast for a _128-bit_ hash on 32-bit (it usually clears XXH64).
|
|
*/
|
|
|
|
/*!
|
|
* @internal
|
|
* @def XXH_rotl32(x,r)
|
|
* @brief 32-bit rotate left.
|
|
*
|
|
* @param x The 32-bit integer to be rotated.
|
|
* @param r The number of bits to rotate.
|
|
* @pre
|
|
* @p r > 0 && @p r < 32
|
|
* @note
|
|
* @p x and @p r may be evaluated multiple times.
|
|
* @return The rotated result.
|
|
*/
|
|
#if __has_builtin(__builtin_rotateleft32) && \
|
|
__has_builtin(__builtin_rotateleft64)
|
|
#define XXH_rotl32 __builtin_rotateleft32
|
|
#define XXH_rotl64 __builtin_rotateleft64
|
|
/* Note: although _rotl exists for minGW (GCC under windows), performance seems
|
|
* poor */
|
|
#elif defined(_MSC_VER)
|
|
#define XXH_rotl32(x, r) _rotl(x, r)
|
|
#define XXH_rotl64(x, r) _rotl64(x, r)
|
|
#else
|
|
#define XXH_rotl32(x, r) (((x) << (r)) | ((x) >> (32 - (r))))
|
|
#define XXH_rotl64(x, r) (((x) << (r)) | ((x) >> (64 - (r))))
|
|
#endif
|
|
|
|
#define XXH_mult32to64(x, y) ((uint64_t)(uint32_t)(x) * (uint64_t)(uint32_t)(y))
|
|
|
|
/*!
|
|
* @brief Calculates a 64->128-bit long multiply.
|
|
*
|
|
* Uses `__uint128_t` and `_umul128` if available, otherwise uses a scalar
|
|
* version.
|
|
*
|
|
* @param lhs , rhs The 64-bit integers to be multiplied
|
|
* @return The 128-bit result represented in an @ref XXH128_hash_t.
|
|
*/
|
|
static XXH128_hash_t XXH_mult64to128(uint64_t lhs, uint64_t rhs) {
|
|
/*
|
|
* GCC/Clang __uint128_t method.
|
|
*
|
|
* On most 64-bit targets, GCC and Clang define a __uint128_t type.
|
|
* This is usually the best way as it usually uses a native long 64-bit
|
|
* multiply, such as MULQ on x86_64 or MUL + UMULH on aarch64.
|
|
*
|
|
* Usually.
|
|
*
|
|
* Despite being a 32-bit platform, Clang (and emscripten) define this type
|
|
* despite not having the arithmetic for it. This results in a laggy
|
|
* compiler builtin call which calculates a full 128-bit multiply.
|
|
* In that case it is best to use the portable one.
|
|
* https://github.com/Cyan4973/xxHash/issues/211#issuecomment-515575677
|
|
*/
|
|
#if (defined(__GNUC__) || defined(__clang__)) && !defined(__wasm__) && \
|
|
defined(__SIZEOF_INT128__) || \
|
|
(defined(_INTEGRAL_MAX_BITS) && _INTEGRAL_MAX_BITS >= 128)
|
|
|
|
__uint128_t const product = (__uint128_t)lhs * (__uint128_t)rhs;
|
|
XXH128_hash_t r128;
|
|
r128.low64 = (uint64_t)(product);
|
|
r128.high64 = (uint64_t)(product >> 64);
|
|
return r128;
|
|
|
|
/*
|
|
* MSVC for x64's _umul128 method.
|
|
*
|
|
* uint64_t _umul128(uint64_t Multiplier, uint64_t Multiplicand, uint64_t
|
|
* *HighProduct);
|
|
*
|
|
* This compiles to single operand MUL on x64.
|
|
*/
|
|
#elif (defined(_M_X64) || defined(_M_IA64)) && !defined(_M_ARM64EC)
|
|
|
|
#ifndef _MSC_VER
|
|
#pragma intrinsic(_umul128)
|
|
#endif
|
|
uint64_t product_high;
|
|
uint64_t const product_low = _umul128(lhs, rhs, &product_high);
|
|
XXH128_hash_t r128;
|
|
r128.low64 = product_low;
|
|
r128.high64 = product_high;
|
|
return r128;
|
|
|
|
/*
|
|
* MSVC for ARM64's __umulh method.
