mirror of
https://github.com/llvm/llvm-project.git
synced 2025-05-03 02:36:08 +00:00
1475 lines
58 KiB
C++
1475 lines
58 KiB
C++
//===---- MachineOutliner.cpp - Outline instructions -----------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
///
|
|
/// \file
|
|
/// Replaces repeated sequences of instructions with function calls.
|
|
///
|
|
/// This works by placing every instruction from every basic block in a
|
|
/// suffix tree, and repeatedly querying that tree for repeated sequences of
|
|
/// instructions. If a sequence of instructions appears often, then it ought
|
|
/// to be beneficial to pull out into a function.
|
|
///
|
|
/// The MachineOutliner communicates with a given target using hooks defined in
|
|
/// TargetInstrInfo.h. The target supplies the outliner with information on how
|
|
/// a specific sequence of instructions should be outlined. This information
|
|
/// is used to deduce the number of instructions necessary to
|
|
///
|
|
/// * Create an outlined function
|
|
/// * Call that outlined function
|
|
///
|
|
/// Targets must implement
|
|
/// * getOutliningCandidateInfo
|
|
/// * buildOutlinedFrame
|
|
/// * insertOutlinedCall
|
|
/// * isFunctionSafeToOutlineFrom
|
|
///
|
|
/// in order to make use of the MachineOutliner.
|
|
///
|
|
/// This was originally presented at the 2016 LLVM Developers' Meeting in the
|
|
/// talk "Reducing Code Size Using Outlining". For a high-level overview of
|
|
/// how this pass works, the talk is available on YouTube at
|
|
///
|
|
/// https://www.youtube.com/watch?v=yorld-WSOeU
|
|
///
|
|
/// The slides for the talk are available at
|
|
///
|
|
/// http://www.llvm.org/devmtg/2016-11/Slides/Paquette-Outliner.pdf
|
|
///
|
|
/// The talk provides an overview of how the outliner finds candidates and
|
|
/// ultimately outlines them. It describes how the main data structure for this
|
|
/// pass, the suffix tree, is queried and purged for candidates. It also gives
|
|
/// a simplified suffix tree construction algorithm for suffix trees based off
|
|
/// of the algorithm actually used here, Ukkonen's algorithm.
|
|
///
|
|
/// For the original RFC for this pass, please see
|
|
///
|
|
/// http://lists.llvm.org/pipermail/llvm-dev/2016-August/104170.html
|
|
///
|
|
/// For more information on the suffix tree data structure, please see
|
|
/// https://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
#include "llvm/CodeGen/MachineOutliner.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Analysis/ModuleSummaryAnalysis.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/CGData/CodeGenDataReader.h"
|
|
#include "llvm/CodeGen/LivePhysRegs.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/IR/DIBuilder.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Mangler.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/SuffixTree.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Utils/ModuleUtils.h"
|
|
#include <tuple>
|
|
#include <vector>
|
|
|
|
#define DEBUG_TYPE "machine-outliner"
|
|
|
|
using namespace llvm;
|
|
using namespace ore;
|
|
using namespace outliner;
|
|
|
|
// Statistics for outlined functions.
|
|
STATISTIC(NumOutlined, "Number of candidates outlined");
|
|
STATISTIC(FunctionsCreated, "Number of functions created");
|
|
|
|
// Statistics for instruction mapping.
|
|
STATISTIC(NumLegalInUnsignedVec, "Outlinable instructions mapped");
|
|
STATISTIC(NumIllegalInUnsignedVec,
|
|
"Unoutlinable instructions mapped + number of sentinel values");
|
|
STATISTIC(NumSentinels, "Sentinel values inserted during mapping");
|
|
STATISTIC(NumInvisible,
|
|
"Invisible instructions skipped during mapping");
|
|
STATISTIC(UnsignedVecSize,
|
|
"Total number of instructions mapped and saved to mapping vector");
|
|
STATISTIC(StableHashAttempts,
|
|
"Count of hashing attempts made for outlined functions");
|
|
STATISTIC(StableHashDropped,
|
|
"Count of unsuccessful hashing attempts for outlined functions");
|
|
|
|
// Set to true if the user wants the outliner to run on linkonceodr linkage
|
|
// functions. This is false by default because the linker can dedupe linkonceodr
|
|
// functions. Since the outliner is confined to a single module (modulo LTO),
|
|
// this is off by default. It should, however, be the default behaviour in
|
|
// LTO.
|
|
static cl::opt<bool> EnableLinkOnceODROutlining(
|
|
"enable-linkonceodr-outlining", cl::Hidden,
|
|
cl::desc("Enable the machine outliner on linkonceodr functions"),
|
|
cl::init(false));
|
|
|
|
/// Number of times to re-run the outliner. This is not the total number of runs
|
|
/// as the outliner will run at least one time. The default value is set to 0,
|
|
/// meaning the outliner will run one time and rerun zero times after that.
|
|
static cl::opt<unsigned> OutlinerReruns(
|
|
"machine-outliner-reruns", cl::init(0), cl::Hidden,
|
|
cl::desc(
|
|
"Number of times to rerun the outliner after the initial outline"));
|
|
|
|
static cl::opt<unsigned> OutlinerBenefitThreshold(
|
|
"outliner-benefit-threshold", cl::init(1), cl::Hidden,
|
|
cl::desc(
|
|
"The minimum size in bytes before an outlining candidate is accepted"));
|
|
|
|
static cl::opt<bool> OutlinerLeafDescendants(
|
|
"outliner-leaf-descendants", cl::init(true), cl::Hidden,
|
|
cl::desc("Consider all leaf descendants of internal nodes of the suffix "
|
|
"tree as candidates for outlining (if false, only leaf children "
|
|
"are considered)"));
|
|
|
|
static cl::opt<bool>
|
|
DisableGlobalOutlining("disable-global-outlining", cl::Hidden,
|
|
cl::desc("Disable global outlining only by ignoring "
|
|
"the codegen data generation or use"),
|
|
cl::init(false));
|
|
|
|
static cl::opt<bool> AppendContentHashToOutlinedName(
|
|
"append-content-hash-outlined-name", cl::Hidden,
|
|
cl::desc("This appends the content hash to the globally outlined function "
|
|
"name. It's beneficial for enhancing the precision of the stable "
|
|
"hash and for ordering the outlined functions."),
|
|
cl::init(true));
|
|
|
|
namespace {
|
|
|
|
/// Maps \p MachineInstrs to unsigned integers and stores the mappings.
|
|
struct InstructionMapper {
|
|
const MachineModuleInfo &MMI;
|
|
|
|
/// The next available integer to assign to a \p MachineInstr that
|
|
/// cannot be outlined.
|
|
///
|
|
/// Set to -3 for compatability with \p DenseMapInfo<unsigned>.
|
|
unsigned IllegalInstrNumber = -3;
|
|
|
|
/// The next available integer to assign to a \p MachineInstr that can
|
|
/// be outlined.
|
|
unsigned LegalInstrNumber = 0;
|
|
|
|
/// Correspondence from \p MachineInstrs to unsigned integers.
|
|
DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>
|
|
InstructionIntegerMap;
|
|
|
|
/// Correspondence between \p MachineBasicBlocks and target-defined flags.
|
|
DenseMap<MachineBasicBlock *, unsigned> MBBFlagsMap;
|
|
|
|
/// The vector of unsigned integers that the module is mapped to.
|
|
SmallVector<unsigned> UnsignedVec;
|
|
|
|
/// Stores the location of the instruction associated with the integer
|
|
/// at index i in \p UnsignedVec for each index i.
|
|
SmallVector<MachineBasicBlock::iterator> InstrList;
|
|
|
|
// Set if we added an illegal number in the previous step.
|
|
// Since each illegal number is unique, we only need one of them between
|
|
// each range of legal numbers. This lets us make sure we don't add more
|
|
// than one illegal number per range.
|
|
bool AddedIllegalLastTime = false;
|
|
|
|
/// Maps \p *It to a legal integer.
|
|
///
|
|
/// Updates \p CanOutlineWithPrevInstr, \p HaveLegalRange, \p InstrListForMBB,
|
|
/// \p UnsignedVecForMBB, \p InstructionIntegerMap, and \p LegalInstrNumber.
|
|
///
|
|
/// \returns The integer that \p *It was mapped to.
|
|
unsigned mapToLegalUnsigned(
|
|
MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr,
|
|
bool &HaveLegalRange, unsigned &NumLegalInBlock,
|
|
SmallVector<unsigned> &UnsignedVecForMBB,
|
|
SmallVector<MachineBasicBlock::iterator> &InstrListForMBB) {
|
|
// We added something legal, so we should unset the AddedLegalLastTime
|
|
// flag.
|
|
AddedIllegalLastTime = false;
|
|
|
|
// If we have at least two adjacent legal instructions (which may have
|
|
// invisible instructions in between), remember that.
