mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-25 10:46:06 +00:00

In three-way split functions, if only .warm fragment is present, BAT incorrectly overwrites the map for .warm fragment by empty .cold fragment. Test Plan: updated register-fragments-bolt-symbols.s
644 lines
25 KiB
C++
644 lines
25 KiB
C++
//===- bolt/Profile/BoltAddressTranslation.cpp ----------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "bolt/Profile/BoltAddressTranslation.h"
|
|
#include "bolt/Core/BinaryFunction.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/Support/Errc.h"
|
|
#include "llvm/Support/Error.h"
|
|
#include "llvm/Support/LEB128.h"
|
|
|
|
#define DEBUG_TYPE "bolt-bat"
|
|
|
|
namespace llvm {
|
|
namespace bolt {
|
|
|
|
const char *BoltAddressTranslation::SECTION_NAME = ".note.bolt_bat";
|
|
|
|
void BoltAddressTranslation::writeEntriesForBB(
|
|
MapTy &Map, const BinaryBasicBlock &BB, uint64_t FuncInputAddress,
|
|
uint64_t FuncOutputAddress) const {
|
|
const uint64_t BBOutputOffset =
|
|
BB.getOutputAddressRange().first - FuncOutputAddress;
|
|
const uint32_t BBInputOffset = BB.getInputOffset();
|
|
|
|
// Every output BB must track back to an input BB for profile collection
|
|
// in bolted binaries. If we are missing an offset, it means this block was
|
|
// created by a pass. We will skip writing any entries for it, and this means
|
|
// any traffic happening in this block will map to the previous block in the
|
|
// layout. This covers the case where an input basic block is split into two,
|
|
// and the second one lacks any offset.
|
|
if (BBInputOffset == BinaryBasicBlock::INVALID_OFFSET)
|
|
return;
|
|
|
|
LLVM_DEBUG(dbgs() << "BB " << BB.getName() << "\n");
|
|
LLVM_DEBUG(dbgs() << " Key: " << Twine::utohexstr(BBOutputOffset)
|
|
<< " Val: " << Twine::utohexstr(BBInputOffset) << "\n");
|
|
// NB: in `writeEntriesForBB` we use the input address because hashes are
|
|
// saved early in `saveMetadata` before output addresses are assigned.
|
|
const BBHashMapTy &BBHashMap = getBBHashMap(FuncInputAddress);
|
|
(void)BBHashMap;
|
|
LLVM_DEBUG(
|
|
dbgs() << formatv(" Hash: {0:x}\n", BBHashMap.getBBHash(BBInputOffset)));
|
|
LLVM_DEBUG(
|
|
dbgs() << formatv(" Index: {0}\n", BBHashMap.getBBIndex(BBInputOffset)));
|
|
// In case of conflicts (same Key mapping to different Vals), the last
|
|
// update takes precedence. Of course it is not ideal to have conflicts and
|
|
// those happen when we have an empty BB that either contained only
|
|
// NOPs or a jump to the next block (successor). Either way, the successor
|
|
// and this deleted block will both share the same output address (the same
|
|
// key), and we need to map back. We choose here to privilege the successor by
|
|
// allowing it to overwrite the previously inserted key in the map.
|
|
Map.emplace(BBOutputOffset, BBInputOffset << 1);
|
|
|
|
const auto &IOAddressMap =
|
|
BB.getFunction()->getBinaryContext().getIOAddressMap();
|
|
|
|
for (const auto &[InputOffset, Sym] : BB.getLocSyms()) {
|
|
const auto InputAddress = BB.getFunction()->getAddress() + InputOffset;
|
|
const auto OutputAddress = IOAddressMap.lookup(InputAddress);
|
|
assert(OutputAddress && "Unknown instruction address");
|
|
const auto OutputOffset = *OutputAddress - FuncOutputAddress;
|
|
|
|
// Is this the first instruction in the BB? No need to duplicate the entry.
