martinboehme 0362a29905
[clang][dataflow] Fix bug in buildContainsExprConsumedInDifferentBlock(). (#100874)
This was missing a call to `ignoreCFGOmittedNodes()`. As a result, the
function
would erroneously conclude that a block did not contain an expression
consumed
in a different block if the expression in question was surrounded by a
`ParenExpr` in the consuming block. The patch adds a test that triggers
this
scenario (and fails without the fix).

To prevent this kind of bug in the future, the patch also adds a new
method
`blockForStmt()` to `AdornedCFG` that calls `ignoreCFGOmittedNodes()`
and is
preferred over accessing `getStmtToBlock()` directly.
2024-07-29 11:24:26 +02:00

897 lines
31 KiB
C++

//===-- Transfer.cpp --------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines transfer functions that evaluate program statements and
// update an environment accordingly.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/FlowSensitive/Transfer.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Analysis/FlowSensitive/ASTOps.h"
#include "clang/Analysis/FlowSensitive/AdornedCFG.h"
#include "clang/Analysis/FlowSensitive/DataflowAnalysisContext.h"
#include "clang/Analysis/FlowSensitive/DataflowEnvironment.h"
#include "clang/Analysis/FlowSensitive/NoopAnalysis.h"
#include "clang/Analysis/FlowSensitive/RecordOps.h"
#include "clang/Analysis/FlowSensitive/Value.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/OperatorKinds.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include <assert.h>
#include <cassert>
#define DEBUG_TYPE "dataflow"
namespace clang {
namespace dataflow {
const Environment *StmtToEnvMap::getEnvironment(const Stmt &S) const {
const CFGBlock *Block = ACFG.blockForStmt(S);
if (Block == nullptr) {
assert(false);
return nullptr;
}
if (!ACFG.isBlockReachable(*Block))
return nullptr;
if (Block->getBlockID() == CurBlockID)
return &CurState.Env;
const auto &State = BlockToState[Block->getBlockID()];
if (!(State))
return nullptr;
return &State->Env;
}
static BoolValue &evaluateBooleanEquality(const Expr &LHS, const Expr &RHS,
Environment &Env) {
Value *LHSValue = Env.getValue(LHS);
Value *RHSValue = Env.getValue(RHS);
if (LHSValue == RHSValue)
return Env.getBoolLiteralValue(true);
if (auto *LHSBool = dyn_cast_or_null<BoolValue>(LHSValue))
if (auto *RHSBool = dyn_cast_or_null<BoolValue>(RHSValue))
return Env.makeIff(*LHSBool, *RHSBool);
if (auto *LHSPtr = dyn_cast_or_null<PointerValue>(LHSValue))
if (auto *RHSPtr = dyn_cast_or_null<PointerValue>(RHSValue))
// If the storage locations are the same, the pointers definitely compare
// the same. If the storage locations are different, they may still alias,
// so we fall through to the case below that returns an atom.
if (&LHSPtr->getPointeeLoc() == &RHSPtr->getPointeeLoc())
return Env.getBoolLiteralValue(true);
return Env.makeAtomicBoolValue();
}
static BoolValue &unpackValue(BoolValue &V, Environment &Env) {
if (auto *Top = llvm::dyn_cast<TopBoolValue>(&V)) {
auto &A = Env.getDataflowAnalysisContext().arena();
return A.makeBoolValue(A.makeAtomRef(Top->getAtom()));
}
return V;
}
// Unpacks the value (if any) associated with `E` and updates `E` to the new
// value, if any unpacking occured. Also, does the lvalue-to-rvalue conversion,
// by skipping past the reference.
