mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-29 06:46:08 +00:00

For aggregates, we need to store the element type to be able to reconstruct the aggregate Address. This increases the size of this packed structure (as the second value is already used for alignment in this case), but I did not observe any compile-time or memory usage regression from this change.
677 lines
22 KiB
C++
677 lines
22 KiB
C++
//===-- CGValue.h - LLVM CodeGen wrappers for llvm::Value* ------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// These classes implement wrappers around llvm::Value in order to
|
|
// fully represent the range of values for C L- and R- values.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_CLANG_LIB_CODEGEN_CGVALUE_H
|
|
#define LLVM_CLANG_LIB_CODEGEN_CGVALUE_H
|
|
|
|
#include "clang/AST/ASTContext.h"
|
|
#include "clang/AST/Type.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "Address.h"
|
|
#include "CodeGenTBAA.h"
|
|
|
|
namespace llvm {
|
|
class Constant;
|
|
class MDNode;
|
|
}
|
|
|
|
namespace clang {
|
|
namespace CodeGen {
|
|
class AggValueSlot;
|
|
class CodeGenFunction;
|
|
struct CGBitFieldInfo;
|
|
|
|
/// RValue - This trivial value class is used to represent the result of an
|
|
/// expression that is evaluated. It can be one of three things: either a
|
|
/// simple LLVM SSA value, a pair of SSA values for complex numbers, or the
|
|
/// address of an aggregate value in memory.
|
|
class RValue {
|
|
enum Flavor { Scalar, Complex, Aggregate };
|
|
|
|
// The shift to make to an aggregate's alignment to make it look
|
|
// like a pointer.
|
|
enum { AggAlignShift = 4 };
|
|
|
|
// Stores first value and flavor.
|
|
llvm::PointerIntPair<llvm::Value *, 2, Flavor> V1;
|
|
// Stores second value and volatility.
|
|
llvm::PointerIntPair<llvm::Value *, 1, bool> V2;
|
|
// Stores element type for aggregate values.
|
|
llvm::Type *ElementType;
|
|
|
|
public:
|
|
bool isScalar() const { return V1.getInt() == Scalar; }
|
|
bool isComplex() const { return V1.getInt() == Complex; }
|
|
bool isAggregate() const { return V1.getInt() == Aggregate; }
|
|
|
|
bool isVolatileQualified() const { return V2.getInt(); }
|
|
|
|
/// getScalarVal() - Return the Value* of this scalar value.
|
|
llvm::Value *getScalarVal() const {
|
|
assert(isScalar() && "Not a scalar!");
|
|
return V1.getPointer();
|
|
}
|
|
|
|
/// getComplexVal - Return the real/imag components of this complex value.
|
|
///
|
|
std::pair<llvm::Value *, llvm::Value *> getComplexVal() const {
|
|
return std::make_pair(V1.getPointer(), V2.getPointer());
|
|
}
|
|
|
|
/// getAggregateAddr() - Return the Value* of the address of the aggregate.
|
|
Address getAggregateAddress() const {
|
|
assert(isAggregate() && "Not an aggregate!");
|
|
auto align = reinterpret_cast<uintptr_t>(V2.getPointer()) >> AggAlignShift;
|
|
return Address(
|
|
V1.getPointer(), ElementType, CharUnits::fromQuantity(align));
|
|
}
|
|
llvm::Value *getAggregatePointer() const {
|
|
assert(isAggregate() && "Not an aggregate!");
|
|
return V1.getPointer();
|
|
}
|
|
|
|
static RValue getIgnored() {
|
|
// FIXME: should we make this a more explicit state?
|
|
return get(nullptr);
|
|
}
|
|
|
|
static RValue get(llvm::Value *V) {
|
|
RValue ER;
|
|
ER.V1.setPointer(V);
|
|
ER.V1.setInt(Scalar);
|
|
ER.V2.setInt(false);
|
|
return ER;
|
|
}
|
|
static RValue getComplex(llvm::Value *V1, llvm::Value *V2) {
|
|
RValue ER;
|
|
ER.V1.setPointer(V1);
|
|
ER.V2.setPointer(V2);
|
|
ER.V1.setInt(Complex);
|
|
ER.V2.setInt(false);
|
|
return ER;
|
|
}
|
|
static RValue getComplex(const std::pair<llvm::Value *, llvm::Value *> &C) {
|
|
return getComplex(C.first, C.second);
|
|
}
|
|
// FIXME: Aggregate rvalues need to retain information about whether they are
|
|
// volatile or not. Remove default to find all places that probably get this
|
|
// wrong.