|
|
if (OutputOffset == BBOutputOffset)
|
|
continue;
|
|
|
|
LLVM_DEBUG(dbgs() << " Key: " << Twine::utohexstr(OutputOffset) << " Val: "
|
|
<< Twine::utohexstr(InputOffset) << " (branch)\n");
|
|
Map.emplace(OutputOffset, (InputOffset << 1) | BRANCHENTRY);
|
|
}
|
|
}
|
|
|
|
void BoltAddressTranslation::write(const BinaryContext &BC, raw_ostream &OS) {
|
|
LLVM_DEBUG(dbgs() << "BOLT-DEBUG: Writing BOLT Address Translation Tables\n");
|
|
for (auto &BFI : BC.getBinaryFunctions()) {
|
|
const BinaryFunction &Function = BFI.second;
|
|
const uint64_t InputAddress = Function.getAddress();
|
|
const uint64_t OutputAddress = Function.getOutputAddress();
|
|
// We don't need a translation table if the body of the function hasn't
|
|
// changed
|
|
if (Function.isIgnored() || (!BC.HasRelocations && !Function.isSimple()))
|
|
continue;
|
|
|
|
uint32_t NumSecondaryEntryPoints = 0;
|
|
Function.forEachEntryPoint([&](uint64_t Offset, const MCSymbol *) {
|
|
if (!Offset)
|
|
return true;
|
|
++NumSecondaryEntryPoints;
|
|
SecondaryEntryPointsMap[OutputAddress].push_back(Offset);
|
|
return true;
|
|
});
|
|
|
|
LLVM_DEBUG(dbgs() << "Function name: " << Function.getPrintName() << "\n");
|
|
LLVM_DEBUG(dbgs() << " Address reference: 0x"
|
|
<< Twine::utohexstr(Function.getOutputAddress()) << "\n");
|
|
LLVM_DEBUG(dbgs() << formatv(" Hash: {0:x}\n", getBFHash(InputAddress)));
|
|
LLVM_DEBUG(dbgs() << " Secondary Entry Points: " << NumSecondaryEntryPoints
|
|
<< '\n');
|
|
|
|
MapTy Map;
|
|
for (const BinaryBasicBlock *const BB :
|
|
Function.getLayout().getMainFragment())
|
|
writeEntriesForBB(Map, *BB, InputAddress, OutputAddress);
|
|
// Add entries for deleted blocks. They are still required for correct BB
|
|
// mapping of branches modified by SCTC. By convention, they would have the
|
|
// end of the function as output address.
|
|
const BBHashMapTy &BBHashMap = getBBHashMap(InputAddress);
|
|
if (BBHashMap.size() != Function.size()) {
|
|
const uint64_t EndOffset = Function.getOutputSize();
|
|
std::unordered_set<uint32_t> MappedInputOffsets;
|
|
for (const BinaryBasicBlock &BB : Function)
|
|
MappedInputOffsets.emplace(BB.getInputOffset());
|
|
for (const auto &[InputOffset, _] : BBHashMap)
|
|
if (!llvm::is_contained(MappedInputOffsets, InputOffset))
|
|
Map.emplace(EndOffset, InputOffset << 1);
|
|
}
|
|
Maps.emplace(Function.getOutputAddress(), std::move(Map));
|
|
ReverseMap.emplace(OutputAddress, InputAddress);
|
|
|
|
if (!Function.isSplit())
|
|
continue;
|
|
|
|
// Split maps
|
|
LLVM_DEBUG(dbgs() << " Cold part\n");
|
|
for (const FunctionFragment &FF :
|
|
Function.getLayout().getSplitFragments()) {
|
|
// Skip empty fragments to avoid adding zero-address entries to maps.