static Value *maybeUnpackLValueExpr(const Expr &E, Environment &Env) {
auto *Loc = Env.getStorageLocation(E);
if (Loc == nullptr)
return nullptr;
auto *Val = Env.getValue(*Loc);
auto *B = dyn_cast_or_null<BoolValue>(Val);
if (B == nullptr)
return Val;
auto &UnpackedVal = unpackValue(*B, Env);
if (&UnpackedVal == Val)
return Val;
Env.setValue(*Loc, UnpackedVal);
return &UnpackedVal;
}
static void propagateValue(const Expr &From, const Expr &To, Environment &Env) {
if (From.getType()->isRecordType())
return;
if (auto *Val = Env.getValue(From))
Env.setValue(To, *Val);
}
static void propagateStorageLocation(const Expr &From, const Expr &To,
Environment &Env) {
if (auto *Loc = Env.getStorageLocation(From))
Env.setStorageLocation(To, *Loc);
}
// Propagates the value or storage location of `From` to `To` in cases where
// `From` may be either a glvalue or a prvalue. `To` must be a glvalue iff
// `From` is a glvalue.
static void propagateValueOrStorageLocation(const Expr &From, const Expr &To,
Environment &Env) {
assert(From.isGLValue() == To.isGLValue());
if (From.isGLValue())
propagateStorageLocation(From, To, Env);
else
propagateValue(From, To, Env);
}
namespace {
class TransferVisitor : public ConstStmtVisitor<TransferVisitor> {
public:
TransferVisitor(const StmtToEnvMap &StmtToEnv, Environment &Env,
Environment::ValueModel &Model)
: StmtToEnv(StmtToEnv), Env(Env), Model(Model) {}
void VisitBinaryOperator(const BinaryOperator *S) {
const Expr *LHS = S->getLHS();
assert(LHS != nullptr);
const Expr *RHS = S->getRHS();
assert(RHS != nullptr);
// Do compound assignments up-front, as there are so many of them and we
// don't want to list all of them in the switch statement below.
// To avoid generating unnecessary values, we don't create a new value but
// instead leave it to the specific analysis to do this if desired.
if (S->isCompoundAssignmentOp())
propagateStorageLocation(*S->getLHS(), *S, Env);
switch (S->getOpcode()) {
case BO_Assign: {
auto *LHSLoc = Env.getStorageLocation(*LHS);
if (LHSLoc == nullptr)
break;
auto *RHSVal = Env.getValue(*RHS);
if (RHSVal == nullptr)
break;
// Assign a value to the storage location of the left-hand side.
Env.setValue(*LHSLoc, *RHSVal);
// Assign a storage location for the whole expression.
Env.setStorageLocation(*S, *LHSLoc);
break;
}
case BO_LAnd:
case BO_LOr: {
BoolValue &LHSVal = getLogicOperatorSubExprValue(*LHS);
BoolValue &RHSVal = getLogicOperatorSubExprValue(*RHS);
if (S->getOpcode() == BO_LAnd)
Env.setValue(*S, Env.makeAnd(LHSVal, RHSVal));
else
Env.setValue(*S, Env.makeOr(LHSVal, RHSVal));
break;
}
case BO_NE:
case BO_EQ: {
auto &LHSEqRHSValue = evaluateBooleanEquality(*LHS, *RHS, Env);
Env.setValue(*S, S->getOpcode() == BO_EQ ? LHSEqRHSValue
: Env.makeNot(LHSEqRHSValue));
break;
}
case BO_Comma: {
propagateValueOrStorageLocation(*RHS, *S, Env);
break;
}
default:
break;
}
}
void VisitDeclRefExpr(const DeclRefExpr *S) {
const ValueDecl *VD = S->getDecl();
assert(VD != nullptr);
// Some `DeclRefExpr`s aren't glvalues, so we can't associate them with a
// `StorageLocation`, and there's also no sensible `Value` that we can
// assign to them. Examples:
// - Non-static member variables
// - Non static member functions
// Note: Member operators are an exception to this, but apparently only
// if the `DeclRefExpr` is used within the callee of a
// `CXXOperatorCallExpr`. In other cases, for example when applying the
// address-of operator, the `DeclRefExpr` is a prvalue.
