llvm-project/flang/lib/Optimizer/CodeGen/TargetRewrite.cpp
jeanPerier a78359c2ed
[flang] add procedure flags to fir.dispatch (#110970)
Currently, it is not possible to distinguish between BIND(C) from
non-BIND(C) type bound procedure call at the FIR level.
This will be a problem when dealing with derived type BIND(C) function
where the ABI differ between BIND(C)/non-BIND(C) but the FIR signature
looks like the same at the FIR level.

Fix this by adding the Fortran procedure attributes to fir.distpatch,
and propagating it until the related fir.call is generated in
fir.dispatch codegen.
2024-10-03 17:10:03 +02:00

1259 lines
54 KiB
C++

//===-- TargetRewrite.cpp -------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Target rewrite: rewriting of ops to make target-specific lowerings manifest.
// LLVM expects different lowering idioms to be used for distinct target
// triples. These distinctions are handled by this pass.
//
// Coding style: https://mlir.llvm.org/getting_started/DeveloperGuide/
//
//===----------------------------------------------------------------------===//
#include "flang/Optimizer/CodeGen/CodeGen.h"
#include "flang/Optimizer/Builder/Character.h"
#include "flang/Optimizer/Builder/FIRBuilder.h"
#include "flang/Optimizer/Builder/Todo.h"
#include "flang/Optimizer/CodeGen/Target.h"
#include "flang/Optimizer/Dialect/FIRDialect.h"
#include "flang/Optimizer/Dialect/FIROps.h"
#include "flang/Optimizer/Dialect/FIROpsSupport.h"
#include "flang/Optimizer/Dialect/FIRType.h"
#include "flang/Optimizer/Dialect/Support/FIRContext.h"
#include "flang/Optimizer/Support/DataLayout.h"
#include "mlir/Dialect/DLTI/DLTI.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Debug.h"
#include <optional>
namespace fir {
#define GEN_PASS_DEF_TARGETREWRITEPASS
#include "flang/Optimizer/CodeGen/CGPasses.h.inc"
} // namespace fir
#define DEBUG_TYPE "flang-target-rewrite"
namespace {
/// Fixups for updating a FuncOp's arguments and return values.
struct FixupTy {
enum class Codes {
ArgumentAsLoad,
ArgumentType,
CharPair,
ReturnAsStore,
ReturnType,
Split,
Trailing,
TrailingCharProc
};
FixupTy(Codes code, std::size_t index, std::size_t second = 0)
: code{code}, index{index}, second{second} {}
FixupTy(Codes code, std::size_t index,
std::function<void(mlir::func::FuncOp)> &&finalizer)
: code{code}, index{index}, finalizer{finalizer} {}
FixupTy(Codes code, std::size_t index, std::size_t second,
std::function<void(mlir::func::FuncOp)> &&finalizer)
: code{code}, index{index}, second{second}, finalizer{finalizer} {}
Codes code;
std::size_t index;
std::size_t second{};
std::optional<std::function<void(mlir::func::FuncOp)>> finalizer{};
}; // namespace
/// Target-specific rewriting of the FIR. This is a prerequisite pass to code
/// generation that traverses the FIR and modifies types and operations to a
/// form that is appropriate for the specific target. LLVM IR has specific
/// idioms that are used for distinct target processor and ABI combinations.
class TargetRewrite : public fir::impl::TargetRewritePassBase<TargetRewrite> {
public:
using TargetRewritePassBase<TargetRewrite>::TargetRewritePassBase;
void runOnOperation() override final {
auto &context = getContext();
mlir::OpBuilder rewriter(&context);
auto mod = getModule();
if (!forcedTargetTriple.empty())
fir::setTargetTriple(mod, forcedTargetTriple);
if (!forcedTargetCPU.empty())
fir::setTargetCPU(mod, forcedTargetCPU);
if (!forcedTuneCPU.empty())
fir::setTuneCPU(mod, forcedTuneCPU);
if (!forcedTargetFeatures.empty())
fir::setTargetFeatures(mod, forcedTargetFeatures);
// TargetRewrite will require querying the type storage sizes, if it was
// not set already, create a DataLayoutSpec for the ModuleOp now.
std::optional<mlir::DataLayout> dl =
fir::support::getOrSetDataLayout(mod, /*allowDefaultLayout=*/true);
if (!dl) {
mlir::emitError(mod.getLoc(),
"module operation must carry a data layout attribute "
"to perform target ABI rewrites on FIR");
signalPassFailure();
return;
}
auto specifics = fir::CodeGenSpecifics::get(
mod.getContext(), fir::getTargetTriple(mod), fir::getKindMapping(mod),
fir::getTargetCPU(mod), fir::getTargetFeatures(mod), *dl,
fir::getTuneCPU(mod));
setMembers(specifics.get(), &rewriter, &*dl);
// Perform type conversion on signatures and call sites.
if (mlir::failed(convertTypes(mod))) {
mlir::emitError(mlir::UnknownLoc::get(&context),
"error in converting types to target abi");
signalPassFailure();
}
// Convert ops in target-specific patterns.
mod.walk([&](mlir::Operation *op) {
if (auto call = mlir::dyn_cast<fir::CallOp>(op)) {
if (!hasPortableSignature(call.getFunctionType(), op))
convertCallOp(call);
} else if (auto dispatch = mlir::dyn_cast<fir::DispatchOp>(op)) {
if (!hasPortableSignature(dispatch.getFunctionType(), op))
convertCallOp(dispatch);
} else if (auto addr = mlir::dyn_cast<fir::AddrOfOp>(op)) {
if (mlir::isa<mlir::FunctionType>(addr.getType()) &&
!hasPortableSignature(addr.getType(), op))
convertAddrOp(addr);
}
});
clearMembers();
}
mlir::ModuleOp getModule() { return getOperation(); }
template <typename A, typename B, typename C>
std::optional<std::function<mlir::Value(mlir::Operation *)>>
rewriteCallComplexResultType(
mlir::Location loc, A ty, B &newResTys,
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs, C &newOpers,
mlir::Value &savedStackPtr) {
if (noComplexConversion) {
newResTys.push_back(ty);
return std::nullopt;
}
auto m = specifics->complexReturnType(loc, ty.getElementType());
// Currently targets mandate COMPLEX is a single aggregate or packed
// scalar, including the sret case.
assert(m.size() == 1 && "target of complex return not supported");
auto resTy = std::get<mlir::Type>(m[0]);
auto attr = std::get<fir::CodeGenSpecifics::Attributes>(m[0]);
if (attr.isSRet()) {
assert(fir::isa_ref_type(resTy) && "must be a memory reference type");
// Save the stack pointer, if it has not been saved for this call yet.