|
|
if (FF.empty())
|
|
continue;
|
|
ColdPartSource.emplace(FF.getAddress(), Function.getOutputAddress());
|
|
Map.clear();
|
|
for (const BinaryBasicBlock *const BB : FF)
|
|
writeEntriesForBB(Map, *BB, InputAddress, FF.getAddress());
|
|
|
|
Maps.emplace(FF.getAddress(), std::move(Map));
|
|
}
|
|
}
|
|
|
|
// Output addresses are delta-encoded
|
|
uint64_t PrevAddress = 0;
|
|
writeMaps</*Cold=*/false>(Maps, PrevAddress, OS);
|
|
writeMaps</*Cold=*/true>(Maps, PrevAddress, OS);
|
|
|
|
BC.outs() << "BOLT-INFO: Wrote " << Maps.size() << " BAT maps\n";
|
|
BC.outs() << "BOLT-INFO: Wrote " << FuncHashes.getNumFunctions()
|
|
<< " function and " << FuncHashes.getNumBasicBlocks()
|
|
<< " basic block hashes\n";
|
|
}
|
|
|
|
APInt BoltAddressTranslation::calculateBranchEntriesBitMask(
|
|
MapTy &Map, size_t EqualElems) const {
|
|
APInt BitMask(alignTo(EqualElems, 8), 0);
|
|
size_t Index = 0;
|
|
for (std::pair<const uint32_t, uint32_t> &KeyVal : Map) {
|
|
if (Index == EqualElems)
|
|
break;
|
|
const uint32_t OutputOffset = KeyVal.second;
|
|
if (OutputOffset & BRANCHENTRY)
|
|
BitMask.setBit(Index);
|
|
++Index;
|
|
}
|
|
return BitMask;
|
|
}
|
|
|
|
size_t BoltAddressTranslation::getNumEqualOffsets(const MapTy &Map,
|
|
uint32_t Skew) const {
|
|
size_t EqualOffsets = 0;
|
|
for (const std::pair<const uint32_t, uint32_t> &KeyVal : Map) {
|
|
const uint32_t OutputOffset = KeyVal.first;
|
|
const uint32_t InputOffset = KeyVal.second >> 1;
|
|
if (OutputOffset == InputOffset - Skew)
|
|
++EqualOffsets;
|
|
else
|
|
break;
|
|
}
|
|
return EqualOffsets;
|
|
}
|
|
|
|
template <bool Cold>
|
|
void BoltAddressTranslation::writeMaps(std::map<uint64_t, MapTy> &Maps,
|
|
uint64_t &PrevAddress, raw_ostream &OS) {
|
|
const uint32_t NumFuncs =
|
|
llvm::count_if(llvm::make_first_range(Maps), [&](const uint64_t Address) {
|
|
return Cold == ColdPartSource.count(Address);
|
|
});
|
|
encodeULEB128(NumFuncs, OS);
|
|
LLVM_DEBUG(dbgs() << "Writing " << NumFuncs << (Cold ? " cold" : "")
|
|
<< " functions for BAT.\n");
|
|
size_t PrevIndex = 0;
|
|
for (auto &MapEntry : Maps) {
|
|
const uint64_t Address = MapEntry.first;
|
|
// Only process cold fragments in cold mode, and vice versa.
|
|
if (Cold != ColdPartSource.count(Address))
|
|
continue;
|
|
// NB: in `writeMaps` we use the input address because hashes are saved
|
|
// early in `saveMetadata` before output addresses are assigned.
|
|
const uint64_t HotInputAddress =
|
|
ReverseMap[Cold ? ColdPartSource[Address] : Address];
|
|
MapTy &Map = MapEntry.second;
|
|
const uint32_t NumEntries = Map.size();
|
|
LLVM_DEBUG(dbgs() << "Writing " << NumEntries << " entries for 0x"
|
|
<< Twine::utohexstr(Address) << ".\n");
|
|
encodeULEB128(Address - PrevAddress, OS);
|
|
PrevAddress = Address;
|
|
const uint32_t NumSecondaryEntryPoints =
|
|
SecondaryEntryPointsMap.count(Address)
|
|
? SecondaryEntryPointsMap[Address].size()
|
|
: 0;
|
|
uint32_t Skew = 0;
|
|
if (Cold) {
|
|
auto HotEntryIt = Maps.find(ColdPartSource[Address]);
|
|
assert(HotEntryIt != Maps.end());
|
|
size_t HotIndex = std::distance(Maps.begin(), HotEntryIt);
|
|
encodeULEB128(HotIndex - PrevIndex, OS);
|
|
PrevIndex = HotIndex;
|
|
// Skew of all input offsets for cold fragments is simply the first input
|
|
// offset.
|
|
Skew = Map.begin()->second >> 1;
|
|
encodeULEB128(Skew, OS);
|
|
} else {
|
|
// Function hash
|
|
size_t BFHash = getBFHash(HotInputAddress);
|
|
LLVM_DEBUG(dbgs() << "Hash: " << formatv("{0:x}\n", BFHash));
|
|
OS.write(reinterpret_cast<char *>(&BFHash), 8);
|
|
// Number of basic blocks
|
|
size_t NumBasicBlocks = NumBasicBlocksMap[HotInputAddress];
|
|
LLVM_DEBUG(dbgs() << "Basic blocks: " << NumBasicBlocks << '\n');
|
|
encodeULEB128(NumBasicBlocks, OS);
|
|
// Secondary entry points
|
|
encodeULEB128(NumSecondaryEntryPoints, OS);
|
|
LLVM_DEBUG(dbgs() << "Secondary Entry Points: " << NumSecondaryEntryPoints
|
|
<< '\n');
|
|
}
|
|
encodeULEB128(NumEntries, OS);
|
|
// Encode the number of equal offsets (output = input - skew) in the
|
|
// beginning of the function. Only encode one offset in these cases.
