mirror of
https://github.com/llvm/llvm-project.git
synced 2025-05-17 02:16:07 +00:00
2358 lines
87 KiB
C++
2358 lines
87 KiB
C++
//===--- CoverageMappingGen.cpp - Coverage mapping generation ---*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Instrumentation-based code coverage mapping generator
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CoverageMappingGen.h"
|
|
#include "CodeGenFunction.h"
|
|
#include "clang/AST/StmtVisitor.h"
|
|
#include "clang/Basic/Diagnostic.h"
|
|
#include "clang/Basic/FileManager.h"
|
|
#include "clang/Frontend/FrontendDiagnostic.h"
|
|
#include "clang/Lex/Lexer.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ProfileData/Coverage/CoverageMapping.h"
|
|
#include "llvm/ProfileData/Coverage/CoverageMappingReader.h"
|
|
#include "llvm/ProfileData/Coverage/CoverageMappingWriter.h"
|
|
#include "llvm/ProfileData/InstrProfReader.h"
|
|
#include "llvm/Support/FileSystem.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include <optional>
|
|
|
|
// This selects the coverage mapping format defined when `InstrProfData.inc`
|
|
// is textually included.
|
|
#define COVMAP_V3
|
|
|
|
static llvm::cl::opt<bool> EmptyLineCommentCoverage(
|
|
"emptyline-comment-coverage",
|
|
llvm::cl::desc("Emit emptylines and comment lines as skipped regions (only "
|
|
"disable it on test)"),
|
|
llvm::cl::init(true), llvm::cl::Hidden);
|
|
|
|
static llvm::cl::opt<bool> SystemHeadersCoverage(
|
|
"system-headers-coverage",
|
|
llvm::cl::desc("Enable collecting coverage from system headers"),
|
|
llvm::cl::init(false), llvm::cl::Hidden);
|
|
|
|
using namespace clang;
|
|
using namespace CodeGen;
|
|
using namespace llvm::coverage;
|
|
|
|
CoverageSourceInfo *
|
|
CoverageMappingModuleGen::setUpCoverageCallbacks(Preprocessor &PP) {
|
|
CoverageSourceInfo *CoverageInfo =
|
|
new CoverageSourceInfo(PP.getSourceManager());
|
|
PP.addPPCallbacks(std::unique_ptr<PPCallbacks>(CoverageInfo));
|
|
if (EmptyLineCommentCoverage) {
|
|
PP.addCommentHandler(CoverageInfo);
|
|
PP.setEmptylineHandler(CoverageInfo);
|
|
PP.setPreprocessToken(true);
|
|
PP.setTokenWatcher([CoverageInfo](clang::Token Tok) {
|
|
// Update previous token location.
|
|
CoverageInfo->PrevTokLoc = Tok.getLocation();
|
|
if (Tok.getKind() != clang::tok::eod)
|
|
CoverageInfo->updateNextTokLoc(Tok.getLocation());
|
|
});
|
|
}
|
|
return CoverageInfo;
|
|
}
|
|
|
|
void CoverageSourceInfo::AddSkippedRange(SourceRange Range,
|
|
SkippedRange::Kind RangeKind) {
|
|
if (EmptyLineCommentCoverage && !SkippedRanges.empty() &&
|
|
PrevTokLoc == SkippedRanges.back().PrevTokLoc &&
|
|
SourceMgr.isWrittenInSameFile(SkippedRanges.back().Range.getEnd(),
|
|
Range.getBegin()))
|
|
SkippedRanges.back().Range.setEnd(Range.getEnd());
|
|
else
|
|
SkippedRanges.push_back({Range, RangeKind, PrevTokLoc});
|
|
}
|
|
|
|
void CoverageSourceInfo::SourceRangeSkipped(SourceRange Range, SourceLocation) {
|
|
AddSkippedRange(Range, SkippedRange::PPIfElse);
|
|
}
|
|
|
|
void CoverageSourceInfo::HandleEmptyline(SourceRange Range) {
|
|
AddSkippedRange(Range, SkippedRange::EmptyLine);
|
|
}
|
|
|
|
bool CoverageSourceInfo::HandleComment(Preprocessor &PP, SourceRange Range) {
|
|
AddSkippedRange(Range, SkippedRange::Comment);
|
|
return false;
|
|
}
|
|
|
|
void CoverageSourceInfo::updateNextTokLoc(SourceLocation Loc) {
|
|
if (!SkippedRanges.empty() && SkippedRanges.back().NextTokLoc.isInvalid())
|
|
SkippedRanges.back().NextTokLoc = Loc;
|
|
}
|
|
|
|
namespace {
|
|
using MCDCConditionID = CounterMappingRegion::MCDCConditionID;
|
|
using MCDCParameters = CounterMappingRegion::MCDCParameters;
|
|
|
|
/// A region of source code that can be mapped to a counter.
|
|
class SourceMappingRegion {
|
|
/// Primary Counter that is also used for Branch Regions for "True" branches.
|
|
Counter Count;
|
|
|
|
/// Secondary Counter used for Branch Regions for "False" branches.
|
|
std::optional<Counter> FalseCount;
|
|
|
|
/// Parameters used for Modified Condition/Decision Coverage
|
|
MCDCParameters MCDCParams;
|
|
|
|
/// The region's starting location.
|
|
std::optional<SourceLocation> LocStart;
|
|
|
|
/// The region's ending location.
|
|
std::optional<SourceLocation> LocEnd;
|
|
|
|
/// Whether this region is a gap region. The count from a gap region is set
|
|
/// as the line execution count if there are no other regions on the line.
|
|
bool GapRegion;
|
|
|
|
/// Whetever this region is skipped ('if constexpr' or 'if consteval' untaken
|
|
/// branch, or anything skipped but not empty line / comments)
|
|
bool SkippedRegion;
|
|
|
|
public:
|
|
SourceMappingRegion(Counter Count, std::optional<SourceLocation> LocStart,
|
|
std::optional<SourceLocation> LocEnd,
|
|
bool GapRegion = false)
|
|
: Count(Count), LocStart(LocStart), LocEnd(LocEnd), GapRegion(GapRegion),
|
|
SkippedRegion(false) {}
|
|
|
|
SourceMappingRegion(Counter Count, std::optional<Counter> FalseCount,
|
|
MCDCParameters MCDCParams,
|
|
std::optional<SourceLocation> LocStart,
|
|
std::optional<SourceLocation> LocEnd,
|
|
bool GapRegion = false)
|
|
: Count(Count), FalseCount(FalseCount), MCDCParams(MCDCParams),
|
|
LocStart(LocStart), LocEnd(LocEnd), GapRegion(GapRegion),
|
|
SkippedRegion(false) {}
|
|
|
|
SourceMappingRegion(MCDCParameters MCDCParams,
|
|
std::optional<SourceLocation> LocStart,
|
|
std::optional<SourceLocation> LocEnd)
|
|
: MCDCParams(MCDCParams), LocStart(LocStart), LocEnd(LocEnd),
|
|
GapRegion(false), SkippedRegion(false) {}
|
|
|
|
const Counter &getCounter() const { return Count; }
|
|
|
|
const Counter &getFalseCounter() const {
|
|
assert(FalseCount && "Region has no alternate counter");
|
|
return *FalseCount;
|
|
}
|
|
|
|
void setCounter(Counter C) { Count = C; }
|
|
|
|
bool hasStartLoc() const { return LocStart.has_value(); }
|
|
|
|
void setStartLoc(SourceLocation Loc) { LocStart = Loc; }
|
|
|
|
SourceLocation getBeginLoc() const {
|
|
assert(LocStart && "Region has no start location");
|
|
return *LocStart;
|
|
}
|
|
|
|
bool hasEndLoc() const { return LocEnd.has_value(); }
|
|
|
|
void setEndLoc(SourceLocation Loc) {
|
|
assert(Loc.isValid() && "Setting an invalid end location");
|
|
LocEnd = Loc;
|
|
}
|
|
|
|
SourceLocation getEndLoc() const {
|
|
assert(LocEnd && "Region has no end location");
|
|
return *LocEnd;
|
|
}
|
|
|
|
bool isGap() const { return GapRegion; }
|
|
|
|
void setGap(bool Gap) { GapRegion = Gap; }
|
|
|
|
bool isSkipped() const { return SkippedRegion; }
|
|
|
|
void setSkipped(bool Skipped) { SkippedRegion = Skipped; }
|
|
|
|
bool isBranch() const { return FalseCount.has_value(); }
|
|
|
|
bool isMCDCDecision() const { return MCDCParams.NumConditions != 0; }
|
|
|
|
const MCDCParameters &getMCDCParams() const { return MCDCParams; }
|
|
};
|
|
|
|
/// Spelling locations for the start and end of a source region.
|
|
struct SpellingRegion {
|
|
/// The line where the region starts.
|
|
unsigned LineStart;
|
|
|
|
/// The column where the region starts.
|
|
unsigned ColumnStart;
|
|
|
|
/// The line where the region ends.
|
|
unsigned LineEnd;
|
|
|
|
/// The column where the region ends.
|
|
unsigned ColumnEnd;
|
|
|
|
SpellingRegion(SourceManager &SM, SourceLocation LocStart,
|
|
SourceLocation LocEnd) {
|
|
LineStart = SM.getSpellingLineNumber(LocStart);
|
|
ColumnStart = SM.getSpellingColumnNumber(LocStart);
|
|
LineEnd = SM.getSpellingLineNumber(LocEnd);
|
|
ColumnEnd = SM.getSpellingColumnNumber(LocEnd);
|
|
}
|
|
|
|
SpellingRegion(SourceManager &SM, SourceMappingRegion &R)
|
|
: SpellingRegion(SM, R.getBeginLoc(), R.getEndLoc()) {}
|
|
|
|
/// Check if the start and end locations appear in source order, i.e
|
|
/// top->bottom, left->right.
|
|
bool isInSourceOrder() const {
|
|
return (LineStart < LineEnd) ||
|
|
(LineStart == LineEnd && ColumnStart <= ColumnEnd);
|
|
}
|
|
};
|
|
|
|
/// Provides the common functionality for the different
|
|
/// coverage mapping region builders.
|
|
class CoverageMappingBuilder {
|
|
public:
|
|
CoverageMappingModuleGen &CVM;
|
|
SourceManager &SM;
|
|
const LangOptions &LangOpts;
|
|
|
|
private:
|
|
/// Map of clang's FileIDs to IDs used for coverage mapping.
|
|
llvm::SmallDenseMap<FileID, std::pair<unsigned, SourceLocation>, 8>
|
|
FileIDMapping;
|
|
|
|
public:
|
|
/// The coverage mapping regions for this function
|
|
llvm::SmallVector<CounterMappingRegion, 32> MappingRegions;
|
|
/// The source mapping regions for this function.
|
|
std::vector<SourceMappingRegion> SourceRegions;
|
|
|
|
/// A set of regions which can be used as a filter.
|
|
///
|
|
/// It is produced by emitExpansionRegions() and is used in
|
|
/// emitSourceRegions() to suppress producing code regions if
|
|
/// the same area is covered by expansion regions.
|
|
typedef llvm::SmallSet<std::pair<SourceLocation, SourceLocation>, 8>
|
|
SourceRegionFilter;
|
|
|
|
CoverageMappingBuilder(CoverageMappingModuleGen &CVM, SourceManager &SM,
|
|
const LangOptions &LangOpts)
|
|
: CVM(CVM), SM(SM), LangOpts(LangOpts) {}
|
|
|
|
/// Return the precise end location for the given token.
|
|
SourceLocation getPreciseTokenLocEnd(SourceLocation Loc) {
|
|
// We avoid getLocForEndOfToken here, because it doesn't do what we want for
|
|
// macro locations, which we just treat as expanded files.
|
|
unsigned TokLen =
|
|
Lexer::MeasureTokenLength(SM.getSpellingLoc(Loc), SM, LangOpts);
|
|
return Loc.getLocWithOffset(TokLen);
|
|
}
|
|
|
|
/// Return the start location of an included file or expanded macro.
|
|
SourceLocation getStartOfFileOrMacro(SourceLocation Loc) {
|
|
if (Loc.isMacroID())
|
|
return Loc.getLocWithOffset(-SM.getFileOffset(Loc));
|
|
return SM.getLocForStartOfFile(SM.getFileID(Loc));
|
|
}
|
|
|
|
/// Return the end location of an included file or expanded macro.
|
|
SourceLocation getEndOfFileOrMacro(SourceLocation Loc) {
|
|
if (Loc.isMacroID())
|
|
return Loc.getLocWithOffset(SM.getFileIDSize(SM.getFileID(Loc)) -
|
|
SM.getFileOffset(Loc));
|
|
return SM.getLocForEndOfFile(SM.getFileID(Loc));
|
|
}
|
|
|
|
/// Find out where the current file is included or macro is expanded.
|
|
SourceLocation getIncludeOrExpansionLoc(SourceLocation Loc) {
|
|
return Loc.isMacroID() ? SM.getImmediateExpansionRange(Loc).getBegin()
|
|
: SM.getIncludeLoc(SM.getFileID(Loc));
|
|
}
|
|
|
|
/// Return true if \c Loc is a location in a built-in macro.
|
|
bool isInBuiltin(SourceLocation Loc) {
|
|
return SM.getBufferName(SM.getSpellingLoc(Loc)) == "<built-in>";
|
|
}
|
|
|
|
/// Check whether \c Loc is included or expanded from \c Parent.
|
|
bool isNestedIn(SourceLocation Loc, FileID Parent) {
|
|
do {
|
|
Loc = getIncludeOrExpansionLoc(Loc);
|
|
if (Loc.isInvalid())
|
|
return false;
|
|
} while (!SM.isInFileID(Loc, Parent));
|
|
return true;
|
|
}
|
|
|
|
/// Get the start of \c S ignoring macro arguments and builtin macros.
|
|
SourceLocation getStart(const Stmt *S) {
|
|
SourceLocation Loc = S->getBeginLoc();
|
|
while (SM.isMacroArgExpansion(Loc) || isInBuiltin(Loc))
|
|
Loc = SM.getImmediateExpansionRange(Loc).getBegin();
|
|
return Loc;
|
|
}
|
|
|
|
/// Get the end of \c S ignoring macro arguments and builtin macros.