|
|
*
|
|
* This compiles to the same MUL + UMULH as GCC/Clang's __uint128_t method.
|
|
*/
|
|
#elif defined(_M_ARM64) || defined(_M_ARM64EC)
|
|
|
|
#ifndef _MSC_VER
|
|
#pragma intrinsic(__umulh)
|
|
#endif
|
|
XXH128_hash_t r128;
|
|
r128.low64 = lhs * rhs;
|
|
r128.high64 = __umulh(lhs, rhs);
|
|
return r128;
|
|
|
|
#else
|
|
/*
|
|
* Portable scalar method. Optimized for 32-bit and 64-bit ALUs.
|
|
*
|
|
* This is a fast and simple grade school multiply, which is shown below
|
|
* with base 10 arithmetic instead of base 0x100000000.
|
|
*
|
|
* 9 3 // D2 lhs = 93
|
|
* x 7 5 // D2 rhs = 75
|
|
* ----------
|
|
* 1 5 // D2 lo_lo = (93 % 10) * (75 % 10) = 15
|
|
* 4 5 | // D2 hi_lo = (93 / 10) * (75 % 10) = 45
|
|
* 2 1 | // D2 lo_hi = (93 % 10) * (75 / 10) = 21
|
|
* + 6 3 | | // D2 hi_hi = (93 / 10) * (75 / 10) = 63
|
|
* ---------
|
|
* 2 7 | // D2 cross = (15 / 10) + (45 % 10) + 21 = 27
|
|
* + 6 7 | | // D2 upper = (27 / 10) + (45 / 10) + 63 = 67
|
|
* ---------
|
|
* 6 9 7 5 // D4 res = (27 * 10) + (15 % 10) + (67 * 100) = 6975
|
|
*
|
|
* The reasons for adding the products like this are:
|
|
* 1. It avoids manual carry tracking. Just like how
|
|
* (9 * 9) + 9 + 9 = 99, the same applies with this for UINT64_MAX.
|
|
* This avoids a lot of complexity.
|
|
*
|
|
* 2. It hints for, and on Clang, compiles to, the powerful UMAAL
|
|
* instruction available in ARM's Digital Signal Processing extension
|
|
* in 32-bit ARMv6 and later, which is shown below:
|
|
*
|
|
* void UMAAL(xxh_u32 *RdLo, xxh_u32 *RdHi, xxh_u32 Rn, xxh_u32 Rm)
|
|
* {
|
|
* uint64_t product = (uint64_t)*RdLo * (uint64_t)*RdHi + Rn + Rm;
|
|
* *RdLo = (xxh_u32)(product & 0xFFFFFFFF);
|
|
* *RdHi = (xxh_u32)(product >> 32);
|
|
* }
|
|
*
|
|
* This instruction was designed for efficient long multiplication, and
|
|
* allows this to be calculated in only 4 instructions at speeds
|
|
* comparable to some 64-bit ALUs.
|
|
*
|
|
* 3. It isn't terrible on other platforms. Usually this will be a couple
|
|
* of 32-bit ADD/ADCs.