|
|
static RValue getAggregate(Address addr, bool isVolatile = false) {
|
|
RValue ER;
|
|
ER.V1.setPointer(addr.getPointer());
|
|
ER.V1.setInt(Aggregate);
|
|
ER.ElementType = addr.getElementType();
|
|
|
|
auto align = static_cast<uintptr_t>(addr.getAlignment().getQuantity());
|
|
ER.V2.setPointer(reinterpret_cast<llvm::Value*>(align << AggAlignShift));
|
|
ER.V2.setInt(isVolatile);
|
|
return ER;
|
|
}
|
|
};
|
|
|
|
/// Does an ARC strong l-value have precise lifetime?
|
|
enum ARCPreciseLifetime_t {
|
|
ARCImpreciseLifetime, ARCPreciseLifetime
|
|
};
|
|
|
|
/// The source of the alignment of an l-value; an expression of
|
|
/// confidence in the alignment actually matching the estimate.
|
|
enum class AlignmentSource {
|
|
/// The l-value was an access to a declared entity or something
|
|
/// equivalently strong, like the address of an array allocated by a
|
|
/// language runtime.
|
|
Decl,
|
|
|
|
/// The l-value was considered opaque, so the alignment was
|
|
/// determined from a type, but that type was an explicitly-aligned
|
|
/// typedef.
|
|
AttributedType,
|
|
|
|
/// The l-value was considered opaque, so the alignment was
|
|
/// determined from a type.
|
|
Type
|
|
};
|
|
|
|
/// Given that the base address has the given alignment source, what's
|
|
/// our confidence in the alignment of the field?
|
|
static inline AlignmentSource getFieldAlignmentSource(AlignmentSource Source) {
|
|
// For now, we don't distinguish fields of opaque pointers from
|
|
// top-level declarations, but maybe we should.
|
|
return AlignmentSource::Decl;
|
|
}
|
|
|
|
class LValueBaseInfo {
|
|
AlignmentSource AlignSource;
|
|
|
|
public:
|
|
explicit LValueBaseInfo(AlignmentSource Source = AlignmentSource::Type)
|
|
: AlignSource(Source) {}
|
|
AlignmentSource getAlignmentSource() const { return AlignSource; }
|
|
void setAlignmentSource(AlignmentSource Source) { AlignSource = Source; }
|
|
|
|
void mergeForCast(const LValueBaseInfo &Info) {
|
|
setAlignmentSource(Info.getAlignmentSource());
|
|
}
|
|
};
|
|
|
|
/// LValue - This represents an lvalue references. Because C/C++ allow
|
|
/// bitfields, this is not a simple LLVM pointer, it may be a pointer plus a
|
|
/// bitrange.
|
|
class LValue {
|
|
enum {
|
|
Simple, // This is a normal l-value, use getAddress().
|
|
VectorElt, // This is a vector element l-value (V[i]), use getVector*
|
|
BitField, // This is a bitfield l-value, use getBitfield*.
|
|
ExtVectorElt, // This is an extended vector subset, use getExtVectorComp
|
|
GlobalReg, // This is a register l-value, use getGlobalReg()
|
|
MatrixElt // This is a matrix element, use getVector*
|
|
} LVType;
|
|
|
|
llvm::Value *V;
|
|
llvm::Type *ElementType;
|
|
|
|
union {
|
|
// Index into a vector subscript: V[i]
|
|
llvm::Value *VectorIdx;
|
|
|
|
// ExtVector element subset: V.xyx
|
|
llvm::Constant *VectorElts;
|
|
|
|
// BitField start bit and size
|
|
const CGBitFieldInfo *BitFieldInfo;
|
|
};
|
|
|
|
QualType Type;
|
|
|
|
// 'const' is unused here
|
|
Qualifiers Quals;
|
|
|
|
// The alignment to use when accessing this lvalue. (For vector elements,
|
|
// this is the alignment of the whole vector.)