|
|
SourceLocation getEnd(const Stmt *S) {
|
|
SourceLocation Loc = S->getEndLoc();
|
|
while (SM.isMacroArgExpansion(Loc) || isInBuiltin(Loc))
|
|
Loc = SM.getImmediateExpansionRange(Loc).getBegin();
|
|
return getPreciseTokenLocEnd(Loc);
|
|
}
|
|
|
|
/// Find the set of files we have regions for and assign IDs
|
|
///
|
|
/// Fills \c Mapping with the virtual file mapping needed to write out
|
|
/// coverage and collects the necessary file information to emit source and
|
|
/// expansion regions.
|
|
void gatherFileIDs(SmallVectorImpl<unsigned> &Mapping) {
|
|
FileIDMapping.clear();
|
|
|
|
llvm::SmallSet<FileID, 8> Visited;
|
|
SmallVector<std::pair<SourceLocation, unsigned>, 8> FileLocs;
|
|
for (const auto &Region : SourceRegions) {
|
|
SourceLocation Loc = Region.getBeginLoc();
|
|
FileID File = SM.getFileID(Loc);
|
|
if (!Visited.insert(File).second)
|
|
continue;
|
|
|
|
// Do not map FileID's associated with system headers unless collecting
|
|
// coverage from system headers is explicitly enabled.
|
|
if (!SystemHeadersCoverage && SM.isInSystemHeader(SM.getSpellingLoc(Loc)))
|
|
continue;
|
|
|
|
unsigned Depth = 0;
|
|
for (SourceLocation Parent = getIncludeOrExpansionLoc(Loc);
|
|
Parent.isValid(); Parent = getIncludeOrExpansionLoc(Parent))
|
|
++Depth;
|
|
FileLocs.push_back(std::make_pair(Loc, Depth));
|
|
}
|
|
llvm::stable_sort(FileLocs, llvm::less_second());
|
|
|
|
for (const auto &FL : FileLocs) {
|
|
SourceLocation Loc = FL.first;
|
|
FileID SpellingFile = SM.getDecomposedSpellingLoc(Loc).first;
|
|
auto Entry = SM.getFileEntryRefForID(SpellingFile);
|
|
if (!Entry)
|
|
continue;
|
|
|
|
FileIDMapping[SM.getFileID(Loc)] = std::make_pair(Mapping.size(), Loc);
|
|
Mapping.push_back(CVM.getFileID(*Entry));
|
|
}
|
|
}
|
|
|
|
/// Get the coverage mapping file ID for \c Loc.
|
|
///
|
|
/// If such file id doesn't exist, return std::nullopt.
|
|
std::optional<unsigned> getCoverageFileID(SourceLocation Loc) {
|
|
auto Mapping = FileIDMapping.find(SM.getFileID(Loc));
|
|
if (Mapping != FileIDMapping.end())
|
|
return Mapping->second.first;
|
|
return std::nullopt;
|
|
}
|
|
|
|
/// This shrinks the skipped range if it spans a line that contains a
|
|
/// non-comment token. If shrinking the skipped range would make it empty,
|
|
/// this returns std::nullopt.
|
|
/// Note this function can potentially be expensive because
|
|
/// getSpellingLineNumber uses getLineNumber, which is expensive.
|
|
std::optional<SpellingRegion> adjustSkippedRange(SourceManager &SM,
|
|
SourceLocation LocStart,
|
|
SourceLocation LocEnd,
|
|
SourceLocation PrevTokLoc,
|
|
SourceLocation NextTokLoc) {
|
|
SpellingRegion SR{SM, LocStart, LocEnd};
|
|
SR.ColumnStart = 1;
|
|
if (PrevTokLoc.isValid() && SM.isWrittenInSameFile(LocStart, PrevTokLoc) &&
|
|
SR.LineStart == SM.getSpellingLineNumber(PrevTokLoc))
|
|
SR.LineStart++;
|
|
if (NextTokLoc.isValid() && SM.isWrittenInSameFile(LocEnd, NextTokLoc) &&
|
|
SR.LineEnd == SM.getSpellingLineNumber(NextTokLoc)) {
|
|
SR.LineEnd--;
|
|
SR.ColumnEnd++;
|
|
}
|
|
if (SR.isInSourceOrder())
|
|
return SR;
|
|
return std::nullopt;
|
|
}
|
|
|
|
/// Gather all the regions that were skipped by the preprocessor
|
|
/// using the constructs like #if or comments.
|
|
void gatherSkippedRegions() {
|
|
/// An array of the minimum lineStarts and the maximum lineEnds
|
|
/// for mapping regions from the appropriate source files.
|
|
llvm::SmallVector<std::pair<unsigned, unsigned>, 8> FileLineRanges;
|
|
FileLineRanges.resize(
|
|
FileIDMapping.size(),
|
|
std::make_pair(std::numeric_limits<unsigned>::max(), 0));
|
|
for (const auto &R : MappingRegions) {
|
|
FileLineRanges[R.FileID].first =
|
|
std::min(FileLineRanges[R.FileID].first, R.LineStart);
|
|
FileLineRanges[R.FileID].second =
|
|
std::max(FileLineRanges[R.FileID].second, R.LineEnd);
|
|
}
|
|
|
|
auto SkippedRanges = CVM.getSourceInfo().getSkippedRanges();
|
|
for (auto &I : SkippedRanges) {
|
|
SourceRange Range = I.Range;
|
|
auto LocStart = Range.getBegin();
|
|
auto LocEnd = Range.getEnd();
|
|
assert(SM.isWrittenInSameFile(LocStart, LocEnd) &&
|
|
"region spans multiple files");
|
|
|
|
auto CovFileID = getCoverageFileID(LocStart);
|
|
if (!CovFileID)
|
|
continue;
|
|
std::optional<SpellingRegion> SR;
|
|
if (I.isComment())
|
|
SR = adjustSkippedRange(SM, LocStart, LocEnd, I.PrevTokLoc,
|
|
I.NextTokLoc);
|
|
else if (I.isPPIfElse() || I.isEmptyLine())
|
|
SR = {SM, LocStart, LocEnd};
|
|
|
|
if (!SR)
|
|
continue;
|
|
auto Region = CounterMappingRegion::makeSkipped(
|
|
*CovFileID, SR->LineStart, SR->ColumnStart, SR->LineEnd,
|
|
SR->ColumnEnd);
|
|
// Make sure that we only collect the regions that are inside
|
|
// the source code of this function.
|
|
if (Region.LineStart >= FileLineRanges[*CovFileID].first &&
|
|
Region.LineEnd <= FileLineRanges[*CovFileID].second)
|
|
MappingRegions.push_back(Region);
|
|
}
|
|
}
|
|
|
|
/// Generate the coverage counter mapping regions from collected
|
|
/// source regions.
|
|
void emitSourceRegions(const SourceRegionFilter &Filter) {
|
|
for (const auto &Region : SourceRegions) {
|
|
assert(Region.hasEndLoc() && "incomplete region");
|
|
|
|
SourceLocation LocStart = Region.getBeginLoc();
|
|
assert(SM.getFileID(LocStart).isValid() && "region in invalid file");
|
|
|
|
// Ignore regions from system headers unless collecting coverage from
|
|
// system headers is explicitly enabled.
|
|
if (!SystemHeadersCoverage &&
|
|
SM.isInSystemHeader(SM.getSpellingLoc(LocStart)))
|
|
continue;
|
|
|
|
auto CovFileID = getCoverageFileID(LocStart);
|
|
// Ignore regions that don't have a file, such as builtin macros.
|
|
if (!CovFileID)
|
|
continue;
|
|
|
|
SourceLocation LocEnd = Region.getEndLoc();
|
|
assert(SM.isWrittenInSameFile(LocStart, LocEnd) &&
|
|
"region spans multiple files");
|
|
|
|
// Don't add code regions for the area covered by expansion regions.
|
|
// This not only suppresses redundant regions, but sometimes prevents
|
|
// creating regions with wrong counters if, for example, a statement's
|
|
// body ends at the end of a nested macro.
|
|
if (Filter.count(std::make_pair(LocStart, LocEnd)))
|
|
continue;
|
|
|
|
// Find the spelling locations for the mapping region.
|
|
SpellingRegion SR{SM, LocStart, LocEnd};
|
|
assert(SR.isInSourceOrder() && "region start and end out of order");
|
|
|
|
if (Region.isGap()) {
|
|
MappingRegions.push_back(CounterMappingRegion::makeGapRegion(
|
|
Region.getCounter(), *CovFileID, SR.LineStart, SR.ColumnStart,
|
|
SR.LineEnd, SR.ColumnEnd));
|
|
} else if (Region.isSkipped()) {
|
|
MappingRegions.push_back(CounterMappingRegion::makeSkipped(
|
|
*CovFileID, SR.LineStart, SR.ColumnStart, SR.LineEnd,
|
|
SR.ColumnEnd));
|
|
} else if (Region.isBranch()) {
|
|
MappingRegions.push_back(CounterMappingRegion::makeBranchRegion(
|
|
Region.getCounter(), Region.getFalseCounter(),
|
|
Region.getMCDCParams(), *CovFileID, SR.LineStart, SR.ColumnStart,
|
|
SR.LineEnd, SR.ColumnEnd));
|
|
} else if (Region.isMCDCDecision()) {
|
|
MappingRegions.push_back(CounterMappingRegion::makeDecisionRegion(
|
|
Region.getMCDCParams(), *CovFileID, SR.LineStart, SR.ColumnStart,
|
|
SR.LineEnd, SR.ColumnEnd));
|
|
} else {
|
|
MappingRegions.push_back(CounterMappingRegion::makeRegion(
|
|
Region.getCounter(), *CovFileID, SR.LineStart, SR.ColumnStart,
|
|
SR.LineEnd, SR.ColumnEnd));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Generate expansion regions for each virtual file we've seen.
|
|
SourceRegionFilter emitExpansionRegions() {
|
|
SourceRegionFilter Filter;
|
|
for (const auto &FM : FileIDMapping) {
|
|
SourceLocation ExpandedLoc = FM.second.second;
|
|
SourceLocation ParentLoc = getIncludeOrExpansionLoc(ExpandedLoc);
|
|
if (ParentLoc.isInvalid())
|
|
continue;
|
|
|
|
auto ParentFileID = getCoverageFileID(ParentLoc);
|
|
if (!ParentFileID)
|
|
continue;
|
|
auto ExpandedFileID = getCoverageFileID(ExpandedLoc);
|
|
assert(ExpandedFileID && "expansion in uncovered file");
|
|
|
|
SourceLocation LocEnd = getPreciseTokenLocEnd(ParentLoc);
|
|
assert(SM.isWrittenInSameFile(ParentLoc, LocEnd) &&
|
|
"region spans multiple files");
|
|
Filter.insert(std::make_pair(ParentLoc, LocEnd));
|
|
|
|
SpellingRegion SR{SM, ParentLoc, LocEnd};
|
|
assert(SR.isInSourceOrder() && "region start and end out of order");
|
|
MappingRegions.push_back(CounterMappingRegion::makeExpansion(
|
|
*ParentFileID, *ExpandedFileID, SR.LineStart, SR.ColumnStart,
|
|
SR.LineEnd, SR.ColumnEnd));
|
|
}
|
|
return Filter;
|
|
}
|
|
};
|
|
|
|
/// Creates unreachable coverage regions for the functions that
|
|
/// are not emitted.
|
|
struct EmptyCoverageMappingBuilder : public CoverageMappingBuilder {
|
|
EmptyCoverageMappingBuilder(CoverageMappingModuleGen &CVM, SourceManager &SM,
|
|
const LangOptions &LangOpts)
|
|
: CoverageMappingBuilder(CVM, SM, LangOpts) {}
|
|
|
|
void VisitDecl(const Decl *D) {
|
|
if (!D->hasBody())
|
|
return;
|
|
auto Body = D->getBody();
|
|
SourceLocation Start = getStart(Body);
|
|
SourceLocation End = getEnd(Body);
|
|
if (!SM.isWrittenInSameFile(Start, End)) {
|
|
// Walk up to find the common ancestor.
|
|
// Correct the locations accordingly.
|
|
FileID StartFileID = SM.getFileID(Start);
|
|
FileID EndFileID = SM.getFileID(End);
|
|
while (StartFileID != EndFileID && !isNestedIn(End, StartFileID)) {
|
|
Start = getIncludeOrExpansionLoc(Start);
|
|
assert(Start.isValid() &&
|
|
"Declaration start location not nested within a known region");
|
|
StartFileID = SM.getFileID(Start);
|
|
}
|
|
while (StartFileID != EndFileID) {
|
|
End = getPreciseTokenLocEnd(getIncludeOrExpansionLoc(End));
|
|
assert(End.isValid() &&
|
|
"Declaration end location not nested within a known region");
|
|
EndFileID = SM.getFileID(End);
|
|
}
|
|
}
|
|
SourceRegions.emplace_back(Counter(), Start, End);
|
|
}
|
|
|
|
/// Write the mapping data to the output stream
|
|
void write(llvm::raw_ostream &OS) {
|
|
SmallVector<unsigned, 16> FileIDMapping;
|
|
gatherFileIDs(FileIDMapping);
|
|
emitSourceRegions(SourceRegionFilter());
|
|
|
|
if (MappingRegions.empty())
|
|
return;
|
|
|
|
CoverageMappingWriter Writer(FileIDMapping, std::nullopt, MappingRegions);
|
|
Writer.write(OS);
|
|
}
|
|
};
|
|
|
|
/// A wrapper object for maintaining stacks to track the resursive AST visitor
|
|
/// walks for the purpose of assigning IDs to leaf-level conditions measured by
|
|
/// MC/DC. The object is created with a reference to the MCDCBitmapMap that was
|
|
/// created during the initial AST walk. The presence of a bitmap associated
|
|
/// with a boolean expression (top-level logical operator nest) indicates that
|
|
/// the boolean expression qualified for MC/DC. The resulting condition IDs
|
|
/// are preserved in a map reference that is also provided during object
|
|
/// creation.