|
|
*/
|
|
|
|
/* First calculate all of the cross products. */
|
|
uint64_t const lo_lo = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs & 0xFFFFFFFF);
|
|
uint64_t const hi_lo = XXH_mult32to64(lhs >> 32, rhs & 0xFFFFFFFF);
|
|
uint64_t const lo_hi = XXH_mult32to64(lhs & 0xFFFFFFFF, rhs >> 32);
|
|
uint64_t const hi_hi = XXH_mult32to64(lhs >> 32, rhs >> 32);
|
|
|
|
/* Now add the products together. These will never overflow. */
|
|
uint64_t const cross = (lo_lo >> 32) + (hi_lo & 0xFFFFFFFF) + lo_hi;
|
|
uint64_t const upper = (hi_lo >> 32) + (cross >> 32) + hi_hi;
|
|
uint64_t const lower = (cross << 32) | (lo_lo & 0xFFFFFFFF);
|
|
|
|
XXH128_hash_t r128;
|
|
r128.low64 = lower;
|
|
r128.high64 = upper;
|
|
return r128;
|
|
#endif
|
|
}
|
|
|
|
/*! Seems to produce slightly better code on GCC for some reason. */
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE constexpr uint64_t XXH_xorshift64(uint64_t v64,
|
|
int shift) {
|
|
return v64 ^ (v64 >> shift);
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE static XXH128_hash_t
|
|
XXH3_len_1to3_128b(const uint8_t *input, size_t len, const uint8_t *secret,
|
|
uint64_t seed) {
|
|
/* A doubled version of 1to3_64b with different constants. */
|
|
/*
|
|
* len = 1: combinedl = { input[0], 0x01, input[0], input[0] }
|
|
* len = 2: combinedl = { input[1], 0x02, input[0], input[1] }
|
|
* len = 3: combinedl = { input[2], 0x03, input[0], input[1] }
|
|
*/
|
|
uint8_t const c1 = input[0];
|
|
uint8_t const c2 = input[len >> 1];
|
|
uint8_t const c3 = input[len - 1];
|
|
uint32_t const combinedl = ((uint32_t)c1 << 16) | ((uint32_t)c2 << 24) |
|
|
((uint32_t)c3 << 0) | ((uint32_t)len << 8);
|
|
uint32_t const combinedh = XXH_rotl32(byteswap(combinedl), 13);
|
|
uint64_t const bitflipl =
|
|
(endian::read32le(secret) ^ endian::read32le(secret + 4)) + seed;
|
|
uint64_t const bitfliph =
|
|
(endian::read32le(secret + 8) ^ endian::read32le(secret + 12)) - seed;
|
|
uint64_t const keyed_lo = (uint64_t)combinedl ^ bitflipl;
|
|
uint64_t const keyed_hi = (uint64_t)combinedh ^ bitfliph;
|
|
XXH128_hash_t h128;
|
|
h128.low64 = XXH64_avalanche(keyed_lo);
|
|
h128.high64 = XXH64_avalanche(keyed_hi);
|
|
return h128;
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE static XXH128_hash_t
|
|
XXH3_len_4to8_128b(const uint8_t *input, size_t len, const uint8_t *secret,
|
|
uint64_t seed) {
|
|
seed ^= (uint64_t)byteswap((uint32_t)seed) << 32;
|
|
uint32_t const input_lo = endian::read32le(input);
|
|
uint32_t const input_hi = endian::read32le(input + len - 4);
|
|
uint64_t const input_64 = input_lo + ((uint64_t)input_hi << 32);
|
|
uint64_t const bitflip =
|
|
(endian::read64le(secret + 16) ^ endian::read64le(secret + 24)) + seed;
|
|
uint64_t const keyed = input_64 ^ bitflip;
|
|
|
|
/* Shift len to the left to ensure it is even, this avoids even multiplies.
|
|
*/
|
|
XXH128_hash_t m128 = XXH_mult64to128(keyed, PRIME64_1 + (len << 2));
|
|
|
|
m128.high64 += (m128.low64 << 1);
|
|
m128.low64 ^= (m128.high64 >> 3);
|
|
|
|
m128.low64 = XXH_xorshift64(m128.low64, 35);
|
|
m128.low64 *= PRIME_MX2;
|
|
m128.low64 = XXH_xorshift64(m128.low64, 28);
|
|
m128.high64 = XXH3_avalanche(m128.high64);
|
|
return m128;
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE static XXH128_hash_t
|
|
XXH3_len_9to16_128b(const uint8_t *input, size_t len, const uint8_t *secret,
|
|
uint64_t seed) {
|
|
uint64_t const bitflipl =
|
|
(endian::read64le(secret + 32) ^ endian::read64le(secret + 40)) - seed;
|
|
uint64_t const bitfliph =
|
|
(endian::read64le(secret + 48) ^ endian::read64le(secret + 56)) + seed;
|
|
uint64_t const input_lo = endian::read64le(input);
|
|
uint64_t input_hi = endian::read64le(input + len - 8);
|
|
XXH128_hash_t m128 =
|
|
XXH_mult64to128(input_lo ^ input_hi ^ bitflipl, PRIME64_1);
|
|
/*
|
|
* Put len in the middle of m128 to ensure that the length gets mixed to
|
|
* both the low and high bits in the 128x64 multiply below.