if (!S->isGLValue())
return;
auto *DeclLoc = Env.getStorageLocation(*VD);
if (DeclLoc == nullptr)
return;
Env.setStorageLocation(*S, *DeclLoc);
}
void VisitDeclStmt(const DeclStmt *S) {
// Group decls are converted into single decls in the CFG so the cast below
// is safe.
const auto &D = *cast<VarDecl>(S->getSingleDecl());
ProcessVarDecl(D);
}
void ProcessVarDecl(const VarDecl &D) {
// Static local vars are already initialized in `Environment`.
if (D.hasGlobalStorage())
return;
// If this is the holding variable for a `BindingDecl`, we may already
// have a storage location set up -- so check. (See also explanation below
// where we process the `BindingDecl`.)
if (D.getType()->isReferenceType() && Env.getStorageLocation(D) != nullptr)
return;
assert(Env.getStorageLocation(D) == nullptr);
Env.setStorageLocation(D, Env.createObject(D));
// `DecompositionDecl` must be handled after we've interpreted the loc
// itself, because the binding expression refers back to the
// `DecompositionDecl` (even though it has no written name).
if (const auto *Decomp = dyn_cast<DecompositionDecl>(&D)) {
// If VarDecl is a DecompositionDecl, evaluate each of its bindings. This
// needs to be evaluated after initializing the values in the storage for
// VarDecl, as the bindings refer to them.
// FIXME: Add support for ArraySubscriptExpr.
// FIXME: Consider adding AST nodes used in BindingDecls to the CFG.
for (const auto *B : Decomp->bindings()) {
if (auto *ME = dyn_cast_or_null<MemberExpr>(B->getBinding())) {
auto *DE = dyn_cast_or_null<DeclRefExpr>(ME->getBase());
if (DE == nullptr)
continue;
// ME and its base haven't been visited because they aren't included
// in the statements of the CFG basic block.
VisitDeclRefExpr(DE);
VisitMemberExpr(ME);
if (auto *Loc = Env.getStorageLocation(*ME))
Env.setStorageLocation(*B, *Loc);
} else if (auto *VD = B->getHoldingVar()) {
// Holding vars are used to back the `BindingDecl`s of tuple-like
// types. The holding var declarations appear after the
// `DecompositionDecl`, so we have to explicitly process them here
// to know their storage location. They will be processed a second
// time when we visit their `VarDecl`s, so we have code that protects
// against this above.
ProcessVarDecl(*VD);
auto *VDLoc = Env.getStorageLocation(*VD);
assert(VDLoc != nullptr);
Env.setStorageLocation(*B, *VDLoc);
}
}
}
}
void VisitImplicitCastExpr(const ImplicitCastExpr *S) {
const Expr *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
switch (S->getCastKind()) {
case CK_IntegralToBoolean: {
// This cast creates a new, boolean value from the integral value. We
// model that with a fresh value in the environment, unless it's already a
// boolean.
if (auto *SubExprVal =
dyn_cast_or_null<BoolValue>(Env.getValue(*SubExpr)))
Env.setValue(*S, *SubExprVal);
else
// FIXME: If integer modeling is added, then update this code to create
// the boolean based on the integer model.
Env.setValue(*S, Env.makeAtomicBoolValue());
break;
}
case CK_LValueToRValue: {
// When an L-value is used as an R-value, it may result in sharing, so we
// need to unpack any nested `Top`s.
auto *SubExprVal = maybeUnpackLValueExpr(*SubExpr, Env);
if (SubExprVal == nullptr)
break;
Env.setValue(*S, *SubExprVal);
break;
}
case CK_IntegralCast:
// FIXME: This cast creates a new integral value from the
// subexpression. But, because we don't model integers, we don't
// distinguish between this new value and the underlying one. If integer
// modeling is added, then update this code to create a fresh location and
// value.
case CK_UncheckedDerivedToBase:
case CK_ConstructorConversion:
case CK_UserDefinedConversion:
// FIXME: Add tests that excercise CK_UncheckedDerivedToBase,
// CK_ConstructorConversion, and CK_UserDefinedConversion.
