martinboehme 37813e09fa
[clang][dataflow] Make CNFFormula externally accessible. (#92401)
This component can be useful when creating implementations of `Solver`,
as some
SAT solvers require the input to be in 3-CNF.

As part of making `CNFFormula` externally accessible, I have moved some
member
variables out of it that aren't really part of the representation of a
3-CNF
formula and thus live better elsewhere:

*  `WatchedHead` and `NextWatched` have been moved to
`WatchedLiteralsSolverImpl`, as they're part of the specific algorithm
used
   by that SAT solver.

* `Atomics` has become an output parameter of `buildCNF()` because it
has to do
with the relationship between a `CNFFormula` and the set of `Formula`s
it is
derived from rather than being an integral part of the representation of
a
   3-CNF formula.

I have also made all member variables private and added appropriate
accessors.
2024-05-21 11:34:08 +02:00

304 lines
11 KiB
C++

//===- CNFFormula.cpp -------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// A representation of a boolean formula in 3-CNF.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/FlowSensitive/CNFFormula.h"
#include "llvm/ADT/DenseSet.h"
#include <queue>
namespace clang {
namespace dataflow {
namespace {
/// Applies simplifications while building up a BooleanFormula.
/// We keep track of unit clauses, which tell us variables that must be
/// true/false in any model that satisfies the overall formula.
/// Such variables can be dropped from subsequently-added clauses, which
/// may in turn yield more unit clauses or even a contradiction.
/// The total added complexity of this preprocessing is O(N) where we
/// for every clause, we do a lookup for each unit clauses.
/// The lookup is O(1) on average. This method won't catch all
/// contradictory formulas, more passes can in principle catch
/// more cases but we leave all these and the general case to the
/// proper SAT solver.
struct CNFFormulaBuilder {
// Formula should outlive CNFFormulaBuilder.
explicit CNFFormulaBuilder(CNFFormula &CNF) : Formula(CNF) {}
/// Adds the `L1 v ... v Ln` clause to the formula. Applies
/// simplifications, based on single-literal clauses.
///
/// Requirements:
///
/// `Li` must not be `NullLit`.
///
/// All literals must be distinct.
void addClause(ArrayRef<Literal> Literals) {
// We generate clauses with up to 3 literals in this file.
assert(!Literals.empty() && Literals.size() <= 3);
// Contains literals of the simplified clause.
llvm::SmallVector<Literal> Simplified;
for (auto L : Literals) {
assert(L != NullLit &&
llvm::all_of(Simplified, [L](Literal S) { return S != L; }));
auto X = var(L);
if (trueVars.contains(X)) { // X must be true
if (isPosLit(L))
return; // Omit clause `(... v X v ...)`, it is `true`.
else
continue; // Omit `!X` from `(... v !X v ...)`.
}
if (falseVars.contains(X)) { // X must be false
if (isNegLit(L))
return; // Omit clause `(... v !X v ...)`, it is `true`.
else
continue; // Omit `X` from `(... v X v ...)`.
}
Simplified.push_back(L);
}
if (Simplified.empty()) {
// Simplification made the clause empty, which is equivalent to `false`.
// We already know that this formula is unsatisfiable.
Formula.addClause(Simplified);
return;
}
if (Simplified.size() == 1) {
// We have new unit clause.
const Literal lit = Simplified.front();
const Variable v = var(lit);
if (isPosLit(lit))
trueVars.insert(v);
else
falseVars.insert(v);
}
Formula.addClause(Simplified);
}
/// Returns true if we observed a contradiction while adding clauses.