// We will need to restore it after the call, because the alloca
// needs to be deallocated.
if (!savedStackPtr)
savedStackPtr = genStackSave(loc);
mlir::Value stack =
rewriter->create<fir::AllocaOp>(loc, fir::dyn_cast_ptrEleTy(resTy));
newInTyAndAttrs.push_back(m[0]);
newOpers.push_back(stack);
return [=](mlir::Operation *) -> mlir::Value {
auto memTy = fir::ReferenceType::get(ty);
auto cast = rewriter->create<fir::ConvertOp>(loc, memTy, stack);
return rewriter->create<fir::LoadOp>(loc, cast);
};
}
newResTys.push_back(resTy);
return [=, &savedStackPtr](mlir::Operation *call) -> mlir::Value {
// We are going to generate an alloca, so save the stack pointer.
if (!savedStackPtr)
savedStackPtr = genStackSave(loc);
return this->convertValueInMemory(loc, call->getResult(0), ty,
/*inputMayBeBigger=*/true);
};
}
void passArgumentOnStackOrWithNewType(
mlir::Location loc, fir::CodeGenSpecifics::TypeAndAttr newTypeAndAttr,
mlir::Type oldType, mlir::Value oper,
llvm::SmallVectorImpl<mlir::Value> &newOpers,
mlir::Value &savedStackPtr) {
auto resTy = std::get<mlir::Type>(newTypeAndAttr);
auto attr = std::get<fir::CodeGenSpecifics::Attributes>(newTypeAndAttr);
// We are going to generate an alloca, so save the stack pointer.
if (!savedStackPtr)
savedStackPtr = genStackSave(loc);
if (attr.isByVal()) {
mlir::Value mem = rewriter->create<fir::AllocaOp>(loc, oldType);
rewriter->create<fir::StoreOp>(loc, oper, mem);
if (mem.getType() != resTy)
mem = rewriter->create<fir::ConvertOp>(loc, resTy, mem);
newOpers.push_back(mem);
} else {
mlir::Value bitcast =
convertValueInMemory(loc, oper, resTy, /*inputMayBeBigger=*/false);
newOpers.push_back(bitcast);
}
}
// Do a bitcast (convert a value via its memory representation).
// The input and output types may have different storage sizes,
// "inputMayBeBigger" should be set to indicate which of the input or
// output type may be bigger in order for the load/store to be safe.
// The mismatch comes from the fact that the LLVM register used for passing
// may be bigger than the value being passed (e.g., passing
// a `!fir.type<t{fir.array<3xi8>}>` into an i32 LLVM register).
mlir::Value convertValueInMemory(mlir::Location loc, mlir::Value value,
mlir::Type newType, bool inputMayBeBigger) {
if (inputMayBeBigger) {
auto newRefTy = fir::ReferenceType::get(newType);
auto mem = rewriter->create<fir::AllocaOp>(loc, value.getType());
rewriter->create<fir::StoreOp>(loc, value, mem);
auto cast = rewriter->create<fir::ConvertOp>(loc, newRefTy, mem);
return rewriter->create<fir::LoadOp>(loc, cast);
} else {
auto oldRefTy = fir::ReferenceType::get(value.getType());
auto mem = rewriter->create<fir::AllocaOp>(loc, newType);
auto cast = rewriter->create<fir::ConvertOp>(loc, oldRefTy, mem);
rewriter->create<fir::StoreOp>(loc, value, cast);
return rewriter->create<fir::LoadOp>(loc, mem);
}
}
void passSplitArgument(mlir::Location loc,
fir::CodeGenSpecifics::Marshalling splitArgs,
mlir::Type oldType, mlir::Value oper,
llvm::SmallVectorImpl<mlir::Value> &newOpers,
mlir::Value &savedStackPtr) {
// COMPLEX or struct argument split into separate arguments
if (!fir::isa_complex(oldType)) {
// Cast original operand to a tuple of the new arguments
// via memory.
llvm::SmallVector<mlir::Type> partTypes;
for (auto argPart : splitArgs)
partTypes.push_back(std::get<mlir::Type>(argPart));
mlir::Type tupleType =
mlir::TupleType::get(oldType.getContext(), partTypes);
if (!savedStackPtr)
savedStackPtr = genStackSave(loc);
oper = convertValueInMemory(loc, oper, tupleType,
/*inputMayBeBigger=*/false);
}
auto iTy = rewriter->getIntegerType(32);
for (auto e : llvm::enumerate(splitArgs)) {
auto &tup = e.value();
auto ty = std::get<mlir::Type>(tup);
auto index = e.index();
auto idx = rewriter->getIntegerAttr(iTy, index);
auto val = rewriter->create<fir::ExtractValueOp>(
loc, ty, oper, rewriter->getArrayAttr(idx));
newOpers.push_back(val);
}
}
void rewriteCallOperands(
mlir::Location loc, fir::CodeGenSpecifics::Marshalling passArgAs,
mlir::Type originalArgTy, mlir::Value oper,
llvm::SmallVectorImpl<mlir::Value> &newOpers, mlir::Value &savedStackPtr,
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs) {
if (passArgAs.size() == 1) {
// COMPLEX or derived type is passed as a single argument.
passArgumentOnStackOrWithNewType(loc, passArgAs[0], originalArgTy, oper,
newOpers, savedStackPtr);
} else {
// COMPLEX or derived type is split into separate arguments
passSplitArgument(loc, passArgAs, originalArgTy, oper, newOpers,
savedStackPtr);
}
newInTyAndAttrs.insert(newInTyAndAttrs.end(), passArgAs.begin(),
passArgAs.end());
}
template <typename CPLX>
void rewriteCallComplexInputType(
mlir::Location loc, CPLX ty, mlir::Value oper,
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs,
llvm::SmallVectorImpl<mlir::Value> &newOpers,
mlir::Value &savedStackPtr) {
if (noComplexConversion) {
newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(ty));
newOpers.push_back(oper);
return;
}
auto m = specifics->complexArgumentType(loc, ty.getElementType());
rewriteCallOperands(loc, m, ty, oper, newOpers, savedStackPtr,
newInTyAndAttrs);
}
void rewriteCallStructInputType(
mlir::Location loc, fir::RecordType recTy, mlir::Value oper,
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs,
llvm::SmallVectorImpl<mlir::Value> &newOpers,
mlir::Value &savedStackPtr) {
if (noStructConversion) {
newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(recTy));
newOpers.push_back(oper);
return;
}
auto structArgs =
specifics->structArgumentType(loc, recTy, newInTyAndAttrs);
rewriteCallOperands(loc, structArgs, recTy, oper, newOpers, savedStackPtr,
newInTyAndAttrs);
}
static bool hasByValOrSRetArgs(
const fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs) {
return llvm::any_of(newInTyAndAttrs, [](auto arg) {
const auto &attr = std::get<fir::CodeGenSpecifics::Attributes>(arg);
return attr.isByVal() || attr.isSRet();
});
}
// Convert fir.call and fir.dispatch Ops.