|
|
const size_t EqualElems = getNumEqualOffsets(Map, Skew);
|
|
encodeULEB128(EqualElems, OS);
|
|
if (EqualElems) {
|
|
const size_t BranchEntriesBytes = alignTo(EqualElems, 8) / 8;
|
|
APInt BranchEntries = calculateBranchEntriesBitMask(Map, EqualElems);
|
|
OS.write(reinterpret_cast<const char *>(BranchEntries.getRawData()),
|
|
BranchEntriesBytes);
|
|
LLVM_DEBUG({
|
|
dbgs() << "BranchEntries: ";
|
|
SmallString<8> BitMaskStr;
|
|
BranchEntries.toString(BitMaskStr, 2, false);
|
|
dbgs() << BitMaskStr << '\n';
|
|
});
|
|
}
|
|
const BBHashMapTy &BBHashMap = getBBHashMap(HotInputAddress);
|
|
size_t Index = 0;
|
|
uint64_t InOffset = 0;
|
|
size_t PrevBBIndex = 0;
|
|
// Output and Input addresses and delta-encoded
|
|
for (std::pair<const uint32_t, uint32_t> &KeyVal : Map) {
|
|
const uint64_t OutputAddress = KeyVal.first + Address;
|
|
encodeULEB128(OutputAddress - PrevAddress, OS);
|
|
PrevAddress = OutputAddress;
|
|
if (Index++ >= EqualElems)
|
|
encodeSLEB128(KeyVal.second - InOffset, OS);
|
|
InOffset = KeyVal.second; // Keeping InOffset as if BRANCHENTRY is encoded
|
|
if ((InOffset & BRANCHENTRY) == 0) {
|
|
const bool IsBlock = BBHashMap.isInputBlock(InOffset >> 1);
|
|
unsigned BBIndex = IsBlock ? BBHashMap.getBBIndex(InOffset >> 1) : 0;
|
|
size_t BBHash = IsBlock ? BBHashMap.getBBHash(InOffset >> 1) : 0;
|
|
OS.write(reinterpret_cast<char *>(&BBHash), 8);
|
|
// Basic block index in the input binary
|
|
encodeULEB128(BBIndex - PrevBBIndex, OS);
|
|
PrevBBIndex = BBIndex;
|
|
LLVM_DEBUG(dbgs() << formatv("{0:x} -> {1:x} {2:x} {3}\n", KeyVal.first,
|
|
InOffset >> 1, BBHash, BBIndex));
|
|
}
|
|
}
|
|
uint32_t PrevOffset = 0;
|
|
if (!Cold && NumSecondaryEntryPoints) {
|
|
LLVM_DEBUG(dbgs() << "Secondary entry points: ");
|
|
// Secondary entry point offsets, delta-encoded
|
|
for (uint32_t Offset : SecondaryEntryPointsMap[Address]) {
|
|
encodeULEB128(Offset - PrevOffset, OS);
|
|
LLVM_DEBUG(dbgs() << formatv("{0:x} ", Offset));
|
|
PrevOffset = Offset;
|
|
}
|
|
LLVM_DEBUG(dbgs() << '\n');
|
|
}
|
|
}
|
|
}
|
|
|
|
std::error_code BoltAddressTranslation::parse(raw_ostream &OS, StringRef Buf) {
|
|
DataExtractor DE = DataExtractor(Buf, true, 8);
|
|
uint64_t Offset = 0;
|
|
if (Buf.size() < 12)
|
|
return make_error_code(llvm::errc::io_error);
|
|
|
|
const uint32_t NameSz = DE.getU32(&Offset);
|
|
const uint32_t DescSz = DE.getU32(&Offset);
|
|
const uint32_t Type = DE.getU32(&Offset);