|
|
if (CanOutlineWithPrevInstr)
|
|
HaveLegalRange = true;
|
|
CanOutlineWithPrevInstr = true;
|
|
|
|
// Keep track of the number of legal instructions we insert.
|
|
NumLegalInBlock++;
|
|
|
|
// Get the integer for this instruction or give it the current
|
|
// LegalInstrNumber.
|
|
InstrListForMBB.push_back(It);
|
|
MachineInstr &MI = *It;
|
|
bool WasInserted;
|
|
DenseMap<MachineInstr *, unsigned, MachineInstrExpressionTrait>::iterator
|
|
ResultIt;
|
|
std::tie(ResultIt, WasInserted) =
|
|
InstructionIntegerMap.insert(std::make_pair(&MI, LegalInstrNumber));
|
|
unsigned MINumber = ResultIt->second;
|
|
|
|
// There was an insertion.
|
|
if (WasInserted)
|
|
LegalInstrNumber++;
|
|
|
|
UnsignedVecForMBB.push_back(MINumber);
|
|
|
|
// Make sure we don't overflow or use any integers reserved by the DenseMap.
|
|
if (LegalInstrNumber >= IllegalInstrNumber)
|
|
report_fatal_error("Instruction mapping overflow!");
|
|
|
|
assert(LegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
|
|
"Tried to assign DenseMap tombstone or empty key to instruction.");
|
|
assert(LegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
|
|
"Tried to assign DenseMap tombstone or empty key to instruction.");
|
|
|
|
// Statistics.
|
|
++NumLegalInUnsignedVec;
|
|
return MINumber;
|
|
}
|
|
|
|
/// Maps \p *It to an illegal integer.
|
|
///
|
|
/// Updates \p InstrListForMBB, \p UnsignedVecForMBB, and \p
|
|
/// IllegalInstrNumber.
|
|
///
|
|
/// \returns The integer that \p *It was mapped to.
|
|
unsigned mapToIllegalUnsigned(
|
|
MachineBasicBlock::iterator &It, bool &CanOutlineWithPrevInstr,
|
|
SmallVector<unsigned> &UnsignedVecForMBB,
|
|
SmallVector<MachineBasicBlock::iterator> &InstrListForMBB) {
|
|
// Can't outline an illegal instruction. Set the flag.
|
|
CanOutlineWithPrevInstr = false;
|
|
|
|
// Only add one illegal number per range of legal numbers.
|
|
if (AddedIllegalLastTime)
|
|
return IllegalInstrNumber;
|
|
|
|
// Remember that we added an illegal number last time.
|
|
AddedIllegalLastTime = true;
|
|
unsigned MINumber = IllegalInstrNumber;
|
|
|
|
InstrListForMBB.push_back(It);
|
|
UnsignedVecForMBB.push_back(IllegalInstrNumber);
|
|
IllegalInstrNumber--;
|
|
// Statistics.
|
|
++NumIllegalInUnsignedVec;
|
|
|
|
assert(LegalInstrNumber < IllegalInstrNumber &&
|
|
"Instruction mapping overflow!");
|
|
|
|
assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getEmptyKey() &&
|
|
"IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
|
|
|
|
assert(IllegalInstrNumber != DenseMapInfo<unsigned>::getTombstoneKey() &&
|
|
"IllegalInstrNumber cannot be DenseMap tombstone or empty key!");
|
|
|
|
return MINumber;
|
|
}
|
|
|
|
/// Transforms a \p MachineBasicBlock into a \p vector of \p unsigneds
|
|
/// and appends it to \p UnsignedVec and \p InstrList.
|
|
///
|
|
/// Two instructions are assigned the same integer if they are identical.
|
|
/// If an instruction is deemed unsafe to outline, then it will be assigned an
|
|
/// unique integer. The resulting mapping is placed into a suffix tree and
|
|
/// queried for candidates.
|
|
///
|
|
/// \param MBB The \p MachineBasicBlock to be translated into integers.
|
|
/// \param TII \p TargetInstrInfo for the function.
|
|
void convertToUnsignedVec(MachineBasicBlock &MBB,
|
|
const TargetInstrInfo &TII) {
|
|
LLVM_DEBUG(dbgs() << "*** Converting MBB '" << MBB.getName()
|
|
<< "' to unsigned vector ***\n");
|
|
unsigned Flags = 0;
|
|
|
|
// Don't even map in this case.
|
|
if (!TII.isMBBSafeToOutlineFrom(MBB, Flags))
|
|
return;
|
|
|
|
auto OutlinableRanges = TII.getOutlinableRanges(MBB, Flags);
|
|
LLVM_DEBUG(dbgs() << MBB.getName() << ": " << OutlinableRanges.size()
|
|
<< " outlinable range(s)\n");
|
|
if (OutlinableRanges.empty())
|
|
return;
|
|
|
|
// Store info for the MBB for later outlining.
|
|
MBBFlagsMap[&MBB] = Flags;
|
|
|
|
MachineBasicBlock::iterator It = MBB.begin();
|
|
|
|
// The number of instructions in this block that will be considered for
|
|
// outlining.
|
|
unsigned NumLegalInBlock = 0;
|
|
|
|
// True if we have at least two legal instructions which aren't separated
|
|
// by an illegal instruction.
|
|
bool HaveLegalRange = false;
|
|
|
|
// True if we can perform outlining given the last mapped (non-invisible)
|
|
// instruction. This lets us know if we have a legal range.
|
|
bool CanOutlineWithPrevInstr = false;
|
|
|
|
// FIXME: Should this all just be handled in the target, rather than using
|
|
// repeated calls to getOutliningType?
|
|
SmallVector<unsigned> UnsignedVecForMBB;
|
|
SmallVector<MachineBasicBlock::iterator> InstrListForMBB;
|
|
|
|
LLVM_DEBUG(dbgs() << "*** Mapping outlinable ranges ***\n");
|
|
for (auto &OutlinableRange : OutlinableRanges) {
|
|
auto OutlinableRangeBegin = OutlinableRange.first;
|
|
auto OutlinableRangeEnd = OutlinableRange.second;
|
|
#ifndef NDEBUG
|
|
LLVM_DEBUG(
|
|
dbgs() << "Mapping "
|
|
<< std::distance(OutlinableRangeBegin, OutlinableRangeEnd)
|
|
<< " instruction range\n");
|
|
// Everything outside of an outlinable range is illegal.
|
|
unsigned NumSkippedInRange = 0;
|
|
#endif
|
|
for (; It != OutlinableRangeBegin; ++It) {
|
|
#ifndef NDEBUG
|
|
++NumSkippedInRange;
|
|
#endif
|
|
mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB,
|
|
InstrListForMBB);
|
|
}
|
|
#ifndef NDEBUG
|
|
LLVM_DEBUG(dbgs() << "Skipped " << NumSkippedInRange
|
|
<< " instructions outside outlinable range\n");
|
|
#endif
|
|
assert(It != MBB.end() && "Should still have instructions?");
|
|
// `It` is now positioned at the beginning of a range of instructions
|
|
// which may be outlinable. Check if each instruction is known to be safe.
|
|
for (; It != OutlinableRangeEnd; ++It) {
|
|
// Keep track of where this instruction is in the module.
|
|
switch (TII.getOutliningType(MMI, It, Flags)) {
|
|
case InstrType::Illegal:
|
|
mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB,
|
|
InstrListForMBB);
|
|
break;
|
|
|
|
case InstrType::Legal:
|
|
mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange,
|
|
NumLegalInBlock, UnsignedVecForMBB,
|
|
InstrListForMBB);
|
|
break;
|
|
|
|
case InstrType::LegalTerminator:
|
|
mapToLegalUnsigned(It, CanOutlineWithPrevInstr, HaveLegalRange,
|
|
NumLegalInBlock, UnsignedVecForMBB,
|
|
InstrListForMBB);
|
|
// The instruction also acts as a terminator, so we have to record
|
|
// that in the string.
|
|
mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB,
|
|
InstrListForMBB);
|
|
break;
|
|
|
|
case InstrType::Invisible:
|
|
// Normally this is set by mapTo(Blah)Unsigned, but we just want to
|
|
// skip this instruction. So, unset the flag here.
|
|
++NumInvisible;
|
|
AddedIllegalLastTime = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "HaveLegalRange = " << HaveLegalRange << "\n");
|
|
|
|
// Are there enough legal instructions in the block for outlining to be
|
|
// possible?
|
|
if (HaveLegalRange) {
|
|
// After we're done every insertion, uniquely terminate this part of the
|
|
// "string". This makes sure we won't match across basic block or function
|
|
// boundaries since the "end" is encoded uniquely and thus appears in no
|
|
// repeated substring.