template <typename A>
void convertCallOp(A callOp) {
auto fnTy = callOp.getFunctionType();
auto loc = callOp.getLoc();
rewriter->setInsertionPoint(callOp);
llvm::SmallVector<mlir::Type> newResTys;
fir::CodeGenSpecifics::Marshalling newInTyAndAttrs;
llvm::SmallVector<mlir::Value> newOpers;
mlir::Value savedStackPtr = nullptr;
// If the call is indirect, the first argument must still be the function
// to call.
int dropFront = 0;
if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) {
if (!callOp.getCallee()) {
newInTyAndAttrs.push_back(
fir::CodeGenSpecifics::getTypeAndAttr(fnTy.getInput(0)));
newOpers.push_back(callOp.getOperand(0));
dropFront = 1;
}
} else {
dropFront = 1; // First operand is the polymorphic object.
}
// Determine the rewrite function, `wrap`, for the result value.
std::optional<std::function<mlir::Value(mlir::Operation *)>> wrap;
if (fnTy.getResults().size() == 1) {
mlir::Type ty = fnTy.getResult(0);
llvm::TypeSwitch<mlir::Type>(ty)
.template Case<fir::ComplexType>([&](fir::ComplexType cmplx) {
wrap = rewriteCallComplexResultType(loc, cmplx, newResTys,
newInTyAndAttrs, newOpers,
savedStackPtr);
})
.template Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) {
wrap = rewriteCallComplexResultType(loc, cmplx, newResTys,
newInTyAndAttrs, newOpers,
savedStackPtr);
})
.Default([&](mlir::Type ty) { newResTys.push_back(ty); });
} else if (fnTy.getResults().size() > 1) {
TODO(loc, "multiple results not supported yet");
}
llvm::SmallVector<mlir::Type> trailingInTys;
llvm::SmallVector<mlir::Value> trailingOpers;
unsigned passArgShift = 0;
for (auto e : llvm::enumerate(
llvm::zip(fnTy.getInputs().drop_front(dropFront),
callOp.getOperands().drop_front(dropFront)))) {
mlir::Type ty = std::get<0>(e.value());
mlir::Value oper = std::get<1>(e.value());
unsigned index = e.index();
llvm::TypeSwitch<mlir::Type>(ty)
.template Case<fir::BoxCharType>([&](fir::BoxCharType boxTy) {
bool sret;
if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) {
if (noCharacterConversion) {
newInTyAndAttrs.push_back(
fir::CodeGenSpecifics::getTypeAndAttr(boxTy));
newOpers.push_back(oper);
return;
}
sret = callOp.getCallee() &&
functionArgIsSRet(
index, getModule().lookupSymbol<mlir::func::FuncOp>(
*callOp.getCallee()));
} else {
// TODO: dispatch case; how do we put arguments on a call?
// We cannot put both an sret and the dispatch object first.
sret = false;
TODO(loc, "dispatch + sret not supported yet");
}
auto m = specifics->boxcharArgumentType(boxTy.getEleTy(), sret);
auto unbox = rewriter->create<fir::UnboxCharOp>(
loc, std::get<mlir::Type>(m[0]), std::get<mlir::Type>(m[1]),
oper);
// unboxed CHARACTER arguments
for (auto e : llvm::enumerate(m)) {
unsigned idx = e.index();
auto attr =
std::get<fir::CodeGenSpecifics::Attributes>(e.value());
auto argTy = std::get<mlir::Type>(e.value());
if (attr.isAppend()) {
trailingInTys.push_back(argTy);
trailingOpers.push_back(unbox.getResult(idx));
} else {
newInTyAndAttrs.push_back(e.value());
newOpers.push_back(unbox.getResult(idx));
}
}
})
.template Case<fir::ComplexType>([&](fir::ComplexType cmplx) {
rewriteCallComplexInputType(loc, cmplx, oper, newInTyAndAttrs,
newOpers, savedStackPtr);
})
.template Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) {
rewriteCallComplexInputType(loc, cmplx, oper, newInTyAndAttrs,
newOpers, savedStackPtr);
})
.template Case<fir::RecordType>([&](fir::RecordType recTy) {
rewriteCallStructInputType(loc, recTy, oper, newInTyAndAttrs,
newOpers, savedStackPtr);
})
.template Case<mlir::TupleType>([&](mlir::TupleType tuple) {
if (fir::isCharacterProcedureTuple(tuple)) {
mlir::ModuleOp module = getModule();
if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) {
if (callOp.getCallee()) {
llvm::StringRef charProcAttr =
fir::getCharacterProcedureDummyAttrName();
// The charProcAttr attribute is only used as a safety to
// confirm that this is a dummy procedure and should be split.
// It cannot be used to match because attributes are not
// available in case of indirect calls.