|
|
|
|
if (Type != BinarySection::NT_BOLT_BAT ||
|
|
Buf.size() + Offset < alignTo(NameSz, 4) + DescSz)
|
|
return make_error_code(llvm::errc::io_error);
|
|
|
|
StringRef Name = Buf.slice(Offset, Offset + NameSz);
|
|
Offset = alignTo(Offset + NameSz, 4);
|
|
if (!Name.starts_with("BOLT"))
|
|
return make_error_code(llvm::errc::io_error);
|
|
|
|
Error Err(Error::success());
|
|
std::vector<uint64_t> HotFuncs;
|
|
uint64_t PrevAddress = 0;
|
|
parseMaps</*Cold=*/false>(HotFuncs, PrevAddress, DE, Offset, Err);
|
|
parseMaps</*Cold=*/true>(HotFuncs, PrevAddress, DE, Offset, Err);
|
|
OS << "BOLT-INFO: Parsed " << Maps.size() << " BAT entries\n";
|
|
return errorToErrorCode(std::move(Err));
|
|
}
|
|
|
|
template <bool Cold>
|
|
void BoltAddressTranslation::parseMaps(std::vector<uint64_t> &HotFuncs,
|
|
uint64_t &PrevAddress, DataExtractor &DE,
|
|
uint64_t &Offset, Error &Err) {
|
|
const uint32_t NumFunctions = DE.getULEB128(&Offset, &Err);
|
|
LLVM_DEBUG(dbgs() << "Parsing " << NumFunctions << (Cold ? " cold" : "")
|
|
<< " functions\n");
|
|
size_t HotIndex = 0;
|
|
for (uint32_t I = 0; I < NumFunctions; ++I) {
|
|
const uint64_t Address = PrevAddress + DE.getULEB128(&Offset, &Err);
|
|
uint64_t HotAddress = Cold ? 0 : Address;
|
|
PrevAddress = Address;
|
|
uint32_t SecondaryEntryPoints = 0;
|
|
uint64_t ColdInputSkew = 0;
|
|
if (Cold) {
|
|
HotIndex += DE.getULEB128(&Offset, &Err);
|
|
HotAddress = HotFuncs[HotIndex];
|
|
ColdPartSource.emplace(Address, HotAddress);
|
|
ColdInputSkew = DE.getULEB128(&Offset, &Err);
|
|
} else {
|
|
HotFuncs.push_back(Address);
|
|
// Function hash
|
|
const size_t FuncHash = DE.getU64(&Offset, &Err);
|
|
FuncHashes.addEntry(Address, FuncHash);
|
|
LLVM_DEBUG(dbgs() << formatv("{0:x}: hash {1:x}\n", Address, FuncHash));
|
|
// Number of basic blocks
|
|
const size_t NumBasicBlocks = DE.getULEB128(&Offset, &Err);
|
|
NumBasicBlocksMap.emplace(Address, NumBasicBlocks);
|
|
LLVM_DEBUG(dbgs() << formatv("{0:x}: #bbs {1}, {2} bytes\n", Address,
|
|
NumBasicBlocks,
|
|
getULEB128Size(NumBasicBlocks)));
|
|
// Secondary entry points
|
|
SecondaryEntryPoints = DE.getULEB128(&Offset, &Err);
|
|
LLVM_DEBUG(
|
|
dbgs() << formatv("{0:x}: secondary entry points {1}, {2} bytes\n",
|
|
Address, SecondaryEntryPoints,
|
|
getULEB128Size(SecondaryEntryPoints)));
|
|
}
|
|
const uint32_t NumEntries = DE.getULEB128(&Offset, &Err);
|
|
// Equal offsets.