case CK_NoOp: {
// FIXME: Consider making `Environment::getStorageLocation` skip noop
// expressions (this and other similar expressions in the file) instead
// of assigning them storage locations.
propagateValueOrStorageLocation(*SubExpr, *S, Env);
break;
}
case CK_NullToPointer: {
auto &NullPointerVal =
Env.getOrCreateNullPointerValue(S->getType()->getPointeeType());
Env.setValue(*S, NullPointerVal);
break;
}
case CK_NullToMemberPointer:
// FIXME: Implement pointers to members. For now, don't associate a value
// with this expression.
break;
case CK_FunctionToPointerDecay: {
StorageLocation *PointeeLoc = Env.getStorageLocation(*SubExpr);
if (PointeeLoc == nullptr)
break;
Env.setValue(*S, Env.create<PointerValue>(*PointeeLoc));
break;
}
case CK_BuiltinFnToFnPtr:
// Despite its name, the result type of `BuiltinFnToFnPtr` is a function,
// not a function pointer. In addition, builtin functions can only be
// called directly; it is not legal to take their address. We therefore
// don't need to create a value or storage location for them.
break;
default:
break;
}
}
void VisitUnaryOperator(const UnaryOperator *S) {
const Expr *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
switch (S->getOpcode()) {
case UO_Deref: {
const auto *SubExprVal = Env.get<PointerValue>(*SubExpr);
if (SubExprVal == nullptr)
break;
Env.setStorageLocation(*S, SubExprVal->getPointeeLoc());
break;
}
case UO_AddrOf: {
// FIXME: Model pointers to members.
if (S->getType()->isMemberPointerType())
break;
if (StorageLocation *PointeeLoc = Env.getStorageLocation(*SubExpr))
Env.setValue(*S, Env.create<PointerValue>(*PointeeLoc));
break;
}
case UO_LNot: {
auto *SubExprVal = dyn_cast_or_null<BoolValue>(Env.getValue(*SubExpr));
if (SubExprVal == nullptr)
break;
Env.setValue(*S, Env.makeNot(*SubExprVal));
break;
}
case UO_PreInc:
case UO_PreDec:
// Propagate the storage location and clear out any value associated with
// it (to represent the fact that the value has definitely changed).
// To avoid generating unnecessary values, we leave it to the specific
// analysis to create a new value if desired.
propagateStorageLocation(*S->getSubExpr(), *S, Env);
if (StorageLocation *Loc = Env.getStorageLocation(*S->getSubExpr()))
Env.clearValue(*Loc);
break;
case UO_PostInc:
case UO_PostDec:
// Propagate the old value, then clear out any value associated with the
// storage location (to represent the fact that the value has definitely
// changed). See above for rationale.
propagateValue(*S->getSubExpr(), *S, Env);
if (StorageLocation *Loc = Env.getStorageLocation(*S->getSubExpr()))
Env.clearValue(*Loc);
break;
default:
break;
}
}
void VisitCXXThisExpr(const CXXThisExpr *S) {
auto *ThisPointeeLoc = Env.getThisPointeeStorageLocation();
if (ThisPointeeLoc == nullptr)
// Unions are not supported yet, and will not have a location for the
// `this` expression's pointee.
return;
Env.setValue(*S, Env.create<PointerValue>(*ThisPointeeLoc));
}
void VisitCXXNewExpr(const CXXNewExpr *S) {
if (Value *Val = Env.createValue(S->getType()))
Env.setValue(*S, *Val);
}
void VisitCXXDeleteExpr(const CXXDeleteExpr *S) {
// Empty method.
// We consciously don't do anything on deletes. Diagnosing double deletes
// (for example) should be done by a specific analysis, not by the
// framework.
