mirror of
https://github.com/llvm/llvm-project.git
synced 2025-05-09 06:46:06 +00:00

ReplaceWithVeclib.cpp would construct overload name using all the arguments in the intrinsic, but overloads should only be constructed from arguments for which isVectorIntrinsicWithOverloadTypeAtArg returns true, including the return type first (index -1). Additionally, - skip when `Intrinsic::not_intrinsic`, otherwise `isVectorIntrinsicWithOverloadTypeAtArg` asserts for some IntrinsicCalls. Unblocks translation for pow and atan2 intrinsics. Fixes #111093
284 lines
11 KiB
C++
284 lines
11 KiB
C++
//=== ReplaceWithVeclib.cpp - Replace vector intrinsics with veclib calls -===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Replaces calls to LLVM Intrinsics with matching calls to functions from a
|
|
// vector library (e.g libmvec, SVML) using TargetLibraryInfo interface.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/CodeGen/ReplaceWithVeclib.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Analysis/DemandedBits.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/VectorUtils.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/VFABIDemangler.h"
|
|
#include "llvm/Support/TypeSize.h"
|
|
#include "llvm/Transforms/Utils/ModuleUtils.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "replace-with-veclib"
|
|
|
|
STATISTIC(NumCallsReplaced,
|
|
"Number of calls to intrinsics that have been replaced.");
|
|
|
|
STATISTIC(NumTLIFuncDeclAdded,
|
|
"Number of vector library function declarations added.");
|
|
|
|
STATISTIC(NumFuncUsedAdded,
|
|
"Number of functions added to `llvm.compiler.used`");
|
|
|
|
/// Returns a vector Function that it adds to the Module \p M. When an \p
|
|
/// ScalarFunc is not null, it copies its attributes to the newly created
|
|
/// Function.
|
|
Function *getTLIFunction(Module *M, FunctionType *VectorFTy,
|
|
const StringRef TLIName,
|
|
Function *ScalarFunc = nullptr) {
|
|
Function *TLIFunc = M->getFunction(TLIName);
|
|
if (!TLIFunc) {
|
|
TLIFunc =
|
|
Function::Create(VectorFTy, Function::ExternalLinkage, TLIName, *M);
|
|
if (ScalarFunc)
|
|
TLIFunc->copyAttributesFrom(ScalarFunc);
|
|
|
|
LLVM_DEBUG(dbgs() << DEBUG_TYPE << ": Added vector library function `"
|
|
<< TLIName << "` of type `" << *(TLIFunc->getType())
|
|
<< "` to module.\n");
|
|
|
|
++NumTLIFuncDeclAdded;
|
|
// Add the freshly created function to llvm.compiler.used, similar to as it
|
|
// is done in InjectTLIMappings.
|
|
appendToCompilerUsed(*M, {TLIFunc});
|
|
LLVM_DEBUG(dbgs() << DEBUG_TYPE << ": Adding `" << TLIName
|
|
<< "` to `@llvm.compiler.used`.\n");
|
|
++NumFuncUsedAdded;
|
|
}
|
|
return TLIFunc;
|
|
}
|
|
|
|
/// Replace the intrinsic call \p II to \p TLIVecFunc, which is the
|
|
/// corresponding function from the vector library.
|
|
static void replaceWithTLIFunction(IntrinsicInst *II, VFInfo &Info,
|
|
Function *TLIVecFunc) {
|
|
IRBuilder<> IRBuilder(II);
|
|
SmallVector<Value *> Args(II->args());
|
|
if (auto OptMaskpos = Info.getParamIndexForOptionalMask()) {
|
|
auto *MaskTy =
|
|
VectorType::get(Type::getInt1Ty(II->getContext()), Info.Shape.VF);
|
|
Args.insert(Args.begin() + OptMaskpos.value(),
|
|
Constant::getAllOnesValue(MaskTy));
|
|
}
|
|
|
|
// Preserve the operand bundles.
|
|
SmallVector<OperandBundleDef, 1> OpBundles;
|
|
II->getOperandBundlesAsDefs(OpBundles);
|
|
|
|
auto *Replacement = IRBuilder.CreateCall(TLIVecFunc, Args, OpBundles);
|
|
II->replaceAllUsesWith(Replacement);
|
|
// Preserve fast math flags for FP math.
|
|
if (isa<FPMathOperator>(Replacement))
|
|
Replacement->copyFastMathFlags(II);
|
|
}
|
|
|
|
/// Returns true when successfully replaced \p II, which is a call to a
|
|
/// vectorized intrinsic, with a suitable function taking vector arguments,
|
|
/// based on available mappings in the \p TLI.