|
|
struct MCDCCoverageBuilder {
|
|
|
|
struct DecisionIDPair {
|
|
MCDCConditionID TrueID = 0;
|
|
MCDCConditionID FalseID = 0;
|
|
};
|
|
|
|
/// The AST walk recursively visits nested logical-AND or logical-OR binary
|
|
/// operator nodes and then visits their LHS and RHS children nodes. As this
|
|
/// happens, the algorithm will assign IDs to each operator's LHS and RHS side
|
|
/// as the walk moves deeper into the nest. At each level of the recursive
|
|
/// nest, the LHS and RHS may actually correspond to larger subtrees (not
|
|
/// leaf-conditions). If this is the case, when that node is visited, the ID
|
|
/// assigned to the subtree is re-assigned to its LHS, and a new ID is given
|
|
/// to its RHS. At the end of the walk, all leaf-level conditions will have a
|
|
/// unique ID -- keep in mind that the final set of IDs may not be in
|
|
/// numerical order from left to right.
|
|
///
|
|
/// Example: "x = (A && B) || (C && D) || (D && F)"
|
|
///
|
|
/// Visit Depth1:
|
|
/// (A && B) || (C && D) || (D && F)
|
|
/// ^-------LHS--------^ ^-RHS--^
|
|
/// ID=1 ID=2
|
|
///
|
|
/// Visit LHS-Depth2:
|
|
/// (A && B) || (C && D)
|
|
/// ^-LHS--^ ^-RHS--^
|
|
/// ID=1 ID=3
|
|
///
|
|
/// Visit LHS-Depth3:
|
|
/// (A && B)
|
|
/// LHS RHS
|
|
/// ID=1 ID=4
|
|
///
|
|
/// Visit RHS-Depth3:
|
|
/// (C && D)
|
|
/// LHS RHS
|
|
/// ID=3 ID=5
|
|
///
|
|
/// Visit RHS-Depth2: (D && F)
|
|
/// LHS RHS
|
|
/// ID=2 ID=6
|
|
///
|
|
/// Visit Depth1:
|
|
/// (A && B) || (C && D) || (D && F)
|
|
/// ID=1 ID=4 ID=3 ID=5 ID=2 ID=6
|
|
///
|
|
/// A node ID of '0' always means MC/DC isn't being tracked.
|
|
///
|
|
/// As the AST walk proceeds recursively, the algorithm will also use a stack
|
|
/// to track the IDs of logical-AND and logical-OR operations on the RHS so
|
|
/// that it can be determined which nodes are executed next, depending on how
|
|
/// a LHS or RHS of a logical-AND or logical-OR is evaluated. This
|
|
/// information relies on the assigned IDs and are embedded within the
|
|
/// coverage region IDs of each branch region associated with a leaf-level
|
|
/// condition. This information helps the visualization tool reconstruct all
|
|
/// possible test vectors for the purposes of MC/DC analysis. If a "next" node
|
|
/// ID is '0', it means it's the end of the test vector. The following rules
|
|
/// are used:
|
|
///
|
|
/// For logical-AND ("LHS && RHS"):
|
|
/// - If LHS is TRUE, execution goes to the RHS node.
|
|
/// - If LHS is FALSE, execution goes to the LHS node of the next logical-OR.
|
|
/// If that does not exist, execution exits (ID == 0).
|
|
///
|
|
/// - If RHS is TRUE, execution goes to LHS node of the next logical-AND.
|
|
/// If that does not exist, execution exits (ID == 0).
|
|
/// - If RHS is FALSE, execution goes to the LHS node of the next logical-OR.
|
|
/// If that does not exist, execution exits (ID == 0).
|
|
///
|
|
/// For logical-OR ("LHS || RHS"):
|
|
/// - If LHS is TRUE, execution goes to the LHS node of the next logical-AND.
|
|
/// If that does not exist, execution exits (ID == 0).
|
|
/// - If LHS is FALSE, execution goes to the RHS node.
|
|
///
|
|
/// - If RHS is TRUE, execution goes to LHS node of the next logical-AND.
|
|
/// If that does not exist, execution exits (ID == 0).
|
|
/// - If RHS is FALSE, execution goes to the LHS node of the next logical-OR.
|
|
/// If that does not exist, execution exits (ID == 0).
|
|
///
|
|
/// Finally, the condition IDs are also used when instrumenting the code to
|
|
/// indicate a unique offset into a temporary bitmap that represents the true
|
|
/// or false evaluation of that particular condition.
|
|
///
|
|
/// NOTE regarding the use of CodeGenFunction::stripCond(). Even though, for
|
|
/// simplicity, parentheses and unary logical-NOT operators are considered
|
|
/// part of their underlying condition for both MC/DC and branch coverage, the
|
|
/// condition IDs themselves are assigned and tracked using the underlying
|
|
/// condition itself. This is done solely for consistency since parentheses
|
|
/// and logical-NOTs are ignored when checking whether the condition is
|
|
/// actually an instrumentable condition. This can also make debugging a bit
|
|
/// easier.
|
|
|
|
private:
|
|
CodeGenModule &CGM;
|
|
|
|
llvm::SmallVector<DecisionIDPair> DecisionStack;
|
|
llvm::DenseMap<const Stmt *, MCDCConditionID> &CondIDs;
|
|
llvm::DenseMap<const Stmt *, unsigned> &MCDCBitmapMap;
|
|
MCDCConditionID NextID = 1;
|
|
bool NotMapped = false;
|
|
|
|
/// Represent a sentinel value of [0,0] for the bottom of DecisionStack.
|
|
static constexpr DecisionIDPair DecisionStackSentinel{0, 0};
|
|
|
|
/// Is this a logical-AND operation?
|
|
bool isLAnd(const BinaryOperator *E) const {
|
|
return E->getOpcode() == BO_LAnd;
|
|
}
|
|
|
|
public:
|
|
MCDCCoverageBuilder(CodeGenModule &CGM,
|
|
llvm::DenseMap<const Stmt *, MCDCConditionID> &CondIDMap,
|
|
llvm::DenseMap<const Stmt *, unsigned> &MCDCBitmapMap)
|
|
: CGM(CGM), DecisionStack(1, DecisionStackSentinel), CondIDs(CondIDMap),
|
|
MCDCBitmapMap(MCDCBitmapMap) {}
|
|
|
|
/// Return whether the build of the control flow map is at the top-level
|
|
/// (root) of a logical operator nest in a boolean expression prior to the
|
|
/// assignment of condition IDs.
|
|
bool isIdle() const { return (NextID == 1 && !NotMapped); }
|
|
|
|
/// Return whether any IDs have been assigned in the build of the control
|
|
/// flow map, indicating that the map is being generated for this boolean
|
|
/// expression.
|
|
bool isBuilding() const { return (NextID > 1); }
|
|
|
|
/// Set the given condition's ID.
|
|
void setCondID(const Expr *Cond, MCDCConditionID ID) {
|
|
CondIDs[CodeGenFunction::stripCond(Cond)] = ID;
|
|
}
|
|
|
|
/// Return the ID of a given condition.
|
|
MCDCConditionID getCondID(const Expr *Cond) const {
|
|
auto I = CondIDs.find(CodeGenFunction::stripCond(Cond));
|
|
if (I == CondIDs.end())
|
|
return 0;
|
|
else
|
|
return I->second;
|
|
}
|
|
|
|
/// Return the LHS Decision ([0,0] if not set).
|
|
const DecisionIDPair &back() const { return DecisionStack.back(); }
|
|
|
|
/// Push the binary operator statement to track the nest level and assign IDs
|
|
/// to the operator's LHS and RHS. The RHS may be a larger subtree that is
|
|
/// broken up on successive levels.
|
|
void pushAndAssignIDs(const BinaryOperator *E) {
|
|
if (!CGM.getCodeGenOpts().MCDCCoverage)
|
|
return;
|
|
|
|
// If binary expression is disqualified, don't do mapping.
|
|
if (!isBuilding() && !MCDCBitmapMap.contains(CodeGenFunction::stripCond(E)))
|
|
NotMapped = true;
|
|
|
|
// Don't go any further if we don't need to map condition IDs.
|
|
if (NotMapped)
|
|
return;
|
|
|
|
const DecisionIDPair &ParentDecision = DecisionStack.back();
|
|
|
|
// If the operator itself has an assigned ID, this means it represents a
|
|
// larger subtree. In this case, assign that ID to its LHS node. Its RHS
|
|
// will receive a new ID below. Otherwise, assign ID+1 to LHS.
|
|
if (CondIDs.contains(CodeGenFunction::stripCond(E)))
|
|
setCondID(E->getLHS(), getCondID(E));
|
|
else
|
|
setCondID(E->getLHS(), NextID++);
|
|
|
|
// Assign a ID+1 for the RHS.
|
|
MCDCConditionID RHSid = NextID++;
|
|
setCondID(E->getRHS(), RHSid);
|
|
|
|
// Push the LHS decision IDs onto the DecisionStack.
|
|
if (isLAnd(E))
|
|
DecisionStack.push_back({RHSid, ParentDecision.FalseID});
|
|
else
|
|
DecisionStack.push_back({ParentDecision.TrueID, RHSid});
|
|
}
|
|
|
|
/// Pop and return the LHS Decision ([0,0] if not set).
|
|
DecisionIDPair pop() {
|
|
if (!CGM.getCodeGenOpts().MCDCCoverage || NotMapped)
|
|
return DecisionStack.front();
|
|
|
|
assert(DecisionStack.size() > 1);
|
|
DecisionIDPair D = DecisionStack.back();
|
|
DecisionStack.pop_back();
|
|
return D;
|
|
}
|
|
|
|
/// Return the total number of conditions and reset the state. The number of
|
|
/// conditions is zero if the expression isn't mapped.
|
|
unsigned getTotalConditionsAndReset(const BinaryOperator *E) {
|
|
if (!CGM.getCodeGenOpts().MCDCCoverage)
|
|
return 0;
|
|
|
|
assert(!isIdle());
|
|
assert(DecisionStack.size() == 1);
|
|
|
|
// Reset state if not doing mapping.
|
|
if (NotMapped) {
|
|
NotMapped = false;
|
|
assert(NextID == 1);
|
|
return 0;
|
|
}
|
|
|
|
// Set number of conditions and reset.
|
|
unsigned TotalConds = NextID - 1;
|
|
|
|
// Reset ID back to beginning.
|
|
NextID = 1;
|
|
|
|
return TotalConds;
|
|
}
|
|
};
|
|
|
|
/// A StmtVisitor that creates coverage mapping regions which map
|
|
/// from the source code locations to the PGO counters.
|
|
struct CounterCoverageMappingBuilder
|
|
: public CoverageMappingBuilder,
|
|
public ConstStmtVisitor<CounterCoverageMappingBuilder> {
|
|
/// The map of statements to count values.
|
|
llvm::DenseMap<const Stmt *, unsigned> &CounterMap;
|
|
|
|
/// The map of statements to bitmap coverage object values.
|
|
llvm::DenseMap<const Stmt *, unsigned> &MCDCBitmapMap;
|
|
|
|
/// A stack of currently live regions.
|
|
llvm::SmallVector<SourceMappingRegion> RegionStack;
|
|
|
|
/// An object to manage MCDC regions.
|
|
MCDCCoverageBuilder MCDCBuilder;
|
|
|
|
CounterExpressionBuilder Builder;
|
|
|
|
/// A location in the most recently visited file or macro.
|
|
///
|
|
/// This is used to adjust the active source regions appropriately when
|
|
/// expressions cross file or macro boundaries.
|
|
SourceLocation MostRecentLocation;
|
|
|
|
/// Whether the visitor at a terminate statement.
|
|
bool HasTerminateStmt = false;
|
|
|
|
/// Gap region counter after terminate statement.
|
|
Counter GapRegionCounter;
|
|
|
|
/// Return a counter for the subtraction of \c RHS from \c LHS
|
|
Counter subtractCounters(Counter LHS, Counter RHS, bool Simplify = true) {
|
|
return Builder.subtract(LHS, RHS, Simplify);
|
|
}
|
|
|
|
/// Return a counter for the sum of \c LHS and \c RHS.
|
|
Counter addCounters(Counter LHS, Counter RHS, bool Simplify = true) {
|
|
return Builder.add(LHS, RHS, Simplify);
|
|
}
|
|
|
|
Counter addCounters(Counter C1, Counter C2, Counter C3,
|
|
bool Simplify = true) {
|
|
return addCounters(addCounters(C1, C2, Simplify), C3, Simplify);
|
|
}
|
|
|
|
/// Return the region counter for the given statement.
|
|
///
|
|
/// This should only be called on statements that have a dedicated counter.
|
|
Counter getRegionCounter(const Stmt *S) {
|
|
return Counter::getCounter(CounterMap[S]);
|
|
}
|
|
|
|
unsigned getRegionBitmap(const Stmt *S) { return MCDCBitmapMap[S]; }
|
|
|
|
/// Push a region onto the stack.
|
|
///
|
|
/// Returns the index on the stack where the region was pushed. This can be
|
|
/// used with popRegions to exit a "scope", ending the region that was pushed.
|
|
size_t pushRegion(Counter Count,
|
|
std::optional<SourceLocation> StartLoc = std::nullopt,
|
|
std::optional<SourceLocation> EndLoc = std::nullopt,
|
|
std::optional<Counter> FalseCount = std::nullopt,
|
|
MCDCConditionID ID = 0, MCDCConditionID TrueID = 0,
|
|
MCDCConditionID FalseID = 0) {
|
|
|
|
if (StartLoc && !FalseCount) {
|
|
MostRecentLocation = *StartLoc;
|
|
}
|
|
|
|
// If either of these locations is invalid, something elsewhere in the
|
|
// compiler has broken.
|
|
assert((!StartLoc || StartLoc->isValid()) && "Start location is not valid");
|
|
assert((!EndLoc || EndLoc->isValid()) && "End location is not valid");
|
|
|
|
// However, we can still recover without crashing.