|
|
mapToIllegalUnsigned(It, CanOutlineWithPrevInstr, UnsignedVecForMBB,
|
|
InstrListForMBB);
|
|
++NumSentinels;
|
|
append_range(InstrList, InstrListForMBB);
|
|
append_range(UnsignedVec, UnsignedVecForMBB);
|
|
}
|
|
}
|
|
|
|
InstructionMapper(const MachineModuleInfo &MMI_) : MMI(MMI_) {
|
|
// Make sure that the implementation of DenseMapInfo<unsigned> hasn't
|
|
// changed.
|
|
assert(DenseMapInfo<unsigned>::getEmptyKey() == (unsigned)-1 &&
|
|
"DenseMapInfo<unsigned>'s empty key isn't -1!");
|
|
assert(DenseMapInfo<unsigned>::getTombstoneKey() == (unsigned)-2 &&
|
|
"DenseMapInfo<unsigned>'s tombstone key isn't -2!");
|
|
}
|
|
};
|
|
|
|
/// An interprocedural pass which finds repeated sequences of
|
|
/// instructions and replaces them with calls to functions.
|
|
///
|
|
/// Each instruction is mapped to an unsigned integer and placed in a string.
|
|
/// The resulting mapping is then placed in a \p SuffixTree. The \p SuffixTree
|
|
/// is then repeatedly queried for repeated sequences of instructions. Each
|
|
/// non-overlapping repeated sequence is then placed in its own
|
|
/// \p MachineFunction and each instance is then replaced with a call to that
|
|
/// function.
|
|
struct MachineOutliner : public ModulePass {
|
|
|
|
static char ID;
|
|
|
|
MachineModuleInfo *MMI = nullptr;
|
|
|
|
/// Set to true if the outliner should consider functions with
|
|
/// linkonceodr linkage.
|
|
bool OutlineFromLinkOnceODRs = false;
|
|
|
|
/// The current repeat number of machine outlining.
|
|
unsigned OutlineRepeatedNum = 0;
|
|
|
|
/// Set to true if the outliner should run on all functions in the module
|
|
/// considered safe for outlining.
|
|
/// Set to true by default for compatibility with llc's -run-pass option.
|
|
/// Set when the pass is constructed in TargetPassConfig.
|
|
bool RunOnAllFunctions = true;
|
|
|
|
/// This is a compact representation of hash sequences of outlined functions.
|
|
/// It is used when OutlinerMode = CGDataMode::Write.
|
|
/// The resulting hash tree will be emitted into __llvm_outlined section
|
|
/// which will be dead-stripped not going to the final binary.
|
|
/// A post-process using llvm-cgdata, lld, or ThinLTO can merge them into
|
|
/// a global oulined hash tree for the subsequent codegen.
|
|
std::unique_ptr<OutlinedHashTree> LocalHashTree;
|
|
|
|
/// The mode of the outliner.
|
|
/// When is's CGDataMode::None, candidates are populated with the suffix tree
|
|
/// within a module and outlined.
|
|
/// When it's CGDataMode::Write, in addition to CGDataMode::None, the hash
|
|
/// sequences of outlined functions are published into LocalHashTree.
|
|
/// When it's CGDataMode::Read, candidates are populated with the global
|
|
/// outlined hash tree that has been built by the previous codegen.
|
|
CGDataMode OutlinerMode = CGDataMode::None;
|
|
|
|
StringRef getPassName() const override { return "Machine Outliner"; }
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.addRequired<MachineModuleInfoWrapperPass>();
|
|
AU.addPreserved<MachineModuleInfoWrapperPass>();
|
|
AU.addUsedIfAvailable<ImmutableModuleSummaryIndexWrapperPass>();
|
|
AU.setPreservesAll();
|
|
ModulePass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
MachineOutliner() : ModulePass(ID) {
|
|
initializeMachineOutlinerPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
/// Remark output explaining that not outlining a set of candidates would be
|
|
/// better than outlining that set.
|
|
void emitNotOutliningCheaperRemark(
|
|
unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq,
|
|
OutlinedFunction &OF);
|
|
|
|
/// Remark output explaining that a function was outlined.
|
|
void emitOutlinedFunctionRemark(OutlinedFunction &OF);
|
|
|
|
/// Find all repeated substrings that satisfy the outlining cost model by
|
|
/// constructing a suffix tree.
|
|
///
|
|
/// If a substring appears at least twice, then it must be represented by
|
|
/// an internal node which appears in at least two suffixes. Each suffix
|
|
/// is represented by a leaf node. To do this, we visit each internal node
|
|
/// in the tree, using the leaf children of each internal node. If an
|
|
/// internal node represents a beneficial substring, then we use each of
|
|
/// its leaf children to find the locations of its substring.
|
|
///
|
|
/// \param Mapper Contains outlining mapping information.
|
|
/// \param[out] FunctionList Filled with a list of \p OutlinedFunctions
|
|
/// each type of candidate.
|
|
void
|
|
findCandidates(InstructionMapper &Mapper,
|
|
std::vector<std::unique_ptr<OutlinedFunction>> &FunctionList);
|
|
|
|
/// Find all repeated substrings that match in the global outlined hash
|
|
/// tree built from the previous codegen.
|
|
///
|
|
/// \param Mapper Contains outlining mapping information.
|
|
/// \param[out] FunctionList Filled with a list of \p OutlinedFunctions
|
|
/// each type of candidate.
|
|
void findGlobalCandidates(
|
|
InstructionMapper &Mapper,
|
|
std::vector<std::unique_ptr<OutlinedFunction>> &FunctionList);
|
|
|
|
/// Replace the sequences of instructions represented by \p OutlinedFunctions
|
|
/// with calls to functions.
|
|
///
|
|
/// \param M The module we are outlining from.
|
|
/// \param FunctionList A list of functions to be inserted into the module.
|
|
/// \param Mapper Contains the instruction mappings for the module.
|
|
/// \param[out] OutlinedFunctionNum The outlined function number.
|
|
bool outline(Module &M,
|
|
std::vector<std::unique_ptr<OutlinedFunction>> &FunctionList,
|
|
InstructionMapper &Mapper, unsigned &OutlinedFunctionNum);
|
|
|
|
/// Creates a function for \p OF and inserts it into the module.
|
|
MachineFunction *createOutlinedFunction(Module &M, OutlinedFunction &OF,
|
|
InstructionMapper &Mapper,
|
|
unsigned Name);
|
|
|
|
/// Compute and publish the stable hash sequence of instructions in the
|
|
/// outlined function, \p MF. The parameter \p CandSize represents the number
|
|
/// of candidates that have identical instruction sequences to \p MF.
|
|
void computeAndPublishHashSequence(MachineFunction &MF, unsigned CandSize);
|
|
|
|
/// Initialize the outliner mode.
|
|
void initializeOutlinerMode(const Module &M);
|
|
|
|
/// Emit the outlined hash tree into __llvm_outline section.
|
|
void emitOutlinedHashTree(Module &M);
|
|
|
|
/// Calls 'doOutline()' 1 + OutlinerReruns times.
|
|
bool runOnModule(Module &M) override;
|
|
|
|
/// Construct a suffix tree on the instructions in \p M and outline repeated
|
|
/// strings from that tree.
|
|
bool doOutline(Module &M, unsigned &OutlinedFunctionNum);
|
|
|
|
/// Return a DISubprogram for OF if one exists, and null otherwise. Helper
|
|
/// function for remark emission.
|
|
DISubprogram *getSubprogramOrNull(const OutlinedFunction &OF) {
|
|
for (const Candidate &C : OF.Candidates)
|
|
if (MachineFunction *MF = C.getMF())
|
|
if (DISubprogram *SP = MF->getFunction().getSubprogram())
|
|
return SP;
|
|
return nullptr;
|
|
}
|
|
|
|
/// Populate and \p InstructionMapper with instruction-to-integer mappings.
|
|
/// These are used to construct a suffix tree.
|
|
void populateMapper(InstructionMapper &Mapper, Module &M);
|
|
|
|
/// Initialize information necessary to output a size remark.
|
|
/// FIXME: This should be handled by the pass manager, not the outliner.
|
|
/// FIXME: This is nearly identical to the initSizeRemarkInfo in the legacy
|
|
/// pass manager.
|
|
void initSizeRemarkInfo(const Module &M,
|
|
StringMap<unsigned> &FunctionToInstrCount);
|
|
|
|
/// Emit the remark.
|
|
// FIXME: This should be handled by the pass manager, not the outliner.
|
|
void
|
|
emitInstrCountChangedRemark(const Module &M,
|
|
const StringMap<unsigned> &FunctionToInstrCount);
|
|
};
|
|
} // Anonymous namespace.
