Chris Lattner a36ec4243b fix PR6811 by not parsing 'super' as a magic expression in
LookupInObjCMethod.  Doing so allows all sorts of invalid code
to slip through to codegen.  This patch does not change the 
AST representation of super, though that would now be a natural
thing to do since it can only be in the receiver position and
in the base of a ObjCPropertyRefExpr.

There are still several ugly areas handling super in the parser,
but this is definitely a step in the right direction.

llvm-svn: 100959
2010-04-11 08:28:14 +00:00

2947 lines
127 KiB
C++

//===--- Action.h - Parser Action Interface ---------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the Action and EmptyAction interface.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_PARSE_ACTION_H
#define LLVM_CLANG_PARSE_ACTION_H
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/TemplateKinds.h"
#include "clang/Basic/TypeTraits.h"
#include "clang/Parse/DeclSpec.h"
#include "clang/Parse/Ownership.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/ADT/PointerUnion.h"
namespace clang {
// Semantic.
class DeclSpec;
class ObjCDeclSpec;
class CXXScopeSpec;
class Declarator;
class AttributeList;
struct FieldDeclarator;
// Parse.
class Scope;
class Action;
class Selector;
class Designation;
class InitListDesignations;
// Lex.
class Preprocessor;
class Token;
// We can re-use the low bit of expression, statement, base, and
// member-initializer pointers for the "invalid" flag of
// ActionResult.
template<> struct IsResultPtrLowBitFree<0> { static const bool value = true;};
template<> struct IsResultPtrLowBitFree<1> { static const bool value = true;};
template<> struct IsResultPtrLowBitFree<3> { static const bool value = true;};
template<> struct IsResultPtrLowBitFree<4> { static const bool value = true;};
template<> struct IsResultPtrLowBitFree<5> { static const bool value = true;};
/// Action - As the parser reads the input file and recognizes the productions
/// of the grammar, it invokes methods on this class to turn the parsed input
/// into something useful: e.g. a parse tree.
///
/// The callback methods that this class provides are phrased as actions that
/// the parser has just done or is about to do when the method is called. They
/// are not requests that the actions module do the specified action.
///
/// All of the methods here are optional except getTypeName() and
/// isCurrentClassName(), which must be specified in order for the
/// parse to complete accurately. The MinimalAction class does this
/// bare-minimum of tracking to implement this functionality.
class Action : public ActionBase {
public:
/// Out-of-line virtual destructor to provide home for this class.
virtual ~Action();
// Types - Though these don't actually enforce strong typing, they document
// what types are required to be identical for the actions.
typedef ActionBase::ExprTy ExprTy;
typedef ActionBase::StmtTy StmtTy;
/// Expr/Stmt/Type/BaseResult - Provide a unique type to wrap
/// ExprTy/StmtTy/TypeTy/BaseTy, providing strong typing and
/// allowing for failure.
typedef ActionResult<0> ExprResult;
typedef ActionResult<1> StmtResult;
typedef ActionResult<2> TypeResult;
typedef ActionResult<3> BaseResult;
typedef ActionResult<4> MemInitResult;
typedef ActionResult<5, DeclPtrTy> DeclResult;
/// Same, but with ownership.
typedef ASTOwningResult<&ActionBase::DeleteExpr> OwningExprResult;
typedef ASTOwningResult<&ActionBase::DeleteStmt> OwningStmtResult;
// Note that these will replace ExprResult and StmtResult when the transition
// is complete.
/// Single expressions or statements as arguments.
#if !defined(DISABLE_SMART_POINTERS)
typedef ASTOwningResult<&ActionBase::DeleteExpr> ExprArg;
typedef ASTOwningResult<&ActionBase::DeleteStmt> StmtArg;
#else
typedef ASTOwningPtr<&ActionBase::DeleteExpr> ExprArg;
typedef ASTOwningPtr<&ActionBase::DeleteStmt> StmtArg;
#endif
/// Multiple expressions or statements as arguments.
typedef ASTMultiPtr<&ActionBase::DeleteExpr> MultiExprArg;
typedef ASTMultiPtr<&ActionBase::DeleteStmt> MultiStmtArg;
typedef ASTMultiPtr<&ActionBase::DeleteTemplateParams> MultiTemplateParamsArg;
class FullExprArg {
public:
// FIXME: The const_cast here is ugly. RValue references would make this
// much nicer (or we could duplicate a bunch of the move semantics
// emulation code from Ownership.h).
FullExprArg(const FullExprArg& Other)
: Expr(move(const_cast<FullExprArg&>(Other).Expr)) {}
OwningExprResult release() {
return move(Expr);
}
ExprArg* operator->() {
return &Expr;
}
private:
// FIXME: No need to make the entire Action class a friend when it's just
// Action::FullExpr that needs access to the constructor below.
friend class Action;
explicit FullExprArg(ExprArg expr)
: Expr(move(expr)) {}
ExprArg Expr;
};
template<typename T>
FullExprArg MakeFullExpr(T &Arg) {
return FullExprArg(ActOnFinishFullExpr(move(Arg)));
}
// Utilities for Action implementations to return smart results.
OwningExprResult ExprError() { return OwningExprResult(*this, true); }
OwningStmtResult StmtError() { return OwningStmtResult(*this, true); }
OwningExprResult ExprError(const DiagnosticBuilder&) { return ExprError(); }
OwningStmtResult StmtError(const DiagnosticBuilder&) { return StmtError(); }
OwningExprResult ExprEmpty() { return OwningExprResult(*this, false); }
OwningStmtResult StmtEmpty() { return OwningStmtResult(*this, false); }
/// Statistics.
virtual void PrintStats() const {}
/// getDeclName - Return a pretty name for the specified decl if possible, or
/// an empty string if not. This is used for pretty crash reporting.
virtual std::string getDeclName(DeclPtrTy D) { return ""; }
//===--------------------------------------------------------------------===//
// Declaration Tracking Callbacks.
//===--------------------------------------------------------------------===//
typedef uintptr_t ParsingDeclStackState;
/// PushParsingDeclaration - Notes that the parser has begun
/// processing a declaration of some sort. Guaranteed to be matched
/// by a call to PopParsingDeclaration with the value returned by
/// this method.
virtual ParsingDeclStackState PushParsingDeclaration() {
return ParsingDeclStackState();
}
/// PopParsingDeclaration - Notes that the parser has completed
/// processing a declaration of some sort. The decl will be empty
/// if the declaration didn't correspond to a full declaration (or
/// if the actions module returned an empty decl for it).
virtual void PopParsingDeclaration(ParsingDeclStackState S, DeclPtrTy D) {
}
/// ConvertDeclToDeclGroup - If the parser has one decl in a context where it
/// needs a decl group, it calls this to convert between the two
/// representations.
virtual DeclGroupPtrTy ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
return DeclGroupPtrTy();
}
/// getTypeName - Return non-null if the specified identifier is a type name
/// in the current scope.
///
/// \param II the identifier for which we are performing name lookup
///
/// \param NameLoc the location of the identifier
///
/// \param S the scope in which this name lookup occurs
///
/// \param SS if non-NULL, the C++ scope specifier that precedes the
/// identifier
///
/// \param isClassName whether this is a C++ class-name production, in
/// which we can end up referring to a member of an unknown specialization
/// that we know (from the grammar) is supposed to be a type. For example,
/// this occurs when deriving from "std::vector<T>::allocator_type", where T
/// is a template parameter.
///
/// \param ObjectType if we're checking whether an identifier is a type
/// within a C++ member access expression, this will be the type of the
///
/// \returns the type referred to by this identifier, or NULL if the type
/// does not name an identifier.
virtual TypeTy *getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
Scope *S, CXXScopeSpec *SS = 0,
bool isClassName = false,
TypeTy *ObjectType = 0) = 0;
/// isTagName() - This method is called *for error recovery purposes only*
/// to determine if the specified name is a valid tag name ("struct foo"). If
/// so, this returns the TST for the tag corresponding to it (TST_enum,
/// TST_union, TST_struct, TST_class). This is used to diagnose cases in C
/// where the user forgot to specify the tag.
virtual DeclSpec::TST isTagName(IdentifierInfo &II, Scope *S) {
return DeclSpec::TST_unspecified;
}
/// \brief Action called as part of error recovery when the parser has
/// determined that the given name must refer to a type, but
/// \c getTypeName() did not return a result.
///
/// This callback permits the action to give a detailed diagnostic when an
/// unknown type name is encountered and, potentially, to try to recover
/// by producing a new type in \p SuggestedType.
///
/// \param II the name that should be a type.
///
/// \param IILoc the location of the name in the source.
///
/// \param S the scope in which name lookup was performed.
///
/// \param SS if non-NULL, the C++ scope specifier that preceded the name.
///
/// \param SuggestedType if the action sets this type to a non-NULL type,
/// the parser will recovery by consuming the type name token and then
/// pretending that the given type was the type it parsed.
///
/// \returns true if a diagnostic was emitted, false otherwise. When false,
/// the parser itself will emit a generic "unknown type name" diagnostic.
virtual bool DiagnoseUnknownTypeName(const IdentifierInfo &II,
SourceLocation IILoc,
Scope *S,
CXXScopeSpec *SS,
TypeTy *&SuggestedType) {
return false;
}
/// isCurrentClassName - Return true if the specified name is the
/// name of the innermost C++ class type currently being defined.
virtual bool isCurrentClassName(const IdentifierInfo &II, Scope *S,
const CXXScopeSpec *SS = 0) = 0;
/// \brief Determine whether the given name refers to a template.
///
/// This callback is used by the parser after it has seen a '<' to determine
/// whether the given name refers to a template and, if so, what kind of
/// template.
///
/// \param S the scope in which the name occurs.
///
/// \param SS the C++ nested-name-specifier that precedes the template name,
/// if any.
///
/// \param Name the name that we are querying to determine whether it is
/// a template.
///
/// \param ObjectType if we are determining whether the given name is a
/// template name in the context of a member access expression (e.g.,
/// \c p->X<int>), this is the type of the object referred to by the
/// member access (e.g., \c p).
///
/// \param EnteringContext whether we are potentially entering the context
/// referred to by the nested-name-specifier \p SS, which allows semantic
/// analysis to look into uninstantiated templates.
///
/// \param Template if the name does refer to a template, the declaration
/// of the template that the name refers to.
///
/// \returns the kind of template that this name refers to.
virtual TemplateNameKind isTemplateName(Scope *S,
CXXScopeSpec &SS,
UnqualifiedId &Name,
TypeTy *ObjectType,
bool EnteringContext,
TemplateTy &Template) = 0;
/// \brief Action called as part of error recovery when the parser has
/// determined that the given name must refer to a template, but
/// \c isTemplateName() did not return a result.
///
/// This callback permits the action to give a detailed diagnostic when an
/// unknown template name is encountered and, potentially, to try to recover
/// by producing a new template in \p SuggestedTemplate.
///
/// \param II the name that should be a template.
///
/// \param IILoc the location of the name in the source.
///
/// \param S the scope in which name lookup was performed.
///
/// \param SS the C++ scope specifier that preceded the name.
///
/// \param SuggestedTemplate if the action sets this template to a non-NULL,
/// template, the parser will recover by consuming the template name token
/// and the template argument list that follows.
///
/// \param SuggestedTemplateKind as input, the kind of template that we
/// expect (e.g., \c TNK_Type_template or \c TNK_Function_template). If the
/// action provides a suggested template, this should be set to the kind of
/// template.
///
/// \returns true if a diagnostic was emitted, false otherwise. When false,
/// the parser itself will emit a generic "unknown template name" diagnostic.
virtual bool DiagnoseUnknownTemplateName(const IdentifierInfo &II,
SourceLocation IILoc,
Scope *S,
const CXXScopeSpec *SS,
TemplateTy &SuggestedTemplate,
TemplateNameKind &SuggestedKind) {
return false;
}
/// \brief Determine whether the given name refers to a non-type nested name
/// specifier, e.g., the name of a namespace or namespace alias.
///
/// This actual is used in the parsing of pseudo-destructor names to
/// distinguish a nested-name-specifier and a "type-name ::" when we
/// see the token sequence "X :: ~".
virtual bool isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
SourceLocation IdLoc,
IdentifierInfo &II,
TypeTy *ObjectType) {
return false;
}
/// ActOnCXXGlobalScopeSpecifier - Return the object that represents the
/// global scope ('::').
virtual CXXScopeTy *ActOnCXXGlobalScopeSpecifier(Scope *S,
SourceLocation CCLoc) {
return 0;
}
/// \brief Parsed an identifier followed by '::' in a C++
/// nested-name-specifier.
///
/// \param S the scope in which the nested-name-specifier was parsed.
///
/// \param SS the nested-name-specifier that precedes the identifier. For
/// example, if we are parsing "foo::bar::", \p SS will describe the "foo::"
/// that has already been parsed.
///
/// \param IdLoc the location of the identifier we have just parsed (e.g.,
/// the "bar" in "foo::bar::".
///
/// \param CCLoc the location of the '::' at the end of the
/// nested-name-specifier.
///
/// \param II the identifier that represents the scope that this
/// nested-name-specifier refers to, e.g., the "bar" in "foo::bar::".
