llvm-project/clang/lib/CodeGen/CGOpenMPRuntime.cpp
Jeremy Morse 8e70273509
[NFC][DebugInfo] Use iterator moveBefore at many call-sites (#123583)
As part of the "RemoveDIs" project, BasicBlock::iterator now carries a
debug-info bit that's needed when getFirstNonPHI and similar feed into
instruction insertion positions. Call-sites where that's necessary were
updated a year ago; but to ensure some type safety however, we'd like to
have all calls to moveBefore use iterators.

This patch adds a (guaranteed dereferenceable) iterator-taking
moveBefore, and changes a bunch of call-sites where it's obviously safe
to change to use it by just calling getIterator() on an instruction
pointer. A follow-up patch will contain less-obviously-safe changes.

We'll eventually deprecate and remove the instruction-pointer
insertBefore, but not before adding concise documentation of what
considerations are needed (very few).
2025-01-24 10:53:11 +00:00

12020 lines
502 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//===----- CGOpenMPRuntime.cpp - Interface to OpenMP Runtimes -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This provides a class for OpenMP runtime code generation.
//
//===----------------------------------------------------------------------===//
#include "CGOpenMPRuntime.h"
#include "ABIInfoImpl.h"
#include "CGCXXABI.h"
#include "CGCleanup.h"
#include "CGRecordLayout.h"
#include "CodeGenFunction.h"
#include "TargetInfo.h"
#include "clang/AST/APValue.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/OpenMPClause.h"
#include "clang/AST/StmtOpenMP.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Basic/OpenMPKinds.h"
#include "clang/Basic/SourceManager.h"
#include "clang/CodeGen/ConstantInitBuilder.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Bitcode/BitcodeReader.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <numeric>
#include <optional>
using namespace clang;
using namespace CodeGen;
using namespace llvm::omp;
namespace {
/// Base class for handling code generation inside OpenMP regions.
class CGOpenMPRegionInfo : public CodeGenFunction::CGCapturedStmtInfo {
public:
/// Kinds of OpenMP regions used in codegen.
enum CGOpenMPRegionKind {
/// Region with outlined function for standalone 'parallel'
/// directive.
ParallelOutlinedRegion,
/// Region with outlined function for standalone 'task' directive.
TaskOutlinedRegion,
/// Region for constructs that do not require function outlining,
/// like 'for', 'sections', 'atomic' etc. directives.
InlinedRegion,
/// Region with outlined function for standalone 'target' directive.
TargetRegion,
};
CGOpenMPRegionInfo(const CapturedStmt &CS,
const CGOpenMPRegionKind RegionKind,
const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
bool HasCancel)
: CGCapturedStmtInfo(CS, CR_OpenMP), RegionKind(RegionKind),
CodeGen(CodeGen), Kind(Kind), HasCancel(HasCancel) {}
CGOpenMPRegionInfo(const CGOpenMPRegionKind RegionKind,
const RegionCodeGenTy &CodeGen, OpenMPDirectiveKind Kind,
bool HasCancel)
: CGCapturedStmtInfo(CR_OpenMP), RegionKind(RegionKind), CodeGen(CodeGen),
Kind(Kind), HasCancel(HasCancel) {}
/// Get a variable or parameter for storing global thread id
/// inside OpenMP construct.
virtual const VarDecl *getThreadIDVariable() const = 0;
/// Emit the captured statement body.
void EmitBody(CodeGenFunction &CGF, const Stmt *S) override;
/// Get an LValue for the current ThreadID variable.
/// \return LValue for thread id variable. This LValue always has type int32*.
virtual LValue getThreadIDVariableLValue(CodeGenFunction &CGF);
virtual void emitUntiedSwitch(CodeGenFunction & /*CGF*/) {}
CGOpenMPRegionKind getRegionKind() const { return RegionKind; }
OpenMPDirectiveKind getDirectiveKind() const { return Kind; }
bool hasCancel() const { return HasCancel; }
static bool classof(const CGCapturedStmtInfo *Info) {
return Info->getKind() == CR_OpenMP;
}
~CGOpenMPRegionInfo() override = default;
protected:
CGOpenMPRegionKind RegionKind;
RegionCodeGenTy CodeGen;
OpenMPDirectiveKind Kind;
bool HasCancel;
};
/// API for captured statement code generation in OpenMP constructs.
class CGOpenMPOutlinedRegionInfo final : public CGOpenMPRegionInfo {
public:
CGOpenMPOutlinedRegionInfo(const CapturedStmt &CS, const VarDecl *ThreadIDVar,
const RegionCodeGenTy &CodeGen,
OpenMPDirectiveKind Kind, bool HasCancel,
StringRef HelperName)
: CGOpenMPRegionInfo(CS, ParallelOutlinedRegion, CodeGen, Kind,
HasCancel),
ThreadIDVar(ThreadIDVar), HelperName(HelperName) {
assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
}
/// Get a variable or parameter for storing global thread id
/// inside OpenMP construct.
const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
/// Get the name of the capture helper.
