mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-30 01:36:05 +00:00

Utility function `DeleteDeadBlock` expects that all predecessors of a block being deleted are already deleted, with the exception of single-block loop. It makes it hard to use for deletion of a set of blocks that may contain cyclic dependencies. The is no correct order of invocations of this function that does not produce dangling pointers on already deleted blocks. This patch introduces a generalized version of this function `DeleteDeadBlocks` that allows us to remove multiple blocks at once, even if there are cycles among them. The only requirement is that no block being deleted should have a predecessor that is not being deleted. The logic of `DeleteDeadBlocks` is following: for each block create relevant DT updates; remove all instructions (replace with undef if needed); replace terminator with unreacheable; apply DT updates; for each block delete block; Therefore, `DeleteDeadBlock` becomes a particular case of the general algorithm called for a single block. Differential Revision: https://reviews.llvm.org/D56120 Reviewed By: skatkov llvm-svn: 351045
874 lines
32 KiB
C++
874 lines
32 KiB
C++
//===- BasicBlockUtils.cpp - BasicBlock Utilities --------------------------==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This family of functions perform manipulations on basic blocks, and
|
|
// instructions contained within basic blocks.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
|
|
#include "llvm/Analysis/MemorySSAUpdater.h"
|
|
#include "llvm/Analysis/PostDominators.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/DomTreeUpdater.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InstrTypes.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
void llvm::DeleteDeadBlock(BasicBlock *BB, DomTreeUpdater *DTU) {
|
|
SmallVector<BasicBlock *, 1> BBs = {BB};
|
|
DeleteDeadBlocks(BBs, DTU);
|
|
}
|
|
|
|
void llvm::DeleteDeadBlocks(SmallVectorImpl <BasicBlock *> &BBs,
|
|
DomTreeUpdater *DTU) {
|
|
#ifndef NDEBUG
|
|
// Make sure that all predecessors of each dead block is also dead.
|
|
SmallPtrSet<BasicBlock *, 4> Dead(BBs.begin(), BBs.end());
|
|
assert(Dead.size() == BBs.size() && "Duplicating blocks?");
|
|
for (auto *BB : Dead)
|
|
for (BasicBlock *Pred : predecessors(BB))
|
|
assert(Dead.count(Pred) && "All predecessors must be dead!");
|
|
#endif
|
|
|
|
SmallVector<DominatorTree::UpdateType, 4> Updates;
|
|
for (auto *BB : BBs) {
|
|
// Loop through all of our successors and make sure they know that one
|
|
// of their predecessors is going away.
|
|
for (BasicBlock *Succ : successors(BB)) {
|
|
Succ->removePredecessor(BB);
|
|
if (DTU)
|
|
Updates.push_back({DominatorTree::Delete, BB, Succ});
|
|
}
|
|
|
|
// Zap all the instructions in the block.
|
|
while (!BB->empty()) {
|
|
Instruction &I = BB->back();
|
|
// If this instruction is used, replace uses with an arbitrary value.
|
|
// Because control flow can't get here, we don't care what we replace the
|
|
// value with. Note that since this block is unreachable, and all values
|
|
// contained within it must dominate their uses, that all uses will
|
|
// eventually be removed (they are themselves dead).
|
|
if (!I.use_empty())
|
|
I.replaceAllUsesWith(UndefValue::get(I.getType()));
|
|
BB->getInstList().pop_back();
|
|
}
|
|
new UnreachableInst(BB->getContext(), BB);
|
|
assert(BB->getInstList().size() == 1 &&
|
|
isa<UnreachableInst>(BB->getTerminator()) &&
|
|
"The successor list of BB isn't empty before "
|
|
"applying corresponding DTU updates.");
|
|
}
|
|
if (DTU)
|
|
DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
|
|
|
|
for (BasicBlock *BB : BBs)
|
|
if (DTU)
|
|
DTU->deleteBB(BB);
|
|
else
|
|
BB->eraseFromParent();
|
|
}
|
|
|
|
void llvm::FoldSingleEntryPHINodes(BasicBlock *BB,
|
|
MemoryDependenceResults *MemDep) {
|
|
if (!isa<PHINode>(BB->begin())) return;
|
|
|
|
while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
|
|
if (PN->getIncomingValue(0) != PN)
|
|
PN->replaceAllUsesWith(PN->getIncomingValue(0));
|
|
else
|
|
PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
|
|
|
|
if (MemDep)
|
|
MemDep->removeInstruction(PN); // Memdep updates AA itself.
|
|
|
|
PN->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
bool llvm::DeleteDeadPHIs(BasicBlock *BB, const TargetLibraryInfo *TLI) {
|
|
// Recursively deleting a PHI may cause multiple PHIs to be deleted
|
|
// or RAUW'd undef, so use an array of WeakTrackingVH for the PHIs to delete.
