llvm-project/compiler-rt/lib/builtins/fp_compare_impl.inc
Ayke van Laethem c1d6dca694
[compiler-rt][AVR] Use correct return value for __ledf2 etc
Previously the default was long, which is 32-bit on AVR. But avr-gcc
expects a smaller value: it reads the return value from r24.

This is actually a regression from https://reviews.llvm.org/D98205.
Before D98205, the return value was an enum (which was 2 bytes in size)
which was compatible with the 1-byte return value that avr-gcc was
expecting. But long is 4 bytes and thus places the significant return
value in a different register.

Differential Revision: https://reviews.llvm.org/D124939
2022-05-04 22:51:39 +02:00

120 lines
3.5 KiB
C

//===-- lib/fp_compare_impl.inc - Floating-point comparison -------*- C -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "fp_lib.h"
// GCC uses long (at least for x86_64) as the return type of the comparison
// functions. We need to ensure that the return value is sign-extended in the
// same way as GCC expects (since otherwise GCC-generated __builtin_isinf
// returns true for finite 128-bit floating-point numbers).
#ifdef __aarch64__
// AArch64 GCC overrides libgcc_cmp_return to use int instead of long.
typedef int CMP_RESULT;
#elif __SIZEOF_POINTER__ == 8 && __SIZEOF_LONG__ == 4
// LLP64 ABIs use long long instead of long.
typedef long long CMP_RESULT;
#elif __AVR__
// AVR uses a single byte for the return value.
typedef char CMP_RESULT;
#else
// Otherwise the comparison functions return long.
typedef long CMP_RESULT;
#endif
#if !defined(__clang__) && defined(__GNUC__)
// GCC uses a special __libgcc_cmp_return__ mode to define the return type, so
// check that we are ABI-compatible when compiling the builtins with GCC.
typedef int GCC_CMP_RESULT __attribute__((__mode__(__libgcc_cmp_return__)));
_Static_assert(sizeof(GCC_CMP_RESULT) == sizeof(CMP_RESULT),
"SOFTFP ABI not compatible with GCC");
#endif
enum {
LE_LESS = -1,
LE_EQUAL = 0,
LE_GREATER = 1,
LE_UNORDERED = 1,
};
static inline CMP_RESULT __leXf2__(fp_t a, fp_t b) {
const srep_t aInt = toRep(a);
const srep_t bInt = toRep(b);
const rep_t aAbs = aInt & absMask;
const rep_t bAbs = bInt & absMask;
// If either a or b is NaN, they are unordered.
if (aAbs > infRep || bAbs > infRep)
return LE_UNORDERED;
// If a and b are both zeros, they are equal.
if ((aAbs | bAbs) == 0)
return LE_EQUAL;
// If at least one of a and b is positive, we get the same result comparing
// a and b as signed integers as we would with a floating-point compare.
if ((aInt & bInt) >= 0) {
if (aInt < bInt)
return LE_LESS;
else if (aInt == bInt)
return LE_EQUAL;
else
return LE_GREATER;
} else {
// Otherwise, both are negative, so we need to flip the sense of the
// comparison to get the correct result. (This assumes a twos- or ones-
// complement integer representation; if integers are represented in a
// sign-magnitude representation, then this flip is incorrect).
if (aInt > bInt)
return LE_LESS;
else if (aInt == bInt)
return LE_EQUAL;
else
return LE_GREATER;
}
}
enum {
GE_LESS = -1,
GE_EQUAL = 0,
GE_GREATER = 1,
GE_UNORDERED = -1 // Note: different from LE_UNORDERED
};
static inline CMP_RESULT __geXf2__(fp_t a, fp_t b) {
const srep_t aInt = toRep(a);
const srep_t bInt = toRep(b);
const rep_t aAbs = aInt & absMask;
const rep_t bAbs = bInt & absMask;
if (aAbs > infRep || bAbs > infRep)
return GE_UNORDERED;
if ((aAbs | bAbs) == 0)
return GE_EQUAL;
if ((aInt & bInt) >= 0) {
if (aInt < bInt)
return GE_LESS;
else if (aInt == bInt)
return GE_EQUAL;
else
return GE_GREATER;
} else {
if (aInt > bInt)
return GE_LESS;
else if (aInt == bInt)
return GE_EQUAL;
else
return GE_GREATER;
}
}
static inline CMP_RESULT __unordXf2__(fp_t a, fp_t b) {
const rep_t aAbs = toRep(a) & absMask;
const rep_t bAbs = toRep(b) & absMask;
return aAbs > infRep || bAbs > infRep;
}