auto funcOp = module.lookupSymbol<mlir::func::FuncOp>(
*callOp.getCallee());
if (funcOp &&
!funcOp.template getArgAttrOfType<mlir::UnitAttr>(
index, charProcAttr))
mlir::emitError(loc, "tuple argument will be split even "
"though it does not have the `" +
charProcAttr + "` attribute");
}
}
mlir::Type funcPointerType = tuple.getType(0);
mlir::Type lenType = tuple.getType(1);
fir::FirOpBuilder builder(*rewriter, module);
auto [funcPointer, len] =
fir::factory::extractCharacterProcedureTuple(builder, loc,
oper);
newInTyAndAttrs.push_back(
fir::CodeGenSpecifics::getTypeAndAttr(funcPointerType));
newOpers.push_back(funcPointer);
trailingInTys.push_back(lenType);
trailingOpers.push_back(len);
} else {
newInTyAndAttrs.push_back(
fir::CodeGenSpecifics::getTypeAndAttr(tuple));
newOpers.push_back(oper);
}
})
.Default([&](mlir::Type ty) {
if constexpr (std::is_same_v<std::decay_t<A>, fir::DispatchOp>) {
if (callOp.getPassArgPos() && *callOp.getPassArgPos() == index)
passArgShift = newOpers.size() - *callOp.getPassArgPos();
}
newInTyAndAttrs.push_back(
fir::CodeGenSpecifics::getTypeAndAttr(ty));
newOpers.push_back(oper);
});
}
llvm::SmallVector<mlir::Type> newInTypes = toTypeList(newInTyAndAttrs);
newInTypes.insert(newInTypes.end(), trailingInTys.begin(),
trailingInTys.end());
newOpers.insert(newOpers.end(), trailingOpers.begin(), trailingOpers.end());
llvm::SmallVector<mlir::Value, 1> newCallResults;
if constexpr (std::is_same_v<std::decay_t<A>, fir::CallOp>) {
fir::CallOp newCall;
if (callOp.getCallee()) {
newCall =
rewriter->create<A>(loc, *callOp.getCallee(), newResTys, newOpers);
} else {
// TODO: llvm dialect must be updated to propagate argument on
// attributes for indirect calls. See:
// https://discourse.llvm.org/t/should-llvm-callop-be-able-to-carry-argument-attributes-for-indirect-calls/75431
if (hasByValOrSRetArgs(newInTyAndAttrs))
TODO(loc,
"passing argument or result on the stack in indirect calls");
newOpers[0].setType(mlir::FunctionType::get(
callOp.getContext(),
mlir::TypeRange{newInTypes}.drop_front(dropFront), newResTys));
newCall = rewriter->create<A>(loc, newResTys, newOpers);
}
LLVM_DEBUG(llvm::dbgs() << "replacing call with " << newCall << '\n');
if (wrap)
newCallResults.push_back((*wrap)(newCall.getOperation()));
else
newCallResults.append(newCall.result_begin(), newCall.result_end());
} else {
fir::DispatchOp dispatchOp = rewriter->create<A>(
loc, newResTys, rewriter->getStringAttr(callOp.getMethod()),
callOp.getOperands()[0], newOpers,
rewriter->getI32IntegerAttr(*callOp.getPassArgPos() + passArgShift),
callOp.getProcedureAttrsAttr());
if (wrap)
newCallResults.push_back((*wrap)(dispatchOp.getOperation()));
else
newCallResults.append(dispatchOp.result_begin(),
dispatchOp.result_end());
}
if (newCallResults.size() <= 1) {
if (savedStackPtr) {
if (newCallResults.size() == 1) {
// We assume that all the allocas are inserted before
// the operation that defines the new call result.
rewriter->setInsertionPointAfterValue(newCallResults[0]);
} else {
// If the call does not have results, then insert
// stack restore after the original call operation.
rewriter->setInsertionPointAfter(callOp);
}
genStackRestore(loc, savedStackPtr);
}
replaceOp(callOp, newCallResults);
} else {
// The TODO is duplicated here to make sure this part
// handles the stackrestore insertion properly, if
// we add support for multiple call results.
TODO(loc, "multiple results not supported yet");
}
}
// Result type fixup for fir::ComplexType and mlir::ComplexType
template <typename A, typename B>
void lowerComplexSignatureRes(
mlir::Location loc, A cmplx, B &newResTys,
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs) {
if (noComplexConversion) {
newResTys.push_back(cmplx);
return;
}
for (auto &tup :
specifics->complexReturnType(loc, cmplx.getElementType())) {
auto argTy = std::get<mlir::Type>(tup);
if (std::get<fir::CodeGenSpecifics::Attributes>(tup).isSRet())
newInTyAndAttrs.push_back(tup);
else
newResTys.push_back(argTy);
}
}
// Argument type fixup for fir::ComplexType and mlir::ComplexType
template <typename A>
void lowerComplexSignatureArg(
mlir::Location loc, A cmplx,
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs) {
if (noComplexConversion) {
newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(cmplx));
} else {
auto cplxArgs =
specifics->complexArgumentType(loc, cmplx.getElementType());
newInTyAndAttrs.insert(newInTyAndAttrs.end(), cplxArgs.begin(),
cplxArgs.end());
}
}
void
lowerStructSignatureArg(mlir::Location loc, fir::RecordType recTy,
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs) {
if (noStructConversion) {
newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(recTy));
return;
}
auto structArgs =
specifics->structArgumentType(loc, recTy, newInTyAndAttrs);
newInTyAndAttrs.insert(newInTyAndAttrs.end(), structArgs.begin(),
structArgs.end());
}
llvm::SmallVector<mlir::Type>
toTypeList(const fir::CodeGenSpecifics::Marshalling &marshalled) {
llvm::SmallVector<mlir::Type> typeList;
for (auto &typeAndAttr : marshalled)
typeList.emplace_back(std::get<mlir::Type>(typeAndAttr));
return typeList;
}
/// Taking the address of a function. Modify the signature as needed.
void convertAddrOp(fir::AddrOfOp addrOp) {
rewriter->setInsertionPoint(addrOp);
auto addrTy = mlir::cast<mlir::FunctionType>(addrOp.getType());
fir::CodeGenSpecifics::Marshalling newInTyAndAttrs;
llvm::SmallVector<mlir::Type> newResTys;
auto loc = addrOp.getLoc();
for (mlir::Type ty : addrTy.getResults()) {
llvm::TypeSwitch<mlir::Type>(ty)
.Case<fir::ComplexType>([&](fir::ComplexType ty) {
lowerComplexSignatureRes(loc, ty, newResTys, newInTyAndAttrs);
})
.Case<mlir::ComplexType>([&](mlir::ComplexType ty) {
lowerComplexSignatureRes(loc, ty, newResTys, newInTyAndAttrs);
})
.Default([&](mlir::Type ty) { newResTys.push_back(ty); });
}
llvm::SmallVector<mlir::Type> trailingInTys;
for (mlir::Type ty : addrTy.getInputs()) {
llvm::TypeSwitch<mlir::Type>(ty)
.Case<fir::BoxCharType>([&](auto box) {
if (noCharacterConversion) {
newInTyAndAttrs.push_back(
fir::CodeGenSpecifics::getTypeAndAttr(box));
} else {
for (auto &tup : specifics->boxcharArgumentType(box.getEleTy())) {
auto attr = std::get<fir::CodeGenSpecifics::Attributes>(tup);
auto argTy = std::get<mlir::Type>(tup);
if (attr.isAppend())
trailingInTys.push_back(argTy);
else
newInTyAndAttrs.push_back(tup);
}
}
})
.Case<fir::ComplexType>([&](fir::ComplexType ty) {
lowerComplexSignatureArg(loc, ty, newInTyAndAttrs);
})
.Case<mlir::ComplexType>([&](mlir::ComplexType ty) {
lowerComplexSignatureArg(loc, ty, newInTyAndAttrs);
})
.Case<mlir::TupleType>([&](mlir::TupleType tuple) {
if (fir::isCharacterProcedureTuple(tuple)) {
newInTyAndAttrs.push_back(
fir::CodeGenSpecifics::getTypeAndAttr(tuple.getType(0)));
trailingInTys.push_back(tuple.getType(1));
} else {
newInTyAndAttrs.push_back(
fir::CodeGenSpecifics::getTypeAndAttr(ty));
}
})
.template Case<fir::RecordType>([&](fir::RecordType recTy) {
lowerStructSignatureArg(loc, recTy, newInTyAndAttrs);
})
.Default([&](mlir::Type ty) {
newInTyAndAttrs.push_back(
fir::CodeGenSpecifics::getTypeAndAttr(ty));
});
}
llvm::SmallVector<mlir::Type> newInTypes = toTypeList(newInTyAndAttrs);
// append trailing input types
newInTypes.insert(newInTypes.end(), trailingInTys.begin(),
trailingInTys.end());
// replace this op with a new one with the updated signature
auto newTy = rewriter->getFunctionType(newInTypes, newResTys);
auto newOp = rewriter->create<fir::AddrOfOp>(addrOp.getLoc(), newTy,
addrOp.getSymbol());
replaceOp(addrOp, newOp.getResult());
}
/// Convert the type signatures on all the functions present in the module.