StringRef getHelperName() const override { return HelperName; }
static bool classof(const CGCapturedStmtInfo *Info) {
return CGOpenMPRegionInfo::classof(Info) &&
cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
ParallelOutlinedRegion;
}
private:
/// A variable or parameter storing global thread id for OpenMP
/// constructs.
const VarDecl *ThreadIDVar;
StringRef HelperName;
};
/// API for captured statement code generation in OpenMP constructs.
class CGOpenMPTaskOutlinedRegionInfo final : public CGOpenMPRegionInfo {
public:
class UntiedTaskActionTy final : public PrePostActionTy {
bool Untied;
const VarDecl *PartIDVar;
const RegionCodeGenTy UntiedCodeGen;
llvm::SwitchInst *UntiedSwitch = nullptr;
public:
UntiedTaskActionTy(bool Tied, const VarDecl *PartIDVar,
const RegionCodeGenTy &UntiedCodeGen)
: Untied(!Tied), PartIDVar(PartIDVar), UntiedCodeGen(UntiedCodeGen) {}
void Enter(CodeGenFunction &CGF) override {
if (Untied) {
// Emit task switching point.
LValue PartIdLVal = CGF.EmitLoadOfPointerLValue(
CGF.GetAddrOfLocalVar(PartIDVar),
PartIDVar->getType()->castAs<PointerType>());
llvm::Value *Res =
CGF.EmitLoadOfScalar(PartIdLVal, PartIDVar->getLocation());
llvm::BasicBlock *DoneBB = CGF.createBasicBlock(".untied.done.");
UntiedSwitch = CGF.Builder.CreateSwitch(Res, DoneBB);
CGF.EmitBlock(DoneBB);
CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
UntiedSwitch->addCase(CGF.Builder.getInt32(0),
CGF.Builder.GetInsertBlock());
emitUntiedSwitch(CGF);
}
}
void emitUntiedSwitch(CodeGenFunction &CGF) const {
if (Untied) {
LValue PartIdLVal = CGF.EmitLoadOfPointerLValue(
CGF.GetAddrOfLocalVar(PartIDVar),
PartIDVar->getType()->castAs<PointerType>());
CGF.EmitStoreOfScalar(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
PartIdLVal);
UntiedCodeGen(CGF);
CodeGenFunction::JumpDest CurPoint =
CGF.getJumpDestInCurrentScope(".untied.next.");
CGF.EmitBranch(CGF.ReturnBlock.getBlock());
CGF.EmitBlock(CGF.createBasicBlock(".untied.jmp."));
UntiedSwitch->addCase(CGF.Builder.getInt32(UntiedSwitch->getNumCases()),
CGF.Builder.GetInsertBlock());
CGF.EmitBranchThroughCleanup(CurPoint);
CGF.EmitBlock(CurPoint.getBlock());
}
}
unsigned getNumberOfParts() const { return UntiedSwitch->getNumCases(); }
};
CGOpenMPTaskOutlinedRegionInfo(const CapturedStmt &CS,
const VarDecl *ThreadIDVar,
const RegionCodeGenTy &CodeGen,
OpenMPDirectiveKind Kind, bool HasCancel,
const UntiedTaskActionTy &Action)
: CGOpenMPRegionInfo(CS, TaskOutlinedRegion, CodeGen, Kind, HasCancel),
ThreadIDVar(ThreadIDVar), Action(Action) {
assert(ThreadIDVar != nullptr && "No ThreadID in OpenMP region.");
}
/// Get a variable or parameter for storing global thread id
/// inside OpenMP construct.
const VarDecl *getThreadIDVariable() const override { return ThreadIDVar; }
/// Get an LValue for the current ThreadID variable.
LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override;
/// Get the name of the capture helper.
StringRef getHelperName() const override { return ".omp_outlined."; }
void emitUntiedSwitch(CodeGenFunction &CGF) override {
Action.emitUntiedSwitch(CGF);
}
static bool classof(const CGCapturedStmtInfo *Info) {
return CGOpenMPRegionInfo::classof(Info) &&
cast<CGOpenMPRegionInfo>(Info)->getRegionKind() ==
TaskOutlinedRegion;
}
private:
/// A variable or parameter storing global thread id for OpenMP
/// constructs.
const VarDecl *ThreadIDVar;
/// Action for emitting code for untied tasks.
const UntiedTaskActionTy &Action;
};
/// API for inlined captured statement code generation in OpenMP
/// constructs.