|
|
// If either location is invalid, set it to std::nullopt to avoid
|
|
// letting users of RegionStack think that region has a valid start/end
|
|
// location.
|
|
if (StartLoc && StartLoc->isInvalid())
|
|
StartLoc = std::nullopt;
|
|
if (EndLoc && EndLoc->isInvalid())
|
|
EndLoc = std::nullopt;
|
|
RegionStack.emplace_back(Count, FalseCount,
|
|
MCDCParameters{0, 0, ID, TrueID, FalseID},
|
|
StartLoc, EndLoc);
|
|
|
|
return RegionStack.size() - 1;
|
|
}
|
|
|
|
size_t pushRegion(unsigned BitmapIdx, unsigned Conditions,
|
|
std::optional<SourceLocation> StartLoc = std::nullopt,
|
|
std::optional<SourceLocation> EndLoc = std::nullopt) {
|
|
|
|
RegionStack.emplace_back(MCDCParameters{BitmapIdx, Conditions}, StartLoc,
|
|
EndLoc);
|
|
|
|
return RegionStack.size() - 1;
|
|
}
|
|
|
|
size_t locationDepth(SourceLocation Loc) {
|
|
size_t Depth = 0;
|
|
while (Loc.isValid()) {
|
|
Loc = getIncludeOrExpansionLoc(Loc);
|
|
Depth++;
|
|
}
|
|
return Depth;
|
|
}
|
|
|
|
/// Pop regions from the stack into the function's list of regions.
|
|
///
|
|
/// Adds all regions from \c ParentIndex to the top of the stack to the
|
|
/// function's \c SourceRegions.
|
|
void popRegions(size_t ParentIndex) {
|
|
assert(RegionStack.size() >= ParentIndex && "parent not in stack");
|
|
while (RegionStack.size() > ParentIndex) {
|
|
SourceMappingRegion &Region = RegionStack.back();
|
|
if (Region.hasStartLoc() &&
|
|
(Region.hasEndLoc() || RegionStack[ParentIndex].hasEndLoc())) {
|
|
SourceLocation StartLoc = Region.getBeginLoc();
|
|
SourceLocation EndLoc = Region.hasEndLoc()
|
|
? Region.getEndLoc()
|
|
: RegionStack[ParentIndex].getEndLoc();
|
|
bool isBranch = Region.isBranch();
|
|
size_t StartDepth = locationDepth(StartLoc);
|
|
size_t EndDepth = locationDepth(EndLoc);
|
|
while (!SM.isWrittenInSameFile(StartLoc, EndLoc)) {
|
|
bool UnnestStart = StartDepth >= EndDepth;
|
|
bool UnnestEnd = EndDepth >= StartDepth;
|
|
if (UnnestEnd) {
|
|
// The region ends in a nested file or macro expansion. If the
|
|
// region is not a branch region, create a separate region for each
|
|
// expansion, and for all regions, update the EndLoc. Branch
|
|
// regions should not be split in order to keep a straightforward
|
|
// correspondance between the region and its associated branch
|
|
// condition, even if the condition spans multiple depths.
|
|
SourceLocation NestedLoc = getStartOfFileOrMacro(EndLoc);
|
|
assert(SM.isWrittenInSameFile(NestedLoc, EndLoc));
|
|
|
|
if (!isBranch && !isRegionAlreadyAdded(NestedLoc, EndLoc))
|
|
SourceRegions.emplace_back(Region.getCounter(), NestedLoc,
|
|
EndLoc);
|
|
|
|
EndLoc = getPreciseTokenLocEnd(getIncludeOrExpansionLoc(EndLoc));
|
|
if (EndLoc.isInvalid())
|
|
llvm::report_fatal_error(
|
|
"File exit not handled before popRegions");
|
|
EndDepth--;
|
|
}
|
|
if (UnnestStart) {
|
|
// The region ends in a nested file or macro expansion. If the
|
|
// region is not a branch region, create a separate region for each
|
|
// expansion, and for all regions, update the StartLoc. Branch
|
|
// regions should not be split in order to keep a straightforward
|
|
// correspondance between the region and its associated branch
|
|
// condition, even if the condition spans multiple depths.
|
|
SourceLocation NestedLoc = getEndOfFileOrMacro(StartLoc);
|
|
assert(SM.isWrittenInSameFile(StartLoc, NestedLoc));
|
|
|
|
if (!isBranch && !isRegionAlreadyAdded(StartLoc, NestedLoc))
|
|
SourceRegions.emplace_back(Region.getCounter(), StartLoc,
|
|
NestedLoc);
|
|
|
|
StartLoc = getIncludeOrExpansionLoc(StartLoc);
|
|
if (StartLoc.isInvalid())
|
|
llvm::report_fatal_error(
|
|
"File exit not handled before popRegions");
|
|
StartDepth--;
|
|
}
|
|
}
|
|
Region.setStartLoc(StartLoc);
|
|
Region.setEndLoc(EndLoc);
|
|
|
|
if (!isBranch) {
|
|
MostRecentLocation = EndLoc;
|
|
// If this region happens to span an entire expansion, we need to
|
|
// make sure we don't overlap the parent region with it.
|
|
if (StartLoc == getStartOfFileOrMacro(StartLoc) &&
|
|
EndLoc == getEndOfFileOrMacro(EndLoc))
|
|
MostRecentLocation = getIncludeOrExpansionLoc(EndLoc);
|
|
}
|
|
|
|
assert(SM.isWrittenInSameFile(Region.getBeginLoc(), EndLoc));
|
|
assert(SpellingRegion(SM, Region).isInSourceOrder());
|
|
SourceRegions.push_back(Region);
|
|
}
|
|
RegionStack.pop_back();
|
|
}
|
|
}
|
|
|
|
/// Return the currently active region.
|
|
SourceMappingRegion &getRegion() {
|
|
assert(!RegionStack.empty() && "statement has no region");
|
|
return RegionStack.back();
|
|
}
|
|
|
|
/// Propagate counts through the children of \p S if \p VisitChildren is true.
|
|
/// Otherwise, only emit a count for \p S itself.
|
|
Counter propagateCounts(Counter TopCount, const Stmt *S,
|
|
bool VisitChildren = true) {
|
|
SourceLocation StartLoc = getStart(S);
|
|
SourceLocation EndLoc = getEnd(S);
|
|
size_t Index = pushRegion(TopCount, StartLoc, EndLoc);
|
|
if (VisitChildren)
|
|
Visit(S);
|
|
Counter ExitCount = getRegion().getCounter();
|
|
popRegions(Index);
|
|
|
|
// The statement may be spanned by an expansion. Make sure we handle a file
|
|
// exit out of this expansion before moving to the next statement.
|
|
if (SM.isBeforeInTranslationUnit(StartLoc, S->getBeginLoc()))
|
|
MostRecentLocation = EndLoc;
|
|
|
|
return ExitCount;
|
|
}
|
|
|
|
/// Determine whether the given condition can be constant folded.
|
|
bool ConditionFoldsToBool(const Expr *Cond) {
|
|
Expr::EvalResult Result;
|
|
return (Cond->EvaluateAsInt(Result, CVM.getCodeGenModule().getContext()));
|
|
}
|
|
|
|
using MCDCDecisionIDPair = MCDCCoverageBuilder::DecisionIDPair;
|
|
|
|
/// Create a Branch Region around an instrumentable condition for coverage
|
|
/// and add it to the function's SourceRegions. A branch region tracks a
|
|
/// "True" counter and a "False" counter for boolean expressions that
|
|
/// result in the generation of a branch.
|
|
void
|
|
createBranchRegion(const Expr *C, Counter TrueCnt, Counter FalseCnt,
|
|
const MCDCDecisionIDPair &IDPair = MCDCDecisionIDPair()) {
|
|
// Check for NULL conditions.
|
|
if (!C)
|
|
return;
|
|
|
|
// Ensure we are an instrumentable condition (i.e. no "&&" or "||"). Push
|
|
// region onto RegionStack but immediately pop it (which adds it to the
|
|
// function's SourceRegions) because it doesn't apply to any other source
|
|
// code other than the Condition.
|
|
if (CodeGenFunction::isInstrumentedCondition(C)) {
|
|
MCDCConditionID ID = MCDCBuilder.getCondID(C);
|
|
MCDCConditionID TrueID = IDPair.TrueID;
|
|
MCDCConditionID FalseID = IDPair.FalseID;
|
|
|
|
// If a condition can fold to true or false, the corresponding branch
|
|
// will be removed. Create a region with both counters hard-coded to
|
|
// zero. This allows us to visualize them in a special way.
|
|
// Alternatively, we can prevent any optimization done via
|
|
// constant-folding by ensuring that ConstantFoldsToSimpleInteger() in
|
|
// CodeGenFunction.c always returns false, but that is very heavy-handed.
|
|
if (ConditionFoldsToBool(C))
|
|
popRegions(pushRegion(Counter::getZero(), getStart(C), getEnd(C),
|
|
Counter::getZero(), ID, TrueID, FalseID));
|
|
else
|
|
// Otherwise, create a region with the True counter and False counter.
|
|
popRegions(pushRegion(TrueCnt, getStart(C), getEnd(C), FalseCnt, ID,
|
|
TrueID, FalseID));
|
|
}
|
|
}
|
|
|
|
/// Create a Decision Region with a BitmapIdx and number of Conditions. This
|
|
/// type of region "contains" branch regions, one for each of the conditions.
|
|
/// The visualization tool will group everything together.
|
|
void createDecisionRegion(const Expr *C, unsigned BitmapIdx, unsigned Conds) {
|
|
popRegions(pushRegion(BitmapIdx, Conds, getStart(C), getEnd(C)));
|
|
}
|
|
|
|
/// Create a Branch Region around a SwitchCase for code coverage
|
|
/// and add it to the function's SourceRegions.
|
|
void createSwitchCaseRegion(const SwitchCase *SC, Counter TrueCnt,
|
|
Counter FalseCnt) {
|
|
// Push region onto RegionStack but immediately pop it (which adds it to
|
|
// the function's SourceRegions) because it doesn't apply to any other
|
|
// source other than the SwitchCase.
|
|
popRegions(pushRegion(TrueCnt, getStart(SC), SC->getColonLoc(), FalseCnt));
|
|
}
|
|
|
|
/// Check whether a region with bounds \c StartLoc and \c EndLoc
|
|
/// is already added to \c SourceRegions.
|
|
bool isRegionAlreadyAdded(SourceLocation StartLoc, SourceLocation EndLoc,
|
|
bool isBranch = false) {
|
|
return llvm::any_of(
|
|
llvm::reverse(SourceRegions), [&](const SourceMappingRegion &Region) {
|
|
return Region.getBeginLoc() == StartLoc &&
|
|
Region.getEndLoc() == EndLoc && Region.isBranch() == isBranch;
|
|
});
|
|
}
|
|
|
|
/// Adjust the most recently visited location to \c EndLoc.
|
|
///
|
|
/// This should be used after visiting any statements in non-source order.
|
|
void adjustForOutOfOrderTraversal(SourceLocation EndLoc) {
|
|
MostRecentLocation = EndLoc;
|
|
// The code region for a whole macro is created in handleFileExit() when
|
|
// it detects exiting of the virtual file of that macro. If we visited
|
|
// statements in non-source order, we might already have such a region
|
|
// added, for example, if a body of a loop is divided among multiple
|
|
// macros. Avoid adding duplicate regions in such case.
|
|
if (getRegion().hasEndLoc() &&
|
|
MostRecentLocation == getEndOfFileOrMacro(MostRecentLocation) &&
|
|
isRegionAlreadyAdded(getStartOfFileOrMacro(MostRecentLocation),
|
|
MostRecentLocation, getRegion().isBranch()))
|
|
MostRecentLocation = getIncludeOrExpansionLoc(MostRecentLocation);
|
|
}
|
|
|
|
/// Adjust regions and state when \c NewLoc exits a file.
|
|
///
|
|
/// If moving from our most recently tracked location to \c NewLoc exits any
|
|
/// files, this adjusts our current region stack and creates the file regions
|
|
/// for the exited file.
|
|
void handleFileExit(SourceLocation NewLoc) {
|
|
if (NewLoc.isInvalid() ||
|
|
SM.isWrittenInSameFile(MostRecentLocation, NewLoc))
|
|
return;
|
|
|
|
// If NewLoc is not in a file that contains MostRecentLocation, walk up to
|
|
// find the common ancestor.
|
|
SourceLocation LCA = NewLoc;
|
|
FileID ParentFile = SM.getFileID(LCA);
|
|
while (!isNestedIn(MostRecentLocation, ParentFile)) {
|
|
LCA = getIncludeOrExpansionLoc(LCA);
|
|
if (LCA.isInvalid() || SM.isWrittenInSameFile(LCA, MostRecentLocation)) {
|
|
// Since there isn't a common ancestor, no file was exited. We just need
|
|
// to adjust our location to the new file.
|
|
MostRecentLocation = NewLoc;
|
|
return;
|
|
}
|
|
ParentFile = SM.getFileID(LCA);
|
|
}
|
|
|
|
llvm::SmallSet<SourceLocation, 8> StartLocs;
|
|
std::optional<Counter> ParentCounter;
|
|
for (SourceMappingRegion &I : llvm::reverse(RegionStack)) {
|
|
if (!I.hasStartLoc())
|
|
continue;
|
|
SourceLocation Loc = I.getBeginLoc();
|
|
if (!isNestedIn(Loc, ParentFile)) {
|
|
ParentCounter = I.getCounter();
|
|
break;
|
|
}
|
|
|
|
while (!SM.isInFileID(Loc, ParentFile)) {
|
|
// The most nested region for each start location is the one with the
|
|
// correct count. We avoid creating redundant regions by stopping once
|
|
// we've seen this region.