|
|
SmallVector<WeakTrackingVH, 8> PHIs;
|
|
for (PHINode &PN : BB->phis())
|
|
PHIs.push_back(&PN);
|
|
|
|
bool Changed = false;
|
|
for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
|
|
if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*()))
|
|
Changed |= RecursivelyDeleteDeadPHINode(PN, TLI);
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, DomTreeUpdater *DTU,
|
|
LoopInfo *LI, MemorySSAUpdater *MSSAU,
|
|
MemoryDependenceResults *MemDep) {
|
|
if (BB->hasAddressTaken())
|
|
return false;
|
|
|
|
// Can't merge if there are multiple predecessors, or no predecessors.
|
|
BasicBlock *PredBB = BB->getUniquePredecessor();
|
|
if (!PredBB) return false;
|
|
|
|
// Don't break self-loops.
|
|
if (PredBB == BB) return false;
|
|
// Don't break unwinding instructions.
|
|
if (PredBB->getTerminator()->isExceptionalTerminator())
|
|
return false;
|
|
|
|
// Can't merge if there are multiple distinct successors.
|
|
if (PredBB->getUniqueSuccessor() != BB)
|
|
return false;
|
|
|
|
// Can't merge if there is PHI loop.
|
|
for (PHINode &PN : BB->phis())
|
|
for (Value *IncValue : PN.incoming_values())
|
|
if (IncValue == &PN)
|
|
return false;
|
|
|
|
// Begin by getting rid of unneeded PHIs.
|
|
SmallVector<AssertingVH<Value>, 4> IncomingValues;
|
|
if (isa<PHINode>(BB->front())) {
|
|
for (PHINode &PN : BB->phis())
|
|
if (!isa<PHINode>(PN.getIncomingValue(0)) ||
|
|
cast<PHINode>(PN.getIncomingValue(0))->getParent() != BB)
|
|
IncomingValues.push_back(PN.getIncomingValue(0));
|
|
FoldSingleEntryPHINodes(BB, MemDep);
|
|
}
|
|
|
|
// DTU update: Collect all the edges that exit BB.
|
|
// These dominator edges will be redirected from Pred.
|
|
std::vector<DominatorTree::UpdateType> Updates;
|
|
if (DTU) {
|
|
Updates.reserve(1 + (2 * succ_size(BB)));
|
|
Updates.push_back({DominatorTree::Delete, PredBB, BB});
|
|
for (auto I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
|
|
Updates.push_back({DominatorTree::Delete, BB, *I});
|
|
Updates.push_back({DominatorTree::Insert, PredBB, *I});
|
|
}
|
|
}
|
|
|
|
if (MSSAU)
|
|
MSSAU->moveAllAfterMergeBlocks(BB, PredBB, &*(BB->begin()));
|
|
|
|
// Delete the unconditional branch from the predecessor...
|
|
PredBB->getInstList().pop_back();
|
|
|
|
// Make all PHI nodes that referred to BB now refer to Pred as their
|
|
// source...
|
|
BB->replaceAllUsesWith(PredBB);
|
|
|
|
// Move all definitions in the successor to the predecessor...
|
|
PredBB->getInstList().splice(PredBB->end(), BB->getInstList());
|
|
new UnreachableInst(BB->getContext(), BB);
|
|
|
|
// Eliminate duplicate dbg.values describing the entry PHI node post-splice.
|
|
for (auto Incoming : IncomingValues) {
|
|
if (isa<Instruction>(*Incoming)) {
|
|
SmallVector<DbgValueInst *, 2> DbgValues;
|
|
SmallDenseSet<std::pair<DILocalVariable *, DIExpression *>, 2>
|
|
DbgValueSet;
|
|
llvm::findDbgValues(DbgValues, Incoming);
|
|
for (auto &DVI : DbgValues) {
|
|
auto R = DbgValueSet.insert({DVI->getVariable(), DVI->getExpression()});
|
|
if (!R.second)
|
|
DVI->eraseFromParent();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Inherit predecessors name if it exists.
|
|
if (!PredBB->hasName())
|
|
PredBB->takeName(BB);
|
|
|
|
if (LI)
|
|
LI->removeBlock(BB);
|
|
|
|
if (MemDep)
|
|
MemDep->invalidateCachedPredecessors();
|
|
|
|
// Finally, erase the old block and update dominator info.
|
|
if (DTU) {
|
|
assert(BB->getInstList().size() == 1 &&
|
|
isa<UnreachableInst>(BB->getTerminator()) &&
|
|
"The successor list of BB isn't empty before "
|
|
"applying corresponding DTU updates.");
|
|
DTU->applyUpdates(Updates, /*ForceRemoveDuplicates*/ true);
|
|
DTU->deleteBB(BB);
|
|
}
|
|
|
|
else {
|
|
BB->eraseFromParent(); // Nuke BB if DTU is nullptr.