class CGOpenMPInlinedRegionInfo : public CGOpenMPRegionInfo {
public:
CGOpenMPInlinedRegionInfo(CodeGenFunction::CGCapturedStmtInfo *OldCSI,
const RegionCodeGenTy &CodeGen,
OpenMPDirectiveKind Kind, bool HasCancel)
: CGOpenMPRegionInfo(InlinedRegion, CodeGen, Kind, HasCancel),
OldCSI(OldCSI),
OuterRegionInfo(dyn_cast_or_null<CGOpenMPRegionInfo>(OldCSI)) {}
// Retrieve the value of the context parameter.
llvm::Value *getContextValue() const override {
if (OuterRegionInfo)
return OuterRegionInfo->getContextValue();
llvm_unreachable("No context value for inlined OpenMP region");
}
void setContextValue(llvm::Value *V) override {
if (OuterRegionInfo) {
OuterRegionInfo->setContextValue(V);
return;
}
llvm_unreachable("No context value for inlined OpenMP region");
}
/// Lookup the captured field decl for a variable.
const FieldDecl *lookup(const VarDecl *VD) const override {
if (OuterRegionInfo)
return OuterRegionInfo->lookup(VD);
// If there is no outer outlined region,no need to lookup in a list of
// captured variables, we can use the original one.
return nullptr;
}
FieldDecl *getThisFieldDecl() const override {
if (OuterRegionInfo)
return OuterRegionInfo->getThisFieldDecl();
return nullptr;
}
/// Get a variable or parameter for storing global thread id
/// inside OpenMP construct.
const VarDecl *getThreadIDVariable() const override {
if (OuterRegionInfo)
return OuterRegionInfo->getThreadIDVariable();
return nullptr;
}
/// Get an LValue for the current ThreadID variable.
LValue getThreadIDVariableLValue(CodeGenFunction &CGF) override {
if (OuterRegionInfo)
return OuterRegionInfo->getThreadIDVariableLValue(CGF);
llvm_unreachable("No LValue for inlined OpenMP construct");
}
/// Get the name of the capture helper.
StringRef getHelperName() const override {
if (auto *OuterRegionInfo = getOldCSI())
return OuterRegionInfo->getHelperName();
llvm_unreachable("No helper name for inlined OpenMP construct");
}
void emitUntiedSwitch(CodeGenFunction &CGF) override {
if (OuterRegionInfo)
OuterRegionInfo->emitUntiedSwitch(CGF);
}
CodeGenFunction::CGCapturedStmtInfo *getOldCSI() const { return OldCSI; }
static bool classof(const CGCapturedStmtInfo *Info) {
return CGOpenMPRegionInfo::classof(Info) &&
cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == InlinedRegion;
}
~CGOpenMPInlinedRegionInfo() override = default;
private:
/// CodeGen info about outer OpenMP region.
CodeGenFunction::CGCapturedStmtInfo *OldCSI;
CGOpenMPRegionInfo *OuterRegionInfo;
};
/// API for captured statement code generation in OpenMP target
/// constructs. For this captures, implicit parameters are used instead of the
/// captured fields. The name of the target region has to be unique in a given
/// application so it is provided by the client, because only the client has
/// the information to generate that.
class CGOpenMPTargetRegionInfo final : public CGOpenMPRegionInfo {
public:
CGOpenMPTargetRegionInfo(const CapturedStmt &CS,
const RegionCodeGenTy &CodeGen, StringRef HelperName)
: CGOpenMPRegionInfo(CS, TargetRegion, CodeGen, OMPD_target,
/*HasCancel=*/false),
HelperName(HelperName) {}
/// This is unused for target regions because each starts executing
/// with a single thread.
const VarDecl *getThreadIDVariable() const override { return nullptr; }
/// Get the name of the capture helper.
StringRef getHelperName() const override { return HelperName; }
static bool classof(const CGCapturedStmtInfo *Info) {
return CGOpenMPRegionInfo::classof(Info) &&
cast<CGOpenMPRegionInfo>(Info)->getRegionKind() == TargetRegion;
}
private:
StringRef HelperName;
};
static void EmptyCodeGen(CodeGenFunction &, PrePostActionTy &) {
llvm_unreachable("No codegen for expressions");
}
/// API for generation of expressions captured in a innermost OpenMP
/// region.
class CGOpenMPInnerExprInfo final : public CGOpenMPInlinedRegionInfo {
public:
CGOpenMPInnerExprInfo(CodeGenFunction &CGF, const CapturedStmt &CS)
: CGOpenMPInlinedRegionInfo(CGF.CapturedStmtInfo, EmptyCodeGen,
OMPD_unknown,
/*HasCancel=*/false),
PrivScope(CGF) {
// Make sure the globals captured in the provided statement are local by
// using the privatization logic. We assume the same variable is not
// captured more than once.