|
|
const size_t EqualElems = DE.getULEB128(&Offset, &Err);
|
|
APInt BEBitMask;
|
|
LLVM_DEBUG(dbgs() << formatv("Equal offsets: {0}, {1} bytes\n", EqualElems,
|
|
getULEB128Size(EqualElems)));
|
|
if (EqualElems) {
|
|
const size_t BranchEntriesBytes = alignTo(EqualElems, 8) / 8;
|
|
BEBitMask = APInt(alignTo(EqualElems, 8), 0);
|
|
LoadIntFromMemory(
|
|
BEBitMask,
|
|
reinterpret_cast<const uint8_t *>(
|
|
DE.getBytes(&Offset, BranchEntriesBytes, &Err).data()),
|
|
BranchEntriesBytes);
|
|
LLVM_DEBUG({
|
|
dbgs() << "BEBitMask: ";
|
|
SmallString<8> BitMaskStr;
|
|
BEBitMask.toString(BitMaskStr, 2, false);
|
|
dbgs() << BitMaskStr << ", " << BranchEntriesBytes << " bytes\n";
|
|
});
|
|
}
|
|
MapTy Map;
|
|
|
|
LLVM_DEBUG(dbgs() << "Parsing " << NumEntries << " entries for 0x"
|
|
<< Twine::utohexstr(Address) << "\n");
|
|
uint64_t InputOffset = 0;
|
|
size_t BBIndex = 0;
|
|
for (uint32_t J = 0; J < NumEntries; ++J) {
|
|
const uint64_t OutputDelta = DE.getULEB128(&Offset, &Err);
|
|
const uint64_t OutputAddress = PrevAddress + OutputDelta;
|
|
const uint64_t OutputOffset = OutputAddress - Address;
|
|
PrevAddress = OutputAddress;
|
|
int64_t InputDelta = 0;
|
|
if (J < EqualElems) {
|
|
InputOffset = ((OutputOffset + ColdInputSkew) << 1) | BEBitMask[J];
|
|
} else {
|
|
InputDelta = DE.getSLEB128(&Offset, &Err);
|
|
InputOffset += InputDelta;
|
|
}
|
|
Map.insert(std::pair<uint32_t, uint32_t>(OutputOffset, InputOffset));
|
|
size_t BBHash = 0;
|
|
size_t BBIndexDelta = 0;
|
|
const bool IsBranchEntry = InputOffset & BRANCHENTRY;
|
|
if (!IsBranchEntry) {
|
|
BBHash = DE.getU64(&Offset, &Err);
|
|
BBIndexDelta = DE.getULEB128(&Offset, &Err);
|
|
BBIndex += BBIndexDelta;
|
|
// Map basic block hash to hot fragment by input offset
|
|
getBBHashMap(HotAddress).addEntry(InputOffset >> 1, BBIndex, BBHash);
|
|
}
|
|
LLVM_DEBUG({
|
|
dbgs() << formatv(
|
|
"{0:x} -> {1:x} ({2}/{3}b -> {4}/{5}b), {6:x}", OutputOffset,
|
|
InputOffset, OutputDelta, getULEB128Size(OutputDelta), InputDelta,
|
|
(J < EqualElems) ? 0 : getSLEB128Size(InputDelta), OutputAddress);
|
|
if (!IsBranchEntry) {
|
|
dbgs() << formatv(" {0:x} {1}/{2}b", BBHash, BBIndex,
|
|
getULEB128Size(BBIndexDelta));
|
|
}
|
|
dbgs() << '\n';
|
|
});
|
|
}
|
|
Maps.insert(std::pair<uint64_t, MapTy>(Address, Map));
|
|
if (!Cold && SecondaryEntryPoints) {
|
|
uint32_t EntryPointOffset = 0;
|
|
LLVM_DEBUG(dbgs() << "Secondary entry points: ");
|
|
for (uint32_t EntryPointId = 0; EntryPointId != SecondaryEntryPoints;
|
|
++EntryPointId) {
|
|
uint32_t OffsetDelta = DE.getULEB128(&Offset, &Err);
|
|
EntryPointOffset += OffsetDelta;
|
|
SecondaryEntryPointsMap[Address].push_back(EntryPointOffset);
|
|
LLVM_DEBUG(dbgs() << formatv("{0:x}/{1}b ", EntryPointOffset,
|
|
getULEB128Size(OffsetDelta)));
|
|
}
|
|
LLVM_DEBUG(dbgs() << '\n');
|
|
}
|
|
}
|
|
}
|
|
|
|
void BoltAddressTranslation::dump(raw_ostream &OS) const {
|
|
const size_t NumTables = Maps.size();
|
|
OS << "BAT tables for " << NumTables << " functions:\n";
|
|
for (const auto &MapEntry : Maps) {
|
|
const uint64_t Address = MapEntry.first;
|
|
const uint64_t HotAddress = fetchParentAddress(Address);
|
|
const bool IsHotFunction = HotAddress == 0;
|
|
OS << "Function Address: 0x" << Twine::utohexstr(Address);
|
|