|
|
|
|
char MachineOutliner::ID = 0;
|
|
|
|
namespace llvm {
|
|
ModulePass *createMachineOutlinerPass(bool RunOnAllFunctions) {
|
|
MachineOutliner *OL = new MachineOutliner();
|
|
OL->RunOnAllFunctions = RunOnAllFunctions;
|
|
return OL;
|
|
}
|
|
|
|
} // namespace llvm
|
|
|
|
INITIALIZE_PASS(MachineOutliner, DEBUG_TYPE, "Machine Function Outliner", false,
|
|
false)
|
|
|
|
void MachineOutliner::emitNotOutliningCheaperRemark(
|
|
unsigned StringLen, std::vector<Candidate> &CandidatesForRepeatedSeq,
|
|
OutlinedFunction &OF) {
|
|
// FIXME: Right now, we arbitrarily choose some Candidate from the
|
|
// OutlinedFunction. This isn't necessarily fixed, nor does it have to be.
|
|
// We should probably sort these by function name or something to make sure
|
|
// the remarks are stable.
|
|
Candidate &C = CandidatesForRepeatedSeq.front();
|
|
MachineOptimizationRemarkEmitter MORE(*(C.getMF()), nullptr);
|
|
MORE.emit([&]() {
|
|
MachineOptimizationRemarkMissed R(DEBUG_TYPE, "NotOutliningCheaper",
|
|
C.front().getDebugLoc(), C.getMBB());
|
|
R << "Did not outline " << NV("Length", StringLen) << " instructions"
|
|
<< " from " << NV("NumOccurrences", CandidatesForRepeatedSeq.size())
|
|
<< " locations."
|
|
<< " Bytes from outlining all occurrences ("
|
|
<< NV("OutliningCost", OF.getOutliningCost()) << ")"
|
|
<< " >= Unoutlined instruction bytes ("
|
|
<< NV("NotOutliningCost", OF.getNotOutlinedCost()) << ")"
|
|
<< " (Also found at: ";
|
|
|
|
// Tell the user the other places the candidate was found.
|
|
for (unsigned i = 1, e = CandidatesForRepeatedSeq.size(); i < e; i++) {
|
|
R << NV((Twine("OtherStartLoc") + Twine(i)).str(),
|
|
CandidatesForRepeatedSeq[i].front().getDebugLoc());
|
|
if (i != e - 1)
|
|
R << ", ";
|
|
}
|
|
|
|
R << ")";
|
|
return R;
|
|
});
|
|
}
|
|
|
|
void MachineOutliner::emitOutlinedFunctionRemark(OutlinedFunction &OF) {
|
|
MachineBasicBlock *MBB = &*OF.MF->begin();
|
|
MachineOptimizationRemarkEmitter MORE(*OF.MF, nullptr);
|
|
MachineOptimizationRemark R(DEBUG_TYPE, "OutlinedFunction",
|
|
MBB->findDebugLoc(MBB->begin()), MBB);
|
|
R << "Saved " << NV("OutliningBenefit", OF.getBenefit()) << " bytes by "
|
|
<< "outlining " << NV("Length", OF.getNumInstrs()) << " instructions "
|
|
<< "from " << NV("NumOccurrences", OF.getOccurrenceCount())
|
|
<< " locations. "
|
|
<< "(Found at: ";
|
|
|
|
// Tell the user the other places the candidate was found.
|
|
for (size_t i = 0, e = OF.Candidates.size(); i < e; i++) {
|
|
|
|
R << NV((Twine("StartLoc") + Twine(i)).str(),
|
|
OF.Candidates[i].front().getDebugLoc());
|
|
if (i != e - 1)
|
|
R << ", ";
|
|
}
|
|
|
|
R << ")";
|
|
|
|
MORE.emit(R);
|
|
}
|
|
|
|
struct MatchedEntry {
|
|
unsigned StartIdx;
|
|
unsigned EndIdx;
|
|
unsigned Count;
|
|
MatchedEntry(unsigned StartIdx, unsigned EndIdx, unsigned Count)
|
|
: StartIdx(StartIdx), EndIdx(EndIdx), Count(Count) {}
|
|
MatchedEntry() = delete;
|
|
};
|
|
|
|
// Find all matches in the global outlined hash tree.
|
|
// It's quadratic complexity in theory, but it's nearly linear in practice
|
|
// since the length of outlined sequences are small within a block.
|
|
static SmallVector<MatchedEntry> getMatchedEntries(InstructionMapper &Mapper) {
|
|
auto &InstrList = Mapper.InstrList;
|
|
auto &UnsignedVec = Mapper.UnsignedVec;
|
|
|
|
SmallVector<MatchedEntry> MatchedEntries;
|
|
auto Size = UnsignedVec.size();
|
|
|
|
// Get the global outlined hash tree built from the previous run.
|
|
assert(cgdata::hasOutlinedHashTree());
|
|
const auto *RootNode = cgdata::getOutlinedHashTree()->getRoot();
|
|
|
|
auto getValidInstr = [&](unsigned Index) -> const MachineInstr * {
|
|
if (UnsignedVec[Index] >= Mapper.LegalInstrNumber)
|
|
return nullptr;
|
|
return &(*InstrList[Index]);
|
|
};
|
|
|
|
auto getStableHashAndFollow =
|
|
[](const MachineInstr &MI, const HashNode *CurrNode) -> const HashNode * {
|
|
stable_hash StableHash = stableHashValue(MI);
|
|
if (!StableHash)
|
|
return nullptr;
|
|
auto It = CurrNode->Successors.find(StableHash);
|
|
return (It == CurrNode->Successors.end()) ? nullptr : It->second.get();
|
|
};
|
|
|
|
for (unsigned I = 0; I < Size; ++I) {
|
|
const MachineInstr *MI = getValidInstr(I);
|
|
if (!MI || MI->isDebugInstr())
|
|
continue;
|
|
const HashNode *CurrNode = getStableHashAndFollow(*MI, RootNode);
|
|
if (!CurrNode)
|
|
continue;
|
|
|
|
for (unsigned J = I + 1; J < Size; ++J) {
|
|
const MachineInstr *MJ = getValidInstr(J);
|
|
if (!MJ)
|
|
break;
|
|
// Skip debug instructions as we did for the outlined function.
|
|
if (MJ->isDebugInstr())
|
|
continue;
|
|
CurrNode = getStableHashAndFollow(*MJ, CurrNode);
|
|
if (!CurrNode)
|
|
break;
|
|
// Even with a match ending with a terminal, we continue finding
|
|
// matches to populate all candidates.
|
|
if (auto Count = CurrNode->Terminals)
|
|
MatchedEntries.emplace_back(I, J, *Count);
|
|
}
|
|
}
|
|
|
|
return MatchedEntries;
|
|
}
|
|
|
|
void MachineOutliner::findGlobalCandidates(
|
|
InstructionMapper &Mapper,
|
|
std::vector<std::unique_ptr<OutlinedFunction>> &FunctionList) {
|
|
FunctionList.clear();
|
|
auto &InstrList = Mapper.InstrList;
|
|
auto &MBBFlagsMap = Mapper.MBBFlagsMap;
|
|
|
|
std::vector<Candidate> CandidatesForRepeatedSeq;
|
|
for (auto &ME : getMatchedEntries(Mapper)) {
|
|
CandidatesForRepeatedSeq.clear();
|
|
MachineBasicBlock::iterator StartIt = InstrList[ME.StartIdx];
|
|
MachineBasicBlock::iterator EndIt = InstrList[ME.EndIdx];
|
|
auto Length = ME.EndIdx - ME.StartIdx + 1;
|
|
MachineBasicBlock *MBB = StartIt->getParent();
|
|
CandidatesForRepeatedSeq.emplace_back(ME.StartIdx, Length, StartIt, EndIt,
|
|
MBB, FunctionList.size(),
|
|
MBBFlagsMap[MBB]);
|
|
const TargetInstrInfo *TII =
|
|
MBB->getParent()->getSubtarget().getInstrInfo();
|
|
unsigned MinRepeats = 1;
|
|
std::optional<std::unique_ptr<OutlinedFunction>> OF =
|
|
TII->getOutliningCandidateInfo(*MMI, CandidatesForRepeatedSeq,
|
|
MinRepeats);
|
|
if (!OF.has_value() || OF.value()->Candidates.empty())
|
|
continue;
|
|
// We create a global candidate for each match.
|
|
assert(OF.value()->Candidates.size() == MinRepeats);
|
|
FunctionList.emplace_back(std::make_unique<GlobalOutlinedFunction>(
|
|
std::move(OF.value()), ME.Count));
|
|
}
|
|
}
|
|
|
|
void MachineOutliner::findCandidates(
|
|
InstructionMapper &Mapper,
|
|
std::vector<std::unique_ptr<OutlinedFunction>> &FunctionList) {
|
|
FunctionList.clear();
|
|
SuffixTree ST(Mapper.UnsignedVec, OutlinerLeafDescendants);
|
|
|
|
// First, find all of the repeated substrings in the tree of minimum length
|
|
// 2.
