llvm-project/llvm/lib/IR/LLVMContext.cpp
pcc 89d8df1201
CodeGen, IR: Add target-{cpu,features} attributes to functions created via createWithDefaultAttr().
Functions created with createWithDefaultAttr() need to have the
correct target-{cpu,features} attributes to avoid miscompilations
such as using the wrong relocation type to access globals (missing
tagged-globals feature), clobbering registers specified via -ffixed-*
(missing reserve-* feature), and so on.

There's already a number of attributes copied from the module flags
onto functions created by createWithDefaultAttr(). I don't think
module flags are the right choice for the target attributes because
we don't need the conflict resolution logic between modules with
different target attributes, nor does it seem sensible to add it:
there's no unambiguously "correct" set of target attributes when
merging two modules with different attributes, and nor should there
be; it's perfectly valid for two modules to be compiled with different
target attributes, that's the whole reason why they are per-function.

This also implies that it's unnecessary to serialize the attributes in
bitcode, which implies that they shouldn't be stored on the module. We
can also observe that for the most part, createWithDefaultAttr()
is called from compiler passes such as sanitizers, coverage and
profiling passes that are part of the compile time pipeline, not
the LTO pipeline. This hints at a solution: we need to store the
attributes in a non-serialized location associated with the ambient
compilation context. Therefore in this patch I elected to store the
attributes on the LLVMContext.

There are calls to createWithDefaultAttr() in the NVPTX and AMDGPU
backends, and those calls would happen at LTO time. For those callers,
the bug still potentially exists and it would be necessary to refactor
them to create the functions at compile time if this issue is relevant
on those platforms.

Fixes #93633.

Reviewers: fmayer, MaskRay, eugenis

Reviewed By: MaskRay

Pull Request: https://github.com/llvm/llvm-project/pull/96721
2024-06-25 20:39:18 -07:00

