llvm-project/clang/lib/Analysis/LiveVariables.cpp
Ted Kremenek 4d947facad Remove hack from LiveVariables analysis where variables whose address are taken
are considered 'live'. This hack isn't needed anymore because we have a
separation in the path-sensitive analyzer between variable names and bindings;
the analyzer can continue to reason about the storage of a variable after its
name is no longer directly referenced.  Now the live variables analysis literally means "is this name live".

Along this line, update the dead stores checker to explicitly look for variables
whose values have escaped.

llvm-svn: 68504
2009-04-07 05:25:24 +00:00

360 lines
11 KiB
C++

//=- LiveVariables.cpp - Live Variable Analysis for Source CFGs -*- C++ --*-==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements Live Variables analysis for source-level CFGs.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/Analyses/LiveVariables.h"
#include "clang/Basic/SourceManager.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Expr.h"
#include "clang/AST/CFG.h"
#include "clang/Analysis/Visitors/CFGRecStmtDeclVisitor.h"
#include "clang/Analysis/FlowSensitive/DataflowSolver.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Compiler.h"
#include <string.h>
#include <stdio.h>
using namespace clang;
//===----------------------------------------------------------------------===//
// Useful constants.
//===----------------------------------------------------------------------===//
static const bool Alive = true;
static const bool Dead = false;
//===----------------------------------------------------------------------===//
// Dataflow initialization logic.
//===----------------------------------------------------------------------===//
namespace {
class VISIBILITY_HIDDEN RegisterDecls
: public CFGRecStmtDeclVisitor<RegisterDecls> {
LiveVariables::AnalysisDataTy& AD;
typedef llvm::SmallVector<VarDecl*, 20> AlwaysLiveTy;
AlwaysLiveTy AlwaysLive;
public:
RegisterDecls(LiveVariables::AnalysisDataTy& ad) : AD(ad) {}
~RegisterDecls() {
AD.AlwaysLive.resetValues(AD);
for (AlwaysLiveTy::iterator I = AlwaysLive.begin(), E = AlwaysLive.end();
I != E; ++ I)
AD.AlwaysLive(*I, AD) = Alive;
}
void VisitImplicitParamDecl(ImplicitParamDecl* IPD) {
// Register the VarDecl for tracking.
AD.Register(IPD);
}
void VisitVarDecl(VarDecl* VD) {
// Register the VarDecl for tracking.
AD.Register(VD);
// Does the variable have global storage? If so, it is always live.
if (VD->hasGlobalStorage())
AlwaysLive.push_back(VD);
}
CFG& getCFG() { return AD.getCFG(); }
};
} // end anonymous namespace
LiveVariables::LiveVariables(ASTContext& Ctx, CFG& cfg) {
// Register all referenced VarDecls.
getAnalysisData().setCFG(cfg);
getAnalysisData().setContext(Ctx);
RegisterDecls R(getAnalysisData());
cfg.VisitBlockStmts(R);
}
//===----------------------------------------------------------------------===//
// Transfer functions.
//===----------------------------------------------------------------------===//
namespace {
class VISIBILITY_HIDDEN TransferFuncs : public CFGRecStmtVisitor<TransferFuncs>{
LiveVariables::AnalysisDataTy& AD;
LiveVariables::ValTy LiveState;
public:
TransferFuncs(LiveVariables::AnalysisDataTy& ad) : AD(ad) {}
LiveVariables::ValTy& getVal() { return LiveState; }
CFG& getCFG() { return AD.getCFG(); }
void VisitDeclRefExpr(DeclRefExpr* DR);
void VisitBinaryOperator(BinaryOperator* B);
void VisitAssign(BinaryOperator* B);
void VisitDeclStmt(DeclStmt* DS);
void BlockStmt_VisitObjCForCollectionStmt(ObjCForCollectionStmt* S);
void VisitUnaryOperator(UnaryOperator* U);
void Visit(Stmt *S);
void VisitTerminator(CFGBlock* B);
void SetTopValue(LiveVariables::ValTy& V) {
V = AD.AlwaysLive;
}
};
void TransferFuncs::Visit(Stmt *S) {
if (S == getCurrentBlkStmt()) {
if (AD.Observer)
AD.Observer->ObserveStmt(S,AD,LiveState);
if (getCFG().isBlkExpr(S)) LiveState(S,AD) = Dead;
StmtVisitor<TransferFuncs,void>::Visit(S);
}
else if (!getCFG().isBlkExpr(S)) {
if (AD.Observer)
AD.Observer->ObserveStmt(S,AD,LiveState);
StmtVisitor<TransferFuncs,void>::Visit(S);
}
else
// For block-level expressions, mark that they are live.