|
|
static bool replaceWithCallToVeclib(const TargetLibraryInfo &TLI,
|
|
IntrinsicInst *II) {
|
|
assert(II != nullptr && "Intrinsic cannot be null");
|
|
Intrinsic::ID IID = II->getIntrinsicID();
|
|
Type *RetTy = II->getType();
|
|
Type *ScalarRetTy = RetTy->getScalarType();
|
|
// At the moment VFABI assumes the return type is always widened unless it is
|
|
// a void type.
|
|
auto *VTy = dyn_cast<VectorType>(RetTy);
|
|
ElementCount EC(VTy ? VTy->getElementCount() : ElementCount::getFixed(0));
|
|
|
|
// OloadTys collects types used in scalar intrinsic overload name.
|
|
SmallVector<Type *, 3> OloadTys;
|
|
if (!RetTy->isVoidTy() && isVectorIntrinsicWithOverloadTypeAtArg(IID, -1))
|
|
OloadTys.push_back(ScalarRetTy);
|
|
|
|
// Compute the argument types of the corresponding scalar call and check that
|
|
// all vector operands match the previously found EC.
|
|
SmallVector<Type *, 8> ScalarArgTypes;
|
|
for (auto Arg : enumerate(II->args())) {
|
|
auto *ArgTy = Arg.value()->getType();
|
|
bool IsOloadTy = isVectorIntrinsicWithOverloadTypeAtArg(IID, Arg.index());
|
|
if (isVectorIntrinsicWithScalarOpAtArg(IID, Arg.index())) {
|
|
ScalarArgTypes.push_back(ArgTy);
|
|
if (IsOloadTy)
|
|
OloadTys.push_back(ArgTy);
|
|
} else if (auto *VectorArgTy = dyn_cast<VectorType>(ArgTy)) {
|
|
auto *ScalarArgTy = VectorArgTy->getElementType();
|
|
ScalarArgTypes.push_back(ScalarArgTy);
|
|
if (IsOloadTy)
|
|
OloadTys.push_back(ScalarArgTy);
|
|
// When return type is void, set EC to the first vector argument, and
|
|
// disallow vector arguments with different ECs.
|
|
if (EC.isZero())
|
|
EC = VectorArgTy->getElementCount();
|
|
else if (EC != VectorArgTy->getElementCount())
|
|
return false;
|
|
} else
|
|
// Exit when it is supposed to be a vector argument but it isn't.
|
|
return false;
|
|
}
|
|
|
|
// Try to reconstruct the name for the scalar version of the instruction,
|
|
// using scalar argument types.
|
|
std::string ScalarName =
|
|
Intrinsic::isOverloaded(IID)
|
|
? Intrinsic::getName(IID, OloadTys, II->getModule())
|
|
: Intrinsic::getName(IID).str();
|
|
|
|
// Try to find the mapping for the scalar version of this intrinsic and the
|
|
// exact vector width of the call operands in the TargetLibraryInfo. First,
|
|
// check with a non-masked variant, and if that fails try with a masked one.
|
|
const VecDesc *VD =
|
|
TLI.getVectorMappingInfo(ScalarName, EC, /*Masked*/ false);
|
|
if (!VD && !(VD = TLI.getVectorMappingInfo(ScalarName, EC, /*Masked*/ true)))
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << DEBUG_TYPE << ": Found TLI mapping from: `" << ScalarName
|
|
<< "` and vector width " << EC << " to: `"
|
|
<< VD->getVectorFnName() << "`.\n");
|
|
|
|
// Replace the call to the intrinsic with a call to the vector library
|
|
// function.
|
|
FunctionType *ScalarFTy =
|
|
FunctionType::get(ScalarRetTy, ScalarArgTypes, /*isVarArg*/ false);
|
|
const std::string MangledName = VD->getVectorFunctionABIVariantString();
|
|
auto OptInfo = VFABI::tryDemangleForVFABI(MangledName, ScalarFTy);
|
|
if (!OptInfo)
|
|
return false;
|
|
|
|
// There is no guarantee that the vectorized instructions followed the VFABI
|
|
// specification when being created, this is why we need to add extra check to
|
|
// make sure that the operands of the vector function obtained via VFABI match
|
|
// the operands of the original vector instruction.
|
|
for (auto &VFParam : OptInfo->Shape.Parameters) {
|
|
if (VFParam.ParamKind == VFParamKind::GlobalPredicate)
|
|
continue;
|
|
|
|
// tryDemangleForVFABI must return valid ParamPos, otherwise it could be
|
|
// a bug in the VFABI parser.