|
|
std::vector<Candidate> CandidatesForRepeatedSeq;
|
|
LLVM_DEBUG(dbgs() << "*** Discarding overlapping candidates *** \n");
|
|
LLVM_DEBUG(
|
|
dbgs() << "Searching for overlaps in all repeated sequences...\n");
|
|
for (SuffixTree::RepeatedSubstring &RS : ST) {
|
|
CandidatesForRepeatedSeq.clear();
|
|
unsigned StringLen = RS.Length;
|
|
LLVM_DEBUG(dbgs() << " Sequence length: " << StringLen << "\n");
|
|
// Debug code to keep track of how many candidates we removed.
|
|
#ifndef NDEBUG
|
|
unsigned NumDiscarded = 0;
|
|
unsigned NumKept = 0;
|
|
#endif
|
|
// Sort the start indices so that we can efficiently check if candidates
|
|
// overlap with the ones we've already found for this sequence.
|
|
llvm::sort(RS.StartIndices);
|
|
for (const unsigned &StartIdx : RS.StartIndices) {
|
|
// Trick: Discard some candidates that would be incompatible with the
|
|
// ones we've already found for this sequence. This will save us some
|
|
// work in candidate selection.
|
|
//
|
|
// If two candidates overlap, then we can't outline them both. This
|
|
// happens when we have candidates that look like, say
|
|
//
|
|
// AA (where each "A" is an instruction).
|
|
//
|
|
// We might have some portion of the module that looks like this:
|
|
// AAAAAA (6 A's)
|
|
//
|
|
// In this case, there are 5 different copies of "AA" in this range, but
|
|
// at most 3 can be outlined. If only outlining 3 of these is going to
|
|
// be unbeneficial, then we ought to not bother.
|
|
//
|
|
// Note that two things DON'T overlap when they look like this:
|
|
// start1...end1 .... start2...end2
|
|
// That is, one must either
|
|
// * End before the other starts
|
|
// * Start after the other ends
|
|
unsigned EndIdx = StartIdx + StringLen - 1;
|
|
if (!CandidatesForRepeatedSeq.empty() &&
|
|
StartIdx <= CandidatesForRepeatedSeq.back().getEndIdx()) {
|
|
#ifndef NDEBUG
|
|
++NumDiscarded;
|
|
LLVM_DEBUG(dbgs() << " .. DISCARD candidate @ [" << StartIdx << ", "
|
|
<< EndIdx << "]; overlaps with candidate @ ["
|
|
<< CandidatesForRepeatedSeq.back().getStartIdx()
|
|
<< ", " << CandidatesForRepeatedSeq.back().getEndIdx()
|
|
<< "]\n");
|
|
#endif
|
|
continue;
|
|
}
|
|
// It doesn't overlap with anything, so we can outline it.
|
|
// Each sequence is over [StartIt, EndIt].
|
|
// Save the candidate and its location.
|
|
#ifndef NDEBUG
|
|
++NumKept;
|
|
#endif
|
|
MachineBasicBlock::iterator StartIt = Mapper.InstrList[StartIdx];
|
|
MachineBasicBlock::iterator EndIt = Mapper.InstrList[EndIdx];
|
|
MachineBasicBlock *MBB = StartIt->getParent();
|
|
CandidatesForRepeatedSeq.emplace_back(StartIdx, StringLen, StartIt, EndIt,
|
|
MBB, FunctionList.size(),
|
|
Mapper.MBBFlagsMap[MBB]);
|
|
}
|
|
#ifndef NDEBUG
|
|
LLVM_DEBUG(dbgs() << " Candidates discarded: " << NumDiscarded
|
|
<< "\n");
|
|
LLVM_DEBUG(dbgs() << " Candidates kept: " << NumKept << "\n\n");
|
|
#endif
|
|
unsigned MinRepeats = 2;
|
|
|
|
// We've found something we might want to outline.
|
|
// Create an OutlinedFunction to store it and check if it'd be beneficial
|
|
// to outline.
|
|
if (CandidatesForRepeatedSeq.size() < MinRepeats)
|
|
continue;
|
|
|
|
// Arbitrarily choose a TII from the first candidate.
|
|
// FIXME: Should getOutliningCandidateInfo move to TargetMachine?
|
|
const TargetInstrInfo *TII =
|
|
CandidatesForRepeatedSeq[0].getMF()->getSubtarget().getInstrInfo();
|
|
|
|
std::optional<std::unique_ptr<OutlinedFunction>> OF =
|
|
TII->getOutliningCandidateInfo(*MMI, CandidatesForRepeatedSeq,
|
|
MinRepeats);
|
|
|
|
// If we deleted too many candidates, then there's nothing worth outlining.
|
|
// FIXME: This should take target-specified instruction sizes into account.
|
|
if (!OF.has_value() || OF.value()->Candidates.size() < MinRepeats)
|
|
continue;
|
|
|
|
// Is it better to outline this candidate than not?
|
|
if (OF.value()->getBenefit() < OutlinerBenefitThreshold) {
|
|
emitNotOutliningCheaperRemark(StringLen, CandidatesForRepeatedSeq,
|
|
*OF.value());
|
|
continue;
|
|
}
|
|
|
|
FunctionList.emplace_back(std::move(OF.value()));
|
|
}
|
|
}
|
|
|
|
void MachineOutliner::computeAndPublishHashSequence(MachineFunction &MF,
|
|
unsigned CandSize) {
|
|
// Compute the hash sequence for the outlined function.
|
|
SmallVector<stable_hash> OutlinedHashSequence;
|
|
for (auto &MBB : MF) {
|
|
for (auto &NewMI : MBB) {
|
|
stable_hash Hash = stableHashValue(NewMI);
|
|
if (!Hash) {
|
|
OutlinedHashSequence.clear();
|
|
break;
|
|
}
|
|
OutlinedHashSequence.push_back(Hash);
|
|
}
|
|
}
|
|
|
|
// Append a unique name based on the non-empty hash sequence.
|
|
if (AppendContentHashToOutlinedName && !OutlinedHashSequence.empty()) {
|
|
auto CombinedHash = stable_hash_combine(OutlinedHashSequence);
|
|
auto NewName =
|
|
MF.getName().str() + ".content." + std::to_string(CombinedHash);
|
|
MF.getFunction().setName(NewName);
|
|
}
|
|
|
|
// Publish the non-empty hash sequence to the local hash tree.
|
|
if (OutlinerMode == CGDataMode::Write) {
|
|
StableHashAttempts++;
|
|
if (!OutlinedHashSequence.empty())
|
|
LocalHashTree->insert({OutlinedHashSequence, CandSize});
|
|
else
|
|
StableHashDropped++;
|
|
}
|
|
}
|
|
|
|
MachineFunction *MachineOutliner::createOutlinedFunction(
|
|
Module &M, OutlinedFunction &OF, InstructionMapper &Mapper, unsigned Name) {
|
|
|
|
// Create the function name. This should be unique.
|
|
// FIXME: We should have a better naming scheme. This should be stable,
|
|
// regardless of changes to the outliner's cost model/traversal order.
|
|
std::string FunctionName = "OUTLINED_FUNCTION_";
|
|
if (OutlineRepeatedNum > 0)
|
|
FunctionName += std::to_string(OutlineRepeatedNum + 1) + "_";
|
|
FunctionName += std::to_string(Name);
|
|
LLVM_DEBUG(dbgs() << "NEW FUNCTION: " << FunctionName << "\n");
|
|
|
|
// Create the function using an IR-level function.
|
|
LLVMContext &C = M.getContext();
|
|
Function *F = Function::Create(FunctionType::get(Type::getVoidTy(C), false),
|
|
Function::ExternalLinkage, FunctionName, M);
|
|
|
|
// NOTE: If this is linkonceodr, then we can take advantage of linker deduping
|
|
// which gives us better results when we outline from linkonceodr functions.
|
|
F->setLinkage(GlobalValue::InternalLinkage);
|
|
F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global);
|
|
|
|
// Set optsize/minsize, so we don't insert padding between outlined
|
|
// functions.
|
|
F->addFnAttr(Attribute::OptimizeForSize);
|
|
F->addFnAttr(Attribute::MinSize);
|
|
|
|
Candidate &FirstCand = OF.Candidates.front();
|
|
const TargetInstrInfo &TII =
|
|
*FirstCand.getMF()->getSubtarget().getInstrInfo();
|
|
|
|
TII.mergeOutliningCandidateAttributes(*F, OF.Candidates);
|
|
|
|
// Set uwtable, so we generate eh_frame.