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL,
|
|
BasicBlock::iterator &BI, Value *V) {
|
|
Instruction &I = *BI;
|
|
// Replaces all of the uses of the instruction with uses of the value
|
|
I.replaceAllUsesWith(V);
|
|
|
|
// Make sure to propagate a name if there is one already.
|
|
if (I.hasName() && !V->hasName())
|
|
V->takeName(&I);
|
|
|
|
// Delete the unnecessary instruction now...
|
|
BI = BIL.erase(BI);
|
|
}
|
|
|
|
void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL,
|
|
BasicBlock::iterator &BI, Instruction *I) {
|
|
assert(I->getParent() == nullptr &&
|
|
"ReplaceInstWithInst: Instruction already inserted into basic block!");
|
|
|
|
// Copy debug location to newly added instruction, if it wasn't already set
|
|
// by the caller.
|
|
if (!I->getDebugLoc())
|
|
I->setDebugLoc(BI->getDebugLoc());
|
|
|
|
// Insert the new instruction into the basic block...
|
|
BasicBlock::iterator New = BIL.insert(BI, I);
|
|
|
|
// Replace all uses of the old instruction, and delete it.
|
|
ReplaceInstWithValue(BIL, BI, I);
|
|
|
|
// Move BI back to point to the newly inserted instruction
|
|
BI = New;
|
|
}
|
|
|
|
void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) {
|
|
BasicBlock::iterator BI(From);
|
|
ReplaceInstWithInst(From->getParent()->getInstList(), BI, To);
|
|
}
|
|
|
|
BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, DominatorTree *DT,
|
|
LoopInfo *LI, MemorySSAUpdater *MSSAU) {
|
|
unsigned SuccNum = GetSuccessorNumber(BB, Succ);
|
|
|
|
// If this is a critical edge, let SplitCriticalEdge do it.
|
|
Instruction *LatchTerm = BB->getTerminator();
|
|
if (SplitCriticalEdge(
|
|
LatchTerm, SuccNum,
|
|
CriticalEdgeSplittingOptions(DT, LI, MSSAU).setPreserveLCSSA()))
|
|
return LatchTerm->getSuccessor(SuccNum);
|
|
|
|
// If the edge isn't critical, then BB has a single successor or Succ has a
|
|
// single pred. Split the block.
|
|
if (BasicBlock *SP = Succ->getSinglePredecessor()) {
|
|
// If the successor only has a single pred, split the top of the successor
|
|
// block.
|
|
assert(SP == BB && "CFG broken");
|
|
SP = nullptr;
|
|
return SplitBlock(Succ, &Succ->front(), DT, LI, MSSAU);
|
|
}
|
|
|
|
// Otherwise, if BB has a single successor, split it at the bottom of the
|
|
// block.
|
|
assert(BB->getTerminator()->getNumSuccessors() == 1 &&
|
|
"Should have a single succ!");
|
|
return SplitBlock(BB, BB->getTerminator(), DT, LI, MSSAU);
|
|
}
|
|
|
|
unsigned
|
|
llvm::SplitAllCriticalEdges(Function &F,
|
|
const CriticalEdgeSplittingOptions &Options) {
|
|
unsigned NumBroken = 0;
|
|
for (BasicBlock &BB : F) {
|
|
Instruction *TI = BB.getTerminator();
|
|
if (TI->getNumSuccessors() > 1 && !isa<IndirectBrInst>(TI))
|
|
for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
|
|
if (SplitCriticalEdge(TI, i, Options))
|
|
++NumBroken;
|
|
}
|
|
return NumBroken;
|
|
}
|
|
|
|
BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt,
|
|
DominatorTree *DT, LoopInfo *LI,
|
|
MemorySSAUpdater *MSSAU) {
|
|
BasicBlock::iterator SplitIt = SplitPt->getIterator();
|
|
while (isa<PHINode>(SplitIt) || SplitIt->isEHPad())
|
|
++SplitIt;
|
|
BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split");
|
|
|
|
// The new block lives in whichever loop the old one did. This preserves
|
|
// LCSSA as well, because we force the split point to be after any PHI nodes.
|
|
if (LI)
|
|
if (Loop *L = LI->getLoopFor(Old))
|
|
L->addBasicBlockToLoop(New, *LI);
|
|
|
|
if (DT)
|
|
// Old dominates New. New node dominates all other nodes dominated by Old.
|
|
if (DomTreeNode *OldNode = DT->getNode(Old)) {
|
|
std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
|
|
|
|
DomTreeNode *NewNode = DT->addNewBlock(New, Old);
|
|
for (DomTreeNode *I : Children)
|
|
DT->changeImmediateDominator(I, NewNode);
|
|
}
|
|
|
|
// Move MemoryAccesses still tracked in Old, but part of New now.
|
|
// Update accesses in successor blocks accordingly.
|
|
if (MSSAU)
|
|
MSSAU->moveAllAfterSpliceBlocks(Old, New, &*(New->begin()));
|
|
|
|
return New;
|
|
}
|
|
|
|
/// Update DominatorTree, LoopInfo, and LCCSA analysis information.
|
|
static void UpdateAnalysisInformation(BasicBlock *OldBB, BasicBlock *NewBB,
|
|
ArrayRef<BasicBlock *> Preds,
|
|
DominatorTree *DT, LoopInfo *LI,
|
|
MemorySSAUpdater *MSSAU,
|
|
bool PreserveLCSSA, bool &HasLoopExit) {
|
|
// Update dominator tree if available.