///
/// \param ObjectType if this nested-name-specifier occurs as part of a
/// C++ member access expression such as "x->Base::f", the type of the base
/// object (e.g., *x in the example, if "x" were a pointer).
///
/// \param EnteringContext if true, then we intend to immediately enter the
/// context of this nested-name-specifier, e.g., for an out-of-line
/// definition of a class member.
///
/// \returns a CXXScopeTy* object representing the C++ scope.
virtual CXXScopeTy *ActOnCXXNestedNameSpecifier(Scope *S,
CXXScopeSpec &SS,
SourceLocation IdLoc,
SourceLocation CCLoc,
IdentifierInfo &II,
TypeTy *ObjectType,
bool EnteringContext) {
return 0;
}
/// IsInvalidUnlessNestedName - This method is used for error recovery
/// purposes to determine whether the specified identifier is only valid as
/// a nested name specifier, for example a namespace name. It is
/// conservatively correct to always return false from this method.
///
/// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
virtual bool IsInvalidUnlessNestedName(Scope *S,
CXXScopeSpec &SS,
IdentifierInfo &II,
TypeTy *ObjectType,
bool EnteringContext) {
return false;
}
/// ActOnCXXNestedNameSpecifier - Called during parsing of a
/// nested-name-specifier that involves a template-id, e.g.,
/// "foo::bar<int, float>::", and now we need to build a scope
/// specifier. \p SS is empty or the previously parsed nested-name
/// part ("foo::"), \p Type is the already-parsed class template
/// specialization (or other template-id that names a type), \p
/// TypeRange is the source range where the type is located, and \p
/// CCLoc is the location of the trailing '::'.
virtual CXXScopeTy *ActOnCXXNestedNameSpecifier(Scope *S,
const CXXScopeSpec &SS,
TypeTy *Type,
SourceRange TypeRange,
SourceLocation CCLoc) {
return 0;
}
/// ShouldEnterDeclaratorScope - Called when a C++ scope specifier
/// is parsed as part of a declarator-id to determine whether a scope
/// should be entered.
///
/// \param S the current scope
/// \param SS the scope being entered
/// \param isFriendDeclaration whether this is a friend declaration
virtual bool ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
return false;
}
/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
/// scope or nested-name-specifier) is parsed as part of a declarator-id.
/// After this method is called, according to [C++ 3.4.3p3], names should be
/// looked up in the declarator-id's scope, until the declarator is parsed and
/// ActOnCXXExitDeclaratorScope is called.
/// The 'SS' should be a non-empty valid CXXScopeSpec.
/// \returns true if an error occurred, false otherwise.
virtual bool ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
return false;
}
/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
/// Used to indicate that names should revert to being looked up in the
/// defining scope.
virtual void ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
}
/// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an
/// initializer for the declaration 'Dcl'.
/// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a
/// static data member of class X, names should be looked up in the scope of
/// class X.
virtual void ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) {
}
/// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an
/// initializer for the declaration 'Dcl'.
virtual void ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) {
}
/// ActOnDeclarator - This callback is invoked when a declarator is parsed and
/// 'Init' specifies the initializer if any. This is for things like:
/// "int X = 4" or "typedef int foo".
///
virtual DeclPtrTy ActOnDeclarator(Scope *S, Declarator &D) {
return DeclPtrTy();
}
/// ActOnParamDeclarator - This callback is invoked when a parameter
/// declarator is parsed. This callback only occurs for functions
/// with prototypes. S is the function prototype scope for the
/// parameters (C++ [basic.scope.proto]).
virtual DeclPtrTy ActOnParamDeclarator(Scope *S, Declarator &D) {
return DeclPtrTy();
}
virtual void ActOnObjCCatchParam(DeclPtrTy D) {
}
/// AddInitializerToDecl - This action is called immediately after
/// ActOnDeclarator (when an initializer is present). The code is factored
/// this way to make sure we are able to handle the following:
/// void func() { int xx = xx; }
/// This allows ActOnDeclarator to register "xx" prior to parsing the
/// initializer. The declaration above should still result in a warning,
/// since the reference to "xx" is uninitialized.
virtual void AddInitializerToDecl(DeclPtrTy Dcl, ExprArg Init) {
return;
}
/// SetDeclDeleted - This action is called immediately after ActOnDeclarator
/// if =delete is parsed. C++0x [dcl.fct.def]p10
/// Note that this can be called even for variable declarations. It's the
/// action's job to reject it.
virtual void SetDeclDeleted(DeclPtrTy Dcl, SourceLocation DelLoc) {
return;
}
/// ActOnUninitializedDecl - This action is called immediately after
/// ActOnDeclarator (when an initializer is *not* present).
/// If TypeContainsUndeducedAuto is true, then the type of the declarator
/// has an undeduced 'auto' type somewhere.
virtual void ActOnUninitializedDecl(DeclPtrTy Dcl,
bool TypeContainsUndeducedAuto) {
return;
}
/// \brief Note that the given declaration had an initializer that could not
/// be parsed.
virtual void ActOnInitializerError(DeclPtrTy Dcl) {
return;
}
/// FinalizeDeclaratorGroup - After a sequence of declarators are parsed, this
/// gives the actions implementation a chance to process the group as a whole.
virtual DeclGroupPtrTy FinalizeDeclaratorGroup(Scope *S, const DeclSpec& DS,
DeclPtrTy *Group,
unsigned NumDecls) {
return DeclGroupPtrTy();
}
/// @brief Indicates that all K&R-style parameter declarations have
/// been parsed prior to a function definition.
/// @param S The function prototype scope.
/// @param D The function declarator.
virtual void ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
SourceLocation LocAfterDecls) {
}
/// ActOnStartOfFunctionDef - This is called at the start of a function
/// definition, instead of calling ActOnDeclarator. The Declarator includes
/// information about formal arguments that are part of this function.
virtual DeclPtrTy ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
// Default to ActOnDeclarator.
return ActOnStartOfFunctionDef(FnBodyScope,
ActOnDeclarator(FnBodyScope, D));
}
/// ActOnStartOfFunctionDef - This is called at the start of a function
/// definition, after the FunctionDecl has already been created.
virtual DeclPtrTy ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
return D;
}
virtual void ActOnStartOfObjCMethodDef(Scope *FnBodyScope, DeclPtrTy D) {
return;
}
/// ActOnFinishFunctionBody - This is called when a function body has
/// completed parsing. Decl is returned by ParseStartOfFunctionDef.
virtual DeclPtrTy ActOnFinishFunctionBody(DeclPtrTy Decl, StmtArg Body) {
return Decl;
}
virtual DeclPtrTy ActOnFileScopeAsmDecl(SourceLocation Loc,
ExprArg AsmString) {
return DeclPtrTy();
}
/// ActOnPopScope - This callback is called immediately before the specified
/// scope is popped and deleted.
virtual void ActOnPopScope(SourceLocation Loc, Scope *S) {}
/// ActOnTranslationUnitScope - This callback is called once, immediately
/// after creating the translation unit scope (in Parser::Initialize).
virtual void ActOnTranslationUnitScope(SourceLocation Loc, Scope *S) {}
/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
/// no declarator (e.g. "struct foo;") is parsed.
virtual DeclPtrTy ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
return DeclPtrTy();
}
/// ActOnStartLinkageSpecification - Parsed the beginning of a C++
/// linkage specification, including the language and (if present)
/// the '{'. ExternLoc is the location of the 'extern', LangLoc is
/// the location of the language string literal, which is provided
/// by Lang/StrSize. LBraceLoc, if valid, provides the location of
/// the '{' brace. Otherwise, this linkage specification does not
/// have any braces.
virtual DeclPtrTy ActOnStartLinkageSpecification(Scope *S,
SourceLocation ExternLoc,
SourceLocation LangLoc,
const char *Lang,
unsigned StrSize,
SourceLocation LBraceLoc) {
return DeclPtrTy();
}
/// ActOnFinishLinkageSpecification - Completely the definition of
/// the C++ linkage specification LinkageSpec. If RBraceLoc is
/// valid, it's the position of the closing '}' brace in a linkage
/// specification that uses braces.
virtual DeclPtrTy ActOnFinishLinkageSpecification(Scope *S,
DeclPtrTy LinkageSpec,
SourceLocation RBraceLoc) {
return LinkageSpec;
}
/// ActOnEndOfTranslationUnit - This is called at the very end of the
/// translation unit when EOF is reached and all but the top-level scope is
/// popped.
virtual void ActOnEndOfTranslationUnit() {}
//===--------------------------------------------------------------------===//
// Type Parsing Callbacks.
//===--------------------------------------------------------------------===//
/// ActOnTypeName - A type-name (type-id in C++) was parsed.
virtual TypeResult ActOnTypeName(Scope *S, Declarator &D) {
return TypeResult();
}
enum TagUseKind {
TUK_Reference, // Reference to a tag: 'struct foo *X;'
TUK_Declaration, // Fwd decl of a tag: 'struct foo;'
TUK_Definition, // Definition of a tag: 'struct foo { int X; } Y;'
TUK_Friend // Friend declaration: 'friend struct foo;'
};
/// \brief The parser has encountered a tag (e.g., "class X") that should be
/// turned into a declaration by the action module.
///
/// \param S the scope in which this tag occurs.
///
/// \param TagSpec an instance of DeclSpec::TST, indicating what kind of tag
/// this is (struct/union/enum/class).
///
/// \param TUK how the tag we have encountered is being used, which
/// can be a reference to a (possibly pre-existing) tag, a
/// declaration of that tag, or the beginning of a definition of
/// that tag.
///
/// \param KWLoc the location of the "struct", "class", "union", or "enum"
/// keyword.
///
/// \param SS C++ scope specifier that precedes the name of the tag, e.g.,
/// the "std::" in "class std::type_info".
///
/// \param Name the name of the tag, e.g., "X" in "struct X". This parameter
/// may be NULL, to indicate an anonymous class/struct/union/enum type.
///
/// \param NameLoc the location of the name of the tag.
///
/// \param Attr the set of attributes that appertain to the tag.
///
/// \param AS when this tag occurs within a C++ class, provides the
/// current access specifier (AS_public, AS_private, AS_protected).
/// Otherwise, it will be AS_none.
///
/// \param TemplateParameterLists the set of C++ template parameter lists
/// that apply to this tag, if the tag is a declaration or definition (see
/// the \p TK parameter). The action module is responsible for determining,
/// based on the template parameter lists and the scope specifier, whether
/// the declared tag is a class template or not.
///
/// \param OwnedDecl the callee should set this flag true when the returned
/// declaration is "owned" by this reference. Ownership is handled entirely
/// by the action module.
///
/// \returns the declaration to which this tag refers.
virtual DeclPtrTy ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
SourceLocation KWLoc, CXXScopeSpec &SS,
IdentifierInfo *Name, SourceLocation NameLoc,
AttributeList *Attr, AccessSpecifier AS,
MultiTemplateParamsArg TemplateParameterLists,
bool &OwnedDecl, bool &IsDependent) {
return DeclPtrTy();
}
/// Acts on a reference to a dependent tag name. This arises in
/// cases like:
///
/// template <class T> class A;
/// template <class T> class B {
/// friend class A<T>::M; // here
/// };
///
/// \param TagSpec an instance of DeclSpec::TST corresponding to the
/// tag specifier.
///
/// \param TUK the tag use kind (either TUK_Friend or TUK_Reference)
///
/// \param SS the scope specifier (always defined)
virtual TypeResult ActOnDependentTag(Scope *S,
unsigned TagSpec,
TagUseKind TUK,
const CXXScopeSpec &SS,
IdentifierInfo *Name,
SourceLocation KWLoc,
SourceLocation NameLoc) {
return TypeResult();
}
/// Act on @defs() element found when parsing a structure. ClassName is the
/// name of the referenced class.
virtual void ActOnDefs(Scope *S, DeclPtrTy TagD, SourceLocation DeclStart,
IdentifierInfo *ClassName,
llvm::SmallVectorImpl<DeclPtrTy> &Decls) {}
virtual DeclPtrTy ActOnField(Scope *S, DeclPtrTy TagD,
SourceLocation DeclStart,
Declarator &D, ExprTy *BitfieldWidth) {
return DeclPtrTy();
}
virtual DeclPtrTy ActOnIvar(Scope *S, SourceLocation DeclStart,
DeclPtrTy IntfDecl,
Declarator &D, ExprTy *BitfieldWidth,
tok::ObjCKeywordKind visibility) {
return DeclPtrTy();
}
virtual void ActOnFields(Scope* S, SourceLocation RecLoc, DeclPtrTy TagDecl,
DeclPtrTy *Fields, unsigned NumFields,
SourceLocation LBrac, SourceLocation RBrac,
AttributeList *AttrList) {}
/// ActOnTagStartDefinition - Invoked when we have entered the
/// scope of a tag's definition (e.g., for an enumeration, class,
/// struct, or union).
virtual void ActOnTagStartDefinition(Scope *S, DeclPtrTy TagDecl) { }
/// ActOnStartCXXMemberDeclarations - Invoked when we have parsed a
/// C++ record definition's base-specifiers clause and are starting its
/// member declarations.
virtual void ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagDecl,
SourceLocation LBraceLoc) { }
/// ActOnTagFinishDefinition - Invoked once we have finished parsing
/// the definition of a tag (enumeration, class, struct, or union).