/// As the type signature is being changed, this must also update the
/// function itself to use any new arguments, etc.
llvm::LogicalResult convertTypes(mlir::ModuleOp mod) {
mlir::MLIRContext *ctx = mod->getContext();
auto targetCPU = specifics->getTargetCPU();
mlir::StringAttr targetCPUAttr =
targetCPU.empty() ? nullptr : mlir::StringAttr::get(ctx, targetCPU);
auto tuneCPU = specifics->getTuneCPU();
mlir::StringAttr tuneCPUAttr =
tuneCPU.empty() ? nullptr : mlir::StringAttr::get(ctx, tuneCPU);
auto targetFeaturesAttr = specifics->getTargetFeatures();
for (auto fn : mod.getOps<mlir::func::FuncOp>()) {
if (targetCPUAttr)
fn->setAttr("target_cpu", targetCPUAttr);
if (tuneCPUAttr)
fn->setAttr("tune_cpu", tuneCPUAttr);
if (targetFeaturesAttr)
fn->setAttr("target_features", targetFeaturesAttr);
convertSignature(fn);
}
return mlir::success();
}
// Returns true if the function should be interoperable with C.
static bool isFuncWithCCallingConvention(mlir::Operation *op) {
auto funcOp = mlir::dyn_cast<mlir::func::FuncOp>(op);
if (!funcOp)
return false;
return op->hasAttrOfType<mlir::UnitAttr>(
fir::FIROpsDialect::getFirRuntimeAttrName()) ||
op->hasAttrOfType<mlir::StringAttr>(fir::getSymbolAttrName());
}
/// If the signature does not need any special target-specific conversions,
/// then it is considered portable for any target, and this function will
/// return `true`. Otherwise, the signature is not portable and `false` is
/// returned.
bool hasPortableSignature(mlir::Type signature, mlir::Operation *op) {
assert(mlir::isa<mlir::FunctionType>(signature));
auto func = mlir::dyn_cast<mlir::FunctionType>(signature);
bool hasCCallingConv = isFuncWithCCallingConvention(op);
for (auto ty : func.getResults())
if ((mlir::isa<fir::BoxCharType>(ty) && !noCharacterConversion) ||
(fir::isa_complex(ty) && !noComplexConversion) ||
(mlir::isa<mlir::IntegerType>(ty) && hasCCallingConv)) {
LLVM_DEBUG(llvm::dbgs() << "rewrite " << signature << " for target\n");
return false;
}
for (auto ty : func.getInputs())
if (((mlir::isa<fir::BoxCharType>(ty) ||
fir::isCharacterProcedureTuple(ty)) &&
!noCharacterConversion) ||
(fir::isa_complex(ty) && !noComplexConversion) ||
(mlir::isa<mlir::IntegerType>(ty) && hasCCallingConv) ||
(mlir::isa<fir::RecordType>(ty) && !noStructConversion)) {
LLVM_DEBUG(llvm::dbgs() << "rewrite " << signature << " for target\n");
return false;
}
return true;
}
/// Determine if the signature has host associations. The host association
/// argument may need special target specific rewriting.
static bool hasHostAssociations(mlir::func::FuncOp func) {
std::size_t end = func.getFunctionType().getInputs().size();
for (std::size_t i = 0; i < end; ++i)
if (func.getArgAttrOfType<mlir::UnitAttr>(i, fir::getHostAssocAttrName()))
return true;
return false;
}
/// Rewrite the signatures and body of the `FuncOp`s in the module for
/// the immediately subsequent target code gen.
void convertSignature(mlir::func::FuncOp func) {
auto funcTy = mlir::cast<mlir::FunctionType>(func.getFunctionType());
if (hasPortableSignature(funcTy, func) && !hasHostAssociations(func))
return;
llvm::SmallVector<mlir::Type> newResTys;
fir::CodeGenSpecifics::Marshalling newInTyAndAttrs;
llvm::SmallVector<std::pair<unsigned, mlir::NamedAttribute>> savedAttrs;
llvm::SmallVector<std::pair<unsigned, mlir::NamedAttribute>> extraAttrs;
llvm::SmallVector<FixupTy> fixups;
llvm::SmallVector<std::pair<unsigned, mlir::NamedAttrList>, 1> resultAttrs;
// Save argument attributes in case there is a shift so we can replace them
// correctly.
for (auto e : llvm::enumerate(funcTy.getInputs())) {
unsigned index = e.index();
llvm::ArrayRef<mlir::NamedAttribute> attrs =
mlir::function_interface_impl::getArgAttrs(func, index);
for (mlir::NamedAttribute attr : attrs) {
savedAttrs.push_back({index, attr});
}
}
// Convert return value(s)
for (auto ty : funcTy.getResults())
llvm::TypeSwitch<mlir::Type>(ty)
.Case<fir::ComplexType>([&](fir::ComplexType cmplx) {
if (noComplexConversion)
newResTys.push_back(cmplx);
else
doComplexReturn(func, cmplx, newResTys, newInTyAndAttrs, fixups);
})
.Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) {
if (noComplexConversion)
newResTys.push_back(cmplx);
else
doComplexReturn(func, cmplx, newResTys, newInTyAndAttrs, fixups);
})
.Case<mlir::IntegerType>([&](mlir::IntegerType intTy) {
auto m = specifics->integerArgumentType(func.getLoc(), intTy);
assert(m.size() == 1);
auto attr = std::get<fir::CodeGenSpecifics::Attributes>(m[0]);
auto retTy = std::get<mlir::Type>(m[0]);
std::size_t resId = newResTys.size();
llvm::StringRef extensionAttrName = attr.getIntExtensionAttrName();
if (!extensionAttrName.empty() &&
isFuncWithCCallingConvention(func))
resultAttrs.emplace_back(
resId, rewriter->getNamedAttr(extensionAttrName,
rewriter->getUnitAttr()));
newResTys.push_back(retTy);
})
.Default([&](mlir::Type ty) { newResTys.push_back(ty); });
// Saved potential shift in argument. Handling of result can add arguments
// at the beginning of the function signature.