}
void VisitReturnStmt(const ReturnStmt *S) {
if (!Env.getDataflowAnalysisContext().getOptions().ContextSensitiveOpts)
return;
auto *Ret = S->getRetValue();
if (Ret == nullptr)
return;
if (Ret->isPRValue()) {
if (Ret->getType()->isRecordType())
return;
auto *Val = Env.getValue(*Ret);
if (Val == nullptr)
return;
// FIXME: Model NRVO.
Env.setReturnValue(Val);
} else {
auto *Loc = Env.getStorageLocation(*Ret);
if (Loc == nullptr)
return;
// FIXME: Model NRVO.
Env.setReturnStorageLocation(Loc);
}
}
void VisitMemberExpr(const MemberExpr *S) {
ValueDecl *Member = S->getMemberDecl();
assert(Member != nullptr);
// FIXME: Consider assigning pointer values to function member expressions.
if (Member->isFunctionOrFunctionTemplate())
return;
// FIXME: if/when we add support for modeling enums, use that support here.
if (isa<EnumConstantDecl>(Member))
return;
if (auto *D = dyn_cast<VarDecl>(Member)) {
if (D->hasGlobalStorage()) {
auto *VarDeclLoc = Env.getStorageLocation(*D);
if (VarDeclLoc == nullptr)
return;
Env.setStorageLocation(*S, *VarDeclLoc);
return;
}
}
RecordStorageLocation *BaseLoc = getBaseObjectLocation(*S, Env);
if (BaseLoc == nullptr)
return;
auto *MemberLoc = BaseLoc->getChild(*Member);
if (MemberLoc == nullptr)
return;
Env.setStorageLocation(*S, *MemberLoc);
}
void VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *S) {
const Expr *ArgExpr = S->getExpr();
assert(ArgExpr != nullptr);
propagateValueOrStorageLocation(*ArgExpr, *S, Env);
if (S->isPRValue() && S->getType()->isRecordType()) {
auto &Loc = Env.getResultObjectLocation(*S);
Env.initializeFieldsWithValues(Loc);
}
}
void VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *S) {
const Expr *InitExpr = S->getExpr();
assert(InitExpr != nullptr);
// If this is a prvalue of record type, the handler for `*InitExpr` (if one
// exists) will initialize the result object; there is no value to propgate
// here.
if (S->getType()->isRecordType() && S->isPRValue())
return;
propagateValueOrStorageLocation(*InitExpr, *S, Env);
}
void VisitCXXConstructExpr(const CXXConstructExpr *S) {
const CXXConstructorDecl *ConstructorDecl = S->getConstructor();
assert(ConstructorDecl != nullptr);
// `CXXConstructExpr` can have array type if default-initializing an array
// of records. We don't handle this specifically beyond potentially inlining
// the call.
if (!S->getType()->isRecordType()) {
transferInlineCall(S, ConstructorDecl);
return;
}
RecordStorageLocation &Loc = Env.getResultObjectLocation(*S);
if (ConstructorDecl->isCopyOrMoveConstructor()) {
// It is permissible for a copy/move constructor to have additional
// parameters as long as they have default arguments defined for them.
assert(S->getNumArgs() != 0);
const Expr *Arg = S->getArg(0);
assert(Arg != nullptr);
auto *ArgLoc = Env.get<RecordStorageLocation>(*Arg);
if (ArgLoc == nullptr)
return;
// Even if the copy/move constructor call is elidable, we choose to copy
// the record in all cases (which isn't wrong, just potentially not
// optimal).
copyRecord(*ArgLoc, Loc, Env);
return;
}
Env.initializeFieldsWithValues(Loc, S->getType());
transferInlineCall(S, ConstructorDecl);
}
void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *S) {
if (S->getOperator() == OO_Equal) {
assert(S->getNumArgs() == 2);
const Expr *Arg0 = S->getArg(0);
assert(Arg0 != nullptr);
const Expr *Arg1 = S->getArg(1);
assert(Arg1 != nullptr);
// Evaluate only copy and move assignment operators.