if (IsHotFunction)
|
|
OS << formatv(", hash: {0:x}", getBFHash(Address));
|
|
OS << "\n";
|
|
OS << "BB mappings:\n";
|
|
const BBHashMapTy &BBHashMap =
|
|
getBBHashMap(HotAddress ? HotAddress : Address);
|
|
for (const auto &Entry : MapEntry.second) {
|
|
const bool IsBranch = Entry.second & BRANCHENTRY;
|
|
const uint32_t Val = Entry.second >> 1; // dropping BRANCHENTRY bit
|
|
OS << "0x" << Twine::utohexstr(Entry.first) << " -> "
|
|
<< "0x" << Twine::utohexstr(Val);
|
|
if (IsBranch)
|
|
OS << " (branch)";
|
|
else
|
|
OS << formatv(" hash: {0:x}", BBHashMap.getBBHash(Val));
|
|
OS << "\n";
|
|
}
|
|
if (IsHotFunction) {
|
|
auto NumBasicBlocksIt = NumBasicBlocksMap.find(Address);
|
|
assert(NumBasicBlocksIt != NumBasicBlocksMap.end());
|
|
OS << "NumBlocks: " << NumBasicBlocksIt->second << '\n';
|
|
}
|
|
auto SecondaryEntryPointsIt = SecondaryEntryPointsMap.find(Address);
|
|
if (SecondaryEntryPointsIt != SecondaryEntryPointsMap.end()) {
|
|
const std::vector<uint32_t> &SecondaryEntryPoints =
|
|
SecondaryEntryPointsIt->second;
|
|
OS << SecondaryEntryPoints.size() << " secondary entry points:\n";
|
|
for (uint32_t EntryPointOffset : SecondaryEntryPoints)
|
|
OS << formatv("{0:x}\n", EntryPointOffset);
|
|
}
|
|
OS << "\n";
|
|
}
|
|
const size_t NumColdParts = ColdPartSource.size();
|
|
if (!NumColdParts)
|
|
return;
|
|
|
|
OS << NumColdParts << " cold mappings:\n";
|
|
for (const auto &Entry : ColdPartSource) {
|
|
OS << "0x" << Twine::utohexstr(Entry.first) << " -> "
|
|
<< Twine::utohexstr(Entry.second) << "\n";
|
|
}
|
|
OS << "\n";
|
|
}
|
|
|
|
uint64_t BoltAddressTranslation::translate(uint64_t FuncAddress,
|
|
uint64_t Offset,
|
|
bool IsBranchSrc) const {
|
|
auto Iter = Maps.find(FuncAddress);
|
|
if (Iter == Maps.end())
|
|
return Offset;
|
|
|
|
const MapTy &Map = Iter->second;
|
|
auto KeyVal = Map.upper_bound(Offset);
|
|
if (KeyVal == Map.begin())
|
|
return Offset;
|
|
|
|
--KeyVal;
|
|
|
|
const uint32_t Val = KeyVal->second >> 1; // dropping BRANCHENTRY bit
|
|
// Branch source addresses are translated to the first instruction of the
|
|
// source BB to avoid accounting for modifications BOLT may have made in the
|
|
// BB regarding deletion/addition of instructions.
|
|
if (IsBranchSrc)
|
|
return Val;
|
|
return Offset - KeyVal->first + Val;
|
|
}
|
|
|
|
std::optional<BoltAddressTranslation::FallthroughListTy>
|
|
BoltAddressTranslation::getFallthroughsInTrace(uint64_t FuncAddress,
|
|
uint64_t From,
|
|
uint64_t To) const {
|
|
SmallVector<std::pair<uint64_t, uint64_t>, 16> Res;
|
|
|
|
// Filter out trivial case
|
|
if (From >= To)
|
|
return Res;
|
|
|
|
From -= FuncAddress;
|
|
To -= FuncAddress;
|
|
|
|
auto Iter = Maps.find(FuncAddress);
|
|
if (Iter == Maps.end())
|
|
return std::nullopt;
|
|
|
|
const MapTy &Map = Iter->second;
|
|
auto FromIter = Map.upper_bound(From);
|
|
if (FromIter == Map.begin())
|
|
return Res;
|
|
// Skip instruction entries, to create fallthroughs we are only interested in
|
|
// BB boundaries
|
|
do {
|
|
if (FromIter == Map.begin())
|
|
return Res;
|
|
--FromIter;
|
|
} while (FromIter->second & BRANCHENTRY);
|
|
|
|
auto ToIter = Map.upper_bound(To);
|
|
if (ToIter == Map.begin())
|
|
return Res;
|
|
--ToIter;
|
|
if (FromIter->first >= ToIter->first)
|
|
return Res;
|
|
|
|