///
/// The scope is the scope of the tag definition.
virtual void ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagDecl,
SourceLocation RBraceLoc) { }
/// ActOnTagDefinitionError - Invoked if there's an unrecoverable
/// error parsing the definition of a tag.
///
/// The scope is the scope of the tag definition.
virtual void ActOnTagDefinitionError(Scope *S, DeclPtrTy TagDecl) { }
virtual DeclPtrTy ActOnEnumConstant(Scope *S, DeclPtrTy EnumDecl,
DeclPtrTy LastEnumConstant,
SourceLocation IdLoc, IdentifierInfo *Id,
SourceLocation EqualLoc, ExprTy *Val) {
return DeclPtrTy();
}
virtual void ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
SourceLocation RBraceLoc, DeclPtrTy EnumDecl,
DeclPtrTy *Elements, unsigned NumElements,
Scope *S, AttributeList *AttrList) {}
//===--------------------------------------------------------------------===//
// Statement Parsing Callbacks.
//===--------------------------------------------------------------------===//
virtual OwningStmtResult ActOnNullStmt(SourceLocation SemiLoc) {
return StmtEmpty();
}
virtual OwningStmtResult ActOnCompoundStmt(SourceLocation L, SourceLocation R,
MultiStmtArg Elts,
bool isStmtExpr) {
return StmtEmpty();
}
virtual OwningStmtResult ActOnDeclStmt(DeclGroupPtrTy Decl,
SourceLocation StartLoc,
SourceLocation EndLoc) {
return StmtEmpty();
}
virtual void ActOnForEachDeclStmt(DeclGroupPtrTy Decl) {
}
virtual OwningStmtResult ActOnExprStmt(FullExprArg Expr) {
return OwningStmtResult(*this, Expr->release());
}
/// ActOnCaseStmt - Note that this handles the GNU 'case 1 ... 4' extension,
/// which can specify an RHS value. The sub-statement of the case is
/// specified in a separate action.
virtual OwningStmtResult ActOnCaseStmt(SourceLocation CaseLoc, ExprArg LHSVal,
SourceLocation DotDotDotLoc,
ExprArg RHSVal,
SourceLocation ColonLoc) {
return StmtEmpty();
}
/// ActOnCaseStmtBody - This installs a statement as the body of a case.
virtual void ActOnCaseStmtBody(StmtTy *CaseStmt, StmtArg SubStmt) {}
virtual OwningStmtResult ActOnDefaultStmt(SourceLocation DefaultLoc,
SourceLocation ColonLoc,
StmtArg SubStmt, Scope *CurScope){
return StmtEmpty();
}
virtual OwningStmtResult ActOnLabelStmt(SourceLocation IdentLoc,
IdentifierInfo *II,
SourceLocation ColonLoc,
StmtArg SubStmt) {
return StmtEmpty();
}
/// \brief Parsed an "if" statement.
///
/// \param IfLoc the location of the "if" keyword.
///
/// \param CondVal if the "if" condition was parsed as an expression,
/// the expression itself.
///
/// \param CondVar if the "if" condition was parsed as a condition variable,
/// the condition variable itself.
///
/// \param ThenVal the "then" statement.
///
/// \param ElseLoc the location of the "else" keyword.
///
/// \param ElseVal the "else" statement.
virtual OwningStmtResult ActOnIfStmt(SourceLocation IfLoc,
FullExprArg CondVal,
DeclPtrTy CondVar,
StmtArg ThenVal,
SourceLocation ElseLoc,
StmtArg ElseVal) {
return StmtEmpty();
}
/// \brief Parsed the start of a "switch" statement.
///
/// \param Cond if the "switch" condition was parsed as an expression,
/// the expression itself.
///
/// \param CondVar if the "switch" condition was parsed as a condition
/// variable, the condition variable itself.
virtual OwningStmtResult ActOnStartOfSwitchStmt(FullExprArg Cond,
DeclPtrTy CondVar) {
return StmtEmpty();
}
/// ActOnSwitchBodyError - This is called if there is an error parsing the
/// body of the switch stmt instead of ActOnFinishSwitchStmt.
virtual void ActOnSwitchBodyError(SourceLocation SwitchLoc, StmtArg Switch,
StmtArg Body) {}
virtual OwningStmtResult ActOnFinishSwitchStmt(SourceLocation SwitchLoc,
StmtArg Switch, StmtArg Body) {
return StmtEmpty();
}
/// \brief Parsed a "while" statement.
///
/// \param Cond if the "while" condition was parsed as an expression,
/// the expression itself.
///
/// \param CondVar if the "while" condition was parsed as a condition
/// variable, the condition variable itself.
///
/// \param Body the body of the "while" loop.
virtual OwningStmtResult ActOnWhileStmt(SourceLocation WhileLoc,
FullExprArg Cond, DeclPtrTy CondVar,
StmtArg Body) {
return StmtEmpty();
}
virtual OwningStmtResult ActOnDoStmt(SourceLocation DoLoc, StmtArg Body,
SourceLocation WhileLoc,
SourceLocation CondLParen,
ExprArg Cond,
SourceLocation CondRParen) {
return StmtEmpty();
}
/// \brief Parsed a "for" statement.
///
/// \param ForLoc the location of the "for" keyword.
///
/// \param LParenLoc the location of the left parentheses.
///
/// \param First the statement used to initialize the for loop.
///
/// \param Second the condition to be checked during each iteration, if
/// that condition was parsed as an expression.
///
/// \param SecondArg the condition variable to be checked during each
/// iterator, if that condition was parsed as a variable declaration.
///
/// \param Third the expression that will be evaluated to "increment" any
/// values prior to the next iteration.
///
/// \param RParenLoc the location of the right parentheses.
///
/// \param Body the body of the "body" loop.
virtual OwningStmtResult ActOnForStmt(SourceLocation ForLoc,
SourceLocation LParenLoc,
StmtArg First, FullExprArg Second,
DeclPtrTy SecondVar, FullExprArg Third,
SourceLocation RParenLoc,
StmtArg Body) {
return StmtEmpty();
}
virtual OwningStmtResult ActOnObjCForCollectionStmt(SourceLocation ForColLoc,
SourceLocation LParenLoc,
StmtArg First, ExprArg Second,
SourceLocation RParenLoc, StmtArg Body) {
return StmtEmpty();
}
virtual OwningStmtResult ActOnGotoStmt(SourceLocation GotoLoc,
SourceLocation LabelLoc,
IdentifierInfo *LabelII) {
return StmtEmpty();
}
virtual OwningStmtResult ActOnIndirectGotoStmt(SourceLocation GotoLoc,
SourceLocation StarLoc,
ExprArg DestExp) {
return StmtEmpty();
}
virtual OwningStmtResult ActOnContinueStmt(SourceLocation ContinueLoc,
Scope *CurScope) {
return StmtEmpty();
}
virtual OwningStmtResult ActOnBreakStmt(SourceLocation GotoLoc,
Scope *CurScope) {
return StmtEmpty();
}
virtual OwningStmtResult ActOnReturnStmt(SourceLocation ReturnLoc,
ExprArg RetValExp) {
return StmtEmpty();
}
virtual OwningStmtResult ActOnAsmStmt(SourceLocation AsmLoc,
bool IsSimple,
bool IsVolatile,
unsigned NumOutputs,
unsigned NumInputs,
IdentifierInfo **Names,
MultiExprArg Constraints,
MultiExprArg Exprs,
ExprArg AsmString,
MultiExprArg Clobbers,
SourceLocation RParenLoc,
bool MSAsm = false) {
return StmtEmpty();
}
// Objective-c statements
virtual OwningStmtResult ActOnObjCAtCatchStmt(SourceLocation AtLoc,
SourceLocation RParen,
DeclPtrTy Parm, StmtArg Body,
StmtArg CatchList) {
return StmtEmpty();
}
virtual OwningStmtResult ActOnObjCAtFinallyStmt(SourceLocation AtLoc,
StmtArg Body) {
return StmtEmpty();
}
virtual OwningStmtResult ActOnObjCAtTryStmt(SourceLocation AtLoc,
StmtArg Try, StmtArg Catch,
StmtArg Finally) {
return StmtEmpty();
}
virtual OwningStmtResult ActOnObjCAtThrowStmt(SourceLocation AtLoc,
ExprArg Throw,
Scope *CurScope) {
return StmtEmpty();
}
virtual OwningStmtResult ActOnObjCAtSynchronizedStmt(SourceLocation AtLoc,
ExprArg SynchExpr,
StmtArg SynchBody) {
return StmtEmpty();
}
// C++ Statements
virtual DeclPtrTy ActOnExceptionDeclarator(Scope *S, Declarator &D) {
return DeclPtrTy();
}
virtual OwningStmtResult ActOnCXXCatchBlock(SourceLocation CatchLoc,
DeclPtrTy ExceptionDecl,
StmtArg HandlerBlock) {
return StmtEmpty();
}
virtual OwningStmtResult ActOnCXXTryBlock(SourceLocation TryLoc,
StmtArg TryBlock,
MultiStmtArg Handlers) {
return StmtEmpty();
}
//===--------------------------------------------------------------------===//
// Expression Parsing Callbacks.
//===--------------------------------------------------------------------===//
/// \brief Describes how the expressions currently being parsed are
/// evaluated at run-time, if at all.
enum ExpressionEvaluationContext {
/// \brief The current expression and its subexpressions occur within an
/// unevaluated operand (C++0x [expr]p8), such as a constant expression
/// or the subexpression of \c sizeof, where the type or the value of the
/// expression may be significant but no code will be generated to evaluate
/// the value of the expression at run time.
Unevaluated,
/// \brief The current expression is potentially evaluated at run time,
/// which means that code may be generated to evaluate the value of the
/// expression at run time.
PotentiallyEvaluated,
/// \brief The current expression may be potentially evaluated or it may
/// be unevaluated, but it is impossible to tell from the lexical context.
/// This evaluation context is used primary for the operand of the C++
/// \c typeid expression, whose argument is potentially evaluated only when
/// it is an lvalue of polymorphic class type (C++ [basic.def.odr]p2).
PotentiallyPotentiallyEvaluated
};
/// \brief The parser is entering a new expression evaluation context.
///
/// \param NewContext is the new expression evaluation context.
virtual void
PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext) { }
/// \brief The parser is exiting an expression evaluation context.
virtual void
PopExpressionEvaluationContext() { }
// Primary Expressions.
/// \brief Retrieve the source range that corresponds to the given
/// expression.
virtual SourceRange getExprRange(ExprTy *E) const {
return SourceRange();
}
/// \brief Parsed an id-expression (C++) or identifier (C) in expression
/// context, e.g., the expression "x" that refers to a variable named "x".
///
/// \param S the scope in which this id-expression or identifier occurs.
///
/// \param SS the C++ nested-name-specifier that qualifies the name of the
/// value, e.g., "std::" in "std::sort".
///
/// \param Name the name to which the id-expression refers. In C, this will
/// always be an identifier. In C++, it may also be an overloaded operator,
/// destructor name (if there is a nested-name-specifier), or template-id.
///
/// \param HasTrailingLParen whether the next token following the
/// id-expression or identifier is a left parentheses ('(').
///
/// \param IsAddressOfOperand whether the token that precedes this
/// id-expression or identifier was an ampersand ('&'), indicating that
/// we will be taking the address of this expression.
virtual OwningExprResult ActOnIdExpression(Scope *S,
CXXScopeSpec &SS,
UnqualifiedId &Name,
bool HasTrailingLParen,
bool IsAddressOfOperand) {
return ExprEmpty();
}
virtual OwningExprResult ActOnPredefinedExpr(SourceLocation Loc,
tok::TokenKind Kind) {
return ExprEmpty();
}
virtual OwningExprResult ActOnCharacterConstant(const Token &) {
return ExprEmpty();
}
virtual OwningExprResult ActOnNumericConstant(const Token &) {
return ExprEmpty();
}
/// ActOnStringLiteral - The specified tokens were lexed as pasted string
/// fragments (e.g. "foo" "bar" L"baz").
virtual OwningExprResult ActOnStringLiteral(const Token *Toks,
unsigned NumToks) {
return ExprEmpty();
}
virtual OwningExprResult ActOnParenExpr(SourceLocation L, SourceLocation R,
ExprArg Val) {
return move(Val); // Default impl returns operand.
}
virtual OwningExprResult ActOnParenOrParenListExpr(SourceLocation L,
SourceLocation R,
MultiExprArg Val,
TypeTy *TypeOfCast=0) {
return ExprEmpty();
}
// Postfix Expressions.
virtual OwningExprResult ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Kind,
ExprArg Input) {
return ExprEmpty();
}
virtual OwningExprResult ActOnArraySubscriptExpr(Scope *S, ExprArg Base,
SourceLocation LLoc,
ExprArg Idx,
SourceLocation RLoc) {
return ExprEmpty();
}
/// \brief Parsed a member access expresion (C99 6.5.2.3, C++ [expr.ref])
/// of the form \c x.m or \c p->m.