|
|
unsigned Alignment;
|
|
|
|
// objective-c's ivar
|
|
bool Ivar:1;
|
|
|
|
// objective-c's ivar is an array
|
|
bool ObjIsArray:1;
|
|
|
|
// LValue is non-gc'able for any reason, including being a parameter or local
|
|
// variable.
|
|
bool NonGC: 1;
|
|
|
|
// Lvalue is a global reference of an objective-c object
|
|
bool GlobalObjCRef : 1;
|
|
|
|
// Lvalue is a thread local reference
|
|
bool ThreadLocalRef : 1;
|
|
|
|
// Lvalue has ARC imprecise lifetime. We store this inverted to try
|
|
// to make the default bitfield pattern all-zeroes.
|
|
bool ImpreciseLifetime : 1;
|
|
|
|
// This flag shows if a nontemporal load/stores should be used when accessing
|
|
// this lvalue.
|
|
bool Nontemporal : 1;
|
|
|
|
LValueBaseInfo BaseInfo;
|
|
TBAAAccessInfo TBAAInfo;
|
|
|
|
Expr *BaseIvarExp;
|
|
|
|
private:
|
|
void Initialize(QualType Type, Qualifiers Quals, CharUnits Alignment,
|
|
LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
|
|
assert((!Alignment.isZero() || Type->isIncompleteType()) &&
|
|
"initializing l-value with zero alignment!");
|
|
if (isGlobalReg())
|
|
assert(ElementType == nullptr && "Global reg does not store elem type");
|
|
else
|
|
assert(llvm::cast<llvm::PointerType>(V->getType())
|
|
->isOpaqueOrPointeeTypeMatches(ElementType) &&
|
|
"Pointer element type mismatch");
|
|
|
|
this->Type = Type;
|
|
this->Quals = Quals;
|
|
const unsigned MaxAlign = 1U << 31;
|
|
this->Alignment = Alignment.getQuantity() <= MaxAlign
|
|
? Alignment.getQuantity()
|
|
: MaxAlign;
|
|
assert(this->Alignment == Alignment.getQuantity() &&
|
|
"Alignment exceeds allowed max!");
|
|
this->BaseInfo = BaseInfo;
|
|
this->TBAAInfo = TBAAInfo;
|
|
|
|
// Initialize Objective-C flags.
|
|
this->Ivar = this->ObjIsArray = this->NonGC = this->GlobalObjCRef = false;
|
|
this->ImpreciseLifetime = false;
|
|
this->Nontemporal = false;
|
|
this->ThreadLocalRef = false;
|
|
this->BaseIvarExp = nullptr;
|
|
}
|
|
|
|
public:
|
|
bool isSimple() const { return LVType == Simple; }
|
|
bool isVectorElt() const { return LVType == VectorElt; }
|
|
bool isBitField() const { return LVType == BitField; }
|
|
bool isExtVectorElt() const { return LVType == ExtVectorElt; }
|
|
bool isGlobalReg() const { return LVType == GlobalReg; }
|
|
bool isMatrixElt() const { return LVType == MatrixElt; }
|
|
|
|
bool isVolatileQualified() const { return Quals.hasVolatile(); }
|
|
bool isRestrictQualified() const { return Quals.hasRestrict(); }
|
|
unsigned getVRQualifiers() const {
|
|
return Quals.getCVRQualifiers() & ~Qualifiers::Const;
|
|
}
|
|
|
|
QualType getType() const { return Type; }
|
|
|
|
Qualifiers::ObjCLifetime getObjCLifetime() const {
|
|
return Quals.getObjCLifetime();
|
|
}
|
|
|
|
bool isObjCIvar() const { return Ivar; }
|
|
void setObjCIvar(bool Value) { Ivar = Value; }
|
|
|
|
bool isObjCArray() const { return ObjIsArray; }