|
|
*/
|
|
m128.low64 += (uint64_t)(len - 1) << 54;
|
|
input_hi ^= bitfliph;
|
|
/*
|
|
* Add the high 32 bits of input_hi to the high 32 bits of m128, then
|
|
* add the long product of the low 32 bits of input_hi and PRIME32_2 to
|
|
* the high 64 bits of m128.
|
|
*
|
|
* The best approach to this operation is different on 32-bit and 64-bit.
|
|
*/
|
|
if (sizeof(void *) < sizeof(uint64_t)) { /* 32-bit */
|
|
/*
|
|
* 32-bit optimized version, which is more readable.
|
|
*
|
|
* On 32-bit, it removes an ADC and delays a dependency between the two
|
|
* halves of m128.high64, but it generates an extra mask on 64-bit.
|
|
*/
|
|
m128.high64 += (input_hi & 0xFFFFFFFF00000000ULL) +
|
|
XXH_mult32to64((uint32_t)input_hi, PRIME32_2);
|
|
} else {
|
|
/*
|
|
* 64-bit optimized (albeit more confusing) version.
|
|
*
|
|
* Uses some properties of addition and multiplication to remove the mask:
|
|
*
|
|
* Let:
|
|
* a = input_hi.lo = (input_hi & 0x00000000FFFFFFFF)
|
|
* b = input_hi.hi = (input_hi & 0xFFFFFFFF00000000)
|
|
* c = PRIME32_2
|
|
*
|
|
* a + (b * c)
|
|
* Inverse Property: x + y - x == y
|
|
* a + (b * (1 + c - 1))
|
|
* Distributive Property: x * (y + z) == (x * y) + (x * z)
|
|
* a + (b * 1) + (b * (c - 1))
|
|
* Identity Property: x * 1 == x
|
|
* a + b + (b * (c - 1))
|
|
*
|
|
* Substitute a, b, and c:
|
|
* input_hi.hi + input_hi.lo + ((uint64_t)input_hi.lo * (PRIME32_2
|
|
* - 1))
|
|
*
|
|
* Since input_hi.hi + input_hi.lo == input_hi, we get this:
|
|
* input_hi + ((uint64_t)input_hi.lo * (PRIME32_2 - 1))
|
|
*/
|
|
m128.high64 += input_hi + XXH_mult32to64((uint32_t)input_hi, PRIME32_2 - 1);
|
|
}
|
|
/* m128 ^= XXH_swap64(m128 >> 64); */
|
|
m128.low64 ^= byteswap(m128.high64);
|
|
|
|
/* 128x64 multiply: h128 = m128 * PRIME64_2; */
|
|
XXH128_hash_t h128 = XXH_mult64to128(m128.low64, PRIME64_2);
|
|
h128.high64 += m128.high64 * PRIME64_2;
|
|
|
|
h128.low64 = XXH3_avalanche(h128.low64);
|
|
h128.high64 = XXH3_avalanche(h128.high64);
|
|
return h128;
|
|
}
|
|
|
|
/*
|
|
* Assumption: `secret` size is >= XXH3_SECRET_SIZE_MIN
|
|
*/
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE static XXH128_hash_t
|
|
XXH3_len_0to16_128b(const uint8_t *input, size_t len, const uint8_t *secret,
|
|
uint64_t seed) {
|
|
if (len > 8)
|
|
return XXH3_len_9to16_128b(input, len, secret, seed);
|
|
if (len >= 4)
|
|
return XXH3_len_4to8_128b(input, len, secret, seed);
|
|
if (len)
|
|
return XXH3_len_1to3_128b(input, len, secret, seed);
|
|
XXH128_hash_t h128;
|
|
uint64_t const bitflipl =
|
|
endian::read64le(secret + 64) ^ endian::read64le(secret + 72);
|
|
uint64_t const bitfliph =
|
|
endian::read64le(secret + 80) ^ endian::read64le(secret + 88);
|
|
h128.low64 = XXH64_avalanche(seed ^ bitflipl);
|
|
h128.high64 = XXH64_avalanche(seed ^ bitfliph);
|
|
return h128;
|
|
}
|
|
|
|
/*
|
|
* A bit slower than XXH3_mix16B, but handles multiply by zero better.