///
/// \param S the scope in which the member access expression occurs.
///
/// \param Base the class or pointer to class into which this member
/// access expression refers, e.g., \c x in \c x.m.
///
/// \param OpLoc the location of the "." or "->" operator.
///
/// \param OpKind the kind of member access operator, which will be either
/// tok::arrow ("->") or tok::period (".").
///
/// \param SS in C++, the nested-name-specifier that precedes the member
/// name, if any.
///
/// \param Member the name of the member that we are referring to. In C,
/// this will always store an identifier; in C++, we may also have operator
/// names, conversion function names, destructors, and template names.
///
/// \param ObjCImpDecl the Objective-C implementation declaration.
/// FIXME: Do we really need this?
///
/// \param HasTrailingLParen whether this member name is immediately followed
/// by a left parentheses ('(').
virtual OwningExprResult ActOnMemberAccessExpr(Scope *S, ExprArg Base,
SourceLocation OpLoc,
tok::TokenKind OpKind,
CXXScopeSpec &SS,
UnqualifiedId &Member,
DeclPtrTy ObjCImpDecl,
bool HasTrailingLParen) {
return ExprEmpty();
}
/// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
/// This provides the location of the left/right parens and a list of comma
/// locations. There are guaranteed to be one fewer commas than arguments,
/// unless there are zero arguments.
virtual OwningExprResult ActOnCallExpr(Scope *S, ExprArg Fn,
SourceLocation LParenLoc,
MultiExprArg Args,
SourceLocation *CommaLocs,
SourceLocation RParenLoc) {
return ExprEmpty();
}
// Unary Operators. 'Tok' is the token for the operator.
virtual OwningExprResult ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
tok::TokenKind Op, ExprArg Input) {
return ExprEmpty();
}
virtual OwningExprResult
ActOnSizeOfAlignOfExpr(SourceLocation OpLoc, bool isSizeof, bool isType,
void *TyOrEx, const SourceRange &ArgRange) {
return ExprEmpty();
}
virtual OwningExprResult ActOnCompoundLiteral(SourceLocation LParen,
TypeTy *Ty,
SourceLocation RParen,
ExprArg Op) {
return ExprEmpty();
}
virtual OwningExprResult ActOnInitList(SourceLocation LParenLoc,
MultiExprArg InitList,
SourceLocation RParenLoc) {
return ExprEmpty();
}
/// @brief Parsed a C99 designated initializer.
///
/// @param Desig Contains the designation with one or more designators.
///
/// @param Loc The location of the '=' or ':' prior to the
/// initialization expression.
///
/// @param GNUSyntax If true, then this designated initializer used
/// the deprecated GNU syntax @c fieldname:foo or @c [expr]foo rather
/// than the C99 syntax @c .fieldname=foo or @c [expr]=foo.
///
/// @param Init The value that the entity (or entities) described by
/// the designation will be initialized with.
virtual OwningExprResult ActOnDesignatedInitializer(Designation &Desig,
SourceLocation Loc,
bool GNUSyntax,
OwningExprResult Init) {
return ExprEmpty();
}
virtual OwningExprResult ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
TypeTy *Ty, SourceLocation RParenLoc,
ExprArg Op) {
return ExprEmpty();
}
virtual bool TypeIsVectorType(TypeTy *Ty) {
return false;
}
virtual OwningExprResult ActOnBinOp(Scope *S, SourceLocation TokLoc,
tok::TokenKind Kind,
ExprArg LHS, ExprArg RHS) {
return ExprEmpty();
}
/// ActOnConditionalOp - Parse a ?: operation. Note that 'LHS' may be null
/// in the case of a the GNU conditional expr extension.
virtual OwningExprResult ActOnConditionalOp(SourceLocation QuestionLoc,
SourceLocation ColonLoc,
ExprArg Cond, ExprArg LHS,
ExprArg RHS) {
return ExprEmpty();
}
//===---------------------- GNU Extension Expressions -------------------===//
virtual OwningExprResult ActOnAddrLabel(SourceLocation OpLoc,
SourceLocation LabLoc,
IdentifierInfo *LabelII) { // "&&foo"
return ExprEmpty();
}
virtual OwningExprResult ActOnStmtExpr(SourceLocation LPLoc, StmtArg SubStmt,
SourceLocation RPLoc) { // "({..})"
return ExprEmpty();
}
// __builtin_offsetof(type, identifier(.identifier|[expr])*)
struct OffsetOfComponent {
SourceLocation LocStart, LocEnd;
bool isBrackets; // true if [expr], false if .ident
union {
IdentifierInfo *IdentInfo;
ExprTy *E;
} U;
};
virtual OwningExprResult ActOnBuiltinOffsetOf(Scope *S,
SourceLocation BuiltinLoc,
SourceLocation TypeLoc,
TypeTy *Arg1,
OffsetOfComponent *CompPtr,
unsigned NumComponents,
SourceLocation RParenLoc) {
return ExprEmpty();
}
// __builtin_types_compatible_p(type1, type2)
virtual OwningExprResult ActOnTypesCompatibleExpr(SourceLocation BuiltinLoc,
TypeTy *arg1, TypeTy *arg2,
SourceLocation RPLoc) {
return ExprEmpty();
}
// __builtin_choose_expr(constExpr, expr1, expr2)
virtual OwningExprResult ActOnChooseExpr(SourceLocation BuiltinLoc,
ExprArg cond, ExprArg expr1,
ExprArg expr2, SourceLocation RPLoc){
return ExprEmpty();
}
// __builtin_va_arg(expr, type)
virtual OwningExprResult ActOnVAArg(SourceLocation BuiltinLoc,
ExprArg expr, TypeTy *type,
SourceLocation RPLoc) {
return ExprEmpty();
}
/// ActOnGNUNullExpr - Parsed the GNU __null expression, the token
/// for which is at position TokenLoc.
virtual OwningExprResult ActOnGNUNullExpr(SourceLocation TokenLoc) {
return ExprEmpty();
}
//===------------------------- "Block" Extension ------------------------===//
/// ActOnBlockStart - This callback is invoked when a block literal is
/// started. The result pointer is passed into the block finalizers.
virtual void ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {}
/// ActOnBlockArguments - This callback allows processing of block arguments.
/// If there are no arguments, this is still invoked.
virtual void ActOnBlockArguments(Declarator &ParamInfo, Scope *CurScope) {}
/// ActOnBlockError - If there is an error parsing a block, this callback
/// is invoked to pop the information about the block from the action impl.
virtual void ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {}
/// ActOnBlockStmtExpr - This is called when the body of a block statement
/// literal was successfully completed. ^(int x){...}
virtual OwningExprResult ActOnBlockStmtExpr(SourceLocation CaretLoc,
StmtArg Body,
Scope *CurScope) {
return ExprEmpty();
}
//===------------------------- C++ Declarations -------------------------===//
/// ActOnStartNamespaceDef - This is called at the start of a namespace
/// definition.
virtual DeclPtrTy ActOnStartNamespaceDef(Scope *S, SourceLocation IdentLoc,
IdentifierInfo *Ident,
SourceLocation LBrace,
AttributeList *AttrList) {
return DeclPtrTy();
}
/// ActOnFinishNamespaceDef - This callback is called after a namespace is
/// exited. Decl is returned by ActOnStartNamespaceDef.
virtual void ActOnFinishNamespaceDef(DeclPtrTy Dcl, SourceLocation RBrace) {
return;
}
/// ActOnUsingDirective - This is called when using-directive is parsed.
virtual DeclPtrTy ActOnUsingDirective(Scope *CurScope,
SourceLocation UsingLoc,
SourceLocation NamespcLoc,
CXXScopeSpec &SS,
SourceLocation IdentLoc,
IdentifierInfo *NamespcName,
AttributeList *AttrList);
/// ActOnNamespaceAliasDef - This is called when a namespace alias definition
/// is parsed.
virtual DeclPtrTy ActOnNamespaceAliasDef(Scope *CurScope,
SourceLocation NamespaceLoc,
SourceLocation AliasLoc,
IdentifierInfo *Alias,
CXXScopeSpec &SS,
SourceLocation IdentLoc,
IdentifierInfo *Ident) {
return DeclPtrTy();
}
/// \brief Parsed a C++ using-declaration.
///
/// This callback will be invoked when the parser has parsed a C++
/// using-declaration, e.g.,
///
/// \code
/// namespace std {
/// template<typename T, typename Alloc> class vector;
/// }
///
/// using std::vector; // using-declaration here
/// \endcode
///
/// \param CurScope the scope in which this using declaration was parsed.
///
/// \param AS the currently-active access specifier.
///
/// \param HasUsingKeyword true if this was declared with an
/// explicit 'using' keyword (i.e. if this is technically a using
/// declaration, not an access declaration)
///
/// \param UsingLoc the location of the 'using' keyword.
///
/// \param SS the nested-name-specifier that precedes the name.
///
/// \param Name the name to which the using declaration refers.
///
/// \param AttrList attributes applied to this using declaration, if any.
///
/// \param IsTypeName whether this using declaration started with the
/// 'typename' keyword. FIXME: This will eventually be split into a
/// separate action.
///
/// \param TypenameLoc the location of the 'typename' keyword, if present
///
/// \returns a representation of the using declaration.
virtual DeclPtrTy ActOnUsingDeclaration(Scope *CurScope,
AccessSpecifier AS,
bool HasUsingKeyword,
SourceLocation UsingLoc,
CXXScopeSpec &SS,
UnqualifiedId &Name,
AttributeList *AttrList,
bool IsTypeName,
SourceLocation TypenameLoc);
/// ActOnParamDefaultArgument - Parse default argument for function parameter
virtual void ActOnParamDefaultArgument(DeclPtrTy param,
SourceLocation EqualLoc,
ExprArg defarg) {
}
/// ActOnParamUnparsedDefaultArgument - We've seen a default
/// argument for a function parameter, but we can't parse it yet
/// because we're inside a class definition. Note that this default
/// argument will be parsed later.
virtual void ActOnParamUnparsedDefaultArgument(DeclPtrTy param,
SourceLocation EqualLoc,
SourceLocation ArgLoc) { }
/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
/// the default argument for the parameter param failed.
virtual void ActOnParamDefaultArgumentError(DeclPtrTy param) { }
/// AddCXXDirectInitializerToDecl - This action is called immediately after
/// ActOnDeclarator, when a C++ direct initializer is present.
/// e.g: "int x(1);"
virtual void AddCXXDirectInitializerToDecl(DeclPtrTy Dcl,
SourceLocation LParenLoc,
MultiExprArg Exprs,
SourceLocation *CommaLocs,
SourceLocation RParenLoc) {
return;
}
/// \brief Called when we re-enter a template parameter scope.
///
/// This action occurs when we are going to parse an member
/// function's default arguments or inline definition after the
/// outermost class definition has been completed, and when one or
/// more of the class definitions enclosing the member function is a
/// template. The "entity" in the given scope will be set as it was
/// when we entered the scope of the template initially, and should
/// be used to, e.g., reintroduce the names of template parameters
/// into the current scope so that they can be found by name lookup.
///
/// \param S The (new) template parameter scope.
///
/// \param Template the class template declaration whose template
/// parameters should be reintroduced into the current scope.
virtual void ActOnReenterTemplateScope(Scope *S, DeclPtrTy Template) {
}
/// ActOnStartDelayedMemberDeclarations - We have completed parsing
/// a C++ class, and we are about to start parsing any parts of
/// member declarations that could not be parsed earlier. Enter
/// the appropriate record scope.
virtual void ActOnStartDelayedMemberDeclarations(Scope *S,
DeclPtrTy Record) {
}
/// ActOnStartDelayedCXXMethodDeclaration - We have completed
/// parsing a top-level (non-nested) C++ class, and we are now
/// parsing those parts of the given Method declaration that could
/// not be parsed earlier (C++ [class.mem]p2), such as default
/// arguments. This action should enter the scope of the given
/// Method declaration as if we had just parsed the qualified method
/// name. However, it should not bring the parameters into scope;
/// that will be performed by ActOnDelayedCXXMethodParameter.
virtual void ActOnStartDelayedCXXMethodDeclaration(Scope *S,
DeclPtrTy Method) {
}
/// ActOnDelayedCXXMethodParameter - We've already started a delayed
/// C++ method declaration. We're (re-)introducing the given
/// function parameter into scope for use in parsing later parts of
/// the method declaration. For example, we could see an
/// ActOnParamDefaultArgument event for this parameter.
virtual void ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy Param) {
}
/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
/// processing the delayed method declaration for Method. The method
/// declaration is now considered finished. There may be a separate
/// ActOnStartOfFunctionDef action later (not necessarily
/// immediately!) for this method, if it was also defined inside the
/// class body.
virtual void ActOnFinishDelayedCXXMethodDeclaration(Scope *S,
DeclPtrTy Method) {
}
/// ActOnFinishDelayedMemberDeclarations - We have finished parsing
/// a C++ class, and we are about to start parsing any parts of
/// member declarations that could not be parsed earlier. Enter the
/// appropriate record scope.
virtual void ActOnFinishDelayedMemberDeclarations(Scope *S,
DeclPtrTy Record) {
}
/// ActOnStaticAssertDeclaration - Parse a C++0x static_assert declaration.
virtual DeclPtrTy ActOnStaticAssertDeclaration(SourceLocation AssertLoc,
ExprArg AssertExpr,
ExprArg AssertMessageExpr) {
return DeclPtrTy();
}
/// ActOnFriendFunctionDecl - Parsed a friend function declarator.