|
|
void setObjCArray(bool Value) { ObjIsArray = Value; }
|
|
|
|
bool isNonGC () const { return NonGC; }
|
|
void setNonGC(bool Value) { NonGC = Value; }
|
|
|
|
bool isGlobalObjCRef() const { return GlobalObjCRef; }
|
|
void setGlobalObjCRef(bool Value) { GlobalObjCRef = Value; }
|
|
|
|
bool isThreadLocalRef() const { return ThreadLocalRef; }
|
|
void setThreadLocalRef(bool Value) { ThreadLocalRef = Value;}
|
|
|
|
ARCPreciseLifetime_t isARCPreciseLifetime() const {
|
|
return ARCPreciseLifetime_t(!ImpreciseLifetime);
|
|
}
|
|
void setARCPreciseLifetime(ARCPreciseLifetime_t value) {
|
|
ImpreciseLifetime = (value == ARCImpreciseLifetime);
|
|
}
|
|
bool isNontemporal() const { return Nontemporal; }
|
|
void setNontemporal(bool Value) { Nontemporal = Value; }
|
|
|
|
bool isObjCWeak() const {
|
|
return Quals.getObjCGCAttr() == Qualifiers::Weak;
|
|
}
|
|
bool isObjCStrong() const {
|
|
return Quals.getObjCGCAttr() == Qualifiers::Strong;
|
|
}
|
|
|
|
bool isVolatile() const {
|
|
return Quals.hasVolatile();
|
|
}
|
|
|
|
Expr *getBaseIvarExp() const { return BaseIvarExp; }
|
|
void setBaseIvarExp(Expr *V) { BaseIvarExp = V; }
|
|
|
|
TBAAAccessInfo getTBAAInfo() const { return TBAAInfo; }
|
|
void setTBAAInfo(TBAAAccessInfo Info) { TBAAInfo = Info; }
|
|
|
|
const Qualifiers &getQuals() const { return Quals; }
|
|
Qualifiers &getQuals() { return Quals; }
|
|
|
|
LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
|
|
|
|
CharUnits getAlignment() const { return CharUnits::fromQuantity(Alignment); }
|
|
void setAlignment(CharUnits A) { Alignment = A.getQuantity(); }
|
|
|
|
LValueBaseInfo getBaseInfo() const { return BaseInfo; }
|
|
void setBaseInfo(LValueBaseInfo Info) { BaseInfo = Info; }
|
|
|
|
// simple lvalue
|
|
llvm::Value *getPointer(CodeGenFunction &CGF) const {
|
|
assert(isSimple());
|
|
return V;
|
|
}
|
|
Address getAddress(CodeGenFunction &CGF) const {
|
|
return Address(getPointer(CGF), ElementType, getAlignment());
|
|
}
|
|
void setAddress(Address address) {
|
|
assert(isSimple());
|
|
V = address.getPointer();
|
|
ElementType = address.getElementType();
|
|
Alignment = address.getAlignment().getQuantity();
|
|
}
|
|
|
|
// vector elt lvalue
|
|
Address getVectorAddress() const {
|
|
return Address(getVectorPointer(), ElementType, getAlignment());
|
|
}
|
|
llvm::Value *getVectorPointer() const {
|
|
assert(isVectorElt());
|
|
return V;
|
|
}
|
|
llvm::Value *getVectorIdx() const {
|
|
assert(isVectorElt());
|
|
return VectorIdx;
|
|
}
|
|
|
|
Address getMatrixAddress() const {
|
|
return Address(getMatrixPointer(), ElementType, getAlignment());
|
|
}
|
|
llvm::Value *getMatrixPointer() const {
|
|
assert(isMatrixElt());
|
|
return V;
|
|
}
|
|
llvm::Value *getMatrixIdx() const {
|
|
assert(isMatrixElt());
|
|
return VectorIdx;
|
|
}
|
|
|
|
// extended vector elements.