|
|
assert(VFParam.ParamPos < II->arg_size() && "ParamPos has invalid range");
|
|
Type *OrigTy = II->getArgOperand(VFParam.ParamPos)->getType();
|
|
if (OrigTy->isVectorTy() != (VFParam.ParamKind == VFParamKind::Vector)) {
|
|
LLVM_DEBUG(dbgs() << DEBUG_TYPE << ": Will not replace: " << ScalarName
|
|
<< ". Wrong type at index " << VFParam.ParamPos << ": "
|
|
<< *OrigTy << "\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
FunctionType *VectorFTy = VFABI::createFunctionType(*OptInfo, ScalarFTy);
|
|
if (!VectorFTy)
|
|
return false;
|
|
|
|
Function *TLIFunc =
|
|
getTLIFunction(II->getModule(), VectorFTy, VD->getVectorFnName(),
|
|
II->getCalledFunction());
|
|
replaceWithTLIFunction(II, *OptInfo, TLIFunc);
|
|
LLVM_DEBUG(dbgs() << DEBUG_TYPE << ": Replaced call to `" << ScalarName
|
|
<< "` with call to `" << TLIFunc->getName() << "`.\n");
|
|
++NumCallsReplaced;
|
|
return true;
|
|
}
|
|
|
|
static bool runImpl(const TargetLibraryInfo &TLI, Function &F) {
|
|
SmallVector<Instruction *> ReplacedCalls;
|
|
for (auto &I : instructions(F)) {
|
|
// Process only intrinsic calls that return void or a vector.
|
|
if (auto *II = dyn_cast<IntrinsicInst>(&I)) {
|
|
if (II->getIntrinsicID() == Intrinsic::not_intrinsic)
|
|
continue;
|
|
if (!II->getType()->isVectorTy() && !II->getType()->isVoidTy())
|
|
continue;
|
|
|
|
if (replaceWithCallToVeclib(TLI, II))
|
|
ReplacedCalls.push_back(&I);
|
|
}
|
|
}
|
|
// Erase any intrinsic calls that were replaced with vector library calls.
|
|
for (auto *I : ReplacedCalls)
|
|
I->eraseFromParent();
|
|
return !ReplacedCalls.empty();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// New pass manager implementation.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
PreservedAnalyses ReplaceWithVeclib::run(Function &F,
|
|
FunctionAnalysisManager &AM) {
|
|
const TargetLibraryInfo &TLI = AM.getResult<TargetLibraryAnalysis>(F);
|
|
auto Changed = runImpl(TLI, F);
|
|
if (Changed) {
|
|
LLVM_DEBUG(dbgs() << "Intrinsic calls replaced with vector libraries: "
|
|
<< NumCallsReplaced << "\n");
|
|
|
|
PreservedAnalyses PA;
|
|
PA.preserveSet<CFGAnalyses>();
|
|
PA.preserve<TargetLibraryAnalysis>();
|
|
PA.preserve<ScalarEvolutionAnalysis>();
|
|
PA.preserve<LoopAccessAnalysis>();
|
|
PA.preserve<DemandedBitsAnalysis>();
|
|
PA.preserve<OptimizationRemarkEmitterAnalysis>();
|
|
return PA;
|
|
}
|
|
|
|
// The pass did not replace any calls, hence it preserves all analyses.
|
|
return PreservedAnalyses::all();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Legacy PM Implementation.
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
bool ReplaceWithVeclibLegacy::runOnFunction(Function &F) {
|
|
const TargetLibraryInfo &TLI =
|
|
getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
|
|
return runImpl(TLI, F);
|
|
}
|
|
|
|
void ReplaceWithVeclibLegacy::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
AU.addRequired<TargetLibraryInfoWrapperPass>();
|
|
AU.addPreserved<TargetLibraryInfoWrapperPass>();
|
|
AU.addPreserved<ScalarEvolutionWrapperPass>();
|
|
AU.addPreserved<AAResultsWrapperPass>();
|
|
AU.addPreserved<OptimizationRemarkEmitterWrapperPass>();
|
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// Legacy Pass manager initialization
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
char ReplaceWithVeclibLegacy::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(ReplaceWithVeclibLegacy, DEBUG_TYPE,
|
|
"Replace intrinsics with calls to vector library", false,
|
|
false)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
|
|
INITIALIZE_PASS_END(ReplaceWithVeclibLegacy, DEBUG_TYPE,
|
|
"Replace intrinsics with calls to vector library", false,
|
|
false)
|
|
|
|
FunctionPass *llvm::createReplaceWithVeclibLegacyPass() {
|
|
return new ReplaceWithVeclibLegacy();
|
|
}
|