|
|
if (DT) {
|
|
if (OldBB == DT->getRootNode()->getBlock()) {
|
|
assert(NewBB == &NewBB->getParent()->getEntryBlock());
|
|
DT->setNewRoot(NewBB);
|
|
} else {
|
|
// Split block expects NewBB to have a non-empty set of predecessors.
|
|
DT->splitBlock(NewBB);
|
|
}
|
|
}
|
|
|
|
// Update MemoryPhis after split if MemorySSA is available
|
|
if (MSSAU)
|
|
MSSAU->wireOldPredecessorsToNewImmediatePredecessor(OldBB, NewBB, Preds);
|
|
|
|
// The rest of the logic is only relevant for updating the loop structures.
|
|
if (!LI)
|
|
return;
|
|
|
|
assert(DT && "DT should be available to update LoopInfo!");
|
|
Loop *L = LI->getLoopFor(OldBB);
|
|
|
|
// If we need to preserve loop analyses, collect some information about how
|
|
// this split will affect loops.
|
|
bool IsLoopEntry = !!L;
|
|
bool SplitMakesNewLoopHeader = false;
|
|
for (BasicBlock *Pred : Preds) {
|
|
// Preds that are not reachable from entry should not be used to identify if
|
|
// OldBB is a loop entry or if SplitMakesNewLoopHeader. Unreachable blocks
|
|
// are not within any loops, so we incorrectly mark SplitMakesNewLoopHeader
|
|
// as true and make the NewBB the header of some loop. This breaks LI.
|
|
if (!DT->isReachableFromEntry(Pred))
|
|
continue;
|
|
// If we need to preserve LCSSA, determine if any of the preds is a loop
|
|
// exit.
|
|
if (PreserveLCSSA)
|
|
if (Loop *PL = LI->getLoopFor(Pred))
|
|
if (!PL->contains(OldBB))
|
|
HasLoopExit = true;
|
|
|
|
// If we need to preserve LoopInfo, note whether any of the preds crosses
|
|
// an interesting loop boundary.
|
|
if (!L)
|
|
continue;
|
|
if (L->contains(Pred))
|
|
IsLoopEntry = false;
|
|
else
|
|
SplitMakesNewLoopHeader = true;
|
|
}
|
|
|
|
// Unless we have a loop for OldBB, nothing else to do here.
|
|
if (!L)
|
|
return;
|
|
|
|
if (IsLoopEntry) {
|
|
// Add the new block to the nearest enclosing loop (and not an adjacent
|
|
// loop). To find this, examine each of the predecessors and determine which
|
|
// loops enclose them, and select the most-nested loop which contains the
|
|
// loop containing the block being split.
|
|
Loop *InnermostPredLoop = nullptr;
|
|
for (BasicBlock *Pred : Preds) {
|
|
if (Loop *PredLoop = LI->getLoopFor(Pred)) {
|
|
// Seek a loop which actually contains the block being split (to avoid
|
|
// adjacent loops).
|
|
while (PredLoop && !PredLoop->contains(OldBB))
|
|
PredLoop = PredLoop->getParentLoop();
|
|
|
|
// Select the most-nested of these loops which contains the block.
|
|
if (PredLoop && PredLoop->contains(OldBB) &&
|
|
(!InnermostPredLoop ||
|
|
InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth()))
|
|
InnermostPredLoop = PredLoop;
|
|
}
|
|
}
|
|
|
|
if (InnermostPredLoop)
|
|
InnermostPredLoop->addBasicBlockToLoop(NewBB, *LI);
|
|
} else {
|
|
L->addBasicBlockToLoop(NewBB, *LI);
|
|
if (SplitMakesNewLoopHeader)
|
|
L->moveToHeader(NewBB);
|
|
}
|
|
}
|
|
|
|
/// Update the PHI nodes in OrigBB to include the values coming from NewBB.
|
|
/// This also updates AliasAnalysis, if available.
|
|
static void UpdatePHINodes(BasicBlock *OrigBB, BasicBlock *NewBB,
|
|
ArrayRef<BasicBlock *> Preds, BranchInst *BI,
|
|
bool HasLoopExit) {
|
|
// Otherwise, create a new PHI node in NewBB for each PHI node in OrigBB.
|
|
SmallPtrSet<BasicBlock *, 16> PredSet(Preds.begin(), Preds.end());
|
|
for (BasicBlock::iterator I = OrigBB->begin(); isa<PHINode>(I); ) {
|
|
PHINode *PN = cast<PHINode>(I++);
|
|
|
|
// Check to see if all of the values coming in are the same. If so, we
|
|
// don't need to create a new PHI node, unless it's needed for LCSSA.