|
|
if (StartLocs.insert(Loc).second) {
|
|
if (I.isBranch())
|
|
SourceRegions.emplace_back(
|
|
I.getCounter(), I.getFalseCounter(),
|
|
MCDCParameters{0, 0, I.getMCDCParams().ID,
|
|
I.getMCDCParams().TrueID,
|
|
I.getMCDCParams().FalseID},
|
|
Loc, getEndOfFileOrMacro(Loc), I.isBranch());
|
|
else
|
|
SourceRegions.emplace_back(I.getCounter(), Loc,
|
|
getEndOfFileOrMacro(Loc));
|
|
}
|
|
Loc = getIncludeOrExpansionLoc(Loc);
|
|
}
|
|
I.setStartLoc(getPreciseTokenLocEnd(Loc));
|
|
}
|
|
|
|
if (ParentCounter) {
|
|
// If the file is contained completely by another region and doesn't
|
|
// immediately start its own region, the whole file gets a region
|
|
// corresponding to the parent.
|
|
SourceLocation Loc = MostRecentLocation;
|
|
while (isNestedIn(Loc, ParentFile)) {
|
|
SourceLocation FileStart = getStartOfFileOrMacro(Loc);
|
|
if (StartLocs.insert(FileStart).second) {
|
|
SourceRegions.emplace_back(*ParentCounter, FileStart,
|
|
getEndOfFileOrMacro(Loc));
|
|
assert(SpellingRegion(SM, SourceRegions.back()).isInSourceOrder());
|
|
}
|
|
Loc = getIncludeOrExpansionLoc(Loc);
|
|
}
|
|
}
|
|
|
|
MostRecentLocation = NewLoc;
|
|
}
|
|
|
|
/// Ensure that \c S is included in the current region.
|
|
void extendRegion(const Stmt *S) {
|
|
SourceMappingRegion &Region = getRegion();
|
|
SourceLocation StartLoc = getStart(S);
|
|
|
|
handleFileExit(StartLoc);
|
|
if (!Region.hasStartLoc())
|
|
Region.setStartLoc(StartLoc);
|
|
}
|
|
|
|
/// Mark \c S as a terminator, starting a zero region.
|
|
void terminateRegion(const Stmt *S) {
|
|
extendRegion(S);
|
|
SourceMappingRegion &Region = getRegion();
|
|
SourceLocation EndLoc = getEnd(S);
|
|
if (!Region.hasEndLoc())
|
|
Region.setEndLoc(EndLoc);
|
|
pushRegion(Counter::getZero());
|
|
HasTerminateStmt = true;
|
|
}
|
|
|
|
/// Find a valid gap range between \p AfterLoc and \p BeforeLoc.
|
|
std::optional<SourceRange> findGapAreaBetween(SourceLocation AfterLoc,
|
|
SourceLocation BeforeLoc) {
|
|
// If AfterLoc is in function-like macro, use the right parenthesis
|
|
// location.
|
|
if (AfterLoc.isMacroID()) {
|
|
FileID FID = SM.getFileID(AfterLoc);
|
|
const SrcMgr::ExpansionInfo *EI = &SM.getSLocEntry(FID).getExpansion();
|
|
if (EI->isFunctionMacroExpansion())
|
|
AfterLoc = EI->getExpansionLocEnd();
|
|
}
|
|
|
|
size_t StartDepth = locationDepth(AfterLoc);
|
|
size_t EndDepth = locationDepth(BeforeLoc);
|
|
while (!SM.isWrittenInSameFile(AfterLoc, BeforeLoc)) {
|
|
bool UnnestStart = StartDepth >= EndDepth;
|
|
bool UnnestEnd = EndDepth >= StartDepth;
|
|
if (UnnestEnd) {
|
|
assert(SM.isWrittenInSameFile(getStartOfFileOrMacro(BeforeLoc),
|
|
BeforeLoc));
|
|
|
|
BeforeLoc = getIncludeOrExpansionLoc(BeforeLoc);
|
|
assert(BeforeLoc.isValid());
|
|
EndDepth--;
|
|
}
|
|
if (UnnestStart) {
|
|
assert(SM.isWrittenInSameFile(AfterLoc,
|
|
getEndOfFileOrMacro(AfterLoc)));
|
|
|
|
AfterLoc = getIncludeOrExpansionLoc(AfterLoc);
|
|
assert(AfterLoc.isValid());
|
|
AfterLoc = getPreciseTokenLocEnd(AfterLoc);
|
|
assert(AfterLoc.isValid());
|
|
StartDepth--;
|
|
}
|
|
}
|
|
AfterLoc = getPreciseTokenLocEnd(AfterLoc);
|
|
// If the start and end locations of the gap are both within the same macro
|
|
// file, the range may not be in source order.
|
|
if (AfterLoc.isMacroID() || BeforeLoc.isMacroID())
|
|
return std::nullopt;
|
|
if (!SM.isWrittenInSameFile(AfterLoc, BeforeLoc) ||
|
|
!SpellingRegion(SM, AfterLoc, BeforeLoc).isInSourceOrder())
|
|
return std::nullopt;
|
|
return {{AfterLoc, BeforeLoc}};
|
|
}
|
|
|
|
/// Emit a gap region between \p StartLoc and \p EndLoc with the given count.
|
|
void fillGapAreaWithCount(SourceLocation StartLoc, SourceLocation EndLoc,
|
|
Counter Count) {
|
|
if (StartLoc == EndLoc)
|
|
return;
|
|
assert(SpellingRegion(SM, StartLoc, EndLoc).isInSourceOrder());
|
|
handleFileExit(StartLoc);
|
|
size_t Index = pushRegion(Count, StartLoc, EndLoc);
|
|
getRegion().setGap(true);
|
|
handleFileExit(EndLoc);
|
|
popRegions(Index);
|
|
}
|
|
|
|
/// Find a valid range starting with \p StartingLoc and ending before \p
|
|
/// BeforeLoc.
|
|
std::optional<SourceRange> findAreaStartingFromTo(SourceLocation StartingLoc,
|
|
SourceLocation BeforeLoc) {
|
|
// If StartingLoc is in function-like macro, use its start location.
|
|
if (StartingLoc.isMacroID()) {
|
|
FileID FID = SM.getFileID(StartingLoc);
|
|
const SrcMgr::ExpansionInfo *EI = &SM.getSLocEntry(FID).getExpansion();
|
|
if (EI->isFunctionMacroExpansion())
|
|
StartingLoc = EI->getExpansionLocStart();
|
|
}
|
|
|
|
size_t StartDepth = locationDepth(StartingLoc);
|
|
size_t EndDepth = locationDepth(BeforeLoc);
|
|
while (!SM.isWrittenInSameFile(StartingLoc, BeforeLoc)) {
|
|
bool UnnestStart = StartDepth >= EndDepth;
|
|
bool UnnestEnd = EndDepth >= StartDepth;
|
|
if (UnnestEnd) {
|
|
assert(SM.isWrittenInSameFile(getStartOfFileOrMacro(BeforeLoc),
|
|
BeforeLoc));
|
|
|
|
BeforeLoc = getIncludeOrExpansionLoc(BeforeLoc);
|
|
assert(BeforeLoc.isValid());
|
|
EndDepth--;
|
|
}
|
|
if (UnnestStart) {
|
|
assert(SM.isWrittenInSameFile(StartingLoc,
|
|
getStartOfFileOrMacro(StartingLoc)));
|
|
|
|
StartingLoc = getIncludeOrExpansionLoc(StartingLoc);
|
|
assert(StartingLoc.isValid());
|
|
StartDepth--;
|
|
}
|
|
}
|
|
// If the start and end locations of the gap are both within the same macro
|
|
// file, the range may not be in source order.
|
|
if (StartingLoc.isMacroID() || BeforeLoc.isMacroID())
|
|
return std::nullopt;
|
|
if (!SM.isWrittenInSameFile(StartingLoc, BeforeLoc) ||
|
|
!SpellingRegion(SM, StartingLoc, BeforeLoc).isInSourceOrder())
|
|
return std::nullopt;
|
|
return {{StartingLoc, BeforeLoc}};
|
|
}
|
|
|
|
void markSkipped(SourceLocation StartLoc, SourceLocation BeforeLoc) {
|
|
const auto Skipped = findAreaStartingFromTo(StartLoc, BeforeLoc);
|
|
|
|
if (!Skipped)
|
|
return;
|
|
|
|
const auto NewStartLoc = Skipped->getBegin();
|
|
const auto EndLoc = Skipped->getEnd();
|
|
|
|
if (NewStartLoc == EndLoc)
|
|
return;
|
|
assert(SpellingRegion(SM, NewStartLoc, EndLoc).isInSourceOrder());
|
|
handleFileExit(NewStartLoc);
|
|
size_t Index = pushRegion({}, NewStartLoc, EndLoc);
|
|
getRegion().setSkipped(true);
|
|
handleFileExit(EndLoc);
|
|
popRegions(Index);
|
|
}
|
|
|
|
/// Keep counts of breaks and continues inside loops.
|
|
struct BreakContinue {
|
|
Counter BreakCount;
|
|
Counter ContinueCount;
|
|
};
|
|
SmallVector<BreakContinue, 8> BreakContinueStack;
|
|
|
|
CounterCoverageMappingBuilder(
|
|
CoverageMappingModuleGen &CVM,
|
|
llvm::DenseMap<const Stmt *, unsigned> &CounterMap,
|
|
llvm::DenseMap<const Stmt *, unsigned> &MCDCBitmapMap,
|
|
llvm::DenseMap<const Stmt *, MCDCConditionID> &CondIDMap,
|
|
SourceManager &SM, const LangOptions &LangOpts)
|
|
: CoverageMappingBuilder(CVM, SM, LangOpts), CounterMap(CounterMap),
|
|
MCDCBitmapMap(MCDCBitmapMap),
|
|
MCDCBuilder(CVM.getCodeGenModule(), CondIDMap, MCDCBitmapMap) {}
|
|
|
|
/// Write the mapping data to the output stream
|
|
void write(llvm::raw_ostream &OS) {
|
|
llvm::SmallVector<unsigned, 8> VirtualFileMapping;
|
|
gatherFileIDs(VirtualFileMapping);
|
|
SourceRegionFilter Filter = emitExpansionRegions();
|
|
emitSourceRegions(Filter);
|
|
gatherSkippedRegions();
|
|
|
|
if (MappingRegions.empty())
|
|
return;
|
|
|
|
CoverageMappingWriter Writer(VirtualFileMapping, Builder.getExpressions(),
|
|
MappingRegions);
|
|
Writer.write(OS);
|
|
}
|
|
|
|
void VisitStmt(const Stmt *S) {
|
|
if (S->getBeginLoc().isValid())
|
|
extendRegion(S);
|
|
const Stmt *LastStmt = nullptr;
|
|
bool SaveTerminateStmt = HasTerminateStmt;
|
|
HasTerminateStmt = false;
|
|
GapRegionCounter = Counter::getZero();
|
|
for (const Stmt *Child : S->children())
|
|
if (Child) {
|
|
// If last statement contains terminate statements, add a gap area
|
|
// between the two statements. Skipping attributed statements, because
|
|
// they don't have valid start location.
|
|
if (LastStmt && HasTerminateStmt && !isa<AttributedStmt>(Child)) {
|
|
auto Gap = findGapAreaBetween(getEnd(LastStmt), getStart(Child));
|
|
if (Gap)
|
|
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(),
|
|
GapRegionCounter);
|
|
SaveTerminateStmt = true;
|
|
HasTerminateStmt = false;
|
|
}
|
|
this->Visit(Child);
|
|
LastStmt = Child;
|
|
}
|
|
if (SaveTerminateStmt)
|
|
HasTerminateStmt = true;
|
|
handleFileExit(getEnd(S));
|
|
}
|
|
|
|
void VisitDecl(const Decl *D) {
|
|
Stmt *Body = D->getBody();
|
|
|
|
// Do not propagate region counts into system headers unless collecting
|
|
// coverage from system headers is explicitly enabled.
|
|
if (!SystemHeadersCoverage && Body &&
|
|
SM.isInSystemHeader(SM.getSpellingLoc(getStart(Body))))
|
|
return;
|
|
|
|
// Do not visit the artificial children nodes of defaulted methods. The
|
|
// lexer may not be able to report back precise token end locations for
|
|
// these children nodes (llvm.org/PR39822), and moreover users will not be
|
|
// able to see coverage for them.
|
|
Counter BodyCounter = getRegionCounter(Body);
|
|
bool Defaulted = false;
|
|
if (auto *Method = dyn_cast<CXXMethodDecl>(D))
|
|
Defaulted = Method->isDefaulted();
|
|
if (auto *Ctor = dyn_cast<CXXConstructorDecl>(D)) {
|
|
for (auto *Initializer : Ctor->inits()) {
|
|
if (Initializer->isWritten()) {
|
|
auto *Init = Initializer->getInit();
|
|
if (getStart(Init).isValid() && getEnd(Init).isValid())
|
|
propagateCounts(BodyCounter, Init);
|
|
}
|
|
}
|
|
}
|
|
|
|
propagateCounts(BodyCounter, Body,
|
|
/*VisitChildren=*/!Defaulted);
|
|
assert(RegionStack.empty() && "Regions entered but never exited");
|
|
}
|
|
|
|
void VisitReturnStmt(const ReturnStmt *S) {
|
|
extendRegion(S);
|
|
if (S->getRetValue())
|
|
Visit(S->getRetValue());
|
|
terminateRegion(S);
|
|
}
|
|
|
|
void VisitCoroutineBodyStmt(const CoroutineBodyStmt *S) {
|
|
extendRegion(S);
|
|
Visit(S->getBody());
|
|
}
|
|
|
|
void VisitCoreturnStmt(const CoreturnStmt *S) {
|
|
extendRegion(S);
|
|
if (S->getOperand())
|
|
Visit(S->getOperand());
|
|
terminateRegion(S);
|
|
}
|
|
|
|
void VisitCXXThrowExpr(const CXXThrowExpr *E) {
|
|
extendRegion(E);
|
|
if (E->getSubExpr())
|
|
Visit(E->getSubExpr());
|
|
terminateRegion(E);
|
|
}
|
|
|
|
void VisitGotoStmt(const GotoStmt *S) { terminateRegion(S); }
|
|
|
|
void VisitLabelStmt(const LabelStmt *S) {
|
|
Counter LabelCount = getRegionCounter(S);
|
|
SourceLocation Start = getStart(S);
|
|
// We can't extendRegion here or we risk overlapping with our new region.