/// In this case then the formula is already known to be unsatisfiable.
bool isKnownContradictory() { return Formula.knownContradictory(); }
private:
CNFFormula &Formula;
llvm::DenseSet<Variable> trueVars;
llvm::DenseSet<Variable> falseVars;
};
} // namespace
CNFFormula::CNFFormula(Variable LargestVar)
: LargestVar(LargestVar), KnownContradictory(false) {
Clauses.push_back(0);
ClauseStarts.push_back(0);
}
void CNFFormula::addClause(ArrayRef<Literal> lits) {
assert(llvm::all_of(lits, [](Literal L) { return L != NullLit; }));
if (lits.empty())
KnownContradictory = true;
const size_t S = Clauses.size();
ClauseStarts.push_back(S);
Clauses.insert(Clauses.end(), lits.begin(), lits.end());
}
CNFFormula buildCNF(const llvm::ArrayRef<const Formula *> &Formulas,
llvm::DenseMap<Variable, Atom> &Atomics) {
// The general strategy of the algorithm implemented below is to map each
// of the sub-values in `Vals` to a unique variable and use these variables in
// the resulting CNF expression to avoid exponential blow up. The number of
// literals in the resulting formula is guaranteed to be linear in the number
// of sub-formulas in `Vals`.
// Map each sub-formula in `Vals` to a unique variable.
llvm::DenseMap<const Formula *, Variable> FormulaToVar;
// Store variable identifiers and Atom of atomic booleans.
Variable NextVar = 1;
{
std::queue<const Formula *> UnprocessedFormulas;
for (const Formula *F : Formulas)
UnprocessedFormulas.push(F);
while (!UnprocessedFormulas.empty()) {
Variable Var = NextVar;
const Formula *F = UnprocessedFormulas.front();
UnprocessedFormulas.pop();
if (!FormulaToVar.try_emplace(F, Var).second)
continue;
++NextVar;
for (const Formula *Op : F->operands())
UnprocessedFormulas.push(Op);
if (F->kind() == Formula::AtomRef)
Atomics[Var] = F->getAtom();
}
}
auto GetVar = [&FormulaToVar](const Formula *F) {
auto ValIt = FormulaToVar.find(F);
assert(ValIt != FormulaToVar.end());
return ValIt->second;
};
CNFFormula CNF(NextVar - 1);
std::vector<bool> ProcessedSubVals(NextVar, false);
CNFFormulaBuilder builder(CNF);
// Add a conjunct for each variable that represents a top-level conjunction
// value in `Vals`.
for (const Formula *F : Formulas)
builder.addClause(posLit(GetVar(F)));
// Add conjuncts that represent the mapping between newly-created variables
// and their corresponding sub-formulas.
std::queue<const Formula *> UnprocessedFormulas;
for (const Formula *F : Formulas)
UnprocessedFormulas.push(F);
while (!UnprocessedFormulas.empty()) {
const Formula *F = UnprocessedFormulas.front();
UnprocessedFormulas.pop();
const Variable Var = GetVar(F);
if (ProcessedSubVals[Var])
continue;
ProcessedSubVals[Var] = true;
switch (F->kind()) {
case Formula::AtomRef:
break;
case Formula::Literal:
CNF.addClause(F->literal() ? posLit(Var) : negLit(Var));
break;
case Formula::And: {
const Variable LHS = GetVar(F->operands()[0]);
const Variable RHS = GetVar(F->operands()[1]);
if (LHS == RHS) {
// `X <=> (A ^ A)` is equivalent to `(!X v A) ^ (X v !A)` which is
// already in conjunctive normal form. Below we add each of the
// conjuncts of the latter expression to the result.
builder.addClause({negLit(Var), posLit(LHS)});
builder.addClause({posLit(Var), negLit(LHS)});
} else {
// `X <=> (A ^ B)` is equivalent to `(!X v A) ^ (!X v B) ^ (X v !A v
// !B)` which is already in conjunctive normal form. Below we add each
// of the conjuncts of the latter expression to the result.
builder.addClause({negLit(Var), posLit(LHS)});
builder.addClause({negLit(Var), posLit(RHS)});