|
|
Value *InVal = nullptr;
|
|
if (!HasLoopExit) {
|
|
InVal = PN->getIncomingValueForBlock(Preds[0]);
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
if (!PredSet.count(PN->getIncomingBlock(i)))
|
|
continue;
|
|
if (!InVal)
|
|
InVal = PN->getIncomingValue(i);
|
|
else if (InVal != PN->getIncomingValue(i)) {
|
|
InVal = nullptr;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (InVal) {
|
|
// If all incoming values for the new PHI would be the same, just don't
|
|
// make a new PHI. Instead, just remove the incoming values from the old
|
|
// PHI.
|
|
|
|
// NOTE! This loop walks backwards for a reason! First off, this minimizes
|
|
// the cost of removal if we end up removing a large number of values, and
|
|
// second off, this ensures that the indices for the incoming values
|
|
// aren't invalidated when we remove one.
|
|
for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i)
|
|
if (PredSet.count(PN->getIncomingBlock(i)))
|
|
PN->removeIncomingValue(i, false);
|
|
|
|
// Add an incoming value to the PHI node in the loop for the preheader
|
|
// edge.
|
|
PN->addIncoming(InVal, NewBB);
|
|
continue;
|
|
}
|
|
|
|
// If the values coming into the block are not the same, we need a new
|
|
// PHI.
|
|
// Create the new PHI node, insert it into NewBB at the end of the block
|
|
PHINode *NewPHI =
|
|
PHINode::Create(PN->getType(), Preds.size(), PN->getName() + ".ph", BI);
|
|
|
|
// NOTE! This loop walks backwards for a reason! First off, this minimizes
|
|
// the cost of removal if we end up removing a large number of values, and
|
|
// second off, this ensures that the indices for the incoming values aren't
|
|
// invalidated when we remove one.
|
|
for (int64_t i = PN->getNumIncomingValues() - 1; i >= 0; --i) {
|
|
BasicBlock *IncomingBB = PN->getIncomingBlock(i);
|
|
if (PredSet.count(IncomingBB)) {
|
|
Value *V = PN->removeIncomingValue(i, false);
|
|
NewPHI->addIncoming(V, IncomingBB);
|
|
}
|
|
}
|
|
|
|
PN->addIncoming(NewPHI, NewBB);
|
|
}
|
|
}
|
|
|
|
BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB,
|
|
ArrayRef<BasicBlock *> Preds,
|
|
const char *Suffix, DominatorTree *DT,
|
|
LoopInfo *LI, MemorySSAUpdater *MSSAU,
|
|
bool PreserveLCSSA) {
|
|
// Do not attempt to split that which cannot be split.
|
|
if (!BB->canSplitPredecessors())
|
|
return nullptr;
|
|
|
|
// For the landingpads we need to act a bit differently.
|
|
// Delegate this work to the SplitLandingPadPredecessors.
|
|
if (BB->isLandingPad()) {
|
|
SmallVector<BasicBlock*, 2> NewBBs;
|
|
std::string NewName = std::string(Suffix) + ".split-lp";
|
|
|
|
SplitLandingPadPredecessors(BB, Preds, Suffix, NewName.c_str(), NewBBs, DT,
|
|
LI, MSSAU, PreserveLCSSA);
|
|
return NewBBs[0];
|
|
}
|
|
|
|
// Create new basic block, insert right before the original block.
|
|
BasicBlock *NewBB = BasicBlock::Create(
|
|
BB->getContext(), BB->getName() + Suffix, BB->getParent(), BB);
|
|
|
|
// The new block unconditionally branches to the old block.
|
|
BranchInst *BI = BranchInst::Create(BB, NewBB);
|
|
BI->setDebugLoc(BB->getFirstNonPHIOrDbg()->getDebugLoc());
|
|
|
|
// Move the edges from Preds to point to NewBB instead of BB.
|
|
for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
|
|
// This is slightly more strict than necessary; the minimum requirement
|
|
// is that there be no more than one indirectbr branching to BB. And
|
|
// all BlockAddress uses would need to be updated.
|
|
assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
|
|
"Cannot split an edge from an IndirectBrInst");
|
|
Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB);
|
|
}
|
|
|
|
// Insert a new PHI node into NewBB for every PHI node in BB and that new PHI
|
|
// node becomes an incoming value for BB's phi node. However, if the Preds
|
|
// list is empty, we need to insert dummy entries into the PHI nodes in BB to
|
|
// account for the newly created predecessor.
|
|
if (Preds.empty()) {
|
|
// Insert dummy values as the incoming value.
|
|
for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I)
|
|
cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB);
|
|
}
|
|
|
|
// Update DominatorTree, LoopInfo, and LCCSA analysis information.
|
|
bool HasLoopExit = false;
|
|
UpdateAnalysisInformation(BB, NewBB, Preds, DT, LI, MSSAU, PreserveLCSSA,
|
|
HasLoopExit);
|
|
|
|
if (!Preds.empty()) {
|
|
// Update the PHI nodes in BB with the values coming from NewBB.