LiveState(S,AD) = Alive;
}
void TransferFuncs::VisitTerminator(CFGBlock* B) {
const Stmt* E = B->getTerminatorCondition();
if (!E)
return;
assert (getCFG().isBlkExpr(E));
LiveState(E, AD) = Alive;
}
void TransferFuncs::VisitDeclRefExpr(DeclRefExpr* DR) {
if (VarDecl* V = dyn_cast<VarDecl>(DR->getDecl()))
LiveState(V,AD) = Alive;
}
void TransferFuncs::VisitBinaryOperator(BinaryOperator* B) {
if (B->isAssignmentOp()) VisitAssign(B);
else VisitStmt(B);
}
void
TransferFuncs::BlockStmt_VisitObjCForCollectionStmt(ObjCForCollectionStmt* S) {
// This is a block-level expression. Its value is 'dead' before this point.
LiveState(S, AD) = Dead;
// This represents a 'use' of the collection.
Visit(S->getCollection());
// This represents a 'kill' for the variable.
Stmt* Element = S->getElement();
DeclRefExpr* DR = 0;
VarDecl* VD = 0;
if (DeclStmt* DS = dyn_cast<DeclStmt>(Element))
VD = cast<VarDecl>(DS->getSingleDecl());
else {
Expr* ElemExpr = cast<Expr>(Element)->IgnoreParens();
if ((DR = dyn_cast<DeclRefExpr>(ElemExpr)))
VD = cast<VarDecl>(DR->getDecl());
else {
Visit(ElemExpr);
return;
}
}
if (VD) {
LiveState(VD, AD) = Dead;
if (AD.Observer && DR) { AD.Observer->ObserverKill(DR); }
}
}
void TransferFuncs::VisitUnaryOperator(UnaryOperator* U) {
Expr *E = U->getSubExpr();
switch (U->getOpcode()) {
case UnaryOperator::PostInc:
case UnaryOperator::PostDec:
case UnaryOperator::PreInc:
case UnaryOperator::PreDec:
// Walk through the subexpressions, blasting through ParenExprs
// until we either find a DeclRefExpr or some non-DeclRefExpr
// expression.
if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(E->IgnoreParens()))
if (VarDecl* VD = dyn_cast<VarDecl>(DR->getDecl())) {
// Treat the --/++ operator as a kill.
if (AD.Observer) { AD.Observer->ObserverKill(DR); }
LiveState(VD, AD) = Alive;
return VisitDeclRefExpr(DR);
}
// Fall-through.
default:
return Visit(E);
}
}
void TransferFuncs::VisitAssign(BinaryOperator* B) {
Expr* LHS = B->getLHS();
// Assigning to a variable?
if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(LHS->IgnoreParens())) {
// Update liveness inforamtion.
unsigned bit = AD.getIdx(DR->getDecl());
LiveState.getDeclBit(bit) = Dead | AD.AlwaysLive.getDeclBit(bit);
if (AD.Observer) { AD.Observer->ObserverKill(DR); }
// Handle things like +=, etc., which also generate "uses"
// of a variable. Do this just by visiting the subexpression.
if (B->getOpcode() != BinaryOperator::Assign)
VisitDeclRefExpr(DR);
}
else // Not assigning to a variable. Process LHS as usual.