builder.addClause({posLit(Var), negLit(LHS), negLit(RHS)});
}
break;
}
case Formula::Or: {
const Variable LHS = GetVar(F->operands()[0]);
const Variable RHS = GetVar(F->operands()[1]);
if (LHS == RHS) {
// `X <=> (A v A)` is equivalent to `(!X v A) ^ (X v !A)` which is
// already in conjunctive normal form. Below we add each of the
// conjuncts of the latter expression to the result.
builder.addClause({negLit(Var), posLit(LHS)});
builder.addClause({posLit(Var), negLit(LHS)});
} else {
// `X <=> (A v B)` is equivalent to `(!X v A v B) ^ (X v !A) ^ (X v
// !B)` which is already in conjunctive normal form. Below we add each
// of the conjuncts of the latter expression to the result.
builder.addClause({negLit(Var), posLit(LHS), posLit(RHS)});
builder.addClause({posLit(Var), negLit(LHS)});
builder.addClause({posLit(Var), negLit(RHS)});
}
break;
}
case Formula::Not: {
const Variable Operand = GetVar(F->operands()[0]);
// `X <=> !Y` is equivalent to `(!X v !Y) ^ (X v Y)` which is
// already in conjunctive normal form. Below we add each of the
// conjuncts of the latter expression to the result.
builder.addClause({negLit(Var), negLit(Operand)});
builder.addClause({posLit(Var), posLit(Operand)});
break;
}
case Formula::Implies: {
const Variable LHS = GetVar(F->operands()[0]);
const Variable RHS = GetVar(F->operands()[1]);
// `X <=> (A => B)` is equivalent to
// `(X v A) ^ (X v !B) ^ (!X v !A v B)` which is already in
// conjunctive normal form. Below we add each of the conjuncts of
// the latter expression to the result.
builder.addClause({posLit(Var), posLit(LHS)});
builder.addClause({posLit(Var), negLit(RHS)});
builder.addClause({negLit(Var), negLit(LHS), posLit(RHS)});
break;
}
case Formula::Equal: {
const Variable LHS = GetVar(F->operands()[0]);
const Variable RHS = GetVar(F->operands()[1]);
if (LHS == RHS) {
// `X <=> (A <=> A)` is equivalent to `X` which is already in
// conjunctive normal form. Below we add each of the conjuncts of the
// latter expression to the result.
builder.addClause(posLit(Var));
// No need to visit the sub-values of `Val`.
continue;
}
// `X <=> (A <=> B)` is equivalent to
// `(X v A v B) ^ (X v !A v !B) ^ (!X v A v !B) ^ (!X v !A v B)` which
// is already in conjunctive normal form. Below we add each of the
// conjuncts of the latter expression to the result.
builder.addClause({posLit(Var), posLit(LHS), posLit(RHS)});
builder.addClause({posLit(Var), negLit(LHS), negLit(RHS)});
builder.addClause({negLit(Var), posLit(LHS), negLit(RHS)});
builder.addClause({negLit(Var), negLit(LHS), posLit(RHS)});
break;
}
}
if (builder.isKnownContradictory()) {
return CNF;
}
for (const Formula *Child : F->operands())
UnprocessedFormulas.push(Child);
}
// Unit clauses that were added later were not
// considered for the simplification of earlier clauses. Do a final
// pass to find more opportunities for simplification.
CNFFormula FinalCNF(NextVar - 1);
CNFFormulaBuilder FinalBuilder(FinalCNF);
// Collect unit clauses.
for (ClauseID C = 1; C <= CNF.numClauses(); ++C) {
if (CNF.clauseSize(C) == 1) {
FinalBuilder.addClause(CNF.clauseLiterals(C)[0]);
}
}
// Add all clauses that were added previously, preserving the order.
for (ClauseID C = 1; C <= CNF.numClauses(); ++C) {
FinalBuilder.addClause(CNF.clauseLiterals(C));
if (FinalBuilder.isKnownContradictory()) {
break;
}
}
// It is possible there were new unit clauses again, but
// we stop here and leave the rest to the solver algorithm.
return FinalCNF;
}
} // namespace dataflow
} // namespace clang