|
|
UWTableKind UW = std::accumulate(
|
|
OF.Candidates.cbegin(), OF.Candidates.cend(), UWTableKind::None,
|
|
[](UWTableKind K, const outliner::Candidate &C) {
|
|
return std::max(K, C.getMF()->getFunction().getUWTableKind());
|
|
});
|
|
F->setUWTableKind(UW);
|
|
|
|
BasicBlock *EntryBB = BasicBlock::Create(C, "entry", F);
|
|
IRBuilder<> Builder(EntryBB);
|
|
Builder.CreateRetVoid();
|
|
|
|
MachineModuleInfo &MMI = getAnalysis<MachineModuleInfoWrapperPass>().getMMI();
|
|
MachineFunction &MF = MMI.getOrCreateMachineFunction(*F);
|
|
MF.setIsOutlined(true);
|
|
MachineBasicBlock &MBB = *MF.CreateMachineBasicBlock();
|
|
|
|
// Insert the new function into the module.
|
|
MF.insert(MF.begin(), &MBB);
|
|
|
|
MachineFunction *OriginalMF = FirstCand.front().getMF();
|
|
const std::vector<MCCFIInstruction> &Instrs =
|
|
OriginalMF->getFrameInstructions();
|
|
for (auto &MI : FirstCand) {
|
|
if (MI.isDebugInstr())
|
|
continue;
|
|
|
|
// Don't keep debug information for outlined instructions.
|
|
auto DL = DebugLoc();
|
|
if (MI.isCFIInstruction()) {
|
|
unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
|
|
MCCFIInstruction CFI = Instrs[CFIIndex];
|
|
BuildMI(MBB, MBB.end(), DL, TII.get(TargetOpcode::CFI_INSTRUCTION))
|
|
.addCFIIndex(MF.addFrameInst(CFI));
|
|
} else {
|
|
MachineInstr &NewMI = TII.duplicate(MBB, MBB.end(), MI);
|
|
NewMI.dropMemRefs(MF);
|
|
NewMI.setDebugLoc(DL);
|
|
}
|
|
}
|
|
|
|
if (OutlinerMode != CGDataMode::None)
|
|
computeAndPublishHashSequence(MF, OF.Candidates.size());
|
|
|
|
// Set normal properties for a late MachineFunction.
|
|
MF.getProperties().reset(MachineFunctionProperties::Property::IsSSA);
|
|
MF.getProperties().set(MachineFunctionProperties::Property::NoPHIs);
|
|
MF.getProperties().set(MachineFunctionProperties::Property::NoVRegs);
|
|
MF.getProperties().set(MachineFunctionProperties::Property::TracksLiveness);
|
|
MF.getRegInfo().freezeReservedRegs();
|
|
|
|
// Compute live-in set for outlined fn
|
|
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
|
|
LivePhysRegs LiveIns(TRI);
|
|
for (auto &Cand : OF.Candidates) {
|
|
// Figure out live-ins at the first instruction.
|
|
MachineBasicBlock &OutlineBB = *Cand.front().getParent();
|
|
LivePhysRegs CandLiveIns(TRI);
|
|
CandLiveIns.addLiveOuts(OutlineBB);
|
|
for (const MachineInstr &MI :
|
|
reverse(make_range(Cand.begin(), OutlineBB.end())))
|
|
CandLiveIns.stepBackward(MI);
|
|
|
|
// The live-in set for the outlined function is the union of the live-ins
|
|
// from all the outlining points.
|
|
for (MCPhysReg Reg : CandLiveIns)
|
|
LiveIns.addReg(Reg);
|
|
}
|
|
addLiveIns(MBB, LiveIns);
|
|
|
|
TII.buildOutlinedFrame(MBB, MF, OF);
|
|
|
|
// If there's a DISubprogram associated with this outlined function, then
|
|
// emit debug info for the outlined function.
|
|
if (DISubprogram *SP = getSubprogramOrNull(OF)) {
|
|
// We have a DISubprogram. Get its DICompileUnit.
|
|
DICompileUnit *CU = SP->getUnit();
|
|
DIBuilder DB(M, true, CU);
|
|
DIFile *Unit = SP->getFile();
|
|
Mangler Mg;
|
|
// Get the mangled name of the function for the linkage name.
|
|
std::string Dummy;
|
|
raw_string_ostream MangledNameStream(Dummy);
|
|
Mg.getNameWithPrefix(MangledNameStream, F, false);
|
|
|
|
DISubprogram *OutlinedSP = DB.createFunction(
|
|
Unit /* Context */, F->getName(), StringRef(Dummy), Unit /* File */,
|
|
0 /* Line 0 is reserved for compiler-generated code. */,
|
|
DB.createSubroutineType(DB.getOrCreateTypeArray({})), /* void type */
|
|
0, /* Line 0 is reserved for compiler-generated code. */
|
|
DINode::DIFlags::FlagArtificial /* Compiler-generated code. */,
|
|
/* Outlined code is optimized code by definition. */
|
|
DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
|
|
|
|
// Don't add any new variables to the subprogram.
|
|
DB.finalizeSubprogram(OutlinedSP);
|
|
|
|
// Attach subprogram to the function.
|
|
F->setSubprogram(OutlinedSP);
|
|
// We're done with the DIBuilder.
|
|
DB.finalize();
|
|
}
|
|
|
|
return &MF;
|
|
}
|
|
|
|
bool MachineOutliner::outline(
|
|
Module &M, std::vector<std::unique_ptr<OutlinedFunction>> &FunctionList,
|
|
InstructionMapper &Mapper, unsigned &OutlinedFunctionNum) {
|
|
LLVM_DEBUG(dbgs() << "*** Outlining ***\n");
|
|
LLVM_DEBUG(dbgs() << "NUMBER OF POTENTIAL FUNCTIONS: " << FunctionList.size()
|
|
<< "\n");
|
|
bool OutlinedSomething = false;
|
|
|
|
// Sort by priority where priority := getNotOutlinedCost / getOutliningCost.
|
|
// The function with highest priority should be outlined first.
|
|
stable_sort(FunctionList, [](const std::unique_ptr<OutlinedFunction> &LHS,
|
|
const std::unique_ptr<OutlinedFunction> &RHS) {
|
|
return LHS->getNotOutlinedCost() * RHS->getOutliningCost() >
|
|
RHS->getNotOutlinedCost() * LHS->getOutliningCost();
|
|
});
|
|
|
|
// Walk over each function, outlining them as we go along. Functions are
|
|
// outlined greedily, based off the sort above.
|
|
auto *UnsignedVecBegin = Mapper.UnsignedVec.begin();
|
|
LLVM_DEBUG(dbgs() << "WALKING FUNCTION LIST\n");
|
|
for (auto &OF : FunctionList) {
|
|
#ifndef NDEBUG
|
|
auto NumCandidatesBefore = OF->Candidates.size();
|
|
#endif
|
|
// If we outlined something that overlapped with a candidate in a previous
|
|
// step, then we can't outline from it.
|
|
erase_if(OF->Candidates, [&UnsignedVecBegin](Candidate &C) {
|
|
return std::any_of(UnsignedVecBegin + C.getStartIdx(),
|
|
UnsignedVecBegin + C.getEndIdx() + 1, [](unsigned I) {
|
|
return I == static_cast<unsigned>(-1);
|
|
});
|
|
});
|
|
|
|
#ifndef NDEBUG
|
|
auto NumCandidatesAfter = OF->Candidates.size();
|
|
LLVM_DEBUG(dbgs() << "PRUNED: " << NumCandidatesBefore - NumCandidatesAfter
|
|
<< "/" << NumCandidatesBefore << " candidates\n");
|
|
#endif
|
|
|
|
// If we made it unbeneficial to outline this function, skip it.
|
|
if (OF->getBenefit() < OutlinerBenefitThreshold) {
|
|
LLVM_DEBUG(dbgs() << "SKIP: Expected benefit (" << OF->getBenefit()
|
|
<< " B) < threshold (" << OutlinerBenefitThreshold
|
|
<< " B)\n");
|
|
continue;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "OUTLINE: Expected benefit (" << OF->getBenefit()
|
|
<< " B) > threshold (" << OutlinerBenefitThreshold
|
|
<< " B)\n");
|
|
|
|
// It's beneficial. Create the function and outline its sequence's
|
|
// occurrences.
|
|
OF->MF = createOutlinedFunction(M, *OF, Mapper, OutlinedFunctionNum);
|
|
emitOutlinedFunctionRemark(*OF);
|
|
FunctionsCreated++;
|
|
OutlinedFunctionNum++; // Created a function, move to the next name.
|
|
MachineFunction *MF = OF->MF;
|
|
const TargetSubtargetInfo &STI = MF->getSubtarget();
|
|
const TargetInstrInfo &TII = *STI.getInstrInfo();
|
|
|
|
// Replace occurrences of the sequence with calls to the new function.
|
|
LLVM_DEBUG(dbgs() << "CREATE OUTLINED CALLS\n");
|
|
for (Candidate &C : OF->Candidates) {
|
|
MachineBasicBlock &MBB = *C.getMBB();
|
|
MachineBasicBlock::iterator StartIt = C.begin();
|
|
MachineBasicBlock::iterator EndIt = std::prev(C.end());
|
|
|
|
// Insert the call.