|
|
*/
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE static XXH128_hash_t
|
|
XXH128_mix32B(XXH128_hash_t acc, const uint8_t *input_1, const uint8_t *input_2,
|
|
const uint8_t *secret, uint64_t seed) {
|
|
acc.low64 += XXH3_mix16B(input_1, secret + 0, seed);
|
|
acc.low64 ^= endian::read64le(input_2) + endian::read64le(input_2 + 8);
|
|
acc.high64 += XXH3_mix16B(input_2, secret + 16, seed);
|
|
acc.high64 ^= endian::read64le(input_1) + endian::read64le(input_1 + 8);
|
|
return acc;
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE static XXH128_hash_t
|
|
XXH3_len_17to128_128b(const uint8_t *input, size_t len, const uint8_t *secret,
|
|
size_t secretSize, uint64_t seed) {
|
|
(void)secretSize;
|
|
|
|
XXH128_hash_t acc;
|
|
acc.low64 = len * PRIME64_1;
|
|
acc.high64 = 0;
|
|
|
|
if (len > 32) {
|
|
if (len > 64) {
|
|
if (len > 96) {
|
|
acc =
|
|
XXH128_mix32B(acc, input + 48, input + len - 64, secret + 96, seed);
|
|
}
|
|
acc = XXH128_mix32B(acc, input + 32, input + len - 48, secret + 64, seed);
|
|
}
|
|
acc = XXH128_mix32B(acc, input + 16, input + len - 32, secret + 32, seed);
|
|
}
|
|
acc = XXH128_mix32B(acc, input, input + len - 16, secret, seed);
|
|
XXH128_hash_t h128;
|
|
h128.low64 = acc.low64 + acc.high64;
|
|
h128.high64 = (acc.low64 * PRIME64_1) + (acc.high64 * PRIME64_4) +
|
|
((len - seed) * PRIME64_2);
|
|
h128.low64 = XXH3_avalanche(h128.low64);
|
|
h128.high64 = (uint64_t)0 - XXH3_avalanche(h128.high64);
|
|
return h128;
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_NOINLINE static XXH128_hash_t
|
|
XXH3_len_129to240_128b(const uint8_t *input, size_t len, const uint8_t *secret,
|
|
size_t secretSize, uint64_t seed) {
|
|
(void)secretSize;
|
|
|
|
XXH128_hash_t acc;
|
|
unsigned i;
|
|
acc.low64 = len * PRIME64_1;
|
|
acc.high64 = 0;
|
|
/*
|
|
* We set as `i` as offset + 32. We do this so that unchanged
|
|
* `len` can be used as upper bound. This reaches a sweet spot
|
|
* where both x86 and aarch64 get simple agen and good codegen
|
|
* for the loop.
|
|
*/
|
|
for (i = 32; i < 160; i += 32) {
|
|
acc = XXH128_mix32B(acc, input + i - 32, input + i - 16, secret + i - 32,
|
|
seed);
|
|
}
|
|
acc.low64 = XXH3_avalanche(acc.low64);
|
|
acc.high64 = XXH3_avalanche(acc.high64);
|
|
/*
|
|
* NB: `i <= len` will duplicate the last 32-bytes if
|
|
* len % 32 was zero. This is an unfortunate necessity to keep
|
|
* the hash result stable.