409 lines
13 KiB
C++

//===-- LLVMContext.cpp - Implement LLVMContext ---------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements LLVMContext, as a wrapper around the opaque
// class LLVMContextImpl.
//
//===----------------------------------------------------------------------===//
#include "llvm/IR/LLVMContext.h"
#include "LLVMContextImpl.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/LLVMRemarkStreamer.h"
#include "llvm/Remarks/RemarkStreamer.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdlib>
#include <string>
#include <utility>
using namespace llvm;
LLVMContext::LLVMContext() : pImpl(new LLVMContextImpl(*this)) {
// Create the fixed metadata kinds. This is done in the same order as the
// MD_* enum values so that they correspond.
std::pair<unsigned, StringRef> MDKinds[] = {
#define LLVM_FIXED_MD_KIND(EnumID, Name, Value) {EnumID, Name},
#include "llvm/IR/FixedMetadataKinds.def"
#undef LLVM_FIXED_MD_KIND
};
for (auto &MDKind : MDKinds) {
unsigned ID = getMDKindID(MDKind.second);
assert(ID == MDKind.first && "metadata kind id drifted");
(void)ID;
}
auto *DeoptEntry = pImpl->getOrInsertBundleTag("deopt");
assert(DeoptEntry->second == LLVMContext::OB_deopt &&
"deopt operand bundle id drifted!");
(void)DeoptEntry;
auto *FuncletEntry = pImpl->getOrInsertBundleTag("funclet");
assert(FuncletEntry->second == LLVMContext::OB_funclet &&
"funclet operand bundle id drifted!");
(void)FuncletEntry;
auto *GCTransitionEntry = pImpl->getOrInsertBundleTag("gc-transition");
assert(GCTransitionEntry->second == LLVMContext::OB_gc_transition &&
"gc-transition operand bundle id drifted!");
(void)GCTransitionEntry;
auto *CFGuardTargetEntry = pImpl->getOrInsertBundleTag("cfguardtarget");
assert(CFGuardTargetEntry->second == LLVMContext::OB_cfguardtarget &&
"cfguardtarget operand bundle id drifted!");
(void)CFGuardTargetEntry;
auto *PreallocatedEntry = pImpl->getOrInsertBundleTag("preallocated");
assert(PreallocatedEntry->second == LLVMContext::OB_preallocated &&
"preallocated operand bundle id drifted!");
(void)PreallocatedEntry;
auto *GCLiveEntry = pImpl->getOrInsertBundleTag("gc-live");
assert(GCLiveEntry->second == LLVMContext::OB_gc_live &&
"gc-transition operand bundle id drifted!");
(void)GCLiveEntry;
auto *ClangAttachedCall =
pImpl->getOrInsertBundleTag("clang.arc.attachedcall");
assert(ClangAttachedCall->second == LLVMContext::OB_clang_arc_attachedcall &&
"clang.arc.attachedcall operand bundle id drifted!");
(void)ClangAttachedCall;
auto *PtrauthEntry = pImpl->getOrInsertBundleTag("ptrauth");
assert(PtrauthEntry->second == LLVMContext::OB_ptrauth &&
"ptrauth operand bundle id drifted!");
(void)PtrauthEntry;
auto *KCFIEntry = pImpl->getOrInsertBundleTag("kcfi");
assert(KCFIEntry->second == LLVMContext::OB_kcfi &&
"kcfi operand bundle id drifted!");
(void)KCFIEntry;
auto *ConvergenceCtrlEntry = pImpl->getOrInsertBundleTag("convergencectrl");
assert(ConvergenceCtrlEntry->second == LLVMContext::OB_convergencectrl &&
"convergencectrl operand bundle id drifted!");
(void)ConvergenceCtrlEntry;
SyncScope::ID SingleThreadSSID =
pImpl->getOrInsertSyncScopeID("singlethread");
assert(SingleThreadSSID == SyncScope::SingleThread &&
"singlethread synchronization scope ID drifted!");
(void)SingleThreadSSID;
SyncScope::ID SystemSSID =
pImpl->getOrInsertSyncScopeID("");
assert(SystemSSID == SyncScope::System &&
"system synchronization scope ID drifted!");
(void)SystemSSID;
}
LLVMContext::~LLVMContext() { delete pImpl; }
void LLVMContext::addModule(Module *M) {
pImpl->OwnedModules.insert(M);
}
void LLVMContext::removeModule(Module *M) {
pImpl->OwnedModules.erase(M);
pImpl->MachineFunctionNums.erase(M);
}
unsigned LLVMContext::generateMachineFunctionNum(Function &F) {
Module *M = F.getParent();
assert(pImpl->OwnedModules.contains(M) && "Unexpected module!");
return pImpl->MachineFunctionNums[M]++;
}
//===----------------------------------------------------------------------===//
// Recoverable Backend Errors
//===----------------------------------------------------------------------===//