Visit(LHS);
Visit(B->getRHS());
}
void TransferFuncs::VisitDeclStmt(DeclStmt* DS) {
// Declarations effectively "kill" a variable since they cannot
// possibly be live before they are declared.
for (DeclStmt::decl_iterator DI=DS->decl_begin(), DE = DS->decl_end();
DI != DE; ++DI)
if (VarDecl* VD = dyn_cast<VarDecl>(*DI)) {
// The initializer is evaluated after the variable comes into scope.
// Since this is a reverse dataflow analysis, we must evaluate the
// transfer function for this expression first.
if (Expr* Init = VD->getInit())
Visit(Init);
if (const VariableArrayType* VT =
AD.getContext().getAsVariableArrayType(VD->getType())) {
StmtIterator I(const_cast<VariableArrayType*>(VT));
StmtIterator E;
for (; I != E; ++I) Visit(*I);
}
// Update liveness information by killing the VarDecl.
unsigned bit = AD.getIdx(VD);
LiveState.getDeclBit(bit) = Dead | AD.AlwaysLive.getDeclBit(bit);
}
}
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Merge operator: if something is live on any successor block, it is live
// in the current block (a set union).
//===----------------------------------------------------------------------===//
namespace {
struct Merge {
typedef StmtDeclBitVector_Types::ValTy ValTy;
void operator()(ValTy& Dst, const ValTy& Src) {
Dst.OrDeclBits(Src);
Dst.OrBlkExprBits(Src);
}
};
typedef DataflowSolver<LiveVariables, TransferFuncs, Merge> Solver;
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// External interface to run Liveness analysis.
//===----------------------------------------------------------------------===//
void LiveVariables::runOnCFG(CFG& cfg) {
Solver S(*this);
S.runOnCFG(cfg);
}
void LiveVariables::runOnAllBlocks(const CFG& cfg,
LiveVariables::ObserverTy* Obs,
bool recordStmtValues) {
Solver S(*this);
ObserverTy* OldObserver = getAnalysisData().Observer;
getAnalysisData().Observer = Obs;
S.runOnAllBlocks(cfg, recordStmtValues);
getAnalysisData().Observer = OldObserver;
}
//===----------------------------------------------------------------------===//
// liveness queries
//
bool LiveVariables::isLive(const CFGBlock* B, const VarDecl* D) const {
DeclBitVector_Types::Idx i = getAnalysisData().getIdx(D);
return i.isValid() ? getBlockData(B).getBit(i) : false;
}
bool LiveVariables::isLive(const ValTy& Live, const VarDecl* D) const {
DeclBitVector_Types::Idx i = getAnalysisData().getIdx(D);
return i.isValid() ? Live.getBit(i) : false;
}
bool LiveVariables::isLive(const Stmt* Loc, const Stmt* StmtVal) const {
return getStmtData(Loc)(StmtVal,getAnalysisData());
}
bool LiveVariables::isLive(const Stmt* Loc, const VarDecl* D) const {
return getStmtData(Loc)(D,getAnalysisData());
}
//===----------------------------------------------------------------------===//
// printing liveness state for debugging
//
void LiveVariables::dumpLiveness(const ValTy& V, SourceManager& SM) const {
const AnalysisDataTy& AD = getAnalysisData();
for (AnalysisDataTy::decl_iterator I = AD.begin_decl(),
E = AD.end_decl(); I!=E; ++I)
if (V.getDeclBit(I->second)) {
fprintf(stderr, " %s <", I->first->getIdentifier()->getName());
I->first->getLocation().dump(SM);
fprintf(stderr, ">\n");
}
}
void LiveVariables::dumpBlockLiveness(SourceManager& M) const {
for (BlockDataMapTy::iterator I = getBlockDataMap().begin(),
E = getBlockDataMap().end(); I!=E; ++I) {
fprintf(stderr, "\n[ B%d (live variables at block exit) ]\n",
I->first->getBlockID());
dumpLiveness(I->second,M);
}
fprintf(stderr,"\n");
}