for (const auto &C : CS.captures()) {
if (!C.capturesVariable() && !C.capturesVariableByCopy())
continue;
const VarDecl *VD = C.getCapturedVar();
if (VD->isLocalVarDeclOrParm())
continue;
DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(VD),
/*RefersToEnclosingVariableOrCapture=*/false,
VD->getType().getNonReferenceType(), VK_LValue,
C.getLocation());
PrivScope.addPrivate(VD, CGF.EmitLValue(&DRE).getAddress());
}
(void)PrivScope.Privatize();
}
/// Lookup the captured field decl for a variable.
const FieldDecl *lookup(const VarDecl *VD) const override {
if (const FieldDecl *FD = CGOpenMPInlinedRegionInfo::lookup(VD))
return FD;
return nullptr;
}
/// Emit the captured statement body.
void EmitBody(CodeGenFunction &CGF, const Stmt *S) override {
llvm_unreachable("No body for expressions");
}
/// Get a variable or parameter for storing global thread id
/// inside OpenMP construct.
const VarDecl *getThreadIDVariable() const override {
llvm_unreachable("No thread id for expressions");
}
/// Get the name of the capture helper.
StringRef getHelperName() const override {
llvm_unreachable("No helper name for expressions");
}
static bool classof(const CGCapturedStmtInfo *Info) { return false; }
private:
/// Private scope to capture global variables.
CodeGenFunction::OMPPrivateScope PrivScope;
};
/// RAII for emitting code of OpenMP constructs.
class InlinedOpenMPRegionRAII {
CodeGenFunction &CGF;
llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields;
FieldDecl *LambdaThisCaptureField = nullptr;
const CodeGen::CGBlockInfo *BlockInfo = nullptr;
bool NoInheritance = false;
public:
/// Constructs region for combined constructs.
/// \param CodeGen Code generation sequence for combined directives. Includes
/// a list of functions used for code generation of implicitly inlined
/// regions.
InlinedOpenMPRegionRAII(CodeGenFunction &CGF, const RegionCodeGenTy &CodeGen,
OpenMPDirectiveKind Kind, bool HasCancel,
bool NoInheritance = true)
: CGF(CGF), NoInheritance(NoInheritance) {
// Start emission for the construct.
CGF.CapturedStmtInfo = new CGOpenMPInlinedRegionInfo(
CGF.CapturedStmtInfo, CodeGen, Kind, HasCancel);
if (NoInheritance) {
std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
LambdaThisCaptureField = CGF.LambdaThisCaptureField;
CGF.LambdaThisCaptureField = nullptr;
BlockInfo = CGF.BlockInfo;
CGF.BlockInfo = nullptr;
}
}
~InlinedOpenMPRegionRAII() {
// Restore original CapturedStmtInfo only if we're done with code emission.
auto *OldCSI =
cast<CGOpenMPInlinedRegionInfo>(CGF.CapturedStmtInfo)->getOldCSI();
delete CGF.CapturedStmtInfo;
CGF.CapturedStmtInfo = OldCSI;
if (NoInheritance) {
std::swap(CGF.LambdaCaptureFields, LambdaCaptureFields);
CGF.LambdaThisCaptureField = LambdaThisCaptureField;
CGF.BlockInfo = BlockInfo;
}
}
};
/// Values for bit flags used in the ident_t to describe the fields.
/// All enumeric elements are named and described in accordance with the code
/// from https://github.com/llvm/llvm-project/blob/main/openmp/runtime/src/kmp.h
enum OpenMPLocationFlags : unsigned {
/// Use trampoline for internal microtask.
OMP_IDENT_IMD = 0x01,
/// Use c-style ident structure.
OMP_IDENT_KMPC = 0x02,
/// Atomic reduction option for kmpc_reduce.
OMP_ATOMIC_REDUCE = 0x10,
/// Explicit 'barrier' directive.
OMP_IDENT_BARRIER_EXPL = 0x20,
/// Implicit barrier in code.
OMP_IDENT_BARRIER_IMPL = 0x40,
/// Implicit barrier in 'for' directive.
OMP_IDENT_BARRIER_IMPL_FOR = 0x40,
/// Implicit barrier in 'sections' directive.
OMP_IDENT_BARRIER_IMPL_SECTIONS = 0xC0,
/// Implicit barrier in 'single' directive.
OMP_IDENT_BARRIER_IMPL_SINGLE = 0x140,
/// Call of __kmp_for_static_init for static loop.
OMP_IDENT_WORK_LOOP = 0x200,
/// Call of __kmp_for_static_init for sections.
OMP_IDENT_WORK_SECTIONS = 0x400,
/// Call of __kmp_for_static_init for distribute.