|
|
handleFileExit(Start);
|
|
pushRegion(LabelCount, Start);
|
|
Visit(S->getSubStmt());
|
|
}
|
|
|
|
void VisitBreakStmt(const BreakStmt *S) {
|
|
assert(!BreakContinueStack.empty() && "break not in a loop or switch!");
|
|
BreakContinueStack.back().BreakCount = addCounters(
|
|
BreakContinueStack.back().BreakCount, getRegion().getCounter());
|
|
// FIXME: a break in a switch should terminate regions for all preceding
|
|
// case statements, not just the most recent one.
|
|
terminateRegion(S);
|
|
}
|
|
|
|
void VisitContinueStmt(const ContinueStmt *S) {
|
|
assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
|
|
BreakContinueStack.back().ContinueCount = addCounters(
|
|
BreakContinueStack.back().ContinueCount, getRegion().getCounter());
|
|
terminateRegion(S);
|
|
}
|
|
|
|
void VisitCallExpr(const CallExpr *E) {
|
|
VisitStmt(E);
|
|
|
|
// Terminate the region when we hit a noreturn function.
|
|
// (This is helpful dealing with switch statements.)
|
|
QualType CalleeType = E->getCallee()->getType();
|
|
if (getFunctionExtInfo(*CalleeType).getNoReturn())
|
|
terminateRegion(E);
|
|
}
|
|
|
|
void VisitWhileStmt(const WhileStmt *S) {
|
|
extendRegion(S);
|
|
|
|
Counter ParentCount = getRegion().getCounter();
|
|
Counter BodyCount = getRegionCounter(S);
|
|
|
|
// Handle the body first so that we can get the backedge count.
|
|
BreakContinueStack.push_back(BreakContinue());
|
|
extendRegion(S->getBody());
|
|
Counter BackedgeCount = propagateCounts(BodyCount, S->getBody());
|
|
BreakContinue BC = BreakContinueStack.pop_back_val();
|
|
|
|
bool BodyHasTerminateStmt = HasTerminateStmt;
|
|
HasTerminateStmt = false;
|
|
|
|
// Go back to handle the condition.
|
|
Counter CondCount =
|
|
addCounters(ParentCount, BackedgeCount, BC.ContinueCount);
|
|
propagateCounts(CondCount, S->getCond());
|
|
adjustForOutOfOrderTraversal(getEnd(S));
|
|
|
|
// The body count applies to the area immediately after the increment.
|
|
auto Gap = findGapAreaBetween(S->getRParenLoc(), getStart(S->getBody()));
|
|
if (Gap)
|
|
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), BodyCount);
|
|
|
|
Counter OutCount =
|
|
addCounters(BC.BreakCount, subtractCounters(CondCount, BodyCount));
|
|
if (OutCount != ParentCount) {
|
|
pushRegion(OutCount);
|
|
GapRegionCounter = OutCount;
|
|
if (BodyHasTerminateStmt)
|
|
HasTerminateStmt = true;
|
|
}
|
|
|
|
// Create Branch Region around condition.
|
|
createBranchRegion(S->getCond(), BodyCount,
|
|
subtractCounters(CondCount, BodyCount));
|
|
}
|
|
|
|
void VisitDoStmt(const DoStmt *S) {
|
|
extendRegion(S);
|
|
|
|
Counter ParentCount = getRegion().getCounter();
|
|
Counter BodyCount = getRegionCounter(S);
|
|
|
|
BreakContinueStack.push_back(BreakContinue());
|
|
extendRegion(S->getBody());
|
|
Counter BackedgeCount =
|
|
propagateCounts(addCounters(ParentCount, BodyCount), S->getBody());
|
|
BreakContinue BC = BreakContinueStack.pop_back_val();
|
|
|
|
bool BodyHasTerminateStmt = HasTerminateStmt;
|
|
HasTerminateStmt = false;
|
|
|
|
Counter CondCount = addCounters(BackedgeCount, BC.ContinueCount);
|
|
propagateCounts(CondCount, S->getCond());
|
|
|
|
Counter OutCount =
|
|
addCounters(BC.BreakCount, subtractCounters(CondCount, BodyCount));
|
|
if (OutCount != ParentCount) {
|
|
pushRegion(OutCount);
|
|
GapRegionCounter = OutCount;
|
|
}
|
|
|
|
// Create Branch Region around condition.
|
|
createBranchRegion(S->getCond(), BodyCount,
|
|
subtractCounters(CondCount, BodyCount));
|
|
|
|
if (BodyHasTerminateStmt)
|
|
HasTerminateStmt = true;
|
|
}
|
|
|
|
void VisitForStmt(const ForStmt *S) {
|
|
extendRegion(S);
|
|
if (S->getInit())
|
|
Visit(S->getInit());
|
|
|
|
Counter ParentCount = getRegion().getCounter();
|
|
Counter BodyCount = getRegionCounter(S);
|
|
|
|
// The loop increment may contain a break or continue.
|
|
if (S->getInc())
|
|
BreakContinueStack.emplace_back();
|
|
|
|
// Handle the body first so that we can get the backedge count.
|
|
BreakContinueStack.emplace_back();
|
|
extendRegion(S->getBody());
|
|
Counter BackedgeCount = propagateCounts(BodyCount, S->getBody());
|
|
BreakContinue BodyBC = BreakContinueStack.pop_back_val();
|
|
|
|
bool BodyHasTerminateStmt = HasTerminateStmt;
|
|
HasTerminateStmt = false;
|
|
|
|
// The increment is essentially part of the body but it needs to include
|
|
// the count for all the continue statements.
|
|
BreakContinue IncrementBC;
|
|
if (const Stmt *Inc = S->getInc()) {
|
|
propagateCounts(addCounters(BackedgeCount, BodyBC.ContinueCount), Inc);
|
|
IncrementBC = BreakContinueStack.pop_back_val();
|
|
}
|
|
|
|
// Go back to handle the condition.
|
|
Counter CondCount = addCounters(
|
|
addCounters(ParentCount, BackedgeCount, BodyBC.ContinueCount),
|
|
IncrementBC.ContinueCount);
|
|
if (const Expr *Cond = S->getCond()) {
|
|
propagateCounts(CondCount, Cond);
|
|
adjustForOutOfOrderTraversal(getEnd(S));
|
|
}
|
|
|
|
// The body count applies to the area immediately after the increment.
|
|
auto Gap = findGapAreaBetween(S->getRParenLoc(), getStart(S->getBody()));
|
|
if (Gap)
|
|
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), BodyCount);
|
|
|
|
Counter OutCount = addCounters(BodyBC.BreakCount, IncrementBC.BreakCount,
|
|
subtractCounters(CondCount, BodyCount));
|
|
if (OutCount != ParentCount) {
|
|
pushRegion(OutCount);
|
|
GapRegionCounter = OutCount;
|
|
if (BodyHasTerminateStmt)
|
|
HasTerminateStmt = true;
|
|
}
|
|
|
|
// Create Branch Region around condition.
|
|
createBranchRegion(S->getCond(), BodyCount,
|
|
subtractCounters(CondCount, BodyCount));
|
|
}
|
|
|
|
void VisitCXXForRangeStmt(const CXXForRangeStmt *S) {
|
|
extendRegion(S);
|
|
if (S->getInit())
|
|
Visit(S->getInit());
|
|
Visit(S->getLoopVarStmt());
|
|
Visit(S->getRangeStmt());
|
|
|
|
Counter ParentCount = getRegion().getCounter();
|
|
Counter BodyCount = getRegionCounter(S);
|
|
|
|
BreakContinueStack.push_back(BreakContinue());
|
|
extendRegion(S->getBody());
|
|
Counter BackedgeCount = propagateCounts(BodyCount, S->getBody());
|
|
BreakContinue BC = BreakContinueStack.pop_back_val();
|
|
|
|
bool BodyHasTerminateStmt = HasTerminateStmt;
|
|
HasTerminateStmt = false;
|
|
|
|
// The body count applies to the area immediately after the range.
|
|
auto Gap = findGapAreaBetween(S->getRParenLoc(), getStart(S->getBody()));
|
|
if (Gap)
|
|
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), BodyCount);
|
|
|
|
Counter LoopCount =
|
|
addCounters(ParentCount, BackedgeCount, BC.ContinueCount);
|
|
Counter OutCount =
|
|
addCounters(BC.BreakCount, subtractCounters(LoopCount, BodyCount));
|
|
if (OutCount != ParentCount) {
|
|
pushRegion(OutCount);
|
|
GapRegionCounter = OutCount;
|
|
if (BodyHasTerminateStmt)
|
|
HasTerminateStmt = true;
|
|
}
|
|
|
|
// Create Branch Region around condition.
|
|
createBranchRegion(S->getCond(), BodyCount,
|
|
subtractCounters(LoopCount, BodyCount));
|
|
}
|
|
|
|
void VisitObjCForCollectionStmt(const ObjCForCollectionStmt *S) {
|
|
extendRegion(S);
|
|
Visit(S->getElement());
|
|
|
|
Counter ParentCount = getRegion().getCounter();
|
|
Counter BodyCount = getRegionCounter(S);
|
|
|
|
BreakContinueStack.push_back(BreakContinue());
|
|
extendRegion(S->getBody());
|
|
Counter BackedgeCount = propagateCounts(BodyCount, S->getBody());
|
|
BreakContinue BC = BreakContinueStack.pop_back_val();
|
|
|
|
// The body count applies to the area immediately after the collection.
|
|
auto Gap = findGapAreaBetween(S->getRParenLoc(), getStart(S->getBody()));
|
|
if (Gap)
|
|
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), BodyCount);
|
|
|
|
Counter LoopCount =
|
|
addCounters(ParentCount, BackedgeCount, BC.ContinueCount);
|
|
Counter OutCount =
|
|
addCounters(BC.BreakCount, subtractCounters(LoopCount, BodyCount));
|
|
if (OutCount != ParentCount) {
|
|
pushRegion(OutCount);
|
|
GapRegionCounter = OutCount;
|
|
}
|
|
}
|
|
|
|
void VisitSwitchStmt(const SwitchStmt *S) {
|
|
extendRegion(S);
|
|
if (S->getInit())
|
|
Visit(S->getInit());
|
|
Visit(S->getCond());
|
|
|
|
BreakContinueStack.push_back(BreakContinue());
|
|
|
|
const Stmt *Body = S->getBody();
|
|
extendRegion(Body);
|
|
if (const auto *CS = dyn_cast<CompoundStmt>(Body)) {
|
|
if (!CS->body_empty()) {
|
|
// Make a region for the body of the switch. If the body starts with
|
|
// a case, that case will reuse this region; otherwise, this covers
|
|
// the unreachable code at the beginning of the switch body.
|
|
size_t Index = pushRegion(Counter::getZero(), getStart(CS));
|
|
getRegion().setGap(true);
|
|
Visit(Body);
|
|
|
|
// Set the end for the body of the switch, if it isn't already set.
|
|
for (size_t i = RegionStack.size(); i != Index; --i) {
|
|
if (!RegionStack[i - 1].hasEndLoc())
|
|
RegionStack[i - 1].setEndLoc(getEnd(CS->body_back()));
|
|
}
|
|
|
|
popRegions(Index);
|
|
}
|
|
} else
|
|
propagateCounts(Counter::getZero(), Body);
|
|
BreakContinue BC = BreakContinueStack.pop_back_val();
|
|
|
|
if (!BreakContinueStack.empty())
|
|
BreakContinueStack.back().ContinueCount = addCounters(
|
|
BreakContinueStack.back().ContinueCount, BC.ContinueCount);
|
|
|
|
Counter ParentCount = getRegion().getCounter();
|
|
Counter ExitCount = getRegionCounter(S);
|
|
SourceLocation ExitLoc = getEnd(S);
|
|
pushRegion(ExitCount);
|
|
GapRegionCounter = ExitCount;
|
|
|
|
// Ensure that handleFileExit recognizes when the end location is located
|
|
// in a different file.
|
|
MostRecentLocation = getStart(S);
|
|
handleFileExit(ExitLoc);
|
|
|
|
// Create a Branch Region around each Case. Subtract the case's
|
|
// counter from the Parent counter to track the "False" branch count.
|
|
Counter CaseCountSum;
|
|
bool HasDefaultCase = false;
|
|
const SwitchCase *Case = S->getSwitchCaseList();
|
|
for (; Case; Case = Case->getNextSwitchCase()) {
|
|
HasDefaultCase = HasDefaultCase || isa<DefaultStmt>(Case);
|
|
CaseCountSum =
|
|
addCounters(CaseCountSum, getRegionCounter(Case), /*Simplify=*/false);
|
|
createSwitchCaseRegion(
|
|
Case, getRegionCounter(Case),
|
|
subtractCounters(ParentCount, getRegionCounter(Case)));
|
|
}
|
|
// Simplify is skipped while building the counters above: it can get really
|
|
// slow on top of switches with thousands of cases. Instead, trigger
|
|
// simplification by adding zero to the last counter.
|
|
CaseCountSum = addCounters(CaseCountSum, Counter::getZero());
|
|
|
|
// If no explicit default case exists, create a branch region to represent
|
|
// the hidden branch, which will be added later by the CodeGen. This region
|
|
// will be associated with the switch statement's condition.
|
|
if (!HasDefaultCase) {
|
|
Counter DefaultTrue = subtractCounters(ParentCount, CaseCountSum);
|
|
Counter DefaultFalse = subtractCounters(ParentCount, DefaultTrue);
|
|
createBranchRegion(S->getCond(), DefaultTrue, DefaultFalse);
|
|
}
|
|
}
|
|
|
|
void VisitSwitchCase(const SwitchCase *S) {
|
|
extendRegion(S);
|
|
|
|
SourceMappingRegion &Parent = getRegion();
|
|
|
|
Counter Count = addCounters(Parent.getCounter(), getRegionCounter(S));
|
|
// Reuse the existing region if it starts at our label. This is typical of
|
|
// the first case in a switch.