|
|
Address getExtVectorAddress() const {
|
|
return Address(getExtVectorPointer(), ElementType, getAlignment());
|
|
}
|
|
llvm::Value *getExtVectorPointer() const {
|
|
assert(isExtVectorElt());
|
|
return V;
|
|
}
|
|
llvm::Constant *getExtVectorElts() const {
|
|
assert(isExtVectorElt());
|
|
return VectorElts;
|
|
}
|
|
|
|
// bitfield lvalue
|
|
Address getBitFieldAddress() const {
|
|
return Address(getBitFieldPointer(), ElementType, getAlignment());
|
|
}
|
|
llvm::Value *getBitFieldPointer() const { assert(isBitField()); return V; }
|
|
const CGBitFieldInfo &getBitFieldInfo() const {
|
|
assert(isBitField());
|
|
return *BitFieldInfo;
|
|
}
|
|
|
|
// global register lvalue
|
|
llvm::Value *getGlobalReg() const { assert(isGlobalReg()); return V; }
|
|
|
|
static LValue MakeAddr(Address address, QualType type, ASTContext &Context,
|
|
LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo) {
|
|
Qualifiers qs = type.getQualifiers();
|
|
qs.setObjCGCAttr(Context.getObjCGCAttrKind(type));
|
|
|
|
LValue R;
|
|
R.LVType = Simple;
|
|
assert(address.getPointer()->getType()->isPointerTy());
|
|
R.V = address.getPointer();
|
|
R.ElementType = address.getElementType();
|
|
R.Initialize(type, qs, address.getAlignment(), BaseInfo, TBAAInfo);
|
|
return R;
|
|
}
|
|
|
|
static LValue MakeVectorElt(Address vecAddress, llvm::Value *Idx,
|
|
QualType type, LValueBaseInfo BaseInfo,
|
|
TBAAAccessInfo TBAAInfo) {
|
|
LValue R;
|
|
R.LVType = VectorElt;
|
|
R.V = vecAddress.getPointer();
|
|
R.ElementType = vecAddress.getElementType();
|
|
R.VectorIdx = Idx;
|
|
R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(),
|
|
BaseInfo, TBAAInfo);
|
|
return R;
|
|
}
|
|
|
|
static LValue MakeExtVectorElt(Address vecAddress, llvm::Constant *Elts,
|
|
QualType type, LValueBaseInfo BaseInfo,
|
|
TBAAAccessInfo TBAAInfo) {
|
|
LValue R;
|
|
R.LVType = ExtVectorElt;
|
|
R.V = vecAddress.getPointer();
|
|
R.ElementType = vecAddress.getElementType();
|
|
R.VectorElts = Elts;
|
|
R.Initialize(type, type.getQualifiers(), vecAddress.getAlignment(),
|
|
BaseInfo, TBAAInfo);
|
|
return R;
|
|
}
|
|
|
|
/// Create a new object to represent a bit-field access.
|
|
///
|
|
/// \param Addr - The base address of the bit-field sequence this
|
|
/// bit-field refers to.
|
|
/// \param Info - The information describing how to perform the bit-field
|
|
/// access.
|
|
static LValue MakeBitfield(Address Addr, const CGBitFieldInfo &Info,
|
|
QualType type, LValueBaseInfo BaseInfo,
|
|
TBAAAccessInfo TBAAInfo) {
|
|
LValue R;
|
|
R.LVType = BitField;
|
|
R.V = Addr.getPointer();
|
|
R.ElementType = Addr.getElementType();
|
|
R.BitFieldInfo = &Info;
|
|
R.Initialize(type, type.getQualifiers(), Addr.getAlignment(), BaseInfo,
|
|
TBAAInfo);
|
|
return R;
|
|
}
|
|
|
|
static LValue MakeGlobalReg(llvm::Value *V, CharUnits alignment,
|
|
QualType type) {
|
|
LValue R;
|
|
R.LVType = GlobalReg;
|
|
R.V = V;
|
|
R.ElementType = nullptr;
|
|
R.Initialize(type, type.getQualifiers(), alignment,
|
|
LValueBaseInfo(AlignmentSource::Decl), TBAAAccessInfo());
|
|
return R;
|
|
}
|
|
|
|
static LValue MakeMatrixElt(Address matAddress, llvm::Value *Idx,
|
|
QualType type, LValueBaseInfo BaseInfo,
|
|
TBAAAccessInfo TBAAInfo) {
|
|
LValue R;
|
|
R.LVType = MatrixElt;
|
|
R.V = matAddress.getPointer();
|
|
R.ElementType = matAddress.getElementType();
|
|
R.VectorIdx = Idx;
|
|
R.Initialize(type, type.getQualifiers(), matAddress.getAlignment(),
|
|
BaseInfo, TBAAInfo);
|
|
return R;
|
|
}
|
|
|
|
RValue asAggregateRValue(CodeGenFunction &CGF) const {
|
|
return RValue::getAggregate(getAddress(CGF), isVolatileQualified());
|
|
}
|
|
};
|
|
|
|
/// An aggregate value slot.