OMP_IDENT_WORK_DISTRIBUTE = 0x800,
LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/OMP_IDENT_WORK_DISTRIBUTE)
};
/// Describes ident structure that describes a source location.
/// All descriptions are taken from
/// https://github.com/llvm/llvm-project/blob/main/openmp/runtime/src/kmp.h
/// Original structure:
/// typedef struct ident {
/// kmp_int32 reserved_1; /**< might be used in Fortran;
/// see above */
/// kmp_int32 flags; /**< also f.flags; KMP_IDENT_xxx flags;
/// KMP_IDENT_KMPC identifies this union
/// member */
/// kmp_int32 reserved_2; /**< not really used in Fortran any more;
/// see above */
///#if USE_ITT_BUILD
/// /* but currently used for storing
/// region-specific ITT */
/// /* contextual information. */
///#endif /* USE_ITT_BUILD */
/// kmp_int32 reserved_3; /**< source[4] in Fortran, do not use for
/// C++ */
/// char const *psource; /**< String describing the source location.
/// The string is composed of semi-colon separated
// fields which describe the source file,
/// the function and a pair of line numbers that
/// delimit the construct.
/// */
/// } ident_t;
enum IdentFieldIndex {
/// might be used in Fortran
IdentField_Reserved_1,
/// OMP_IDENT_xxx flags; OMP_IDENT_KMPC identifies this union member.
IdentField_Flags,
/// Not really used in Fortran any more
IdentField_Reserved_2,
/// Source[4] in Fortran, do not use for C++
IdentField_Reserved_3,
/// String describing the source location. The string is composed of
/// semi-colon separated fields which describe the source file, the function
/// and a pair of line numbers that delimit the construct.
IdentField_PSource
};
/// Schedule types for 'omp for' loops (these enumerators are taken from
/// the enum sched_type in kmp.h).
enum OpenMPSchedType {
/// Lower bound for default (unordered) versions.
OMP_sch_lower = 32,
OMP_sch_static_chunked = 33,
OMP_sch_static = 34,
OMP_sch_dynamic_chunked = 35,
OMP_sch_guided_chunked = 36,
OMP_sch_runtime = 37,
OMP_sch_auto = 38,
/// static with chunk adjustment (e.g., simd)
OMP_sch_static_balanced_chunked = 45,
/// Lower bound for 'ordered' versions.
OMP_ord_lower = 64,
OMP_ord_static_chunked = 65,
OMP_ord_static = 66,
OMP_ord_dynamic_chunked = 67,
OMP_ord_guided_chunked = 68,
OMP_ord_runtime = 69,
OMP_ord_auto = 70,
OMP_sch_default = OMP_sch_static,
/// dist_schedule types
OMP_dist_sch_static_chunked = 91,
OMP_dist_sch_static = 92,
/// Support for OpenMP 4.5 monotonic and nonmonotonic schedule modifiers.
/// Set if the monotonic schedule modifier was present.
OMP_sch_modifier_monotonic = (1 << 29),
/// Set if the nonmonotonic schedule modifier was present.
OMP_sch_modifier_nonmonotonic = (1 << 30),
};
/// A basic class for pre|post-action for advanced codegen sequence for OpenMP
/// region.
class CleanupTy final : public EHScopeStack::Cleanup {
PrePostActionTy *Action;
public:
explicit CleanupTy(PrePostActionTy *Action) : Action(Action) {}
void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
if (!CGF.HaveInsertPoint())
return;
Action->Exit(CGF);
}
};
} // anonymous namespace
void RegionCodeGenTy::operator()(CodeGenFunction &CGF) const {
CodeGenFunction::RunCleanupsScope Scope(CGF);
if (PrePostAction) {
CGF.EHStack.pushCleanup<CleanupTy>(NormalAndEHCleanup, PrePostAction);
Callback(CodeGen, CGF, *PrePostAction);
} else {
PrePostActionTy Action;
Callback(CodeGen, CGF, Action);
}
}
/// Check if the combiner is a call to UDR combiner and if it is so return the
/// UDR decl used for reduction.