|
|
UpdatePHINodes(BB, NewBB, Preds, BI, HasLoopExit);
|
|
}
|
|
|
|
return NewBB;
|
|
}
|
|
|
|
void llvm::SplitLandingPadPredecessors(BasicBlock *OrigBB,
|
|
ArrayRef<BasicBlock *> Preds,
|
|
const char *Suffix1, const char *Suffix2,
|
|
SmallVectorImpl<BasicBlock *> &NewBBs,
|
|
DominatorTree *DT, LoopInfo *LI,
|
|
MemorySSAUpdater *MSSAU,
|
|
bool PreserveLCSSA) {
|
|
assert(OrigBB->isLandingPad() && "Trying to split a non-landing pad!");
|
|
|
|
// Create a new basic block for OrigBB's predecessors listed in Preds. Insert
|
|
// it right before the original block.
|
|
BasicBlock *NewBB1 = BasicBlock::Create(OrigBB->getContext(),
|
|
OrigBB->getName() + Suffix1,
|
|
OrigBB->getParent(), OrigBB);
|
|
NewBBs.push_back(NewBB1);
|
|
|
|
// The new block unconditionally branches to the old block.
|
|
BranchInst *BI1 = BranchInst::Create(OrigBB, NewBB1);
|
|
BI1->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
|
|
|
|
// Move the edges from Preds to point to NewBB1 instead of OrigBB.
|
|
for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
|
|
// This is slightly more strict than necessary; the minimum requirement
|
|
// is that there be no more than one indirectbr branching to BB. And
|
|
// all BlockAddress uses would need to be updated.
|
|
assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) &&
|
|
"Cannot split an edge from an IndirectBrInst");
|
|
Preds[i]->getTerminator()->replaceUsesOfWith(OrigBB, NewBB1);
|
|
}
|
|
|
|
bool HasLoopExit = false;
|
|
UpdateAnalysisInformation(OrigBB, NewBB1, Preds, DT, LI, MSSAU, PreserveLCSSA,
|
|
HasLoopExit);
|
|
|
|
// Update the PHI nodes in OrigBB with the values coming from NewBB1.
|
|
UpdatePHINodes(OrigBB, NewBB1, Preds, BI1, HasLoopExit);
|
|
|
|
// Move the remaining edges from OrigBB to point to NewBB2.
|
|
SmallVector<BasicBlock*, 8> NewBB2Preds;
|
|
for (pred_iterator i = pred_begin(OrigBB), e = pred_end(OrigBB);
|
|
i != e; ) {
|
|
BasicBlock *Pred = *i++;
|
|
if (Pred == NewBB1) continue;
|
|
assert(!isa<IndirectBrInst>(Pred->getTerminator()) &&
|
|
"Cannot split an edge from an IndirectBrInst");
|
|
NewBB2Preds.push_back(Pred);
|
|
e = pred_end(OrigBB);
|
|
}
|
|
|
|
BasicBlock *NewBB2 = nullptr;
|
|
if (!NewBB2Preds.empty()) {
|
|
// Create another basic block for the rest of OrigBB's predecessors.
|
|
NewBB2 = BasicBlock::Create(OrigBB->getContext(),
|
|
OrigBB->getName() + Suffix2,
|
|
OrigBB->getParent(), OrigBB);
|
|
NewBBs.push_back(NewBB2);
|
|
|
|
// The new block unconditionally branches to the old block.
|
|
BranchInst *BI2 = BranchInst::Create(OrigBB, NewBB2);
|
|
BI2->setDebugLoc(OrigBB->getFirstNonPHI()->getDebugLoc());
|
|
|
|
// Move the remaining edges from OrigBB to point to NewBB2.
|
|
for (BasicBlock *NewBB2Pred : NewBB2Preds)
|
|
NewBB2Pred->getTerminator()->replaceUsesOfWith(OrigBB, NewBB2);
|
|
|
|
// Update DominatorTree, LoopInfo, and LCCSA analysis information.
|
|
HasLoopExit = false;
|
|
UpdateAnalysisInformation(OrigBB, NewBB2, NewBB2Preds, DT, LI, MSSAU,
|
|
PreserveLCSSA, HasLoopExit);
|
|
|
|
// Update the PHI nodes in OrigBB with the values coming from NewBB2.
|
|
UpdatePHINodes(OrigBB, NewBB2, NewBB2Preds, BI2, HasLoopExit);
|
|
}
|
|
|
|
LandingPadInst *LPad = OrigBB->getLandingPadInst();
|
|
Instruction *Clone1 = LPad->clone();
|
|
Clone1->setName(Twine("lpad") + Suffix1);
|
|
NewBB1->getInstList().insert(NewBB1->getFirstInsertionPt(), Clone1);
|
|
|
|
if (NewBB2) {
|
|
Instruction *Clone2 = LPad->clone();
|
|
Clone2->setName(Twine("lpad") + Suffix2);
|
|
NewBB2->getInstList().insert(NewBB2->getFirstInsertionPt(), Clone2);
|
|
|
|
// Create a PHI node for the two cloned landingpad instructions only
|
|
// if the original landingpad instruction has some uses.