|
|
auto CallInst = TII.insertOutlinedCall(M, MBB, StartIt, *MF, C);
|
|
// Insert the call.
|
|
#ifndef NDEBUG
|
|
auto MBBBeingOutlinedFromName =
|
|
MBB.getName().empty() ? "<unknown>" : MBB.getName().str();
|
|
auto MFBeingOutlinedFromName = MBB.getParent()->getName().empty()
|
|
? "<unknown>"
|
|
: MBB.getParent()->getName().str();
|
|
LLVM_DEBUG(dbgs() << " CALL: " << MF->getName() << " in "
|
|
<< MFBeingOutlinedFromName << ":"
|
|
<< MBBBeingOutlinedFromName << "\n");
|
|
LLVM_DEBUG(dbgs() << " .. " << *CallInst);
|
|
#endif
|
|
|
|
// If the caller tracks liveness, then we need to make sure that
|
|
// anything we outline doesn't break liveness assumptions. The outlined
|
|
// functions themselves currently don't track liveness, but we should
|
|
// make sure that the ranges we yank things out of aren't wrong.
|
|
if (MBB.getParent()->getProperties().hasProperty(
|
|
MachineFunctionProperties::Property::TracksLiveness)) {
|
|
// The following code is to add implicit def operands to the call
|
|
// instruction. It also updates call site information for moved
|
|
// code.
|
|
SmallSet<Register, 2> UseRegs, DefRegs;
|
|
// Copy over the defs in the outlined range.
|
|
// First inst in outlined range <-- Anything that's defined in this
|
|
// ... .. range has to be added as an
|
|
// implicit Last inst in outlined range <-- def to the call
|
|
// instruction. Also remove call site information for outlined block
|
|
// of code. The exposed uses need to be copied in the outlined range.
|
|
for (MachineBasicBlock::reverse_iterator
|
|
Iter = EndIt.getReverse(),
|
|
Last = std::next(CallInst.getReverse());
|
|
Iter != Last; Iter++) {
|
|
MachineInstr *MI = &*Iter;
|
|
SmallSet<Register, 2> InstrUseRegs;
|
|
for (MachineOperand &MOP : MI->operands()) {
|
|
// Skip over anything that isn't a register.
|
|
if (!MOP.isReg())
|
|
continue;
|
|
|
|
if (MOP.isDef()) {
|
|
// Introduce DefRegs set to skip the redundant register.
|
|
DefRegs.insert(MOP.getReg());
|
|
if (UseRegs.count(MOP.getReg()) &&
|
|
!InstrUseRegs.count(MOP.getReg()))
|
|
// Since the regiester is modeled as defined,
|
|
// it is not necessary to be put in use register set.
|
|
UseRegs.erase(MOP.getReg());
|
|
} else if (!MOP.isUndef()) {
|
|
// Any register which is not undefined should
|
|
// be put in the use register set.
|
|
UseRegs.insert(MOP.getReg());
|
|
InstrUseRegs.insert(MOP.getReg());
|
|
}
|
|
}
|
|
if (MI->isCandidateForCallSiteEntry())
|
|
MI->getMF()->eraseCallSiteInfo(MI);
|
|
}
|
|
|
|
for (const Register &I : DefRegs)
|
|
// If it's a def, add it to the call instruction.
|
|
CallInst->addOperand(
|
|
MachineOperand::CreateReg(I, true, /* isDef = true */
|
|
true /* isImp = true */));
|
|
|
|
for (const Register &I : UseRegs)
|
|
// If it's a exposed use, add it to the call instruction.
|
|
CallInst->addOperand(
|
|
MachineOperand::CreateReg(I, false, /* isDef = false */
|
|
true /* isImp = true */));
|
|
}
|
|
|
|
// Erase from the point after where the call was inserted up to, and
|
|
// including, the final instruction in the sequence.
|
|
// Erase needs one past the end, so we need std::next there too.
|
|
MBB.erase(std::next(StartIt), std::next(EndIt));
|
|
|
|
// Keep track of what we removed by marking them all as -1.
|
|
for (unsigned &I : make_range(UnsignedVecBegin + C.getStartIdx(),
|
|
UnsignedVecBegin + C.getEndIdx() + 1))
|
|
I = static_cast<unsigned>(-1);
|
|
OutlinedSomething = true;
|
|
|
|
// Statistics.
|
|
NumOutlined++;
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "OutlinedSomething = " << OutlinedSomething << "\n";);
|
|
return OutlinedSomething;
|
|
}
|
|
|
|
void MachineOutliner::populateMapper(InstructionMapper &Mapper, Module &M) {
|
|
// Build instruction mappings for each function in the module. Start by
|
|
// iterating over each Function in M.
|
|
LLVM_DEBUG(dbgs() << "*** Populating mapper ***\n");
|
|
for (Function &F : M) {
|
|
LLVM_DEBUG(dbgs() << "MAPPING FUNCTION: " << F.getName() << "\n");
|
|
|
|
if (F.hasFnAttribute("nooutline")) {
|
|
LLVM_DEBUG(dbgs() << "SKIP: Function has nooutline attribute\n");
|
|
continue;
|
|
}
|
|
|
|
// There's something in F. Check if it has a MachineFunction associated with
|
|
// it.
|
|
MachineFunction *MF = MMI->getMachineFunction(F);
|
|
|
|
// If it doesn't, then there's nothing to outline from. Move to the next
|
|
// Function.
|
|
if (!MF) {
|
|
LLVM_DEBUG(dbgs() << "SKIP: Function does not have a MachineFunction\n");
|
|
continue;
|
|
}
|
|
|
|
const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
|
|
if (!RunOnAllFunctions && !TII->shouldOutlineFromFunctionByDefault(*MF)) {
|
|
LLVM_DEBUG(dbgs() << "SKIP: Target does not want to outline from "
|
|
"function by default\n");
|
|
continue;
|
|
}
|
|
|
|
// We have a MachineFunction. Ask the target if it's suitable for outlining.
|
|
// If it isn't, then move on to the next Function in the module.
|
|
if (!TII->isFunctionSafeToOutlineFrom(*MF, OutlineFromLinkOnceODRs)) {
|
|
LLVM_DEBUG(dbgs() << "SKIP: " << MF->getName()
|
|
<< ": unsafe to outline from\n");
|
|
continue;
|
|
}
|
|
|
|
// We have a function suitable for outlining. Iterate over every
|
|
// MachineBasicBlock in MF and try to map its instructions to a list of
|
|
// unsigned integers.
|
|
const unsigned MinMBBSize = 2;
|
|
|
|
for (MachineBasicBlock &MBB : *MF) {
|
|
LLVM_DEBUG(dbgs() << " MAPPING MBB: '" << MBB.getName() << "'\n");
|
|
// If there isn't anything in MBB, then there's no point in outlining from
|
|
// it.
|
|
// If there are fewer than 2 instructions in the MBB, then it can't ever
|
|
// contain something worth outlining.
|
|
// FIXME: This should be based off of the maximum size in B of an outlined
|
|
// call versus the size in B of the MBB.
|
|
if (MBB.size() < MinMBBSize) {
|
|
LLVM_DEBUG(dbgs() << " SKIP: MBB size less than minimum size of "
|
|
<< MinMBBSize << "\n");
|
|
continue;
|
|
}
|
|
|
|
// Check if MBB could be the target of an indirect branch. If it is, then
|
|
// we don't want to outline from it.
|
|
if (MBB.hasAddressTaken()) {
|
|
LLVM_DEBUG(dbgs() << " SKIP: MBB's address is taken\n");
|
|
continue;
|
|
}
|
|
|
|
// MBB is suitable for outlining. Map it to a list of unsigneds.
|
|
Mapper.convertToUnsignedVec(MBB, *TII);
|
|
}
|
|
}
|
|
// Statistics.
|
|
UnsignedVecSize = Mapper.UnsignedVec.size();
|
|
}
|
|
|
|
void MachineOutliner::initSizeRemarkInfo(
|
|
const Module &M, StringMap<unsigned> &FunctionToInstrCount) {
|
|
// Collect instruction counts for every function. We'll use this to emit
|
|
// per-function size remarks later.
|
|
for (const Function &F : M) {
|
|
MachineFunction *MF = MMI->getMachineFunction(F);
|
|
|
|
// We only care about MI counts here. If there's no MachineFunction at this
|
|
// point, then there won't be after the outliner runs, so let's move on.
|
|
if (!MF)
|
|
continue;
|
|
FunctionToInstrCount[F.getName().str()] = MF->getInstructionCount();
|
|
}
|
|
}
|
|
|
|
void MachineOutliner::emitInstrCountChangedRemark(
|
|
const Module &M, const StringMap<unsigned> &FunctionToInstrCount) {
|
|
// Iterate over each function in the module and emit remarks.