/// The name is actually a slight misnomer, because the declarator
/// is not necessarily a function declarator.
virtual DeclPtrTy ActOnFriendFunctionDecl(Scope *S,
Declarator &D,
bool IsDefinition,
MultiTemplateParamsArg TParams) {
return DeclPtrTy();
}
/// ActOnFriendTypeDecl - Parsed a friend type declaration.
virtual DeclPtrTy ActOnFriendTypeDecl(Scope *S, const DeclSpec &DS,
MultiTemplateParamsArg TParams) {
return DeclPtrTy();
}
//===------------------------- C++ Expressions --------------------------===//
/// \brief Parsed a destructor name or pseudo-destructor name.
///
/// \returns the type being destructed.
virtual TypeTy *getDestructorName(SourceLocation TildeLoc,
IdentifierInfo &II, SourceLocation NameLoc,
Scope *S, CXXScopeSpec &SS,
TypeTy *ObjectType,
bool EnteringContext) {
return getTypeName(II, NameLoc, S, &SS, false, ObjectType);
}
/// ActOnCXXNamedCast - Parse {dynamic,static,reinterpret,const}_cast's.
virtual OwningExprResult ActOnCXXNamedCast(SourceLocation OpLoc,
tok::TokenKind Kind,
SourceLocation LAngleBracketLoc,
TypeTy *Ty,
SourceLocation RAngleBracketLoc,
SourceLocation LParenLoc,
ExprArg Op,
SourceLocation RParenLoc) {
return ExprEmpty();
}
/// ActOnCXXTypeidOfType - Parse typeid( type-id ).
virtual OwningExprResult ActOnCXXTypeid(SourceLocation OpLoc,
SourceLocation LParenLoc, bool isType,
void *TyOrExpr,
SourceLocation RParenLoc) {
return ExprEmpty();
}
/// ActOnCXXThis - Parse the C++ 'this' pointer.
virtual OwningExprResult ActOnCXXThis(SourceLocation ThisLoc) {
return ExprEmpty();
}
/// ActOnCXXBoolLiteral - Parse {true,false} literals.
virtual OwningExprResult ActOnCXXBoolLiteral(SourceLocation OpLoc,
tok::TokenKind Kind) {
return ExprEmpty();
}
/// ActOnCXXNullPtrLiteral - Parse 'nullptr'.
virtual OwningExprResult ActOnCXXNullPtrLiteral(SourceLocation Loc) {
return ExprEmpty();
}
/// ActOnCXXThrow - Parse throw expressions.
virtual OwningExprResult ActOnCXXThrow(SourceLocation OpLoc, ExprArg Op) {
return ExprEmpty();
}
/// ActOnCXXTypeConstructExpr - Parse construction of a specified type.
/// Can be interpreted either as function-style casting ("int(x)")
/// or class type construction ("ClassType(x,y,z)")
/// or creation of a value-initialized type ("int()").
virtual OwningExprResult ActOnCXXTypeConstructExpr(SourceRange TypeRange,
TypeTy *TypeRep,
SourceLocation LParenLoc,
MultiExprArg Exprs,
SourceLocation *CommaLocs,
SourceLocation RParenLoc) {
return ExprEmpty();
}
/// \brief Parsed a condition declaration in a C++ if, switch, or while
/// statement.
///
/// This callback will be invoked after parsing the declaration of "x" in
///
/// \code
/// if (int x = f()) {
/// // ...
/// }
/// \endcode
///
/// \param S the scope of the if, switch, or while statement.
///
/// \param D the declarator that that describes the variable being declared.
virtual DeclResult ActOnCXXConditionDeclaration(Scope *S, Declarator &D) {
return DeclResult();
}
/// ActOnCXXNew - Parsed a C++ 'new' expression. UseGlobal is true if the
/// new was qualified (::new). In a full new like
/// @code new (p1, p2) type(c1, c2) @endcode
/// the p1 and p2 expressions will be in PlacementArgs and the c1 and c2
/// expressions in ConstructorArgs. The type is passed as a declarator.
virtual OwningExprResult ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal,
SourceLocation PlacementLParen,
MultiExprArg PlacementArgs,
SourceLocation PlacementRParen,
bool ParenTypeId, Declarator &D,
SourceLocation ConstructorLParen,
MultiExprArg ConstructorArgs,
SourceLocation ConstructorRParen) {
return ExprEmpty();
}
/// ActOnCXXDelete - Parsed a C++ 'delete' expression. UseGlobal is true if
/// the delete was qualified (::delete). ArrayForm is true if the array form
/// was used (delete[]).
virtual OwningExprResult ActOnCXXDelete(SourceLocation StartLoc,
bool UseGlobal, bool ArrayForm,
ExprArg Operand) {
return ExprEmpty();
}
virtual OwningExprResult ActOnUnaryTypeTrait(UnaryTypeTrait OTT,
SourceLocation KWLoc,
SourceLocation LParen,
TypeTy *Ty,
SourceLocation RParen) {
return ExprEmpty();
}
/// \brief Invoked when the parser is starting to parse a C++ member access
/// expression such as x.f or x->f.
///
/// \param S the scope in which the member access expression occurs.
///
/// \param Base the expression in which a member is being accessed, e.g., the
/// "x" in "x.f".
///
/// \param OpLoc the location of the member access operator ("." or "->")
///
/// \param OpKind the kind of member access operator ("." or "->")
///
/// \param ObjectType originally NULL. The action should fill in this type
/// with the type into which name lookup should look to find the member in
/// the member access expression.
///
/// \param MayBePseudoDestructor Originally false. The action should
/// set this true if the expression may end up being a
/// pseudo-destructor expression, indicating to the parser that it
/// shoudl be parsed as a pseudo-destructor rather than as a member
/// access expression. Note that this should apply both when the
/// object type is a scalar and when the object type is dependent.
///
/// \returns the (possibly modified) \p Base expression
virtual OwningExprResult ActOnStartCXXMemberReference(Scope *S,
ExprArg Base,
SourceLocation OpLoc,
tok::TokenKind OpKind,
TypeTy *&ObjectType,
bool &MayBePseudoDestructor) {
return ExprEmpty();
}
/// \brief Parsed a C++ pseudo-destructor expression or a dependent
/// member access expression that has the same syntactic form as a
/// pseudo-destructor expression.
///
/// \param S The scope in which the member access expression occurs.
///
/// \param Base The expression in which a member is being accessed, e.g., the
/// "x" in "x.f".
///
/// \param OpLoc The location of the member access operator ("." or "->")
///
/// \param OpKind The kind of member access operator ("." or "->")
///
/// \param SS The nested-name-specifier that precedes the type names
/// in the grammar. Note that this nested-name-specifier will not
/// cover the last "type-name ::" in the grammar, because it isn't
/// necessarily a nested-name-specifier.
///
/// \param FirstTypeName The type name that follows the optional
/// nested-name-specifier but precedes the '::', e.g., the first
/// type-name in "type-name :: type-name". This type name may be
/// empty. This will be either an identifier or a template-id.
///
/// \param CCLoc The location of the '::' in "type-name ::
/// typename". May be invalid, if there is no \p FirstTypeName.
///
/// \param TildeLoc The location of the '~'.
///
/// \param SecondTypeName The type-name following the '~', which is
/// the name of the type being destroyed. This will be either an
/// identifier or a template-id.
///
/// \param HasTrailingLParen Whether the next token in the stream is
/// a left parentheses.
virtual OwningExprResult ActOnPseudoDestructorExpr(Scope *S, ExprArg Base,
SourceLocation OpLoc,
tok::TokenKind OpKind,
CXXScopeSpec &SS,
UnqualifiedId &FirstTypeName,
SourceLocation CCLoc,
SourceLocation TildeLoc,
UnqualifiedId &SecondTypeName,
bool HasTrailingLParen) {
return ExprEmpty();
}
/// ActOnFinishFullExpr - Called whenever a full expression has been parsed.
/// (C++ [intro.execution]p12).
virtual OwningExprResult ActOnFinishFullExpr(ExprArg Expr) {
return move(Expr);
}
//===---------------------------- C++ Classes ---------------------------===//
/// ActOnBaseSpecifier - Parsed a base specifier
virtual BaseResult ActOnBaseSpecifier(DeclPtrTy classdecl,
SourceRange SpecifierRange,
bool Virtual, AccessSpecifier Access,
TypeTy *basetype,
SourceLocation BaseLoc) {
return BaseResult();
}
virtual void ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases,
unsigned NumBases) {
}
/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
/// declarator is parsed. 'AS' is the access specifier, 'BitfieldWidth'
/// specifies the bitfield width if there is one and 'Init' specifies the
/// initializer if any. 'Deleted' is true if there's a =delete
/// specifier on the function.
virtual DeclPtrTy ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS,
Declarator &D,
MultiTemplateParamsArg TemplateParameterLists,
ExprTy *BitfieldWidth,
ExprTy *Init,
bool IsDefinition,
bool Deleted = false) {
return DeclPtrTy();
}
virtual MemInitResult ActOnMemInitializer(DeclPtrTy ConstructorDecl,
Scope *S,
CXXScopeSpec &SS,
IdentifierInfo *MemberOrBase,
TypeTy *TemplateTypeTy,
SourceLocation IdLoc,
SourceLocation LParenLoc,
ExprTy **Args, unsigned NumArgs,
SourceLocation *CommaLocs,
SourceLocation RParenLoc) {
return true;
}
/// ActOnMemInitializers - This is invoked when all of the member
/// initializers of a constructor have been parsed. ConstructorDecl
/// is the function declaration (which will be a C++ constructor in
/// a well-formed program), ColonLoc is the location of the ':' that
/// starts the constructor initializer, and MemInit/NumMemInits
/// contains the individual member (and base) initializers.
/// AnyErrors will be true if there were any invalid member initializers
/// that are not represented in the list.
virtual void ActOnMemInitializers(DeclPtrTy ConstructorDecl,
SourceLocation ColonLoc,
MemInitTy **MemInits, unsigned NumMemInits,
bool AnyErrors){
}
virtual void ActOnDefaultCtorInitializers(DeclPtrTy CDtorDecl) {}
/// ActOnFinishCXXMemberSpecification - Invoked after all member declarators
/// are parsed but *before* parsing of inline method definitions.
virtual void ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
DeclPtrTy TagDecl,
SourceLocation LBrac,
SourceLocation RBrac,
AttributeList *AttrList) {
}
//===---------------------------C++ Templates----------------------------===//
/// ActOnTypeParameter - Called when a C++ template type parameter
/// (e.g., "typename T") has been parsed. Typename specifies whether
/// the keyword "typename" was used to declare the type parameter
/// (otherwise, "class" was used), ellipsis specifies whether this is a
/// C++0x parameter pack, EllipsisLoc specifies the start of the ellipsis,
/// and KeyLoc is the location of the "class" or "typename" keyword.
// ParamName is the name of the parameter (NULL indicates an unnamed template
// parameter) and ParamNameLoc is the location of the parameter name (if any)
/// If the type parameter has a default argument, it will be added
/// later via ActOnTypeParameterDefault. Depth and Position provide
/// the number of enclosing templates (see
/// ActOnTemplateParameterList) and the number of previous
/// parameters within this template parameter list.
virtual DeclPtrTy ActOnTypeParameter(Scope *S, bool Typename, bool Ellipsis,
SourceLocation EllipsisLoc,
SourceLocation KeyLoc,
IdentifierInfo *ParamName,
SourceLocation ParamNameLoc,
unsigned Depth, unsigned Position) {
return DeclPtrTy();
}
/// ActOnTypeParameterDefault - Adds a default argument (the type
/// Default) to the given template type parameter (TypeParam).
virtual void ActOnTypeParameterDefault(DeclPtrTy TypeParam,
SourceLocation EqualLoc,
SourceLocation DefaultLoc,
TypeTy *Default) {
}
/// ActOnNonTypeTemplateParameter - Called when a C++ non-type
/// template parameter (e.g., "int Size" in "template<int Size>
/// class Array") has been parsed. S is the current scope and D is
/// the parsed declarator. Depth and Position provide the number of
/// enclosing templates (see
/// ActOnTemplateParameterList) and the number of previous
/// parameters within this template parameter list.
virtual DeclPtrTy ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
unsigned Depth,
unsigned Position) {
return DeclPtrTy();
}
/// \brief Adds a default argument to the given non-type template
/// parameter.
virtual void ActOnNonTypeTemplateParameterDefault(DeclPtrTy TemplateParam,
SourceLocation EqualLoc,
ExprArg Default) {
}
/// ActOnTemplateTemplateParameter - Called when a C++ template template
/// parameter (e.g., "int T" in "template<template <typename> class T> class
/// Array") has been parsed. TmpLoc is the location of the "template" keyword,
/// TemplateParams is the sequence of parameters required by the template,
/// ParamName is the name of the parameter (null if unnamed), and ParamNameLoc
/// is the source location of the identifier (if given).
virtual DeclPtrTy ActOnTemplateTemplateParameter(Scope *S,
SourceLocation TmpLoc,
TemplateParamsTy *Params,
IdentifierInfo *ParamName,
SourceLocation ParamNameLoc,
unsigned Depth,
unsigned Position) {
return DeclPtrTy();
}
/// \brief Adds a default argument to the given template template
/// parameter.
virtual void ActOnTemplateTemplateParameterDefault(DeclPtrTy TemplateParam,
SourceLocation EqualLoc,
const ParsedTemplateArgument &Default) {
}
/// ActOnTemplateParameterList - Called when a complete template
/// parameter list has been parsed, e.g.,
///
/// @code
/// export template<typename T, T Size>
/// @endcode
///
/// Depth is the number of enclosing template parameter lists. This
/// value does not include templates from outer scopes. For example:
///
/// @code
/// template<typename T> // depth = 0
/// class A {
/// template<typename U> // depth = 0
/// class B;
/// };
///
/// template<typename T> // depth = 0
/// template<typename U> // depth = 1
/// class A<T>::B { ... };
/// @endcode
///
/// ExportLoc, if valid, is the position of the "export"
/// keyword. Otherwise, "export" was not specified.