for (auto Iter = FromIter; Iter != ToIter;) {
|
|
const uint32_t Src = Iter->first;
|
|
if (Iter->second & BRANCHENTRY) {
|
|
++Iter;
|
|
continue;
|
|
}
|
|
|
|
++Iter;
|
|
while (Iter->second & BRANCHENTRY && Iter != ToIter)
|
|
++Iter;
|
|
if (Iter->second & BRANCHENTRY)
|
|
break;
|
|
Res.emplace_back(Src, Iter->first);
|
|
}
|
|
|
|
return Res;
|
|
}
|
|
|
|
bool BoltAddressTranslation::enabledFor(
|
|
llvm::object::ELFObjectFileBase *InputFile) const {
|
|
for (const SectionRef &Section : InputFile->sections()) {
|
|
Expected<StringRef> SectionNameOrErr = Section.getName();
|
|
if (Error E = SectionNameOrErr.takeError())
|
|
continue;
|
|
|
|
if (SectionNameOrErr.get() == SECTION_NAME)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void BoltAddressTranslation::saveMetadata(BinaryContext &BC) {
|
|
for (BinaryFunction &BF : llvm::make_second_range(BC.getBinaryFunctions())) {
|
|
// We don't need a translation table if the body of the function hasn't
|
|
// changed
|
|
if (BF.isIgnored() || (!BC.HasRelocations && !BF.isSimple()))
|
|
continue;
|
|
// Prepare function and block hashes
|
|
FuncHashes.addEntry(BF.getAddress(), BF.computeHash());
|
|
BF.computeBlockHashes();
|
|
BBHashMapTy &BBHashMap = getBBHashMap(BF.getAddress());
|
|
// Set BF/BB metadata
|
|
for (const BinaryBasicBlock &BB : BF)
|
|
BBHashMap.addEntry(BB.getInputOffset(), BB.getIndex(), BB.getHash());
|
|
NumBasicBlocksMap.emplace(BF.getAddress(), BF.size());
|
|
}
|
|
}
|
|
|
|
unsigned
|
|
BoltAddressTranslation::getSecondaryEntryPointId(uint64_t Address,
|
|
uint32_t Offset) const {
|
|
auto FunctionIt = SecondaryEntryPointsMap.find(Address);
|
|
if (FunctionIt == SecondaryEntryPointsMap.end())
|
|
return 0;
|
|
const std::vector<uint32_t> &Offsets = FunctionIt->second;
|
|
auto OffsetIt = std::find(Offsets.begin(), Offsets.end(), Offset);
|
|
if (OffsetIt == Offsets.end())
|
|
return 0;
|
|
// Adding one here because main entry point is not stored in BAT, and
|
|
// enumeration for secondary entry points starts with 1.
|
|
return OffsetIt - Offsets.begin() + 1;
|
|
}
|
|
|
|
std::pair<const BinaryFunction *, unsigned>
|
|
BoltAddressTranslation::translateSymbol(const BinaryContext &BC,
|
|
const MCSymbol &Symbol,
|
|
uint32_t Offset) const {
|
|
// The symbol could be a secondary entry in a cold fragment.
|
|
uint64_t SymbolValue = cantFail(errorOrToExpected(BC.getSymbolValue(Symbol)));
|
|
|
|
const BinaryFunction *Callee = BC.getFunctionForSymbol(&Symbol);
|
|
assert(Callee);
|
|
|
|
// Containing function, not necessarily the same as symbol value.
|
|
const uint64_t CalleeAddress = Callee->getAddress();
|
|
const uint32_t OutputOffset = SymbolValue - CalleeAddress;
|
|
|
|
const uint64_t ParentAddress = fetchParentAddress(CalleeAddress);
|
|
const uint64_t HotAddress = ParentAddress ? ParentAddress : CalleeAddress;
|
|
|
|
const BinaryFunction *ParentBF = BC.getBinaryFunctionAtAddress(HotAddress);
|
|
|
|
const uint32_t InputOffset =
|
|
translate(CalleeAddress, OutputOffset, /*IsBranchSrc*/ false) + Offset;
|
|
|
|
unsigned SecondaryEntryId{0};
|
|
if (InputOffset)
|
|
SecondaryEntryId = getSecondaryEntryPointId(HotAddress, InputOffset);
|
|
|
|
return std::pair(ParentBF, SecondaryEntryId);
|
|
}
|
|
|
|
} // namespace bolt
|
|
} // namespace llvm
|