static const OMPDeclareReductionDecl *
getReductionInit(const Expr *ReductionOp) {
if (const auto *CE = dyn_cast<CallExpr>(ReductionOp))
if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
if (const auto *DRE =
dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
if (const auto *DRD = dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl()))
return DRD;
return nullptr;
}
static void emitInitWithReductionInitializer(CodeGenFunction &CGF,
const OMPDeclareReductionDecl *DRD,
const Expr *InitOp,
Address Private, Address Original,
QualType Ty) {
if (DRD->getInitializer()) {
std::pair<llvm::Function *, llvm::Function *> Reduction =
CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
const auto *CE = cast<CallExpr>(InitOp);
const auto *OVE = cast<OpaqueValueExpr>(CE->getCallee());
const Expr *LHS = CE->getArg(/*Arg=*/0)->IgnoreParenImpCasts();
const Expr *RHS = CE->getArg(/*Arg=*/1)->IgnoreParenImpCasts();
const auto *LHSDRE =
cast<DeclRefExpr>(cast<UnaryOperator>(LHS)->getSubExpr());
const auto *RHSDRE =
cast<DeclRefExpr>(cast<UnaryOperator>(RHS)->getSubExpr());
CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
PrivateScope.addPrivate(cast<VarDecl>(LHSDRE->getDecl()), Private);
PrivateScope.addPrivate(cast<VarDecl>(RHSDRE->getDecl()), Original);
(void)PrivateScope.Privatize();
RValue Func = RValue::get(Reduction.second);
CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
CGF.EmitIgnoredExpr(InitOp);
} else {
llvm::Constant *Init = CGF.CGM.EmitNullConstant(Ty);
std::string Name = CGF.CGM.getOpenMPRuntime().getName({"init"});
auto *GV = new llvm::GlobalVariable(
CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
llvm::GlobalValue::PrivateLinkage, Init, Name);
LValue LV = CGF.MakeNaturalAlignRawAddrLValue(GV, Ty);
RValue InitRVal;
switch (CGF.getEvaluationKind(Ty)) {
case TEK_Scalar:
InitRVal = CGF.EmitLoadOfLValue(LV, DRD->getLocation());
break;
case TEK_Complex:
InitRVal =
RValue::getComplex(CGF.EmitLoadOfComplex(LV, DRD->getLocation()));
break;
case TEK_Aggregate: {
OpaqueValueExpr OVE(DRD->getLocation(), Ty, VK_LValue);
CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, LV);
CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(),
/*IsInitializer=*/false);
return;
}
}
OpaqueValueExpr OVE(DRD->getLocation(), Ty, VK_PRValue);
CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, &OVE, InitRVal);
CGF.EmitAnyExprToMem(&OVE, Private, Ty.getQualifiers(),
/*IsInitializer=*/false);
}
}
/// Emit initialization of arrays of complex types.
/// \param DestAddr Address of the array.
/// \param Type Type of array.
/// \param Init Initial expression of array.
/// \param SrcAddr Address of the original array.
static void EmitOMPAggregateInit(CodeGenFunction &CGF, Address DestAddr,
QualType Type, bool EmitDeclareReductionInit,
const Expr *Init,
const OMPDeclareReductionDecl *DRD,
Address SrcAddr = Address::invalid()) {
// Perform element-by-element initialization.
QualType ElementTy;
// Drill down to the base element type on both arrays.
const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe();
llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, DestAddr);
if (DRD)
SrcAddr = SrcAddr.withElementType(DestAddr.getElementType());
llvm::Value *SrcBegin = nullptr;
if (DRD)
SrcBegin = SrcAddr.emitRawPointer(CGF);
llvm::Value *DestBegin = DestAddr.emitRawPointer(CGF);
// Cast from pointer to array type to pointer to single element.
llvm::Value *DestEnd =
CGF.Builder.CreateGEP(DestAddr.getElementType(), DestBegin, NumElements);
// The basic structure here is a while-do loop.
llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arrayinit.body");
llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arrayinit.done");
llvm::Value *IsEmpty =
CGF.Builder.CreateICmpEQ(DestBegin, DestEnd, "omp.arrayinit.isempty");
CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
// Enter the loop body, making that address the current address.
llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
CGF.EmitBlock(BodyBB);
CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
llvm::PHINode *SrcElementPHI = nullptr;
Address SrcElementCurrent = Address::invalid();
if (DRD) {
SrcElementPHI = CGF.Builder.CreatePHI(SrcBegin->getType(), 2,
"omp.arraycpy.srcElementPast");
SrcElementPHI->addIncoming(SrcBegin, EntryBB);
SrcElementCurrent =
Address(SrcElementPHI, SrcAddr.getElementType(),
SrcAddr.getAlignment().alignmentOfArrayElement(ElementSize));
}
llvm::PHINode *DestElementPHI = CGF.Builder.CreatePHI(
DestBegin->getType(), 2, "omp.arraycpy.destElementPast");
DestElementPHI->addIncoming(DestBegin, EntryBB);
Address DestElementCurrent =
Address(DestElementPHI, DestAddr.getElementType(),
DestAddr.getAlignment().alignmentOfArrayElement(ElementSize));
// Emit copy.