unsigned argumentShift = newInTyAndAttrs.size();
// Convert arguments
llvm::SmallVector<mlir::Type> trailingTys;
for (auto e : llvm::enumerate(funcTy.getInputs())) {
auto ty = e.value();
unsigned index = e.index();
llvm::TypeSwitch<mlir::Type>(ty)
.Case<fir::BoxCharType>([&](fir::BoxCharType boxTy) {
if (noCharacterConversion) {
newInTyAndAttrs.push_back(
fir::CodeGenSpecifics::getTypeAndAttr(boxTy));
} else {
// Convert a CHARACTER argument type. This can involve separating
// the pointer and the LEN into two arguments and moving the LEN
// argument to the end of the arg list.
bool sret = functionArgIsSRet(index, func);
for (auto e : llvm::enumerate(specifics->boxcharArgumentType(
boxTy.getEleTy(), sret))) {
auto &tup = e.value();
auto index = e.index();
auto attr = std::get<fir::CodeGenSpecifics::Attributes>(tup);
auto argTy = std::get<mlir::Type>(tup);
if (attr.isAppend()) {
trailingTys.push_back(argTy);
} else {
if (sret) {
fixups.emplace_back(FixupTy::Codes::CharPair,
newInTyAndAttrs.size(), index);
} else {
fixups.emplace_back(FixupTy::Codes::Trailing,
newInTyAndAttrs.size(),
trailingTys.size());
}
newInTyAndAttrs.push_back(tup);
}
}
}
})
.Case<fir::ComplexType>([&](fir::ComplexType cmplx) {
doComplexArg(func, cmplx, newInTyAndAttrs, fixups);
})
.Case<mlir::ComplexType>([&](mlir::ComplexType cmplx) {
doComplexArg(func, cmplx, newInTyAndAttrs, fixups);
})
.Case<mlir::TupleType>([&](mlir::TupleType tuple) {
if (fir::isCharacterProcedureTuple(tuple)) {
fixups.emplace_back(FixupTy::Codes::TrailingCharProc,
newInTyAndAttrs.size(), trailingTys.size());
newInTyAndAttrs.push_back(
fir::CodeGenSpecifics::getTypeAndAttr(tuple.getType(0)));
trailingTys.push_back(tuple.getType(1));
} else {
newInTyAndAttrs.push_back(
fir::CodeGenSpecifics::getTypeAndAttr(ty));
}
})
.Case<mlir::IntegerType>([&](mlir::IntegerType intTy) {
auto m = specifics->integerArgumentType(func.getLoc(), intTy);
assert(m.size() == 1);
auto attr = std::get<fir::CodeGenSpecifics::Attributes>(m[0]);
auto argNo = newInTyAndAttrs.size();
llvm::StringRef extensionAttrName = attr.getIntExtensionAttrName();
if (!extensionAttrName.empty() &&
isFuncWithCCallingConvention(func))
fixups.emplace_back(FixupTy::Codes::ArgumentType, argNo,
[=](mlir::func::FuncOp func) {
func.setArgAttr(
argNo, extensionAttrName,
mlir::UnitAttr::get(func.getContext()));
});
newInTyAndAttrs.push_back(m[0]);
})
.template Case<fir::RecordType>([&](fir::RecordType recTy) {
doStructArg(func, recTy, newInTyAndAttrs, fixups);
})
.Default([&](mlir::Type ty) {
newInTyAndAttrs.push_back(
fir::CodeGenSpecifics::getTypeAndAttr(ty));
});
if (func.getArgAttrOfType<mlir::UnitAttr>(index,
fir::getHostAssocAttrName())) {
extraAttrs.push_back(
{newInTyAndAttrs.size() - 1,
rewriter->getNamedAttr("llvm.nest", rewriter->getUnitAttr())});
}
}
if (!func.empty()) {
// If the function has a body, then apply the fixups to the arguments and
// return ops as required. These fixups are done in place.
auto loc = func.getLoc();
const auto fixupSize = fixups.size();
const auto oldArgTys = func.getFunctionType().getInputs();
int offset = 0;
for (std::remove_const_t<decltype(fixupSize)> i = 0; i < fixupSize; ++i) {
const auto &fixup = fixups[i];
mlir::Type fixupType =
fixup.index < newInTyAndAttrs.size()
? std::get<mlir::Type>(newInTyAndAttrs[fixup.index])
: mlir::Type{};
switch (fixup.code) {
case FixupTy::Codes::ArgumentAsLoad: {
// Argument was pass-by-value, but is now pass-by-reference and
// possibly with a different element type.
auto newArg =
func.front().insertArgument(fixup.index, fixupType, loc);
rewriter->setInsertionPointToStart(&func.front());
auto oldArgTy =
fir::ReferenceType::get(oldArgTys[fixup.index - offset]);
auto cast = rewriter->create<fir::ConvertOp>(loc, oldArgTy, newArg);
auto load = rewriter->create<fir::LoadOp>(loc, cast);
func.getArgument(fixup.index + 1).replaceAllUsesWith(load);
func.front().eraseArgument(fixup.index + 1);
} break;
case FixupTy::Codes::ArgumentType: {
// Argument is pass-by-value, but its type has likely been modified to
// suit the target ABI convention.
auto oldArgTy = oldArgTys[fixup.index - offset];
// If type did not change, keep the original argument.
if (fixupType == oldArgTy)
break;
auto newArg =
func.front().insertArgument(fixup.index, fixupType, loc);
rewriter->setInsertionPointToStart(&func.front());
mlir::Value bitcast = convertValueInMemory(loc, newArg, oldArgTy,
/*inputMayBeBigger=*/true);
func.getArgument(fixup.index + 1).replaceAllUsesWith(bitcast);
func.front().eraseArgument(fixup.index + 1);
LLVM_DEBUG(llvm::dbgs()
<< "old argument: " << oldArgTy << ", repl: " << bitcast
<< ", new argument: "
<< func.getArgument(fixup.index).getType() << '\n');
} break;
case FixupTy::Codes::CharPair: {
// The FIR boxchar argument has been split into a pair of distinct
// arguments that are in juxtaposition to each other.