|
|
class AggValueSlot {
|
|
/// The address.
|
|
Address Addr;
|
|
|
|
// Qualifiers
|
|
Qualifiers Quals;
|
|
|
|
/// DestructedFlag - This is set to true if some external code is
|
|
/// responsible for setting up a destructor for the slot. Otherwise
|
|
/// the code which constructs it should push the appropriate cleanup.
|
|
bool DestructedFlag : 1;
|
|
|
|
/// ObjCGCFlag - This is set to true if writing to the memory in the
|
|
/// slot might require calling an appropriate Objective-C GC
|
|
/// barrier. The exact interaction here is unnecessarily mysterious.
|
|
bool ObjCGCFlag : 1;
|
|
|
|
/// ZeroedFlag - This is set to true if the memory in the slot is
|
|
/// known to be zero before the assignment into it. This means that
|
|
/// zero fields don't need to be set.
|
|
bool ZeroedFlag : 1;
|
|
|
|
/// AliasedFlag - This is set to true if the slot might be aliased
|
|
/// and it's not undefined behavior to access it through such an
|
|
/// alias. Note that it's always undefined behavior to access a C++
|
|
/// object that's under construction through an alias derived from
|
|
/// outside the construction process.
|
|
///
|
|
/// This flag controls whether calls that produce the aggregate
|
|
/// value may be evaluated directly into the slot, or whether they
|
|
/// must be evaluated into an unaliased temporary and then memcpy'ed
|
|
/// over. Since it's invalid in general to memcpy a non-POD C++
|
|
/// object, it's important that this flag never be set when
|
|
/// evaluating an expression which constructs such an object.
|
|
bool AliasedFlag : 1;
|
|
|
|
/// This is set to true if the tail padding of this slot might overlap
|
|
/// another object that may have already been initialized (and whose
|
|
/// value must be preserved by this initialization). If so, we may only
|
|
/// store up to the dsize of the type. Otherwise we can widen stores to
|
|
/// the size of the type.
|
|
bool OverlapFlag : 1;
|
|
|
|
/// If is set to true, sanitizer checks are already generated for this address
|
|
/// or not required. For instance, if this address represents an object
|
|
/// created in 'new' expression, sanitizer checks for memory is made as a part
|
|
/// of 'operator new' emission and object constructor should not generate
|
|
/// them.
|
|
bool SanitizerCheckedFlag : 1;
|
|
|
|
AggValueSlot(Address Addr, Qualifiers Quals, bool DestructedFlag,
|
|
bool ObjCGCFlag, bool ZeroedFlag, bool AliasedFlag,
|
|
bool OverlapFlag, bool SanitizerCheckedFlag)
|
|
: Addr(Addr), Quals(Quals), DestructedFlag(DestructedFlag),
|
|
ObjCGCFlag(ObjCGCFlag), ZeroedFlag(ZeroedFlag),
|
|
AliasedFlag(AliasedFlag), OverlapFlag(OverlapFlag),
|
|
SanitizerCheckedFlag(SanitizerCheckedFlag) {}
|
|
|
|
public:
|
|
enum IsAliased_t { IsNotAliased, IsAliased };
|
|
enum IsDestructed_t { IsNotDestructed, IsDestructed };
|
|
enum IsZeroed_t { IsNotZeroed, IsZeroed };
|
|
enum Overlap_t { DoesNotOverlap, MayOverlap };
|
|
enum NeedsGCBarriers_t { DoesNotNeedGCBarriers, NeedsGCBarriers };
|
|
enum IsSanitizerChecked_t { IsNotSanitizerChecked, IsSanitizerChecked };
|
|
|
|
/// ignored - Returns an aggregate value slot indicating that the
|
|
/// aggregate value is being ignored.
|
|
static AggValueSlot ignored() {
|
|
return forAddr(Address::invalid(), Qualifiers(), IsNotDestructed,
|
|
DoesNotNeedGCBarriers, IsNotAliased, DoesNotOverlap);
|
|
}
|
|
|
|
/// forAddr - Make a slot for an aggregate value.
|
|
///
|
|
/// \param quals - The qualifiers that dictate how the slot should
|
|
/// be initialied. Only 'volatile' and the Objective-C lifetime
|
|
/// qualifiers matter.