|
|
if (!LPad->use_empty()) {
|
|
assert(!LPad->getType()->isTokenTy() &&
|
|
"Split cannot be applied if LPad is token type. Otherwise an "
|
|
"invalid PHINode of token type would be created.");
|
|
PHINode *PN = PHINode::Create(LPad->getType(), 2, "lpad.phi", LPad);
|
|
PN->addIncoming(Clone1, NewBB1);
|
|
PN->addIncoming(Clone2, NewBB2);
|
|
LPad->replaceAllUsesWith(PN);
|
|
}
|
|
LPad->eraseFromParent();
|
|
} else {
|
|
// There is no second clone. Just replace the landing pad with the first
|
|
// clone.
|
|
LPad->replaceAllUsesWith(Clone1);
|
|
LPad->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB,
|
|
BasicBlock *Pred,
|
|
DomTreeUpdater *DTU) {
|
|
Instruction *UncondBranch = Pred->getTerminator();
|
|
// Clone the return and add it to the end of the predecessor.
|
|
Instruction *NewRet = RI->clone();
|
|
Pred->getInstList().push_back(NewRet);
|
|
|
|
// If the return instruction returns a value, and if the value was a
|
|
// PHI node in "BB", propagate the right value into the return.
|
|
for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
|
|
i != e; ++i) {
|
|
Value *V = *i;
|
|
Instruction *NewBC = nullptr;
|
|
if (BitCastInst *BCI = dyn_cast<BitCastInst>(V)) {
|
|
// Return value might be bitcasted. Clone and insert it before the
|
|
// return instruction.
|
|
V = BCI->getOperand(0);
|
|
NewBC = BCI->clone();
|
|
Pred->getInstList().insert(NewRet->getIterator(), NewBC);
|
|
*i = NewBC;
|
|
}
|
|
if (PHINode *PN = dyn_cast<PHINode>(V)) {
|
|
if (PN->getParent() == BB) {
|
|
if (NewBC)
|
|
NewBC->setOperand(0, PN->getIncomingValueForBlock(Pred));
|
|
else
|
|
*i = PN->getIncomingValueForBlock(Pred);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Update any PHI nodes in the returning block to realize that we no
|
|
// longer branch to them.
|
|
BB->removePredecessor(Pred);
|
|
UncondBranch->eraseFromParent();
|
|
|
|
if (DTU)
|
|
DTU->deleteEdge(Pred, BB);
|
|
|
|
return cast<ReturnInst>(NewRet);
|
|
}
|
|
|
|
Instruction *llvm::SplitBlockAndInsertIfThen(Value *Cond,
|
|
Instruction *SplitBefore,
|
|
bool Unreachable,
|
|
MDNode *BranchWeights,
|
|
DominatorTree *DT, LoopInfo *LI) {
|
|
BasicBlock *Head = SplitBefore->getParent();
|
|
BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
|
|
Instruction *HeadOldTerm = Head->getTerminator();
|
|
LLVMContext &C = Head->getContext();
|
|
BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
|
|
Instruction *CheckTerm;
|
|
if (Unreachable)
|
|
CheckTerm = new UnreachableInst(C, ThenBlock);
|
|
else
|
|
CheckTerm = BranchInst::Create(Tail, ThenBlock);
|
|
CheckTerm->setDebugLoc(SplitBefore->getDebugLoc());
|
|
BranchInst *HeadNewTerm =
|
|
BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/Tail, Cond);
|
|
HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
|
|
ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
|
|
|
|
if (DT) {
|
|
if (DomTreeNode *OldNode = DT->getNode(Head)) {
|
|
std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end());
|
|
|
|
DomTreeNode *NewNode = DT->addNewBlock(Tail, Head);
|
|
for (DomTreeNode *Child : Children)
|
|
DT->changeImmediateDominator(Child, NewNode);
|
|
|
|
// Head dominates ThenBlock.