void LLVMContext::setDiagnosticHandlerCallBack(
DiagnosticHandler::DiagnosticHandlerTy DiagnosticHandler,
void *DiagnosticContext, bool RespectFilters) {
pImpl->DiagHandler->DiagHandlerCallback = DiagnosticHandler;
pImpl->DiagHandler->DiagnosticContext = DiagnosticContext;
pImpl->RespectDiagnosticFilters = RespectFilters;
}
void LLVMContext::setDiagnosticHandler(std::unique_ptr<DiagnosticHandler> &&DH,
bool RespectFilters) {
pImpl->DiagHandler = std::move(DH);
pImpl->RespectDiagnosticFilters = RespectFilters;
}
void LLVMContext::setDiagnosticsHotnessRequested(bool Requested) {
pImpl->DiagnosticsHotnessRequested = Requested;
}
bool LLVMContext::getDiagnosticsHotnessRequested() const {
return pImpl->DiagnosticsHotnessRequested;
}
void LLVMContext::setDiagnosticsHotnessThreshold(std::optional<uint64_t> Threshold) {
pImpl->DiagnosticsHotnessThreshold = Threshold;
}
void LLVMContext::setMisExpectWarningRequested(bool Requested) {
pImpl->MisExpectWarningRequested = Requested;
}
bool LLVMContext::getMisExpectWarningRequested() const {
return pImpl->MisExpectWarningRequested;
}
uint64_t LLVMContext::getDiagnosticsHotnessThreshold() const {
return pImpl->DiagnosticsHotnessThreshold.value_or(UINT64_MAX);
}
void LLVMContext::setDiagnosticsMisExpectTolerance(
std::optional<uint32_t> Tolerance) {
pImpl->DiagnosticsMisExpectTolerance = Tolerance;
}
uint32_t LLVMContext::getDiagnosticsMisExpectTolerance() const {
return pImpl->DiagnosticsMisExpectTolerance.value_or(0);
}
bool LLVMContext::isDiagnosticsHotnessThresholdSetFromPSI() const {
return !pImpl->DiagnosticsHotnessThreshold.has_value();
}
remarks::RemarkStreamer *LLVMContext::getMainRemarkStreamer() {
return pImpl->MainRemarkStreamer.get();
}
const remarks::RemarkStreamer *LLVMContext::getMainRemarkStreamer() const {
return const_cast<LLVMContext *>(this)->getMainRemarkStreamer();
}
void LLVMContext::setMainRemarkStreamer(
std::unique_ptr<remarks::RemarkStreamer> RemarkStreamer) {
pImpl->MainRemarkStreamer = std::move(RemarkStreamer);
}
LLVMRemarkStreamer *LLVMContext::getLLVMRemarkStreamer() {
return pImpl->LLVMRS.get();
}
const LLVMRemarkStreamer *LLVMContext::getLLVMRemarkStreamer() const {
return const_cast<LLVMContext *>(this)->getLLVMRemarkStreamer();
}
void LLVMContext::setLLVMRemarkStreamer(
std::unique_ptr<LLVMRemarkStreamer> RemarkStreamer) {
pImpl->LLVMRS = std::move(RemarkStreamer);
}
DiagnosticHandler::DiagnosticHandlerTy
LLVMContext::getDiagnosticHandlerCallBack() const {
return pImpl->DiagHandler->DiagHandlerCallback;
}
void *LLVMContext::getDiagnosticContext() const {
return pImpl->DiagHandler->DiagnosticContext;
}
void LLVMContext::setYieldCallback(YieldCallbackTy Callback, void *OpaqueHandle)
{
pImpl->YieldCallback = Callback;
pImpl->YieldOpaqueHandle = OpaqueHandle;
}
void LLVMContext::yield() {
if (pImpl->YieldCallback)
pImpl->YieldCallback(this, pImpl->YieldOpaqueHandle);
}
void LLVMContext::emitError(const Twine &ErrorStr) {
diagnose(DiagnosticInfoInlineAsm(ErrorStr));
}
void LLVMContext::emitError(const Instruction *I, const Twine &ErrorStr) {
assert (I && "Invalid instruction");
diagnose(DiagnosticInfoInlineAsm(*I, ErrorStr));
}
static bool isDiagnosticEnabled(const DiagnosticInfo &DI) {
// Optimization remarks are selective. They need to check whether the regexp
// pattern, passed via one of the -pass-remarks* flags, matches the name of
// the pass that is emitting the diagnostic. If there is no match, ignore the
// diagnostic and return.
//
// Also noisy remarks are only enabled if we have hotness information to sort
// them.
if (auto *Remark = dyn_cast<DiagnosticInfoOptimizationBase>(&DI))
return Remark->isEnabled() &&
(!Remark->isVerbose() || Remark->getHotness());
return true;
}
const char *
LLVMContext::getDiagnosticMessagePrefix(DiagnosticSeverity Severity) {
switch (Severity) {
case DS_Error:
return "error";
case DS_Warning:
return "warning";
case DS_Remark:
return "remark";
case DS_Note:
return "note";
}
llvm_unreachable("Unknown DiagnosticSeverity");
}
void LLVMContext::diagnose(const DiagnosticInfo &DI) {