const auto *Method =
dyn_cast_or_null<CXXMethodDecl>(S->getDirectCallee());
if (!Method)
return;
if (!Method->isCopyAssignmentOperator() &&
!Method->isMoveAssignmentOperator())
return;
RecordStorageLocation *LocSrc = nullptr;
if (Arg1->isPRValue()) {
LocSrc = &Env.getResultObjectLocation(*Arg1);
} else {
LocSrc = Env.get<RecordStorageLocation>(*Arg1);
}
auto *LocDst = Env.get<RecordStorageLocation>(*Arg0);
if (LocSrc == nullptr || LocDst == nullptr)
return;
copyRecord(*LocSrc, *LocDst, Env);
// The assignment operator can have an arbitrary return type. We model the
// return value only if the return type is the same as or a base class of
// the destination type.
if (S->getType().getCanonicalType().getUnqualifiedType() !=
LocDst->getType().getCanonicalType().getUnqualifiedType()) {
auto ReturnDecl = S->getType()->getAsCXXRecordDecl();
auto DstDecl = LocDst->getType()->getAsCXXRecordDecl();
if (ReturnDecl == nullptr || DstDecl == nullptr)
return;
if (!DstDecl->isDerivedFrom(ReturnDecl))
return;
}
if (S->isGLValue())
Env.setStorageLocation(*S, *LocDst);
else
copyRecord(*LocDst, Env.getResultObjectLocation(*S), Env);
return;
}
// `CXXOperatorCallExpr` can be a prvalue. Call `VisitCallExpr`() to
// initialize the prvalue's fields with values.
VisitCallExpr(S);
}
void VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *RBO) {
propagateValue(*RBO->getSemanticForm(), *RBO, Env);
}
void VisitCallExpr(const CallExpr *S) {
// Of clang's builtins, only `__builtin_expect` is handled explicitly, since
// others (like trap, debugtrap, and unreachable) are handled by CFG
// construction.
if (S->isCallToStdMove()) {
assert(S->getNumArgs() == 1);
const Expr *Arg = S->getArg(0);
assert(Arg != nullptr);
auto *ArgLoc = Env.getStorageLocation(*Arg);
if (ArgLoc == nullptr)
return;
Env.setStorageLocation(*S, *ArgLoc);
} else if (S->getDirectCallee() != nullptr &&
S->getDirectCallee()->getBuiltinID() ==
Builtin::BI__builtin_expect) {
assert(S->getNumArgs() > 0);
assert(S->getArg(0) != nullptr);
auto *ArgVal = Env.getValue(*S->getArg(0));
if (ArgVal == nullptr)
return;
Env.setValue(*S, *ArgVal);
} else if (const FunctionDecl *F = S->getDirectCallee()) {
transferInlineCall(S, F);
// If this call produces a prvalue of record type, initialize its fields
// with values.
if (S->getType()->isRecordType() && S->isPRValue()) {
RecordStorageLocation &Loc = Env.getResultObjectLocation(*S);
Env.initializeFieldsWithValues(Loc);
}
}
}
void VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *S) {
const Expr *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
StorageLocation &Loc = Env.createStorageLocation(*S);
Env.setStorageLocation(*S, Loc);
if (SubExpr->getType()->isRecordType())
// Nothing else left to do -- we initialized the record when transferring
// `SubExpr`.
return;
if (Value *SubExprVal = Env.getValue(*SubExpr))
Env.setValue(Loc, *SubExprVal);
}
void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *S) {
const Expr *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
propagateValue(*SubExpr, *S, Env);
}
void VisitCXXStaticCastExpr(const CXXStaticCastExpr *S) {
if (S->getCastKind() == CK_NoOp) {
const Expr *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
propagateValueOrStorageLocation(*SubExpr, *S, Env);
}
}
void VisitConditionalOperator(const ConditionalOperator *S) {
const Environment *TrueEnv = StmtToEnv.getEnvironment(*S->getTrueExpr());
const Environment *FalseEnv = StmtToEnv.getEnvironment(*S->getFalseExpr());
if (TrueEnv == nullptr || FalseEnv == nullptr) {
// If the true or false branch is dead, we may not have an environment for
// it. We could handle this specifically by forwarding the value or
// location of the live branch, but this case is rare enough that this
// probably isn't worth the additional complexity.