|
|
// Note that we won't miss anything by doing this, because the outliner never
|
|
// deletes functions.
|
|
for (const Function &F : M) {
|
|
MachineFunction *MF = MMI->getMachineFunction(F);
|
|
|
|
// The outliner never deletes functions. If we don't have a MF here, then we
|
|
// didn't have one prior to outlining either.
|
|
if (!MF)
|
|
continue;
|
|
|
|
std::string Fname = std::string(F.getName());
|
|
unsigned FnCountAfter = MF->getInstructionCount();
|
|
unsigned FnCountBefore = 0;
|
|
|
|
// Check if the function was recorded before.
|
|
auto It = FunctionToInstrCount.find(Fname);
|
|
|
|
// Did we have a previously-recorded size? If yes, then set FnCountBefore
|
|
// to that.
|
|
if (It != FunctionToInstrCount.end())
|
|
FnCountBefore = It->second;
|
|
|
|
// Compute the delta and emit a remark if there was a change.
|
|
int64_t FnDelta = static_cast<int64_t>(FnCountAfter) -
|
|
static_cast<int64_t>(FnCountBefore);
|
|
if (FnDelta == 0)
|
|
continue;
|
|
|
|
MachineOptimizationRemarkEmitter MORE(*MF, nullptr);
|
|
MORE.emit([&]() {
|
|
MachineOptimizationRemarkAnalysis R("size-info", "FunctionMISizeChange",
|
|
DiagnosticLocation(), &MF->front());
|
|
R << DiagnosticInfoOptimizationBase::Argument("Pass", "Machine Outliner")
|
|
<< ": Function: "
|
|
<< DiagnosticInfoOptimizationBase::Argument("Function", F.getName())
|
|
<< ": MI instruction count changed from "
|
|
<< DiagnosticInfoOptimizationBase::Argument("MIInstrsBefore",
|
|
FnCountBefore)
|
|
<< " to "
|
|
<< DiagnosticInfoOptimizationBase::Argument("MIInstrsAfter",
|
|
FnCountAfter)
|
|
<< "; Delta: "
|
|
<< DiagnosticInfoOptimizationBase::Argument("Delta", FnDelta);
|
|
return R;
|
|
});
|
|
}
|
|
}
|
|
|
|
void MachineOutliner::initializeOutlinerMode(const Module &M) {
|
|
if (DisableGlobalOutlining)
|
|
return;
|
|
|
|
if (auto *IndexWrapperPass =
|
|
getAnalysisIfAvailable<ImmutableModuleSummaryIndexWrapperPass>()) {
|
|
auto *TheIndex = IndexWrapperPass->getIndex();
|
|
// (Full)LTO module does not have functions added to the index.
|
|
// In this case, we run the outliner without using codegen data as usual.
|
|
if (TheIndex && !TheIndex->hasExportedFunctions(M))
|
|
return;
|
|
}
|
|
|
|
// When codegen data write is enabled, we want to write the local outlined
|
|
// hash tree to the custom section, `__llvm_outline`.
|
|
// When the outlined hash tree is available from the previous codegen data,
|
|
// we want to read it to optimistically create global outlining candidates.
|
|
if (cgdata::emitCGData()) {
|
|
OutlinerMode = CGDataMode::Write;
|
|
// Create a local outlined hash tree to be published.
|
|
LocalHashTree = std::make_unique<OutlinedHashTree>();
|
|
// We don't need to read the outlined hash tree from the previous codegen
|
|
} else if (cgdata::hasOutlinedHashTree())
|
|
OutlinerMode = CGDataMode::Read;
|
|
}
|
|
|
|
void MachineOutliner::emitOutlinedHashTree(Module &M) {
|
|
assert(LocalHashTree);
|
|
if (!LocalHashTree->empty()) {
|
|
LLVM_DEBUG({
|
|
dbgs() << "Emit outlined hash tree. Size: " << LocalHashTree->size()
|
|
<< "\n";
|
|
});
|
|
SmallVector<char> Buf;
|
|
raw_svector_ostream OS(Buf);
|
|
|
|
OutlinedHashTreeRecord HTR(std::move(LocalHashTree));
|
|
HTR.serialize(OS);
|
|
|
|
llvm::StringRef Data(Buf.data(), Buf.size());
|
|
std::unique_ptr<MemoryBuffer> Buffer =
|
|
MemoryBuffer::getMemBuffer(Data, "in-memory outlined hash tree", false);
|
|
|
|
Triple TT(M.getTargetTriple());
|
|
embedBufferInModule(
|
|
M, *Buffer,
|
|
getCodeGenDataSectionName(CG_outline, TT.getObjectFormat()));
|
|
}
|
|
}
|
|
|
|
bool MachineOutliner::runOnModule(Module &M) {
|
|
// Check if there's anything in the module. If it's empty, then there's
|
|
// nothing to outline.
|
|
if (M.empty())
|
|
return false;
|
|
|
|
// Initialize the outliner mode.
|
|
initializeOutlinerMode(M);
|
|
|
|
MMI = &getAnalysis<MachineModuleInfoWrapperPass>().getMMI();
|
|
|
|
// Number to append to the current outlined function.
|
|
unsigned OutlinedFunctionNum = 0;
|
|
|
|
OutlineRepeatedNum = 0;
|
|
if (!doOutline(M, OutlinedFunctionNum))
|
|
return false;
|
|
|
|
for (unsigned I = 0; I < OutlinerReruns; ++I) {
|
|
OutlinedFunctionNum = 0;
|
|
OutlineRepeatedNum++;
|
|
if (!doOutline(M, OutlinedFunctionNum)) {
|
|
LLVM_DEBUG({
|
|
dbgs() << "Did not outline on iteration " << I + 2 << " out of "
|
|
<< OutlinerReruns + 1 << "\n";
|
|
});
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (OutlinerMode == CGDataMode::Write)
|
|
emitOutlinedHashTree(M);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool MachineOutliner::doOutline(Module &M, unsigned &OutlinedFunctionNum) {
|
|
// If the user passed -enable-machine-outliner=always or
|
|
// -enable-machine-outliner, the pass will run on all functions in the module.
|
|
// Otherwise, if the target supports default outlining, it will run on all
|
|
// functions deemed by the target to be worth outlining from by default. Tell
|
|
// the user how the outliner is running.
|
|
LLVM_DEBUG({
|
|
dbgs() << "Machine Outliner: Running on ";
|
|
if (RunOnAllFunctions)
|
|
dbgs() << "all functions";
|
|
else
|
|
dbgs() << "target-default functions";
|
|
dbgs() << "\n";
|
|
});
|
|
|
|
// If the user specifies that they want to outline from linkonceodrs, set
|
|
// it here.
|
|
OutlineFromLinkOnceODRs = EnableLinkOnceODROutlining;
|
|
InstructionMapper Mapper(*MMI);
|
|
|
|
// Prepare instruction mappings for the suffix tree.
|
|
populateMapper(Mapper, M);
|
|
std::vector<std::unique_ptr<OutlinedFunction>> FunctionList;
|
|
|
|
// Find all of the outlining candidates.
|
|
if (OutlinerMode == CGDataMode::Read)
|
|
findGlobalCandidates(Mapper, FunctionList);
|
|
else
|
|
findCandidates(Mapper, FunctionList);
|
|
|
|
// If we've requested size remarks, then collect the MI counts of every
|
|
// function before outlining, and the MI counts after outlining.
|
|
// FIXME: This shouldn't be in the outliner at all; it should ultimately be
|
|
// the pass manager's responsibility.
|
|
// This could pretty easily be placed in outline instead, but because we
|
|
// really ultimately *don't* want this here, it's done like this for now
|
|
// instead.
|
|
|
|
// Check if we want size remarks.
|
|
bool ShouldEmitSizeRemarks = M.shouldEmitInstrCountChangedRemark();
|
|
StringMap<unsigned> FunctionToInstrCount;
|
|
if (ShouldEmitSizeRemarks)
|
|
initSizeRemarkInfo(M, FunctionToInstrCount);
|
|
|
|
// Outline each of the candidates and return true if something was outlined.
|
|
bool OutlinedSomething =
|
|
outline(M, FunctionList, Mapper, OutlinedFunctionNum);
|
|
|
|
// If we outlined something, we definitely changed the MI count of the
|
|
// module. If we've asked for size remarks, then output them.
|
|
// FIXME: This should be in the pass manager.
|
|
if (ShouldEmitSizeRemarks && OutlinedSomething)
|
|
emitInstrCountChangedRemark(M, FunctionToInstrCount);
|
|
|
|
LLVM_DEBUG({
|
|
if (!OutlinedSomething)
|
|
dbgs() << "Stopped outlining at iteration " << OutlineRepeatedNum
|
|
<< " because no changes were found.\n";
|
|
});
|
|
|
|
return OutlinedSomething;
|
|
}
|