if (auto *OptDiagBase = dyn_cast<DiagnosticInfoOptimizationBase>(&DI))
if (LLVMRemarkStreamer *RS = getLLVMRemarkStreamer())
RS->emit(*OptDiagBase);
// If there is a report handler, use it.
if (pImpl->DiagHandler) {
if (DI.getSeverity() == DS_Error)
pImpl->DiagHandler->HasErrors = true;
if ((!pImpl->RespectDiagnosticFilters || isDiagnosticEnabled(DI)) &&
pImpl->DiagHandler->handleDiagnostics(DI))
return;
}
if (!isDiagnosticEnabled(DI))
return;
// Otherwise, print the message with a prefix based on the severity.
DiagnosticPrinterRawOStream DP(errs());
errs() << getDiagnosticMessagePrefix(DI.getSeverity()) << ": ";
DI.print(DP);
errs() << "\n";
if (DI.getSeverity() == DS_Error)
exit(1);
}
void LLVMContext::emitError(uint64_t LocCookie, const Twine &ErrorStr) {
diagnose(DiagnosticInfoInlineAsm(LocCookie, ErrorStr));
}
//===----------------------------------------------------------------------===//
// Metadata Kind Uniquing
//===----------------------------------------------------------------------===//
/// Return a unique non-zero ID for the specified metadata kind.
unsigned LLVMContext::getMDKindID(StringRef Name) const {
// If this is new, assign it its ID.
return pImpl->CustomMDKindNames.insert(
std::make_pair(
Name, pImpl->CustomMDKindNames.size()))
.first->second;
}
/// getHandlerNames - Populate client-supplied smallvector using custom
/// metadata name and ID.
void LLVMContext::getMDKindNames(SmallVectorImpl<StringRef> &Names) const {
Names.resize(pImpl->CustomMDKindNames.size());
for (StringMap<unsigned>::const_iterator I = pImpl->CustomMDKindNames.begin(),
E = pImpl->CustomMDKindNames.end(); I != E; ++I)
Names[I->second] = I->first();
}
void LLVMContext::getOperandBundleTags(SmallVectorImpl<StringRef> &Tags) const {
pImpl->getOperandBundleTags(Tags);
}
StringMapEntry<uint32_t> *
LLVMContext::getOrInsertBundleTag(StringRef TagName) const {
return pImpl->getOrInsertBundleTag(TagName);
}
uint32_t LLVMContext::getOperandBundleTagID(StringRef Tag) const {
return pImpl->getOperandBundleTagID(Tag);
}
SyncScope::ID LLVMContext::getOrInsertSyncScopeID(StringRef SSN) {
return pImpl->getOrInsertSyncScopeID(SSN);
}
void LLVMContext::getSyncScopeNames(SmallVectorImpl<StringRef> &SSNs) const {
pImpl->getSyncScopeNames(SSNs);
}
void LLVMContext::setGC(const Function &Fn, std::string GCName) {
auto It = pImpl->GCNames.find(&Fn);
if (It == pImpl->GCNames.end()) {
pImpl->GCNames.insert(std::make_pair(&Fn, std::move(GCName)));
return;
}
It->second = std::move(GCName);
}
const std::string &LLVMContext::getGC(const Function &Fn) {
return pImpl->GCNames[&Fn];
}
void LLVMContext::deleteGC(const Function &Fn) {
pImpl->GCNames.erase(&Fn);
}
bool LLVMContext::shouldDiscardValueNames() const {
return pImpl->DiscardValueNames;
}
bool LLVMContext::isODRUniquingDebugTypes() const { return !!pImpl->DITypeMap; }
void LLVMContext::enableDebugTypeODRUniquing() {
if (pImpl->DITypeMap)
return;
pImpl->DITypeMap.emplace();
}
void LLVMContext::disableDebugTypeODRUniquing() { pImpl->DITypeMap.reset(); }
void LLVMContext::setDiscardValueNames(bool Discard) {
pImpl->DiscardValueNames = Discard;
}
OptPassGate &LLVMContext::getOptPassGate() const {
return pImpl->getOptPassGate();
}
void LLVMContext::setOptPassGate(OptPassGate& OPG) {
pImpl->setOptPassGate(OPG);
}
const DiagnosticHandler *LLVMContext::getDiagHandlerPtr() const {
return pImpl->DiagHandler.get();
}
std::unique_ptr<DiagnosticHandler> LLVMContext::getDiagnosticHandler() {
return std::move(pImpl->DiagHandler);
}
void LLVMContext::setOpaquePointers(bool Enable) const {
assert(Enable && "Cannot disable opaque pointers");
}
bool LLVMContext::supportsTypedPointers() const {
return false;
}
StringRef LLVMContext::getDefaultTargetCPU() {
return pImpl->DefaultTargetCPU;
}
void LLVMContext::setDefaultTargetCPU(StringRef CPU) {
pImpl->DefaultTargetCPU = CPU;
}
StringRef LLVMContext::getDefaultTargetFeatures() {
return pImpl->DefaultTargetFeatures;
}
void LLVMContext::setDefaultTargetFeatures(StringRef Features) {
pImpl->DefaultTargetFeatures = Features;
}