return;
}
if (S->isGLValue()) {
StorageLocation *TrueLoc = TrueEnv->getStorageLocation(*S->getTrueExpr());
StorageLocation *FalseLoc =
FalseEnv->getStorageLocation(*S->getFalseExpr());
if (TrueLoc == FalseLoc && TrueLoc != nullptr)
Env.setStorageLocation(*S, *TrueLoc);
} else if (!S->getType()->isRecordType()) {
// The conditional operator can evaluate to either of the values of the
// two branches. To model this, join these two values together to yield
// the result of the conditional operator.
// Note: Most joins happen in `computeBlockInputState()`, but this case is
// different:
// - `computeBlockInputState()` (which in turn calls `Environment::join()`
// joins values associated with the _same_ expression or storage
// location, then associates the joined value with that expression or
// storage location. This join has nothing to do with transfer --
// instead, it joins together the results of performing transfer on two
// different blocks.
// - Here, we join values associated with _different_ expressions (the
// true and false branch), then associate the joined value with a third
// expression (the conditional operator itself). This join is what it
// means to perform transfer on the conditional operator.
if (Value *Val = Environment::joinValues(
S->getType(), TrueEnv->getValue(*S->getTrueExpr()), *TrueEnv,
FalseEnv->getValue(*S->getFalseExpr()), *FalseEnv, Env, Model))
Env.setValue(*S, *Val);
}
}
void VisitInitListExpr(const InitListExpr *S) {
QualType Type = S->getType();
if (!Type->isRecordType()) {
// Until array initialization is implemented, we skip arrays and don't
// need to care about cases where `getNumInits() > 1`.
if (!Type->isArrayType() && S->getNumInits() == 1)
propagateValueOrStorageLocation(*S->getInit(0), *S, Env);
return;
}
// If the initializer list is transparent, there's nothing to do.
if (S->isSemanticForm() && S->isTransparent())
return;
RecordStorageLocation &Loc = Env.getResultObjectLocation(*S);
// Initialization of base classes and fields of record type happens when we
// visit the nested `CXXConstructExpr` or `InitListExpr` for that base class
// or field. We therefore only need to deal with fields of non-record type
// here.
RecordInitListHelper InitListHelper(S);
for (auto [Field, Init] : InitListHelper.field_inits()) {
if (Field->getType()->isRecordType())
continue;
if (Field->getType()->isReferenceType()) {
assert(Field->getType().getCanonicalType()->getPointeeType() ==
Init->getType().getCanonicalType());
Loc.setChild(*Field, &Env.createObject(Field->getType(), Init));
continue;
}
assert(Field->getType().getCanonicalType().getUnqualifiedType() ==
Init->getType().getCanonicalType().getUnqualifiedType());
StorageLocation *FieldLoc = Loc.getChild(*Field);
// Locations for non-reference fields must always be non-null.
assert(FieldLoc != nullptr);
Value *Val = Env.getValue(*Init);
if (Val == nullptr && isa<ImplicitValueInitExpr>(Init) &&
Init->getType()->isPointerType())
Val =
&Env.getOrCreateNullPointerValue(Init->getType()->getPointeeType());
if (Val == nullptr)
Val = Env.createValue(Field->getType());
if (Val != nullptr)
Env.setValue(*FieldLoc, *Val);
}
for (const auto &[FieldName, FieldLoc] : Loc.synthetic_fields()) {
QualType FieldType = FieldLoc->getType();
if (FieldType->isRecordType()) {
Env.initializeFieldsWithValues(*cast<RecordStorageLocation>(FieldLoc));
} else {
if (Value *Val = Env.createValue(FieldType))
Env.setValue(*FieldLoc, *Val);
}
}
// FIXME: Implement array initialization.