|
|
if (Parent.hasStartLoc() && Parent.getBeginLoc() == getStart(S))
|
|
Parent.setCounter(Count);
|
|
else
|
|
pushRegion(Count, getStart(S));
|
|
|
|
GapRegionCounter = Count;
|
|
|
|
if (const auto *CS = dyn_cast<CaseStmt>(S)) {
|
|
Visit(CS->getLHS());
|
|
if (const Expr *RHS = CS->getRHS())
|
|
Visit(RHS);
|
|
}
|
|
Visit(S->getSubStmt());
|
|
}
|
|
|
|
void coverIfConsteval(const IfStmt *S) {
|
|
assert(S->isConsteval());
|
|
|
|
const auto *Then = S->getThen();
|
|
const auto *Else = S->getElse();
|
|
|
|
// It's better for llvm-cov to create a new region with same counter
|
|
// so line-coverage can be properly calculated for lines containing
|
|
// a skipped region (without it the line is marked uncovered)
|
|
const Counter ParentCount = getRegion().getCounter();
|
|
|
|
extendRegion(S);
|
|
|
|
if (S->isNegatedConsteval()) {
|
|
// ignore 'if consteval'
|
|
markSkipped(S->getIfLoc(), getStart(Then));
|
|
propagateCounts(ParentCount, Then);
|
|
|
|
if (Else) {
|
|
// ignore 'else <else>'
|
|
markSkipped(getEnd(Then), getEnd(Else));
|
|
}
|
|
} else {
|
|
assert(S->isNonNegatedConsteval());
|
|
// ignore 'if consteval <then> [else]'
|
|
markSkipped(S->getIfLoc(), Else ? getStart(Else) : getEnd(Then));
|
|
|
|
if (Else)
|
|
propagateCounts(ParentCount, Else);
|
|
}
|
|
}
|
|
|
|
void coverIfConstexpr(const IfStmt *S) {
|
|
assert(S->isConstexpr());
|
|
|
|
// evaluate constant condition...
|
|
const auto *E = cast<ConstantExpr>(S->getCond());
|
|
const bool isTrue = E->getResultAsAPSInt().getExtValue();
|
|
|
|
extendRegion(S);
|
|
|
|
// I'm using 'propagateCounts' later as new region is better and allows me
|
|
// to properly calculate line coverage in llvm-cov utility
|
|
const Counter ParentCount = getRegion().getCounter();
|
|
|
|
// ignore 'if constexpr ('
|
|
SourceLocation startOfSkipped = S->getIfLoc();
|
|
|
|
if (const auto *Init = S->getInit()) {
|
|
const auto start = getStart(Init);
|
|
const auto end = getEnd(Init);
|
|
|
|
// this check is to make sure typedef here which doesn't have valid source
|
|
// location won't crash it
|
|
if (start.isValid() && end.isValid()) {
|
|
markSkipped(startOfSkipped, start);
|
|
propagateCounts(ParentCount, Init);
|
|
startOfSkipped = getEnd(Init);
|
|
}
|
|
}
|
|
|
|
const auto *Then = S->getThen();
|
|
const auto *Else = S->getElse();
|
|
|
|
if (isTrue) {
|
|
// ignore '<condition>)'
|
|
markSkipped(startOfSkipped, getStart(Then));
|
|
propagateCounts(ParentCount, Then);
|
|
|
|
if (Else)
|
|
// ignore 'else <else>'
|
|
markSkipped(getEnd(Then), getEnd(Else));
|
|
} else {
|
|
// ignore '<condition>) <then> [else]'
|
|
markSkipped(startOfSkipped, Else ? getStart(Else) : getEnd(Then));
|
|
|
|
if (Else)
|
|
propagateCounts(ParentCount, Else);
|
|
}
|
|
}
|
|
|
|
void VisitIfStmt(const IfStmt *S) {
|
|
// "if constexpr" and "if consteval" are not normal conditional statements,
|
|
// their discarded statement should be skipped
|
|
if (S->isConsteval())
|
|
return coverIfConsteval(S);
|
|
else if (S->isConstexpr())
|
|
return coverIfConstexpr(S);
|
|
|
|
extendRegion(S);
|
|
if (S->getInit())
|
|
Visit(S->getInit());
|
|
|
|
// Extend into the condition before we propagate through it below - this is
|
|
// needed to handle macros that generate the "if" but not the condition.
|
|
extendRegion(S->getCond());
|
|
|
|
Counter ParentCount = getRegion().getCounter();
|
|
Counter ThenCount = getRegionCounter(S);
|
|
|
|
// Emitting a counter for the condition makes it easier to interpret the
|
|
// counter for the body when looking at the coverage.
|
|
propagateCounts(ParentCount, S->getCond());
|
|
|
|
// The 'then' count applies to the area immediately after the condition.
|
|
std::optional<SourceRange> Gap =
|
|
findGapAreaBetween(S->getRParenLoc(), getStart(S->getThen()));
|
|
if (Gap)
|
|
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), ThenCount);
|
|
|
|
extendRegion(S->getThen());
|
|
Counter OutCount = propagateCounts(ThenCount, S->getThen());
|
|
Counter ElseCount = subtractCounters(ParentCount, ThenCount);
|
|
|
|
if (const Stmt *Else = S->getElse()) {
|
|
bool ThenHasTerminateStmt = HasTerminateStmt;
|
|
HasTerminateStmt = false;
|
|
// The 'else' count applies to the area immediately after the 'then'.
|
|
std::optional<SourceRange> Gap =
|
|
findGapAreaBetween(getEnd(S->getThen()), getStart(Else));
|
|
if (Gap)
|
|
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), ElseCount);
|
|
extendRegion(Else);
|
|
OutCount = addCounters(OutCount, propagateCounts(ElseCount, Else));
|
|
|
|
if (ThenHasTerminateStmt)
|
|
HasTerminateStmt = true;
|
|
} else
|
|
OutCount = addCounters(OutCount, ElseCount);
|
|
|
|
if (OutCount != ParentCount) {
|
|
pushRegion(OutCount);
|
|
GapRegionCounter = OutCount;
|
|
}
|
|
|
|
// Create Branch Region around condition.
|
|
createBranchRegion(S->getCond(), ThenCount,
|
|
subtractCounters(ParentCount, ThenCount));
|
|
}
|
|
|
|
void VisitCXXTryStmt(const CXXTryStmt *S) {
|
|
extendRegion(S);
|
|
// Handle macros that generate the "try" but not the rest.
|
|
extendRegion(S->getTryBlock());
|
|
|
|
Counter ParentCount = getRegion().getCounter();
|
|
propagateCounts(ParentCount, S->getTryBlock());
|
|
|
|
for (unsigned I = 0, E = S->getNumHandlers(); I < E; ++I)
|
|
Visit(S->getHandler(I));
|
|
|
|
Counter ExitCount = getRegionCounter(S);
|
|
pushRegion(ExitCount);
|
|
}
|
|
|
|
void VisitCXXCatchStmt(const CXXCatchStmt *S) {
|
|
propagateCounts(getRegionCounter(S), S->getHandlerBlock());
|
|
}
|
|
|
|
void VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
|
|
extendRegion(E);
|
|
|
|
Counter ParentCount = getRegion().getCounter();
|
|
Counter TrueCount = getRegionCounter(E);
|
|
|
|
propagateCounts(ParentCount, E->getCond());
|
|
Counter OutCount;
|
|
|
|
if (!isa<BinaryConditionalOperator>(E)) {
|
|
// The 'then' count applies to the area immediately after the condition.
|
|
auto Gap =
|
|
findGapAreaBetween(E->getQuestionLoc(), getStart(E->getTrueExpr()));
|
|
if (Gap)
|
|
fillGapAreaWithCount(Gap->getBegin(), Gap->getEnd(), TrueCount);
|
|
|
|
extendRegion(E->getTrueExpr());
|
|
OutCount = propagateCounts(TrueCount, E->getTrueExpr());
|
|
}
|
|
|
|
extendRegion(E->getFalseExpr());
|
|
OutCount = addCounters(
|
|
OutCount, propagateCounts(subtractCounters(ParentCount, TrueCount),
|
|
E->getFalseExpr()));
|
|
|
|
if (OutCount != ParentCount) {
|
|
pushRegion(OutCount);
|
|
GapRegionCounter = OutCount;
|
|
}
|
|
|
|
// Create Branch Region around condition.
|
|
createBranchRegion(E->getCond(), TrueCount,
|
|
subtractCounters(ParentCount, TrueCount));
|
|
}
|
|
|
|
void VisitBinLAnd(const BinaryOperator *E) {
|
|
bool IsRootNode = MCDCBuilder.isIdle();
|
|
|
|
// Keep track of Binary Operator and assign MCDC condition IDs.
|
|
MCDCBuilder.pushAndAssignIDs(E);
|
|
|
|
extendRegion(E->getLHS());
|
|
propagateCounts(getRegion().getCounter(), E->getLHS());
|
|
handleFileExit(getEnd(E->getLHS()));
|
|
|
|
// Track LHS True/False Decision.
|
|
const auto DecisionLHS = MCDCBuilder.pop();
|
|
|
|
// Counter tracks the right hand side of a logical and operator.
|
|
extendRegion(E->getRHS());
|
|
propagateCounts(getRegionCounter(E), E->getRHS());
|
|
|
|
// Track RHS True/False Decision.
|
|
const auto DecisionRHS = MCDCBuilder.back();
|
|
|
|
// Create MCDC Decision Region if at top-level (root).
|
|
unsigned NumConds = 0;
|
|
if (IsRootNode && (NumConds = MCDCBuilder.getTotalConditionsAndReset(E)))
|
|
createDecisionRegion(E, getRegionBitmap(E), NumConds);
|
|
|
|
// Extract the RHS's Execution Counter.
|
|
Counter RHSExecCnt = getRegionCounter(E);
|
|
|
|
// Extract the RHS's "True" Instance Counter.
|
|
Counter RHSTrueCnt = getRegionCounter(E->getRHS());
|
|
|
|
// Extract the Parent Region Counter.
|
|
Counter ParentCnt = getRegion().getCounter();
|
|
|
|
// Create Branch Region around LHS condition.
|
|
createBranchRegion(E->getLHS(), RHSExecCnt,
|
|
subtractCounters(ParentCnt, RHSExecCnt), DecisionLHS);
|
|
|
|
// Create Branch Region around RHS condition.
|
|
createBranchRegion(E->getRHS(), RHSTrueCnt,
|
|
subtractCounters(RHSExecCnt, RHSTrueCnt), DecisionRHS);
|
|
}
|
|
|
|
// Determine whether the right side of OR operation need to be visited.
|
|
bool shouldVisitRHS(const Expr *LHS) {
|
|
bool LHSIsTrue = false;
|
|
bool LHSIsConst = false;
|
|
if (!LHS->isValueDependent())
|
|
LHSIsConst = LHS->EvaluateAsBooleanCondition(
|
|
LHSIsTrue, CVM.getCodeGenModule().getContext());
|
|
return !LHSIsConst || (LHSIsConst && !LHSIsTrue);
|
|
}
|
|
|
|
void VisitBinLOr(const BinaryOperator *E) {
|
|
bool IsRootNode = MCDCBuilder.isIdle();
|
|
|
|
// Keep track of Binary Operator and assign MCDC condition IDs.
|
|
MCDCBuilder.pushAndAssignIDs(E);
|
|
|
|
extendRegion(E->getLHS());
|
|
Counter OutCount = propagateCounts(getRegion().getCounter(), E->getLHS());
|
|
handleFileExit(getEnd(E->getLHS()));
|
|
|
|
// Track LHS True/False Decision.
|
|
const auto DecisionLHS = MCDCBuilder.pop();
|
|
|
|
// Counter tracks the right hand side of a logical or operator.
|
|
extendRegion(E->getRHS());
|
|
propagateCounts(getRegionCounter(E), E->getRHS());
|
|
|
|
// Track RHS True/False Decision.
|
|
const auto DecisionRHS = MCDCBuilder.back();
|
|
|
|
// Create MCDC Decision Region if at top-level (root).
|
|
unsigned NumConds = 0;
|
|
if (IsRootNode && (NumConds = MCDCBuilder.getTotalConditionsAndReset(E)))
|
|
createDecisionRegion(E, getRegionBitmap(E), NumConds);
|
|
|
|
// Extract the RHS's Execution Counter.
|
|
Counter RHSExecCnt = getRegionCounter(E);
|
|
|
|
// Extract the RHS's "False" Instance Counter.
|
|
Counter RHSFalseCnt = getRegionCounter(E->getRHS());
|
|
|
|
if (!shouldVisitRHS(E->getLHS())) {
|
|
GapRegionCounter = OutCount;
|
|
}
|
|
|
|
// Extract the Parent Region Counter.
|
|
Counter ParentCnt = getRegion().getCounter();
|
|
|
|
// Create Branch Region around LHS condition.
|
|
createBranchRegion(E->getLHS(), subtractCounters(ParentCnt, RHSExecCnt),
|
|
RHSExecCnt, DecisionLHS);
|
|
|
|
// Create Branch Region around RHS condition.
|
|
createBranchRegion(E->getRHS(), subtractCounters(RHSExecCnt, RHSFalseCnt),
|
|
RHSFalseCnt, DecisionRHS);
|
|
}
|
|
|
|
void VisitLambdaExpr(const LambdaExpr *LE) {
|
|
// Lambdas are treated as their own functions for now, so we shouldn't
|
|
// propagate counts into them.
|
|
}
|
|
|
|
void VisitPseudoObjectExpr(const PseudoObjectExpr *POE) {
|
|
// Just visit syntatic expression as this is what users actually write.