{
CodeGenFunction::RunCleanupsScope InitScope(CGF);
if (EmitDeclareReductionInit) {
emitInitWithReductionInitializer(CGF, DRD, Init, DestElementCurrent,
SrcElementCurrent, ElementTy);
} else
CGF.EmitAnyExprToMem(Init, DestElementCurrent, ElementTy.getQualifiers(),
/*IsInitializer=*/false);
}
if (DRD) {
// Shift the address forward by one element.
llvm::Value *SrcElementNext = CGF.Builder.CreateConstGEP1_32(
SrcAddr.getElementType(), SrcElementPHI, /*Idx0=*/1,
"omp.arraycpy.dest.element");
SrcElementPHI->addIncoming(SrcElementNext, CGF.Builder.GetInsertBlock());
}
// Shift the address forward by one element.
llvm::Value *DestElementNext = CGF.Builder.CreateConstGEP1_32(
DestAddr.getElementType(), DestElementPHI, /*Idx0=*/1,
"omp.arraycpy.dest.element");
// Check whether we've reached the end.
llvm::Value *Done =
CGF.Builder.CreateICmpEQ(DestElementNext, DestEnd, "omp.arraycpy.done");
CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
DestElementPHI->addIncoming(DestElementNext, CGF.Builder.GetInsertBlock());
// Done.
CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
}
LValue ReductionCodeGen::emitSharedLValue(CodeGenFunction &CGF, const Expr *E) {
return CGF.EmitOMPSharedLValue(E);
}
LValue ReductionCodeGen::emitSharedLValueUB(CodeGenFunction &CGF,
const Expr *E) {
if (const auto *OASE = dyn_cast<ArraySectionExpr>(E))
return CGF.EmitArraySectionExpr(OASE, /*IsLowerBound=*/false);
return LValue();
}
void ReductionCodeGen::emitAggregateInitialization(
CodeGenFunction &CGF, unsigned N, Address PrivateAddr, Address SharedAddr,
const OMPDeclareReductionDecl *DRD) {
// Emit VarDecl with copy init for arrays.
// Get the address of the original variable captured in current
// captured region.
const auto *PrivateVD =
cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
bool EmitDeclareReductionInit =
DRD && (DRD->getInitializer() || !PrivateVD->hasInit());
EmitOMPAggregateInit(CGF, PrivateAddr, PrivateVD->getType(),
EmitDeclareReductionInit,
EmitDeclareReductionInit ? ClausesData[N].ReductionOp
: PrivateVD->getInit(),
DRD, SharedAddr);
}
ReductionCodeGen::ReductionCodeGen(ArrayRef<const Expr *> Shareds,
ArrayRef<const Expr *> Origs,
ArrayRef<const Expr *> Privates,
ArrayRef<const Expr *> ReductionOps) {
ClausesData.reserve(Shareds.size());
SharedAddresses.reserve(Shareds.size());
Sizes.reserve(Shareds.size());
BaseDecls.reserve(Shareds.size());
const auto *IOrig = Origs.begin();
const auto *IPriv = Privates.begin();
const auto *IRed = ReductionOps.begin();
for (const Expr *Ref : Shareds) {
ClausesData.emplace_back(Ref, *IOrig, *IPriv, *IRed);
std::advance(IOrig, 1);
std::advance(IPriv, 1);
std::advance(IRed, 1);
}
}
void ReductionCodeGen::emitSharedOrigLValue(CodeGenFunction &CGF, unsigned N) {
assert(SharedAddresses.size() == N && OrigAddresses.size() == N &&
"Number of generated lvalues must be exactly N.");
LValue First = emitSharedLValue(CGF, ClausesData[N].Shared);
LValue Second = emitSharedLValueUB(CGF, ClausesData[N].Shared);
SharedAddresses.emplace_back(First, Second);
if (ClausesData[N].Shared == ClausesData[N].Ref) {
OrigAddresses.emplace_back(First, Second);
} else {
LValue First = emitSharedLValue(CGF, ClausesData[N].Ref);
LValue Second = emitSharedLValueUB(CGF, ClausesData[N].Ref);
OrigAddresses.emplace_back(First, Second);
}
}
void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N) {
QualType PrivateType = getPrivateType(N);
bool AsArraySection = isa<ArraySectionExpr>(ClausesData[N].Ref);
if (!PrivateType->isVariablyModifiedType()) {
Sizes.emplace_back(
CGF.getTypeSize(OrigAddresses[N].first.getType().getNonReferenceType()),
nullptr);
return;
}
llvm::Value *Size;
llvm::Value *SizeInChars;
auto *ElemType = OrigAddresses[N].first.getAddress().getElementType();
auto *ElemSizeOf = llvm::ConstantExpr::getSizeOf(ElemType);
if (AsArraySection) {
Size = CGF.Builder.CreatePtrDiff(ElemType,