}
void VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *S) {
Env.setValue(*S, Env.getBoolLiteralValue(S->getValue()));
}
void VisitIntegerLiteral(const IntegerLiteral *S) {
Env.setValue(*S, Env.getIntLiteralValue(S->getValue()));
}
void VisitParenExpr(const ParenExpr *S) {
// The CFG does not contain `ParenExpr` as top-level statements in basic
// blocks, however manual traversal to sub-expressions may encounter them.
// Redirect to the sub-expression.
auto *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
Visit(SubExpr);
}
void VisitExprWithCleanups(const ExprWithCleanups *S) {
// The CFG does not contain `ExprWithCleanups` as top-level statements in
// basic blocks, however manual traversal to sub-expressions may encounter
// them. Redirect to the sub-expression.
auto *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
Visit(SubExpr);
}
private:
/// Returns the value for the sub-expression `SubExpr` of a logic operator.
BoolValue &getLogicOperatorSubExprValue(const Expr &SubExpr) {
// `SubExpr` and its parent logic operator might be part of different basic
// blocks. We try to access the value that is assigned to `SubExpr` in the
// corresponding environment.
if (const Environment *SubExprEnv = StmtToEnv.getEnvironment(SubExpr))
if (auto *Val =
dyn_cast_or_null<BoolValue>(SubExprEnv->getValue(SubExpr)))
return *Val;
// The sub-expression may lie within a basic block that isn't reachable,
// even if we need it to evaluate the current (reachable) expression
// (see https://discourse.llvm.org/t/70775). In this case, visit `SubExpr`
// within the current environment and then try to get the value that gets
// assigned to it.
if (Env.getValue(SubExpr) == nullptr)
Visit(&SubExpr);
if (auto *Val = dyn_cast_or_null<BoolValue>(Env.getValue(SubExpr)))
return *Val;
// If the value of `SubExpr` is still unknown, we create a fresh symbolic
// boolean value for it.
return Env.makeAtomicBoolValue();
}
// If context sensitivity is enabled, try to analyze the body of the callee
// `F` of `S`. The type `E` must be either `CallExpr` or `CXXConstructExpr`.
template <typename E>
void transferInlineCall(const E *S, const FunctionDecl *F) {
const auto &Options = Env.getDataflowAnalysisContext().getOptions();
if (!(Options.ContextSensitiveOpts &&
Env.canDescend(Options.ContextSensitiveOpts->Depth, F)))
return;
const AdornedCFG *ACFG = Env.getDataflowAnalysisContext().getAdornedCFG(F);
if (!ACFG)
return;
// FIXME: We don't support context-sensitive analysis of recursion, so
// we should return early here if `F` is the same as the `FunctionDecl`
// holding `S` itself.
auto ExitBlock = ACFG->getCFG().getExit().getBlockID();
auto CalleeEnv = Env.pushCall(S);
// FIXME: Use the same analysis as the caller for the callee. Note,
// though, that doing so would require support for changing the analysis's
// ASTContext.
auto Analysis = NoopAnalysis(ACFG->getDecl().getASTContext(),
DataflowAnalysisOptions{Options});
auto BlockToOutputState =
dataflow::runDataflowAnalysis(*ACFG, Analysis, CalleeEnv);
assert(BlockToOutputState);
assert(ExitBlock < BlockToOutputState->size());
auto &ExitState = (*BlockToOutputState)[ExitBlock];
assert(ExitState);
Env.popCall(S, ExitState->Env);
}
const StmtToEnvMap &StmtToEnv;
Environment &Env;
Environment::ValueModel &Model;
};
} // namespace
void transfer(const StmtToEnvMap &StmtToEnv, const Stmt &S, Environment &Env,
Environment::ValueModel &Model) {
TransferVisitor(StmtToEnv, Env, Model).Visit(&S);
}
} // namespace dataflow
} // namespace clang