|
|
VisitStmt(POE->getSyntacticForm());
|
|
}
|
|
|
|
void VisitOpaqueValueExpr(const OpaqueValueExpr* OVE) {
|
|
Visit(OVE->getSourceExpr());
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
static void dump(llvm::raw_ostream &OS, StringRef FunctionName,
|
|
ArrayRef<CounterExpression> Expressions,
|
|
ArrayRef<CounterMappingRegion> Regions) {
|
|
OS << FunctionName << ":\n";
|
|
CounterMappingContext Ctx(Expressions);
|
|
for (const auto &R : Regions) {
|
|
OS.indent(2);
|
|
switch (R.Kind) {
|
|
case CounterMappingRegion::CodeRegion:
|
|
break;
|
|
case CounterMappingRegion::ExpansionRegion:
|
|
OS << "Expansion,";
|
|
break;
|
|
case CounterMappingRegion::SkippedRegion:
|
|
OS << "Skipped,";
|
|
break;
|
|
case CounterMappingRegion::GapRegion:
|
|
OS << "Gap,";
|
|
break;
|
|
case CounterMappingRegion::BranchRegion:
|
|
case CounterMappingRegion::MCDCBranchRegion:
|
|
OS << "Branch,";
|
|
break;
|
|
case CounterMappingRegion::MCDCDecisionRegion:
|
|
OS << "Decision,";
|
|
break;
|
|
}
|
|
|
|
OS << "File " << R.FileID << ", " << R.LineStart << ":" << R.ColumnStart
|
|
<< " -> " << R.LineEnd << ":" << R.ColumnEnd << " = ";
|
|
|
|
if (R.Kind == CounterMappingRegion::MCDCDecisionRegion) {
|
|
OS << "M:" << R.MCDCParams.BitmapIdx;
|
|
OS << ", C:" << R.MCDCParams.NumConditions;
|
|
} else {
|
|
Ctx.dump(R.Count, OS);
|
|
|
|
if (R.Kind == CounterMappingRegion::BranchRegion ||
|
|
R.Kind == CounterMappingRegion::MCDCBranchRegion) {
|
|
OS << ", ";
|
|
Ctx.dump(R.FalseCount, OS);
|
|
}
|
|
}
|
|
|
|
if (R.Kind == CounterMappingRegion::MCDCBranchRegion) {
|
|
OS << " [" << R.MCDCParams.ID << "," << R.MCDCParams.TrueID;
|
|
OS << "," << R.MCDCParams.FalseID << "] ";
|
|
}
|
|
|
|
if (R.Kind == CounterMappingRegion::ExpansionRegion)
|
|
OS << " (Expanded file = " << R.ExpandedFileID << ")";
|
|
OS << "\n";
|
|
}
|
|
}
|
|
|
|
CoverageMappingModuleGen::CoverageMappingModuleGen(
|
|
CodeGenModule &CGM, CoverageSourceInfo &SourceInfo)
|
|
: CGM(CGM), SourceInfo(SourceInfo) {}
|
|
|
|
std::string CoverageMappingModuleGen::getCurrentDirname() {
|
|
if (!CGM.getCodeGenOpts().CoverageCompilationDir.empty())
|
|
return CGM.getCodeGenOpts().CoverageCompilationDir;
|
|
|
|
SmallString<256> CWD;
|
|
llvm::sys::fs::current_path(CWD);
|
|
return CWD.str().str();
|
|
}
|
|
|
|
std::string CoverageMappingModuleGen::normalizeFilename(StringRef Filename) {
|
|
llvm::SmallString<256> Path(Filename);
|
|
llvm::sys::path::remove_dots(Path, /*remove_dot_dot=*/true);
|
|
|
|
/// Traverse coverage prefix map in reverse order because prefix replacements
|
|
/// are applied in reverse order starting from the last one when multiple
|
|
/// prefix replacement options are provided.
|
|
for (const auto &[From, To] :
|
|
llvm::reverse(CGM.getCodeGenOpts().CoveragePrefixMap)) {
|
|
if (llvm::sys::path::replace_path_prefix(Path, From, To))
|
|
break;
|
|
}
|
|
return Path.str().str();
|
|
}
|
|
|
|
static std::string getInstrProfSection(const CodeGenModule &CGM,
|
|
llvm::InstrProfSectKind SK) {
|
|
return llvm::getInstrProfSectionName(
|
|
SK, CGM.getContext().getTargetInfo().getTriple().getObjectFormat());
|
|
}
|
|
|
|
void CoverageMappingModuleGen::emitFunctionMappingRecord(
|
|
const FunctionInfo &Info, uint64_t FilenamesRef) {
|
|
llvm::LLVMContext &Ctx = CGM.getLLVMContext();
|
|
|
|
// Assign a name to the function record. This is used to merge duplicates.
|
|
std::string FuncRecordName = "__covrec_" + llvm::utohexstr(Info.NameHash);
|
|
|
|
// A dummy description for a function included-but-not-used in a TU can be
|
|
// replaced by full description provided by a different TU. The two kinds of
|
|
// descriptions play distinct roles: therefore, assign them different names
|
|
// to prevent `linkonce_odr` merging.
|
|
if (Info.IsUsed)
|
|
FuncRecordName += "u";
|
|
|
|
// Create the function record type.
|
|
const uint64_t NameHash = Info.NameHash;
|
|
const uint64_t FuncHash = Info.FuncHash;
|
|
const std::string &CoverageMapping = Info.CoverageMapping;
|
|
#define COVMAP_FUNC_RECORD(Type, LLVMType, Name, Init) LLVMType,
|
|
llvm::Type *FunctionRecordTypes[] = {
|
|
#include "llvm/ProfileData/InstrProfData.inc"
|
|
};
|
|
auto *FunctionRecordTy =
|
|
llvm::StructType::get(Ctx, ArrayRef(FunctionRecordTypes),
|
|
/*isPacked=*/true);
|
|
|
|
// Create the function record constant.
|
|
#define COVMAP_FUNC_RECORD(Type, LLVMType, Name, Init) Init,
|
|
llvm::Constant *FunctionRecordVals[] = {
|
|
#include "llvm/ProfileData/InstrProfData.inc"
|
|
};
|
|
auto *FuncRecordConstant =
|
|
llvm::ConstantStruct::get(FunctionRecordTy, ArrayRef(FunctionRecordVals));
|
|
|
|
// Create the function record global.
|
|
auto *FuncRecord = new llvm::GlobalVariable(
|
|
CGM.getModule(), FunctionRecordTy, /*isConstant=*/true,
|
|
llvm::GlobalValue::LinkOnceODRLinkage, FuncRecordConstant,
|
|
FuncRecordName);
|
|
FuncRecord->setVisibility(llvm::GlobalValue::HiddenVisibility);
|
|
FuncRecord->setSection(getInstrProfSection(CGM, llvm::IPSK_covfun));
|
|
FuncRecord->setAlignment(llvm::Align(8));
|
|
if (CGM.supportsCOMDAT())
|
|
FuncRecord->setComdat(CGM.getModule().getOrInsertComdat(FuncRecordName));
|
|
|
|
// Make sure the data doesn't get deleted.
|
|
CGM.addUsedGlobal(FuncRecord);
|
|
}
|
|
|
|
void CoverageMappingModuleGen::addFunctionMappingRecord(
|
|
llvm::GlobalVariable *NamePtr, StringRef NameValue, uint64_t FuncHash,
|
|
const std::string &CoverageMapping, bool IsUsed) {
|
|
const uint64_t NameHash = llvm::IndexedInstrProf::ComputeHash(NameValue);
|
|
FunctionRecords.push_back({NameHash, FuncHash, CoverageMapping, IsUsed});
|
|
|
|
if (!IsUsed)
|
|
FunctionNames.push_back(NamePtr);
|
|
|
|
if (CGM.getCodeGenOpts().DumpCoverageMapping) {
|
|
// Dump the coverage mapping data for this function by decoding the
|
|
// encoded data. This allows us to dump the mapping regions which were
|
|
// also processed by the CoverageMappingWriter which performs
|
|
// additional minimization operations such as reducing the number of
|
|
// expressions.
|
|
llvm::SmallVector<std::string, 16> FilenameStrs;
|
|
std::vector<StringRef> Filenames;
|
|
std::vector<CounterExpression> Expressions;
|
|
std::vector<CounterMappingRegion> Regions;
|
|
FilenameStrs.resize(FileEntries.size() + 1);
|
|
FilenameStrs[0] = normalizeFilename(getCurrentDirname());
|
|
for (const auto &Entry : FileEntries) {
|
|
auto I = Entry.second;
|
|
FilenameStrs[I] = normalizeFilename(Entry.first.getName());
|
|
}
|
|
ArrayRef<std::string> FilenameRefs = llvm::ArrayRef(FilenameStrs);
|
|
RawCoverageMappingReader Reader(CoverageMapping, FilenameRefs, Filenames,
|
|
Expressions, Regions);
|
|
if (Reader.read())
|
|
return;
|
|
dump(llvm::outs(), NameValue, Expressions, Regions);
|
|
}
|
|
}
|
|
|
|
void CoverageMappingModuleGen::emit() {
|
|
if (FunctionRecords.empty())
|
|
return;
|
|
llvm::LLVMContext &Ctx = CGM.getLLVMContext();
|
|
auto *Int32Ty = llvm::Type::getInt32Ty(Ctx);
|
|
|
|
// Create the filenames and merge them with coverage mappings
|
|
llvm::SmallVector<std::string, 16> FilenameStrs;
|
|
FilenameStrs.resize(FileEntries.size() + 1);
|
|
// The first filename is the current working directory.
|
|
FilenameStrs[0] = normalizeFilename(getCurrentDirname());
|
|
for (const auto &Entry : FileEntries) {
|
|
auto I = Entry.second;
|
|
FilenameStrs[I] = normalizeFilename(Entry.first.getName());
|
|
}
|
|
|
|
std::string Filenames;
|
|
{
|
|
llvm::raw_string_ostream OS(Filenames);
|
|
CoverageFilenamesSectionWriter(FilenameStrs).write(OS);
|
|
}
|
|
auto *FilenamesVal =
|
|
llvm::ConstantDataArray::getString(Ctx, Filenames, false);
|
|
const int64_t FilenamesRef = llvm::IndexedInstrProf::ComputeHash(Filenames);
|
|
|
|
// Emit the function records.
|
|
for (const FunctionInfo &Info : FunctionRecords)
|
|
emitFunctionMappingRecord(Info, FilenamesRef);
|
|
|
|
const unsigned NRecords = 0;
|
|
const size_t FilenamesSize = Filenames.size();
|
|
const unsigned CoverageMappingSize = 0;
|
|
llvm::Type *CovDataHeaderTypes[] = {
|
|
#define COVMAP_HEADER(Type, LLVMType, Name, Init) LLVMType,
|
|
#include "llvm/ProfileData/InstrProfData.inc"
|
|
};
|
|
auto CovDataHeaderTy =
|
|
llvm::StructType::get(Ctx, ArrayRef(CovDataHeaderTypes));
|
|
llvm::Constant *CovDataHeaderVals[] = {
|
|
#define COVMAP_HEADER(Type, LLVMType, Name, Init) Init,
|
|
#include "llvm/ProfileData/InstrProfData.inc"
|
|
};
|
|
auto CovDataHeaderVal =
|
|
llvm::ConstantStruct::get(CovDataHeaderTy, ArrayRef(CovDataHeaderVals));
|
|
|
|
// Create the coverage data record
|
|
llvm::Type *CovDataTypes[] = {CovDataHeaderTy, FilenamesVal->getType()};
|
|
auto CovDataTy = llvm::StructType::get(Ctx, ArrayRef(CovDataTypes));
|
|
llvm::Constant *TUDataVals[] = {CovDataHeaderVal, FilenamesVal};
|
|
auto CovDataVal = llvm::ConstantStruct::get(CovDataTy, ArrayRef(TUDataVals));
|
|
auto CovData = new llvm::GlobalVariable(
|
|
CGM.getModule(), CovDataTy, true, llvm::GlobalValue::PrivateLinkage,
|
|
CovDataVal, llvm::getCoverageMappingVarName());
|
|
|
|
CovData->setSection(getInstrProfSection(CGM, llvm::IPSK_covmap));
|
|
CovData->setAlignment(llvm::Align(8));
|
|
|
|
// Make sure the data doesn't get deleted.
|
|
CGM.addUsedGlobal(CovData);
|
|
// Create the deferred function records array
|
|
if (!FunctionNames.empty()) {
|
|
auto NamesArrTy = llvm::ArrayType::get(llvm::PointerType::getUnqual(Ctx),
|
|
FunctionNames.size());
|
|
auto NamesArrVal = llvm::ConstantArray::get(NamesArrTy, FunctionNames);
|
|
// This variable will *NOT* be emitted to the object file. It is used
|
|
// to pass the list of names referenced to codegen.
|
|
new llvm::GlobalVariable(CGM.getModule(), NamesArrTy, true,
|
|
llvm::GlobalValue::InternalLinkage, NamesArrVal,
|
|
llvm::getCoverageUnusedNamesVarName());
|
|
}
|
|
}
|
|
|
|
unsigned CoverageMappingModuleGen::getFileID(FileEntryRef File) {
|
|
auto It = FileEntries.find(File);
|
|
if (It != FileEntries.end())
|
|
return It->second;
|
|
unsigned FileID = FileEntries.size() + 1;
|
|
FileEntries.insert(std::make_pair(File, FileID));
|
|
return FileID;
|
|
}
|
|
|
|
void CoverageMappingGen::emitCounterMapping(const Decl *D,
|
|
llvm::raw_ostream &OS) {
|
|
assert(CounterMap && MCDCBitmapMap);
|
|
CounterCoverageMappingBuilder Walker(CVM, *CounterMap, *MCDCBitmapMap,
|
|
*CondIDMap, SM, LangOpts);
|
|
Walker.VisitDecl(D);
|
|
Walker.write(OS);
|
|
}
|
|
|
|
void CoverageMappingGen::emitEmptyMapping(const Decl *D,
|
|
llvm::raw_ostream &OS) {
|
|
EmptyCoverageMappingBuilder Walker(CVM, SM, LangOpts);
|
|
Walker.VisitDecl(D);
|
|
Walker.write(OS);
|
|
}
|