/// TemplateLoc is the position of the template keyword, LAngleLoc
/// is the position of the left angle bracket, and RAngleLoc is the
/// position of the corresponding right angle bracket.
/// Params/NumParams provides the template parameters that were
/// parsed as part of the template-parameter-list.
virtual TemplateParamsTy *
ActOnTemplateParameterList(unsigned Depth,
SourceLocation ExportLoc,
SourceLocation TemplateLoc,
SourceLocation LAngleLoc,
DeclPtrTy *Params, unsigned NumParams,
SourceLocation RAngleLoc) {
return 0;
}
/// \brief Form a type from a template and a list of template
/// arguments.
///
/// This action merely forms the type for the template-id, possibly
/// checking well-formedness of the template arguments. It does not
/// imply the declaration of any entity.
///
/// \param Template A template whose specialization results in a
/// type, e.g., a class template or template template parameter.
virtual TypeResult ActOnTemplateIdType(TemplateTy Template,
SourceLocation TemplateLoc,
SourceLocation LAngleLoc,
ASTTemplateArgsPtr TemplateArgs,
SourceLocation RAngleLoc) {
return TypeResult();
}
/// \brief Note that a template ID was used with a tag.
///
/// \param Type The result of ActOnTemplateIdType.
///
/// \param TUK Either TUK_Reference or TUK_Friend. Declarations and
/// definitions are interpreted as explicit instantiations or
/// specializations.
///
/// \param TagSpec The tag keyword that was provided as part of the
/// elaborated-type-specifier; either class, struct, union, or enum.
///
/// \param TagLoc The location of the tag keyword.
virtual TypeResult ActOnTagTemplateIdType(TypeResult Type,
TagUseKind TUK,
DeclSpec::TST TagSpec,
SourceLocation TagLoc) {
return TypeResult();
}
/// \brief Form a dependent template name.
///
/// This action forms a dependent template name given the template
/// name and its (presumably dependent) scope specifier. For
/// example, given "MetaFun::template apply", the scope specifier \p
/// SS will be "MetaFun::", \p TemplateKWLoc contains the location
/// of the "template" keyword, and "apply" is the \p Name.
///
/// \param TemplateKWLoc the location of the "template" keyword (if any).
///
/// \param SS the nested-name-specifier that precedes the "template" keyword
/// or the template name. If the dependent template name occurs in
/// a member access expression, e.g., "x.template f<T>", this
/// nested-name-specifier will be empty.
///
/// \param Name the name of the template.
///
/// \param ObjectType if this dependent template name occurs in the
/// context of a member access expression, the type of the object being
/// accessed.
///
/// \param EnteringContext whether we are entering the context of this
/// template.
virtual TemplateTy ActOnDependentTemplateName(SourceLocation TemplateKWLoc,
CXXScopeSpec &SS,
UnqualifiedId &Name,
TypeTy *ObjectType,
bool EnteringContext) {
return TemplateTy();
}
/// \brief Process the declaration or definition of an explicit
/// class template specialization or a class template partial
/// specialization.
///
/// This routine is invoked when an explicit class template
/// specialization or a class template partial specialization is
/// declared or defined, to introduce the (partial) specialization
/// and produce a declaration for it. In the following example,
/// ActOnClassTemplateSpecialization will be invoked for the
/// declarations at both A and B:
///
/// \code
/// template<typename T> class X;
/// template<> class X<int> { }; // A: explicit specialization
/// template<typename T> class X<T*> { }; // B: partial specialization
/// \endcode
///
/// Note that it is the job of semantic analysis to determine which
/// of the two cases actually occurred in the source code, since
/// they are parsed through the same path. The formulation of the
/// template parameter lists describes which case we are in.
///
/// \param S the current scope
///
/// \param TagSpec whether this declares a class, struct, or union
/// (template)
///
/// \param TUK whether this is a declaration or a definition
///
/// \param KWLoc the location of the 'class', 'struct', or 'union'
/// keyword.
///
/// \param SS the scope specifier preceding the template-id
///
/// \param Template the declaration of the class template that we
/// are specializing.
///
/// \param Attr attributes on the specialization
///
/// \param TemplateParameterLists the set of template parameter
/// lists that apply to this declaration. In a well-formed program,
/// the number of template parameter lists will be one more than the
/// number of template-ids in the scope specifier. However, it is
/// common for users to provide the wrong number of template
/// parameter lists (such as a missing \c template<> prior to a
/// specialization); the parser does not check this condition.
virtual DeclResult
ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec, TagUseKind TUK,
SourceLocation KWLoc,
CXXScopeSpec &SS,
TemplateTy Template,
SourceLocation TemplateNameLoc,
SourceLocation LAngleLoc,
ASTTemplateArgsPtr TemplateArgs,
SourceLocation RAngleLoc,
AttributeList *Attr,
MultiTemplateParamsArg TemplateParameterLists) {
return DeclResult();
}
/// \brief Invoked when a declarator that has one or more template parameter
/// lists has been parsed.
///
/// This action is similar to ActOnDeclarator(), except that the declaration
/// being created somehow involves a template, e.g., it is a template
/// declaration or specialization.
virtual DeclPtrTy ActOnTemplateDeclarator(Scope *S,
MultiTemplateParamsArg TemplateParameterLists,
Declarator &D) {
return DeclPtrTy();
}
/// \brief Invoked when the parser is beginning to parse a function template
/// or function template specialization definition.
virtual DeclPtrTy ActOnStartOfFunctionTemplateDef(Scope *FnBodyScope,
MultiTemplateParamsArg TemplateParameterLists,
Declarator &D) {
return DeclPtrTy();
}
/// \brief Process the explicit instantiation of a class template
/// specialization.
///
/// This routine is invoked when an explicit instantiation of a
/// class template specialization is encountered. In the following
/// example, ActOnExplicitInstantiation will be invoked to force the
/// instantiation of X<int>:
///
/// \code
/// template<typename T> class X { /* ... */ };
/// template class X<int>; // explicit instantiation
/// \endcode
///
/// \param S the current scope
///
/// \param ExternLoc the location of the 'extern' keyword that specifies that
/// this is an extern template (if any).
///
/// \param TemplateLoc the location of the 'template' keyword that
/// specifies that this is an explicit instantiation.
///
/// \param TagSpec whether this declares a class, struct, or union
/// (template).
///
/// \param KWLoc the location of the 'class', 'struct', or 'union'
/// keyword.
///
/// \param SS the scope specifier preceding the template-id.
///
/// \param Template the declaration of the class template that we
/// are instantiation.
///
/// \param LAngleLoc the location of the '<' token in the template-id.
///
/// \param TemplateArgs the template arguments used to form the
/// template-id.
///
/// \param TemplateArgLocs the locations of the template arguments.
///
/// \param RAngleLoc the location of the '>' token in the template-id.
///
/// \param Attr attributes that apply to this instantiation.
virtual DeclResult
ActOnExplicitInstantiation(Scope *S,
SourceLocation ExternLoc,
SourceLocation TemplateLoc,
unsigned TagSpec,
SourceLocation KWLoc,
const CXXScopeSpec &SS,
TemplateTy Template,
SourceLocation TemplateNameLoc,
SourceLocation LAngleLoc,
ASTTemplateArgsPtr TemplateArgs,
SourceLocation RAngleLoc,
AttributeList *Attr) {
return DeclResult();
}
/// \brief Process the explicit instantiation of a member class of a
/// class template specialization.
///
/// This routine is invoked when an explicit instantiation of a
/// member class of a class template specialization is
/// encountered. In the following example,
/// ActOnExplicitInstantiation will be invoked to force the
/// instantiation of X<int>::Inner:
///
/// \code
/// template<typename T> class X { class Inner { /* ... */}; };
/// template class X<int>::Inner; // explicit instantiation
/// \endcode
///
/// \param S the current scope
///
/// \param ExternLoc the location of the 'extern' keyword that specifies that
/// this is an extern template (if any).
///
/// \param TemplateLoc the location of the 'template' keyword that
/// specifies that this is an explicit instantiation.
///
/// \param TagSpec whether this declares a class, struct, or union
/// (template).
///
/// \param KWLoc the location of the 'class', 'struct', or 'union'
/// keyword.
///
/// \param SS the scope specifier preceding the template-id.
///
/// \param Template the declaration of the class template that we
/// are instantiation.
///
/// \param LAngleLoc the location of the '<' token in the template-id.
///
/// \param TemplateArgs the template arguments used to form the
/// template-id.
///
/// \param TemplateArgLocs the locations of the template arguments.
///
/// \param RAngleLoc the location of the '>' token in the template-id.
///
/// \param Attr attributes that apply to this instantiation.
virtual DeclResult
ActOnExplicitInstantiation(Scope *S,
SourceLocation ExternLoc,
SourceLocation TemplateLoc,
unsigned TagSpec,
SourceLocation KWLoc,
CXXScopeSpec &SS,
IdentifierInfo *Name,
SourceLocation NameLoc,
AttributeList *Attr) {
return DeclResult();
}
/// \brief Process the explicit instantiation of a function template or a
/// member of a class template.
///
/// This routine is invoked when an explicit instantiation of a
/// function template or member function of a class template specialization
/// is encountered. In the following example,
/// ActOnExplicitInstantiation will be invoked to force the
/// instantiation of X<int>:
///
/// \code
/// template<typename T> void f(T);
/// template void f(int); // explicit instantiation
/// \endcode
///
/// \param S the current scope
///
/// \param ExternLoc the location of the 'extern' keyword that specifies that
/// this is an extern template (if any).
///
/// \param TemplateLoc the location of the 'template' keyword that
/// specifies that this is an explicit instantiation.
///
/// \param D the declarator describing the declaration to be implicitly
/// instantiated.
virtual DeclResult ActOnExplicitInstantiation(Scope *S,
SourceLocation ExternLoc,
SourceLocation TemplateLoc,
Declarator &D) {
return DeclResult();
}
/// \brief Called when the parser has parsed a C++ typename
/// specifier that ends in an identifier, e.g., "typename T::type".
///
/// \param TypenameLoc the location of the 'typename' keyword
/// \param SS the nested-name-specifier following the typename (e.g., 'T::').
/// \param II the identifier we're retrieving (e.g., 'type' in the example).
/// \param IdLoc the location of the identifier.
virtual TypeResult
ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
const IdentifierInfo &II, SourceLocation IdLoc) {
return TypeResult();
}
/// \brief Called when the parser has parsed a C++ typename
/// specifier that ends in a template-id, e.g.,
/// "typename MetaFun::template apply<T1, T2>".
///
/// \param TypenameLoc the location of the 'typename' keyword
/// \param SS the nested-name-specifier following the typename (e.g., 'T::').
/// \param TemplateLoc the location of the 'template' keyword, if any.