|
|
*/
|
|
for (i = 160; i <= len; i += 32) {
|
|
acc = XXH128_mix32B(acc, input + i - 32, input + i - 16,
|
|
secret + XXH3_MIDSIZE_STARTOFFSET + i - 160, seed);
|
|
}
|
|
/* last bytes */
|
|
acc =
|
|
XXH128_mix32B(acc, input + len - 16, input + len - 32,
|
|
secret + XXH3_SECRETSIZE_MIN - XXH3_MIDSIZE_LASTOFFSET - 16,
|
|
(uint64_t)0 - seed);
|
|
|
|
XXH128_hash_t h128;
|
|
h128.low64 = acc.low64 + acc.high64;
|
|
h128.high64 = (acc.low64 * PRIME64_1) + (acc.high64 * PRIME64_4) +
|
|
((len - seed) * PRIME64_2);
|
|
h128.low64 = XXH3_avalanche(h128.low64);
|
|
h128.high64 = (uint64_t)0 - XXH3_avalanche(h128.high64);
|
|
return h128;
|
|
}
|
|
|
|
LLVM_ATTRIBUTE_ALWAYS_INLINE XXH128_hash_t
|
|
XXH3_hashLong_128b(const uint8_t *input, size_t len, const uint8_t *secret,
|
|
size_t secretSize) {
|
|
const size_t nbStripesPerBlock =
|
|
(secretSize - XXH_STRIPE_LEN) / XXH_SECRET_CONSUME_RATE;
|
|
const size_t block_len = XXH_STRIPE_LEN * nbStripesPerBlock;
|
|
const size_t nb_blocks = (len - 1) / block_len;
|
|
alignas(16) uint64_t acc[XXH_ACC_NB] = {
|
|
PRIME32_3, PRIME64_1, PRIME64_2, PRIME64_3,
|
|
PRIME64_4, PRIME32_2, PRIME64_5, PRIME32_1,
|
|
};
|
|
|
|
for (size_t n = 0; n < nb_blocks; ++n) {
|
|
XXH3_accumulate(acc, input + n * block_len, secret, nbStripesPerBlock);
|
|
XXH3_scrambleAcc(acc, secret + secretSize - XXH_STRIPE_LEN);
|
|
}
|
|
|
|
/* last partial block */
|
|
const size_t nbStripes = (len - 1 - (block_len * nb_blocks)) / XXH_STRIPE_LEN;
|
|
assert(nbStripes <= secretSize / XXH_SECRET_CONSUME_RATE);
|
|
XXH3_accumulate(acc, input + nb_blocks * block_len, secret, nbStripes);
|
|
|
|
/* last stripe */
|
|
constexpr size_t XXH_SECRET_LASTACC_START = 7;
|
|
XXH3_accumulate_512(acc, input + len - XXH_STRIPE_LEN,
|
|
secret + secretSize - XXH_STRIPE_LEN -
|
|
XXH_SECRET_LASTACC_START);
|
|
|
|
/* converge into final hash */
|
|
static_assert(sizeof(acc) == 64);
|
|
XXH128_hash_t h128;
|
|
constexpr size_t XXH_SECRET_MERGEACCS_START = 11;
|
|
h128.low64 = XXH3_mergeAccs(acc, secret + XXH_SECRET_MERGEACCS_START,
|
|
(uint64_t)len * PRIME64_1);
|
|
h128.high64 = XXH3_mergeAccs(
|
|
acc, secret + secretSize - sizeof(acc) - XXH_SECRET_MERGEACCS_START,
|
|
~((uint64_t)len * PRIME64_2));
|
|
return h128;
|
|
}
|
|
|
|
llvm::XXH128_hash_t llvm::xxh3_128bits(ArrayRef<uint8_t> data) {
|
|
size_t len = data.size();
|
|
const uint8_t *input = data.data();
|
|
|
|
/*
|
|
* If an action is to be taken if `secret` conditions are not respected,
|
|
* it should be done here.
|
|
* For now, it's a contract pre-condition.
|
|
* Adding a check and a branch here would cost performance at every hash.
|
|
*/
|
|
if (len <= 16)
|
|
return XXH3_len_0to16_128b(input, len, kSecret, /*seed64=*/0);
|
|
if (len <= 128)
|
|
return XXH3_len_17to128_128b(input, len, kSecret, sizeof(kSecret),
|
|
/*seed64=*/0);
|
|
if (len <= XXH3_MIDSIZE_MAX)
|
|
return XXH3_len_129to240_128b(input, len, kSecret, sizeof(kSecret),
|
|
/*seed64=*/0);
|
|
return XXH3_hashLong_128b(input, len, kSecret, sizeof(kSecret));
|
|
}
|