|
|
DT->addNewBlock(ThenBlock, Head);
|
|
}
|
|
}
|
|
|
|
if (LI) {
|
|
if (Loop *L = LI->getLoopFor(Head)) {
|
|
L->addBasicBlockToLoop(ThenBlock, *LI);
|
|
L->addBasicBlockToLoop(Tail, *LI);
|
|
}
|
|
}
|
|
|
|
return CheckTerm;
|
|
}
|
|
|
|
void llvm::SplitBlockAndInsertIfThenElse(Value *Cond, Instruction *SplitBefore,
|
|
Instruction **ThenTerm,
|
|
Instruction **ElseTerm,
|
|
MDNode *BranchWeights) {
|
|
BasicBlock *Head = SplitBefore->getParent();
|
|
BasicBlock *Tail = Head->splitBasicBlock(SplitBefore->getIterator());
|
|
Instruction *HeadOldTerm = Head->getTerminator();
|
|
LLVMContext &C = Head->getContext();
|
|
BasicBlock *ThenBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
|
|
BasicBlock *ElseBlock = BasicBlock::Create(C, "", Head->getParent(), Tail);
|
|
*ThenTerm = BranchInst::Create(Tail, ThenBlock);
|
|
(*ThenTerm)->setDebugLoc(SplitBefore->getDebugLoc());
|
|
*ElseTerm = BranchInst::Create(Tail, ElseBlock);
|
|
(*ElseTerm)->setDebugLoc(SplitBefore->getDebugLoc());
|
|
BranchInst *HeadNewTerm =
|
|
BranchInst::Create(/*ifTrue*/ThenBlock, /*ifFalse*/ElseBlock, Cond);
|
|
HeadNewTerm->setMetadata(LLVMContext::MD_prof, BranchWeights);
|
|
ReplaceInstWithInst(HeadOldTerm, HeadNewTerm);
|
|
}
|
|
|
|
Value *llvm::GetIfCondition(BasicBlock *BB, BasicBlock *&IfTrue,
|
|
BasicBlock *&IfFalse) {
|
|
PHINode *SomePHI = dyn_cast<PHINode>(BB->begin());
|
|
BasicBlock *Pred1 = nullptr;
|
|
BasicBlock *Pred2 = nullptr;
|
|
|
|
if (SomePHI) {
|
|
if (SomePHI->getNumIncomingValues() != 2)
|
|
return nullptr;
|
|
Pred1 = SomePHI->getIncomingBlock(0);
|
|
Pred2 = SomePHI->getIncomingBlock(1);
|
|
} else {
|
|
pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
|
|
if (PI == PE) // No predecessor
|
|
return nullptr;
|
|
Pred1 = *PI++;
|
|
if (PI == PE) // Only one predecessor
|
|
return nullptr;
|
|
Pred2 = *PI++;
|
|
if (PI != PE) // More than two predecessors
|
|
return nullptr;
|
|
}
|
|
|
|
// We can only handle branches. Other control flow will be lowered to
|
|
// branches if possible anyway.
|
|
BranchInst *Pred1Br = dyn_cast<BranchInst>(Pred1->getTerminator());
|
|
BranchInst *Pred2Br = dyn_cast<BranchInst>(Pred2->getTerminator());
|
|
if (!Pred1Br || !Pred2Br)
|
|
return nullptr;
|
|
|
|
// Eliminate code duplication by ensuring that Pred1Br is conditional if
|
|
// either are.
|
|
if (Pred2Br->isConditional()) {
|
|
// If both branches are conditional, we don't have an "if statement". In
|
|
// reality, we could transform this case, but since the condition will be
|
|
// required anyway, we stand no chance of eliminating it, so the xform is
|
|
// probably not profitable.
|
|
if (Pred1Br->isConditional())
|
|
return nullptr;
|
|
|
|
std::swap(Pred1, Pred2);
|
|
std::swap(Pred1Br, Pred2Br);
|
|
}
|
|
|
|
if (Pred1Br->isConditional()) {
|
|
// The only thing we have to watch out for here is to make sure that Pred2
|
|
// doesn't have incoming edges from other blocks. If it does, the condition
|
|
// doesn't dominate BB.
|
|
if (!Pred2->getSinglePredecessor())
|
|
return nullptr;
|
|
|
|
// If we found a conditional branch predecessor, make sure that it branches
|
|
// to BB and Pred2Br. If it doesn't, this isn't an "if statement".
|
|
if (Pred1Br->getSuccessor(0) == BB &&
|
|
Pred1Br->getSuccessor(1) == Pred2) {
|
|
IfTrue = Pred1;
|
|
IfFalse = Pred2;
|
|
} else if (Pred1Br->getSuccessor(0) == Pred2 &&
|
|
Pred1Br->getSuccessor(1) == BB) {
|
|
IfTrue = Pred2;
|
|
IfFalse = Pred1;
|
|
} else {
|
|
// We know that one arm of the conditional goes to BB, so the other must
|
|
// go somewhere unrelated, and this must not be an "if statement".
|
|
return nullptr;
|
|
}
|
|
|
|
return Pred1Br->getCondition();
|
|
}
|
|
|
|
// Ok, if we got here, both predecessors end with an unconditional branch to
|
|
// BB. Don't panic! If both blocks only have a single (identical)
|
|
// predecessor, and THAT is a conditional branch, then we're all ok!
|
|
BasicBlock *CommonPred = Pred1->getSinglePredecessor();
|
|
if (CommonPred == nullptr || CommonPred != Pred2->getSinglePredecessor())
|
|
return nullptr;
|
|
|
|
// Otherwise, if this is a conditional branch, then we can use it!
|
|
BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator());
|
|
if (!BI) return nullptr;
|
|
|
|
assert(BI->isConditional() && "Two successors but not conditional?");
|
|
if (BI->getSuccessor(0) == Pred1) {
|
|
IfTrue = Pred1;
|
|
IfFalse = Pred2;
|
|
} else {
|
|
IfTrue = Pred2;
|
|
IfFalse = Pred1;
|
|
}
|
|
return BI->getCondition();
|
|
}
|