/// \param Ty the type that the typename specifier refers to.
virtual TypeResult
ActOnTypenameType(SourceLocation TypenameLoc, const CXXScopeSpec &SS,
SourceLocation TemplateLoc, TypeTy *Ty) {
return TypeResult();
}
//===----------------------- Obj-C Declarations -------------------------===//
// ActOnStartClassInterface - this action is called immediately after parsing
// the prologue for a class interface (before parsing the instance
// variables). Instance variables are processed by ActOnFields().
virtual DeclPtrTy ActOnStartClassInterface(SourceLocation AtInterfaceLoc,
IdentifierInfo *ClassName,
SourceLocation ClassLoc,
IdentifierInfo *SuperName,
SourceLocation SuperLoc,
const DeclPtrTy *ProtoRefs,
unsigned NumProtoRefs,
const SourceLocation *ProtoLocs,
SourceLocation EndProtoLoc,
AttributeList *AttrList) {
return DeclPtrTy();
}
/// ActOnCompatiblityAlias - this action is called after complete parsing of
/// @compaatibility_alias declaration. It sets up the alias relationships.
virtual DeclPtrTy ActOnCompatiblityAlias(
SourceLocation AtCompatibilityAliasLoc,
IdentifierInfo *AliasName, SourceLocation AliasLocation,
IdentifierInfo *ClassName, SourceLocation ClassLocation) {
return DeclPtrTy();
}
// ActOnStartProtocolInterface - this action is called immdiately after
// parsing the prologue for a protocol interface.
virtual DeclPtrTy ActOnStartProtocolInterface(SourceLocation AtProtoLoc,
IdentifierInfo *ProtocolName,
SourceLocation ProtocolLoc,
const DeclPtrTy *ProtoRefs,
unsigned NumProtoRefs,
const SourceLocation *ProtoLocs,
SourceLocation EndProtoLoc,
AttributeList *AttrList) {
return DeclPtrTy();
}
// ActOnStartCategoryInterface - this action is called immdiately after
// parsing the prologue for a category interface.
virtual DeclPtrTy ActOnStartCategoryInterface(SourceLocation AtInterfaceLoc,
IdentifierInfo *ClassName,
SourceLocation ClassLoc,
IdentifierInfo *CategoryName,
SourceLocation CategoryLoc,
const DeclPtrTy *ProtoRefs,
unsigned NumProtoRefs,
const SourceLocation *ProtoLocs,
SourceLocation EndProtoLoc) {
return DeclPtrTy();
}
// ActOnStartClassImplementation - this action is called immdiately after
// parsing the prologue for a class implementation. Instance variables are
// processed by ActOnFields().
virtual DeclPtrTy ActOnStartClassImplementation(
SourceLocation AtClassImplLoc,
IdentifierInfo *ClassName,
SourceLocation ClassLoc,
IdentifierInfo *SuperClassname,
SourceLocation SuperClassLoc) {
return DeclPtrTy();
}
// ActOnStartCategoryImplementation - this action is called immdiately after
// parsing the prologue for a category implementation.
virtual DeclPtrTy ActOnStartCategoryImplementation(
SourceLocation AtCatImplLoc,
IdentifierInfo *ClassName,
SourceLocation ClassLoc,
IdentifierInfo *CatName,
SourceLocation CatLoc) {
return DeclPtrTy();
}
// ActOnPropertyImplDecl - called for every property implementation
virtual DeclPtrTy ActOnPropertyImplDecl(
SourceLocation AtLoc, // location of the @synthesize/@dynamic
SourceLocation PropertyNameLoc, // location for the property name
bool ImplKind, // true for @synthesize, false for
// @dynamic
DeclPtrTy ClassImplDecl, // class or category implementation
IdentifierInfo *propertyId, // name of property
IdentifierInfo *propertyIvar) { // name of the ivar
return DeclPtrTy();
}
struct ObjCArgInfo {
IdentifierInfo *Name;
SourceLocation NameLoc;
// The Type is null if no type was specified, and the DeclSpec is invalid
// in this case.
TypeTy *Type;
ObjCDeclSpec DeclSpec;
/// ArgAttrs - Attribute list for this argument.
AttributeList *ArgAttrs;
};
// ActOnMethodDeclaration - called for all method declarations.
virtual DeclPtrTy ActOnMethodDeclaration(
SourceLocation BeginLoc, // location of the + or -.
SourceLocation EndLoc, // location of the ; or {.
tok::TokenKind MethodType, // tok::minus for instance, tok::plus for class.
DeclPtrTy ClassDecl, // class this methods belongs to.
ObjCDeclSpec &ReturnQT, // for return type's in inout etc.
TypeTy *ReturnType, // the method return type.
Selector Sel, // a unique name for the method.
ObjCArgInfo *ArgInfo, // ArgInfo: Has 'Sel.getNumArgs()' entries.
DeclaratorChunk::ParamInfo *CParamInfo, unsigned CNumArgs, // c-style args
AttributeList *MethodAttrList, // optional
// tok::objc_not_keyword, tok::objc_optional, tok::objc_required
tok::ObjCKeywordKind impKind,
bool isVariadic = false) {
return DeclPtrTy();
}
// ActOnAtEnd - called to mark the @end. For declarations (interfaces,
// protocols, categories), the parser passes all methods/properties.
// For class implementations, these values default to 0. For implementations,
// methods are processed incrementally (by ActOnMethodDeclaration above).
virtual void ActOnAtEnd(SourceRange AtEnd,
DeclPtrTy classDecl,
DeclPtrTy *allMethods = 0,
unsigned allNum = 0,
DeclPtrTy *allProperties = 0,
unsigned pNum = 0,
DeclGroupPtrTy *allTUVars = 0,
unsigned tuvNum = 0) {
}
// ActOnProperty - called to build one property AST
virtual DeclPtrTy ActOnProperty(Scope *S, SourceLocation AtLoc,
FieldDeclarator &FD, ObjCDeclSpec &ODS,
Selector GetterSel, Selector SetterSel,
DeclPtrTy ClassCategory,
bool *OverridingProperty,
tok::ObjCKeywordKind MethodImplKind) {
return DeclPtrTy();
}
virtual OwningExprResult
ActOnClassPropertyRefExpr(IdentifierInfo &receiverName,
IdentifierInfo &propertyName,
SourceLocation receiverNameLoc,
SourceLocation propertyNameLoc) {
return ExprEmpty();
}
// ActOnClassMessage - used for both unary and keyword messages.
// ArgExprs is optional - if it is present, the number of expressions
// is obtained from NumArgs.
virtual ExprResult ActOnClassMessage(
Scope *S,
IdentifierInfo *receivingClassName,
Selector Sel,
SourceLocation lbrac, SourceLocation receiverLoc,
SourceLocation selectorLoc,
SourceLocation rbrac,
ExprTy **ArgExprs, unsigned NumArgs) {
return ExprResult();
}
// ActOnInstanceMessage - used for both unary and keyword messages.
// ArgExprs is optional - if it is present, the number of expressions
// is obtained from NumArgs.
virtual ExprResult ActOnInstanceMessage(
ExprTy *receiver, Selector Sel,
SourceLocation lbrac, SourceLocation selectorLoc, SourceLocation rbrac,
ExprTy **ArgExprs, unsigned NumArgs) {
return ExprResult();
}
virtual DeclPtrTy ActOnForwardClassDeclaration(
SourceLocation AtClassLoc,
IdentifierInfo **IdentList,
SourceLocation *IdentLocs,
unsigned NumElts) {
return DeclPtrTy();
}
virtual DeclPtrTy ActOnForwardProtocolDeclaration(
SourceLocation AtProtocolLoc,
const IdentifierLocPair*IdentList,
unsigned NumElts,
AttributeList *AttrList) {
return DeclPtrTy();
}
/// FindProtocolDeclaration - This routine looks up protocols and
/// issues error if they are not declared. It returns list of valid
/// protocols found.
virtual void FindProtocolDeclaration(bool WarnOnDeclarations,
const IdentifierLocPair *ProtocolId,
unsigned NumProtocols,
llvm::SmallVectorImpl<DeclPtrTy> &ResProtos) {
}
//===----------------------- Obj-C Expressions --------------------------===//
virtual ExprResult ParseObjCStringLiteral(SourceLocation *AtLocs,
ExprTy **Strings,
unsigned NumStrings) {
return ExprResult();
}
virtual ExprResult ParseObjCEncodeExpression(SourceLocation AtLoc,
SourceLocation EncLoc,
SourceLocation LParenLoc,
TypeTy *Ty,
SourceLocation RParenLoc) {
return ExprResult();
}
virtual ExprResult ParseObjCSelectorExpression(Selector Sel,
SourceLocation AtLoc,
SourceLocation SelLoc,
SourceLocation LParenLoc,
SourceLocation RParenLoc) {
return ExprResult();
}
virtual ExprResult ParseObjCProtocolExpression(IdentifierInfo *ProtocolId,
SourceLocation AtLoc,
SourceLocation ProtoLoc,
SourceLocation LParenLoc,
SourceLocation RParenLoc) {
return ExprResult();
}
//===---------------------------- Pragmas -------------------------------===//
enum PragmaPackKind {
PPK_Default, // #pragma pack([n])
PPK_Show, // #pragma pack(show), only supported by MSVC.
PPK_Push, // #pragma pack(push, [identifier], [n])
PPK_Pop // #pragma pack(pop, [identifier], [n])
};
/// ActOnPragmaPack - Called on well formed #pragma pack(...).
virtual void ActOnPragmaPack(PragmaPackKind Kind,
IdentifierInfo *Name,
ExprTy *Alignment,
SourceLocation PragmaLoc,
SourceLocation LParenLoc,
SourceLocation RParenLoc) {
return;
}
/// ActOnPragmaUnused - Called on well formed #pragma unused(...).
virtual void ActOnPragmaUnused(const Token *Identifiers,
unsigned NumIdentifiers, Scope *CurScope,
SourceLocation PragmaLoc,
SourceLocation LParenLoc,
SourceLocation RParenLoc) {
return;
}
/// ActOnPragmaWeakID - Called on well formed #pragma weak ident.
virtual void ActOnPragmaWeakID(IdentifierInfo* WeakName,
SourceLocation PragmaLoc,
SourceLocation WeakNameLoc) {
return;
}
/// ActOnPragmaWeakAlias - Called on well formed #pragma weak ident = ident.
virtual void ActOnPragmaWeakAlias(IdentifierInfo* WeakName,
IdentifierInfo* AliasName,
SourceLocation PragmaLoc,
SourceLocation WeakNameLoc,
SourceLocation AliasNameLoc) {
return;
}
/// \name Code completion actions
///
/// These actions are used to signal that a code-completion token has been
/// found at a point in the grammar where the Action implementation is
/// likely to be able to provide a list of possible completions, e.g.,
/// after the "." or "->" of a member access expression.
///
/// \todo Code completion for designated field initializers
/// \todo Code completion for call arguments after a function template-id
/// \todo Code completion within a call expression, object construction, etc.
/// \todo Code completion within a template argument list.
/// \todo Code completion for attributes.
//@{
/// \brief Describes the context in which code completion occurs.
enum CodeCompletionContext {
/// \brief Code completion occurs at top-level or namespace context.
CCC_Namespace,
/// \brief Code completion occurs within a class, struct, or union.
CCC_Class,
/// \brief Code completion occurs within an Objective-C interface, protocol,
/// or category.
CCC_ObjCInterface,
/// \brief Code completion occurs within an Objective-C implementation or
/// category implementation
CCC_ObjCImplementation,
/// \brief Code completion occurs within the list of instance variables
/// in an Objective-C interface, protocol, category, or implementation.
CCC_ObjCInstanceVariableList,
/// \brief Code completion occurs following one or more template
/// headers.
CCC_Template,
/// \brief Code completion occurs following one or more template
/// headers within a class.
CCC_MemberTemplate,
/// \brief Code completion occurs within an expression.
CCC_Expression,
/// \brief Code completion occurs within a statement, which may
/// also be an expression or a declaration.
CCC_Statement,
/// \brief Code completion occurs at the beginning of the
/// initialization statement (or expression) in a for loop.
CCC_ForInit,
/// \brief Code completion ocurs within the condition of an if,
/// while, switch, or for statement.
CCC_Condition
};
/// \brief Code completion for an ordinary name that occurs within the given
/// scope.
///
/// \param S the scope in which the name occurs.
///
/// \param CompletionContext the context in which code completion
/// occurs.
virtual void CodeCompleteOrdinaryName(Scope *S,
CodeCompletionContext CompletionContext) { }
/// \brief Code completion for a member access expression.
///
/// This code completion action is invoked when the code-completion token
/// is found after the "." or "->" of a member access expression.
///
/// \param S the scope in which the member access expression occurs.
///
/// \param Base the base expression (e.g., the x in "x.foo") of the member
/// access.
///
/// \param OpLoc the location of the "." or "->" operator.
///
/// \param IsArrow true when the operator is "->", false when it is ".".
virtual void CodeCompleteMemberReferenceExpr(Scope *S, ExprTy *Base,
SourceLocation OpLoc,
bool IsArrow) { }
/// \brief Code completion for a reference to a tag.
///
/// This code completion action is invoked when the code-completion
/// token is found after a tag keyword (struct, union, enum, or class).
///
/// \param S the scope in which the tag reference occurs.
///
/// \param TagSpec an instance of DeclSpec::TST, indicating what kind of tag
/// this is (struct/union/enum/class).
virtual void CodeCompleteTag(Scope *S, unsigned TagSpec) { }
/// \brief Code completion for a case statement.
///
/// \brief S the scope in which the case statement occurs.
virtual void CodeCompleteCase(Scope *S) { }
/// \brief Code completion for a call.
///
/// \brief S the scope in which the call occurs.
///
/// \param Fn the expression describing the function being called.
///
/// \param Args the arguments to the function call (so far).
///
/// \param NumArgs the number of arguments in \p Args.
virtual void CodeCompleteCall(Scope *S, ExprTy *Fn,
ExprTy **Args, unsigned NumArgs) { }
/// \brief Code completion for a C++ nested-name-specifier that precedes a
/// qualified-id of some form.