|
|
///
|
|
/// \param isDestructed - true if something else is responsible
|
|
/// for calling destructors on this object
|
|
/// \param needsGC - true if the slot is potentially located
|
|
/// somewhere that ObjC GC calls should be emitted for
|
|
static AggValueSlot forAddr(Address addr,
|
|
Qualifiers quals,
|
|
IsDestructed_t isDestructed,
|
|
NeedsGCBarriers_t needsGC,
|
|
IsAliased_t isAliased,
|
|
Overlap_t mayOverlap,
|
|
IsZeroed_t isZeroed = IsNotZeroed,
|
|
IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) {
|
|
return AggValueSlot(addr, quals, isDestructed, needsGC, isZeroed, isAliased,
|
|
mayOverlap, isChecked);
|
|
}
|
|
|
|
static AggValueSlot
|
|
forLValue(const LValue &LV, CodeGenFunction &CGF, IsDestructed_t isDestructed,
|
|
NeedsGCBarriers_t needsGC, IsAliased_t isAliased,
|
|
Overlap_t mayOverlap, IsZeroed_t isZeroed = IsNotZeroed,
|
|
IsSanitizerChecked_t isChecked = IsNotSanitizerChecked) {
|
|
return forAddr(LV.getAddress(CGF), LV.getQuals(), isDestructed, needsGC,
|
|
isAliased, mayOverlap, isZeroed, isChecked);
|
|
}
|
|
|
|
IsDestructed_t isExternallyDestructed() const {
|
|
return IsDestructed_t(DestructedFlag);
|
|
}
|
|
void setExternallyDestructed(bool destructed = true) {
|
|
DestructedFlag = destructed;
|
|
}
|
|
|
|
Qualifiers getQualifiers() const { return Quals; }
|
|
|
|
bool isVolatile() const {
|
|
return Quals.hasVolatile();
|
|
}
|
|
|
|
void setVolatile(bool flag) {
|
|
if (flag)
|
|
Quals.addVolatile();
|
|
else
|
|
Quals.removeVolatile();
|
|
}
|
|
|
|
Qualifiers::ObjCLifetime getObjCLifetime() const {
|
|
return Quals.getObjCLifetime();
|
|
}
|
|
|
|
NeedsGCBarriers_t requiresGCollection() const {
|
|
return NeedsGCBarriers_t(ObjCGCFlag);
|
|
}
|
|
|
|
llvm::Value *getPointer() const {
|
|
return Addr.getPointer();
|
|
}
|
|
|
|
Address getAddress() const {
|
|
return Addr;
|
|
}
|
|
|
|
bool isIgnored() const {
|
|
return !Addr.isValid();
|
|
}
|
|
|
|
CharUnits getAlignment() const {
|
|
return Addr.getAlignment();
|
|
}
|
|
|
|
IsAliased_t isPotentiallyAliased() const {
|
|
return IsAliased_t(AliasedFlag);
|
|
}
|
|
|
|
Overlap_t mayOverlap() const {
|
|
return Overlap_t(OverlapFlag);
|
|
}
|
|
|
|
bool isSanitizerChecked() const {
|
|
return SanitizerCheckedFlag;
|
|
}
|
|
|
|
RValue asRValue() const {
|
|
if (isIgnored()) {
|
|
return RValue::getIgnored();
|
|
} else {
|
|
return RValue::getAggregate(getAddress(), isVolatile());
|
|
}
|
|
}
|
|
|
|
void setZeroed(bool V = true) { ZeroedFlag = V; }
|
|
IsZeroed_t isZeroed() const {
|
|
return IsZeroed_t(ZeroedFlag);
|
|
}
|
|
|
|
/// Get the preferred size to use when storing a value to this slot. This
|
|
/// is the type size unless that might overlap another object, in which
|
|
/// case it's the dsize.
|
|
CharUnits getPreferredSize(ASTContext &Ctx, QualType Type) const {
|
|
return mayOverlap() ? Ctx.getTypeInfoDataSizeInChars(Type).Width
|
|
: Ctx.getTypeSizeInChars(Type);
|
|
}
|
|
};
|
|
|
|
} // end namespace CodeGen
|
|
} // end namespace clang
|
|
|
|
#endif
|