auto newArg =
func.front().insertArgument(fixup.index, fixupType, loc);
if (fixup.second == 1) {
rewriter->setInsertionPointToStart(&func.front());
auto boxTy = oldArgTys[fixup.index - offset - fixup.second];
auto box = rewriter->create<fir::EmboxCharOp>(
loc, boxTy, func.front().getArgument(fixup.index - 1), newArg);
func.getArgument(fixup.index + 1).replaceAllUsesWith(box);
func.front().eraseArgument(fixup.index + 1);
offset++;
}
} break;
case FixupTy::Codes::ReturnAsStore: {
// The value being returned is now being returned in memory (callee
// stack space) through a hidden reference argument.
auto newArg =
func.front().insertArgument(fixup.index, fixupType, loc);
offset++;
func.walk([&](mlir::func::ReturnOp ret) {
rewriter->setInsertionPoint(ret);
auto oldOper = ret.getOperand(0);
auto oldOperTy = fir::ReferenceType::get(oldOper.getType());
auto cast =
rewriter->create<fir::ConvertOp>(loc, oldOperTy, newArg);
rewriter->create<fir::StoreOp>(loc, oldOper, cast);
rewriter->create<mlir::func::ReturnOp>(loc);
ret.erase();
});
} break;
case FixupTy::Codes::ReturnType: {
// The function is still returning a value, but its type has likely
// changed to suit the target ABI convention.
func.walk([&](mlir::func::ReturnOp ret) {
rewriter->setInsertionPoint(ret);
auto oldOper = ret.getOperand(0);
mlir::Value bitcast =
convertValueInMemory(loc, oldOper, newResTys[fixup.index],
/*inputMayBeBigger=*/false);
rewriter->create<mlir::func::ReturnOp>(loc, bitcast);
ret.erase();
});
} break;
case FixupTy::Codes::Split: {
// The FIR argument has been split into a pair of distinct arguments
// that are in juxtaposition to each other. (For COMPLEX value or
// derived type passed with VALUE in BIND(C) context).
auto newArg =
func.front().insertArgument(fixup.index, fixupType, loc);
if (fixup.second == 1) {
rewriter->setInsertionPointToStart(&func.front());
mlir::Value firstArg = func.front().getArgument(fixup.index - 1);
mlir::Type originalTy =
oldArgTys[fixup.index - offset - fixup.second];
mlir::Type pairTy = originalTy;
if (!fir::isa_complex(originalTy)) {
pairTy = mlir::TupleType::get(
originalTy.getContext(),
mlir::TypeRange{firstArg.getType(), newArg.getType()});
}
auto undef = rewriter->create<fir::UndefOp>(loc, pairTy);
auto iTy = rewriter->getIntegerType(32);
auto zero = rewriter->getIntegerAttr(iTy, 0);
auto one = rewriter->getIntegerAttr(iTy, 1);
mlir::Value pair1 = rewriter->create<fir::InsertValueOp>(
loc, pairTy, undef, firstArg, rewriter->getArrayAttr(zero));
mlir::Value pair = rewriter->create<fir::InsertValueOp>(
loc, pairTy, pair1, newArg, rewriter->getArrayAttr(one));
// Cast local argument tuple to original type via memory if needed.
if (pairTy != originalTy)
pair = convertValueInMemory(loc, pair, originalTy,
/*inputMayBeBigger=*/true);
func.getArgument(fixup.index + 1).replaceAllUsesWith(pair);
func.front().eraseArgument(fixup.index + 1);
offset++;
}
} break;
case FixupTy::Codes::Trailing: {
// The FIR argument has been split into a pair of distinct arguments.
// The first part of the pair appears in the original argument
// position. The second part of the pair is appended after all the
// original arguments. (Boxchar arguments.)
auto newBufArg =
func.front().insertArgument(fixup.index, fixupType, loc);
auto newLenArg =
func.front().addArgument(trailingTys[fixup.second], loc);
auto boxTy = oldArgTys[fixup.index - offset];
rewriter->setInsertionPointToStart(&func.front());
auto box = rewriter->create<fir::EmboxCharOp>(loc, boxTy, newBufArg,
newLenArg);
func.getArgument(fixup.index + 1).replaceAllUsesWith(box);
func.front().eraseArgument(fixup.index + 1);
} break;
case FixupTy::Codes::TrailingCharProc: {
// The FIR character procedure argument tuple must be split into a
// pair of distinct arguments. The first part of the pair appears in
// the original argument position. The second part of the pair is
// appended after all the original arguments.
auto newProcPointerArg =
func.front().insertArgument(fixup.index, fixupType, loc);
auto newLenArg =
func.front().addArgument(trailingTys[fixup.second], loc);
auto tupleType = oldArgTys[fixup.index - offset];
rewriter->setInsertionPointToStart(&func.front());
fir::FirOpBuilder builder(*rewriter, getModule());
auto tuple = fir::factory::createCharacterProcedureTuple(
builder, loc, tupleType, newProcPointerArg, newLenArg);
func.getArgument(fixup.index + 1).replaceAllUsesWith(tuple);
func.front().eraseArgument(fixup.index + 1);
} break;
}
}
}
llvm::SmallVector<mlir::Type> newInTypes = toTypeList(newInTyAndAttrs);
// Set the new type and finalize the arguments, etc.
newInTypes.insert(newInTypes.end(), trailingTys.begin(), trailingTys.end());
auto newFuncTy =
mlir::FunctionType::get(func.getContext(), newInTypes, newResTys);
LLVM_DEBUG(llvm::dbgs() << "new func: " << newFuncTy << '\n');
func.setType(newFuncTy);
for (std::pair<unsigned, mlir::NamedAttribute> extraAttr : extraAttrs)
func.setArgAttr(extraAttr.first, extraAttr.second.getName(),
extraAttr.second.getValue());
for (auto [resId, resAttrList] : resultAttrs)
for (mlir::NamedAttribute resAttr : resAttrList)
func.setResultAttr(resId, resAttr.getName(), resAttr.getValue());
// Replace attributes to the correct argument if there was an argument shift
// to the right.
if (argumentShift > 0) {
for (std::pair<unsigned, mlir::NamedAttribute> savedAttr : savedAttrs) {
func.removeArgAttr(savedAttr.first, savedAttr.second.getName());
func.setArgAttr(savedAttr.first + argumentShift,
savedAttr.second.getName(),
savedAttr.second.getValue());
}
}
for (auto &fixup : fixups)
if (fixup.finalizer)
(*fixup.finalizer)(func);
}
inline bool functionArgIsSRet(unsigned index, mlir::func::FuncOp func) {
if (auto attr = func.getArgAttrOfType<mlir::TypeAttr>(index, "llvm.sret"))
return true;
return false;
}
/// Convert a complex return value. This can involve converting the return
/// value to a "hidden" first argument or packing the complex into a wide
/// GPR.