///
/// This code completion action is invoked when the code-completion token
/// is found after the "::" of a nested-name-specifier.
///
/// \param S the scope in which the nested-name-specifier occurs.
///
/// \param SS the scope specifier ending with "::".
///
/// \parame EnteringContext whether we're entering the context of this
/// scope specifier.
virtual void CodeCompleteQualifiedId(Scope *S, CXXScopeSpec &SS,
bool EnteringContext) { }
/// \brief Code completion for a C++ "using" declaration or directive.
///
/// This code completion action is invoked when the code-completion token is
/// found after the "using" keyword.
///
/// \param S the scope in which the "using" occurs.
virtual void CodeCompleteUsing(Scope *S) { }
/// \brief Code completion for a C++ using directive.
///
/// This code completion action is invoked when the code-completion token is
/// found after "using namespace".
///
/// \param S the scope in which the "using namespace" occurs.
virtual void CodeCompleteUsingDirective(Scope *S) { }
/// \brief Code completion for a C++ namespace declaration or namespace
/// alias declaration.
///
/// This code completion action is invoked when the code-completion token is
/// found after "namespace".
///
/// \param S the scope in which the "namespace" token occurs.
virtual void CodeCompleteNamespaceDecl(Scope *S) { }
/// \brief Code completion for a C++ namespace alias declaration.
///
/// This code completion action is invoked when the code-completion token is
/// found after "namespace identifier = ".
///
/// \param S the scope in which the namespace alias declaration occurs.
virtual void CodeCompleteNamespaceAliasDecl(Scope *S) { }
/// \brief Code completion for an operator name.
///
/// This code completion action is invoked when the code-completion token is
/// found after the keyword "operator".
///
/// \param S the scope in which the operator keyword occurs.
virtual void CodeCompleteOperatorName(Scope *S) { }
/// \brief Code completion after the '@' at the top level.
///
/// \param S the scope in which the '@' occurs.
///
/// \param ObjCImpDecl the Objective-C implementation or category
/// implementation.
///
/// \param InInterface whether we are in an Objective-C interface or
/// protocol.
virtual void CodeCompleteObjCAtDirective(Scope *S, DeclPtrTy ObjCImpDecl,
bool InInterface) { }
/// \brief Code completion after the '@' in the list of instance variables.
virtual void CodeCompleteObjCAtVisibility(Scope *S) { }
/// \brief Code completion after the '@' in a statement.
virtual void CodeCompleteObjCAtStatement(Scope *S) { }
/// \brief Code completion after the '@' in an expression.
virtual void CodeCompleteObjCAtExpression(Scope *S) { }
/// \brief Code completion for an ObjC property decl.
///
/// This code completion action is invoked when the code-completion token is
/// found after the left paren.
///
/// \param S the scope in which the operator keyword occurs.
virtual void CodeCompleteObjCPropertyFlags(Scope *S, ObjCDeclSpec &ODS) { }
/// \brief Code completion for the getter of an Objective-C property
/// declaration.
///
/// This code completion action is invoked when the code-completion
/// token is found after the "getter = " in a property declaration.
///
/// \param S the scope in which the property is being declared.
///
/// \param ClassDecl the Objective-C class or category in which the property
/// is being defined.
///
/// \param Methods the set of methods declared thus far within \p ClassDecl.
///
/// \param NumMethods the number of methods in \p Methods
virtual void CodeCompleteObjCPropertyGetter(Scope *S, DeclPtrTy ClassDecl,
DeclPtrTy *Methods,
unsigned NumMethods) {
}
/// \brief Code completion for the setter of an Objective-C property
/// declaration.
///
/// This code completion action is invoked when the code-completion
/// token is found after the "setter = " in a property declaration.
///
/// \param S the scope in which the property is being declared.
///
/// \param ClassDecl the Objective-C class or category in which the property
/// is being defined.
///
/// \param Methods the set of methods declared thus far within \p ClassDecl.
///
/// \param NumMethods the number of methods in \p Methods
virtual void CodeCompleteObjCPropertySetter(Scope *S, DeclPtrTy ClassDecl,
DeclPtrTy *Methods,
unsigned NumMethods) {
}
/// \brief Code completion for an ObjC message expression that refers to
/// a class method.
///
/// This code completion action is invoked when the code-completion token is
/// found after the class name and after each argument.
///
/// \param S the scope in which the message expression occurs.
/// \param FName the factory name.
/// \param FNameLoc the source location of the factory name.
/// \param SelIdents the identifiers that describe the selector (thus far).
/// \param NumSelIdents the number of identifiers in \p SelIdents.
virtual void CodeCompleteObjCClassMessage(Scope *S, IdentifierInfo *FName,
SourceLocation FNameLoc,
IdentifierInfo **SelIdents,
unsigned NumSelIdents){ }
/// \brief Code completion for an ObjC message expression that refers to
/// an instance method.
///
/// This code completion action is invoked when the code-completion token is
/// found after the receiver expression and after each argument.
///
/// \param S the scope in which the operator keyword occurs.
/// \param Receiver an expression for the receiver of the message.
/// \param SelIdents the identifiers that describe the selector (thus far).
/// \param NumSelIdents the number of identifiers in \p SelIdents.
virtual void CodeCompleteObjCInstanceMessage(Scope *S, ExprTy *Receiver,
IdentifierInfo **SelIdents,
unsigned NumSelIdents) { }
/// \brief Code completion for a list of protocol references in Objective-C,
/// such as P1 and P2 in \c id<P1,P2>.
///
/// This code completion action is invoked prior to each identifier
/// in the protocol list.
///
/// \param Protocols the set of protocols that have already been parsed.
///
/// \param NumProtocols the number of protocols that have already been
/// parsed.
virtual void CodeCompleteObjCProtocolReferences(IdentifierLocPair *Protocols,
unsigned NumProtocols) { }
/// \brief Code completion for a protocol declaration or definition, after
/// the @protocol but before any identifier.
///
/// \param S the scope in which the protocol declaration occurs.
virtual void CodeCompleteObjCProtocolDecl(Scope *S) { }
/// \brief Code completion for an Objective-C interface, after the
/// @interface but before any identifier.
virtual void CodeCompleteObjCInterfaceDecl(Scope *S) { }
/// \brief Code completion for the superclass of an Objective-C
/// interface, after the ':'.
///
/// \param S the scope in which the interface declaration occurs.
///
/// \param ClassName the name of the class being defined.
virtual void CodeCompleteObjCSuperclass(Scope *S,
IdentifierInfo *ClassName) {
}
/// \brief Code completion for an Objective-C implementation, after the
/// @implementation but before any identifier.
virtual void CodeCompleteObjCImplementationDecl(Scope *S) { }
/// \brief Code completion for the category name in an Objective-C interface
/// declaration.
///
/// This code completion action is invoked after the '(' that indicates
/// a category name within an Objective-C interface declaration.
virtual void CodeCompleteObjCInterfaceCategory(Scope *S,
IdentifierInfo *ClassName) {
}
/// \brief Code completion for the category name in an Objective-C category
/// implementation.
///
/// This code completion action is invoked after the '(' that indicates
/// the category name within an Objective-C category implementation.
virtual void CodeCompleteObjCImplementationCategory(Scope *S,
IdentifierInfo *ClassName) {
}
/// \brief Code completion for the property names when defining an
/// Objective-C property.
///
/// This code completion action is invoked after @synthesize or @dynamic and
/// after each "," within one of those definitions.
virtual void CodeCompleteObjCPropertyDefinition(Scope *S,
DeclPtrTy ObjCImpDecl) {
}
/// \brief Code completion for the instance variable name that should
/// follow an '=' when synthesizing an Objective-C property.
///
/// This code completion action is invoked after each '=' that occurs within
/// an @synthesized definition.
virtual void CodeCompleteObjCPropertySynthesizeIvar(Scope *S,
IdentifierInfo *PropertyName,
DeclPtrTy ObjCImpDecl) {
}
/// \brief Code completion for an Objective-C method declaration or
/// definition, which may occur within an interface, category,
/// extension, protocol, or implementation thereof (where applicable).
///
/// This code completion action is invoked after the "-" or "+" that
/// starts a method declaration or definition, and after the return
/// type such a declaration (e.g., "- (id)").
///
/// \param S The scope in which the completion occurs.
///
/// \param IsInstanceMethod Whether this is an instance method
/// (introduced with '-'); otherwise, it's a class method
/// (introduced with '+').
///
/// \param ReturnType If non-NULL, the specified return type of the method
/// being declared or defined.
///
/// \param IDecl The interface, category, protocol, or
/// implementation, or category implementation in which this method
/// declaration or definition occurs.
virtual void CodeCompleteObjCMethodDecl(Scope *S,
bool IsInstanceMethod,
TypeTy *ReturnType,
DeclPtrTy IDecl) {
}
//@}
};
/// MinimalAction - Minimal actions are used by light-weight clients of the
/// parser that do not need name resolution or significant semantic analysis to
/// be performed. The actions implemented here are in the form of unresolved
/// identifiers. By using a simpler interface than the SemanticAction class,
/// the parser doesn't have to build complex data structures and thus runs more
/// quickly.
class MinimalAction : public Action {
/// Translation Unit Scope - useful to Objective-C actions that need
/// to lookup file scope declarations in the "ordinary" C decl namespace.
/// For example, user-defined classes, built-in "id" type, etc.
Scope *TUScope;
IdentifierTable &Idents;
Preprocessor &PP;
void *TypeNameInfoTablePtr;
public:
MinimalAction(Preprocessor &pp);
~MinimalAction();
/// getTypeName - This looks at the IdentifierInfo::FETokenInfo field to
/// determine whether the name is a typedef or not in this scope.
///
/// \param II the identifier for which we are performing name lookup
///
/// \param NameLoc the location of the identifier
///
/// \param S the scope in which this name lookup occurs
///
/// \param SS if non-NULL, the C++ scope specifier that precedes the
/// identifier
///
/// \param isClassName whether this is a C++ class-name production, in
/// which we can end up referring to a member of an unknown specialization
/// that we know (from the grammar) is supposed to be a type. For example,
/// this occurs when deriving from "std::vector<T>::allocator_type", where T
/// is a template parameter.
///
/// \returns the type referred to by this identifier, or NULL if the type
/// does not name an identifier.
virtual TypeTy *getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
Scope *S, CXXScopeSpec *SS,
bool isClassName = false,
TypeTy *ObjectType = 0);
/// isCurrentClassName - Always returns false, because MinimalAction
/// does not support C++ classes with constructors.
virtual bool isCurrentClassName(const IdentifierInfo& II, Scope *S,
const CXXScopeSpec *SS);
virtual TemplateNameKind isTemplateName(Scope *S,
CXXScopeSpec &SS,
UnqualifiedId &Name,
TypeTy *ObjectType,
bool EnteringContext,
TemplateTy &Template);
/// ActOnDeclarator - If this is a typedef declarator, we modify the
/// IdentifierInfo::FETokenInfo field to keep track of this fact, until S is
/// popped.
virtual DeclPtrTy ActOnDeclarator(Scope *S, Declarator &D);
/// ActOnPopScope - When a scope is popped, if any typedefs are now
/// out-of-scope, they are removed from the IdentifierInfo::FETokenInfo field.
virtual void ActOnPopScope(SourceLocation Loc, Scope *S);
virtual void ActOnTranslationUnitScope(SourceLocation Loc, Scope *S);
virtual DeclPtrTy ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
IdentifierInfo **IdentList,
SourceLocation *SLocs,
unsigned NumElts);
virtual DeclPtrTy ActOnStartClassInterface(SourceLocation interLoc,
IdentifierInfo *ClassName,
SourceLocation ClassLoc,
IdentifierInfo *SuperName,
SourceLocation SuperLoc,
const DeclPtrTy *ProtoRefs,
unsigned NumProtoRefs,
const SourceLocation *ProtoLocs,
SourceLocation EndProtoLoc,
AttributeList *AttrList);
};
/// PrettyStackTraceActionsDecl - If a crash occurs in the parser while parsing
/// something related to a virtualized decl, include that virtualized decl in
/// the stack trace.
class PrettyStackTraceActionsDecl : public llvm::PrettyStackTraceEntry {
Action::DeclPtrTy TheDecl;
SourceLocation Loc;
Action &Actions;
SourceManager &SM;
const char *Message;
public:
PrettyStackTraceActionsDecl(Action::DeclPtrTy Decl, SourceLocation L,
Action &actions, SourceManager &sm,
const char *Msg)
: TheDecl(Decl), Loc(L), Actions(actions), SM(sm), Message(Msg) {}
virtual void print(llvm::raw_ostream &OS) const;
};
/// \brief RAII object that enters a new expression evaluation context.
class EnterExpressionEvaluationContext {
/// \brief The action object.
Action &Actions;
public:
EnterExpressionEvaluationContext(Action &Actions,
Action::ExpressionEvaluationContext NewContext)
: Actions(Actions) {
Actions.PushExpressionEvaluationContext(NewContext);
}
~EnterExpressionEvaluationContext() {
Actions.PopExpressionEvaluationContext();
}
};
} // end namespace clang
#endif