template <typename A, typename B, typename C>
void doComplexReturn(mlir::func::FuncOp func, A cmplx, B &newResTys,
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs,
C &fixups) {
if (noComplexConversion) {
newResTys.push_back(cmplx);
return;
}
auto m =
specifics->complexReturnType(func.getLoc(), cmplx.getElementType());
assert(m.size() == 1);
auto &tup = m[0];
auto attr = std::get<fir::CodeGenSpecifics::Attributes>(tup);
auto argTy = std::get<mlir::Type>(tup);
if (attr.isSRet()) {
unsigned argNo = newInTyAndAttrs.size();
if (auto align = attr.getAlignment())
fixups.emplace_back(
FixupTy::Codes::ReturnAsStore, argNo, [=](mlir::func::FuncOp func) {
auto elemType = fir::dyn_cast_ptrOrBoxEleTy(
func.getFunctionType().getInput(argNo));
func.setArgAttr(argNo, "llvm.sret",
mlir::TypeAttr::get(elemType));
func.setArgAttr(argNo, "llvm.align",
rewriter->getIntegerAttr(
rewriter->getIntegerType(32), align));
});
else
fixups.emplace_back(FixupTy::Codes::ReturnAsStore, argNo,
[=](mlir::func::FuncOp func) {
auto elemType = fir::dyn_cast_ptrOrBoxEleTy(
func.getFunctionType().getInput(argNo));
func.setArgAttr(argNo, "llvm.sret",
mlir::TypeAttr::get(elemType));
});
newInTyAndAttrs.push_back(tup);
return;
}
if (auto align = attr.getAlignment())
fixups.emplace_back(
FixupTy::Codes::ReturnType, newResTys.size(),
[=](mlir::func::FuncOp func) {
func.setArgAttr(
newResTys.size(), "llvm.align",
rewriter->getIntegerAttr(rewriter->getIntegerType(32), align));
});
else
fixups.emplace_back(FixupTy::Codes::ReturnType, newResTys.size());
newResTys.push_back(argTy);
}
template <typename FIXUPS>
void
createFuncOpArgFixups(mlir::func::FuncOp func,
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs,
fir::CodeGenSpecifics::Marshalling &argsInTys,
FIXUPS &fixups) {
const auto fixupCode = argsInTys.size() > 1 ? FixupTy::Codes::Split
: FixupTy::Codes::ArgumentType;
for (auto e : llvm::enumerate(argsInTys)) {
auto &tup = e.value();
auto index = e.index();
auto attr = std::get<fir::CodeGenSpecifics::Attributes>(tup);
auto argNo = newInTyAndAttrs.size();
if (attr.isByVal()) {
if (auto align = attr.getAlignment())
fixups.emplace_back(FixupTy::Codes::ArgumentAsLoad, argNo,
[=](mlir::func::FuncOp func) {
auto elemType = fir::dyn_cast_ptrOrBoxEleTy(
func.getFunctionType().getInput(argNo));
func.setArgAttr(argNo, "llvm.byval",
mlir::TypeAttr::get(elemType));
func.setArgAttr(
argNo, "llvm.align",
rewriter->getIntegerAttr(
rewriter->getIntegerType(32), align));
});
else
fixups.emplace_back(FixupTy::Codes::ArgumentAsLoad,
newInTyAndAttrs.size(),
[=](mlir::func::FuncOp func) {
auto elemType = fir::dyn_cast_ptrOrBoxEleTy(
func.getFunctionType().getInput(argNo));
func.setArgAttr(argNo, "llvm.byval",
mlir::TypeAttr::get(elemType));
});
} else {
if (auto align = attr.getAlignment())
fixups.emplace_back(
fixupCode, argNo, index, [=](mlir::func::FuncOp func) {
func.setArgAttr(argNo, "llvm.align",
rewriter->getIntegerAttr(
rewriter->getIntegerType(32), align));
});
else
fixups.emplace_back(fixupCode, argNo, index);
}
newInTyAndAttrs.push_back(tup);
}
}
/// Convert a complex argument value. This can involve storing the value to
/// a temporary memory location or factoring the value into two distinct
/// arguments.
template <typename A, typename B>
void doComplexArg(mlir::func::FuncOp func, A cmplx,
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs,
B &fixups) {
if (noComplexConversion) {
newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(cmplx));
return;
}
auto cplxArgs =
specifics->complexArgumentType(func.getLoc(), cmplx.getElementType());
createFuncOpArgFixups(func, newInTyAndAttrs, cplxArgs, fixups);
}
template <typename FIXUPS>
void doStructArg(mlir::func::FuncOp func, fir::RecordType recTy,
fir::CodeGenSpecifics::Marshalling &newInTyAndAttrs,
FIXUPS &fixups) {
if (noStructConversion) {
newInTyAndAttrs.push_back(fir::CodeGenSpecifics::getTypeAndAttr(recTy));
return;
}
auto structArgs =
specifics->structArgumentType(func.getLoc(), recTy, newInTyAndAttrs);
createFuncOpArgFixups(func, newInTyAndAttrs, structArgs, fixups);
}
private:
// Replace `op` and remove it.
void replaceOp(mlir::Operation *op, mlir::ValueRange newValues) {
op->replaceAllUsesWith(newValues);
op->dropAllReferences();
op->erase();
}
inline void setMembers(fir::CodeGenSpecifics *s, mlir::OpBuilder *r,
mlir::DataLayout *dl) {
specifics = s;
rewriter = r;
dataLayout = dl;
}
inline void clearMembers() { setMembers(nullptr, nullptr, nullptr); }
// Inserts a call to llvm.stacksave at the current insertion
// point and the given location. Returns the call's result Value.
inline mlir::Value genStackSave(mlir::Location loc) {
fir::FirOpBuilder builder(*rewriter, getModule());
return builder.genStackSave(loc);
}
// Inserts a call to llvm.stackrestore at the current insertion
// point and the given location and argument.
inline void genStackRestore(mlir::Location loc, mlir::Value sp) {
fir::FirOpBuilder builder(*rewriter, getModule());
return builder.genStackRestore(loc, sp);
}
fir::CodeGenSpecifics *specifics = nullptr;
mlir::OpBuilder *rewriter = nullptr;
mlir::DataLayout *dataLayout = nullptr;
};
} // namespace