OrigAddresses[N].second.getPointer(CGF),
OrigAddresses[N].first.getPointer(CGF));
Size = CGF.Builder.CreateNUWAdd(
Size, llvm::ConstantInt::get(Size->getType(), /*V=*/1));
SizeInChars = CGF.Builder.CreateNUWMul(Size, ElemSizeOf);
} else {
SizeInChars =
CGF.getTypeSize(OrigAddresses[N].first.getType().getNonReferenceType());
Size = CGF.Builder.CreateExactUDiv(SizeInChars, ElemSizeOf);
}
Sizes.emplace_back(SizeInChars, Size);
CodeGenFunction::OpaqueValueMapping OpaqueMap(
CGF,
cast<OpaqueValueExpr>(
CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()),
RValue::get(Size));
CGF.EmitVariablyModifiedType(PrivateType);
}
void ReductionCodeGen::emitAggregateType(CodeGenFunction &CGF, unsigned N,
llvm::Value *Size) {
QualType PrivateType = getPrivateType(N);
if (!PrivateType->isVariablyModifiedType()) {
assert(!Size && !Sizes[N].second &&
"Size should be nullptr for non-variably modified reduction "
"items.");
return;
}
CodeGenFunction::OpaqueValueMapping OpaqueMap(
CGF,
cast<OpaqueValueExpr>(
CGF.getContext().getAsVariableArrayType(PrivateType)->getSizeExpr()),
RValue::get(Size));
CGF.EmitVariablyModifiedType(PrivateType);
}
void ReductionCodeGen::emitInitialization(
CodeGenFunction &CGF, unsigned N, Address PrivateAddr, Address SharedAddr,
llvm::function_ref<bool(CodeGenFunction &)> DefaultInit) {
assert(SharedAddresses.size() > N && "No variable was generated");
const auto *PrivateVD =
cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Private)->getDecl());
const OMPDeclareReductionDecl *DRD =
getReductionInit(ClausesData[N].ReductionOp);
if (CGF.getContext().getAsArrayType(PrivateVD->getType())) {
if (DRD && DRD->getInitializer())
(void)DefaultInit(CGF);
emitAggregateInitialization(CGF, N, PrivateAddr, SharedAddr, DRD);
} else if (DRD && (DRD->getInitializer() || !PrivateVD->hasInit())) {
(void)DefaultInit(CGF);
QualType SharedType = SharedAddresses[N].first.getType();
emitInitWithReductionInitializer(CGF, DRD, ClausesData[N].ReductionOp,
PrivateAddr, SharedAddr, SharedType);
} else if (!DefaultInit(CGF) && PrivateVD->hasInit() &&
!CGF.isTrivialInitializer(PrivateVD->getInit())) {
CGF.EmitAnyExprToMem(PrivateVD->getInit(), PrivateAddr,
PrivateVD->getType().getQualifiers(),
/*IsInitializer=*/false);
}
}
bool ReductionCodeGen::needCleanups(unsigned N) {
QualType PrivateType = getPrivateType(N);
QualType::DestructionKind DTorKind = PrivateType.isDestructedType();
return DTorKind != QualType::DK_none;
}
void ReductionCodeGen::emitCleanups(CodeGenFunction &CGF, unsigned N,
Address PrivateAddr) {
QualType PrivateType = getPrivateType(N);
QualType::DestructionKind DTorKind = PrivateType.isDestructedType();
if (needCleanups(N)) {
PrivateAddr =
PrivateAddr.withElementType(CGF.ConvertTypeForMem(PrivateType));
CGF.pushDestroy(DTorKind, PrivateAddr, PrivateType);
}
}
static LValue loadToBegin(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
LValue BaseLV) {
BaseTy = BaseTy.getNonReferenceType();
while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
!CGF.getContext().hasSameType(BaseTy, ElTy)) {
if (const auto *PtrTy = BaseTy->getAs<PointerType>()) {
BaseLV = CGF.EmitLoadOfPointerLValue(BaseLV.getAddress(), PtrTy);
} else {
LValue RefLVal = CGF.MakeAddrLValue(BaseLV.getAddress(), BaseTy);
BaseLV = CGF.EmitLoadOfReferenceLValue(RefLVal);
}
BaseTy = BaseTy->getPointeeType();
}
return CGF.MakeAddrLValue(
BaseLV.getAddress().withElementType(CGF.ConvertTypeForMem(ElTy)),
BaseLV.getType(), BaseLV.getBaseInfo(),
CGF.CGM.getTBAAInfoForSubobject(BaseLV, BaseLV.getType()));
}
static Address castToBase(CodeGenFunction &CGF, QualType BaseTy, QualType ElTy,
Address OriginalBaseAddress, llvm::Value *Addr) {
RawAddress Tmp = RawAddress::invalid();
Address TopTmp = Address::invalid();
Address MostTopTmp = Address::invalid();
BaseTy = BaseTy.getNonReferenceType();
while ((BaseTy->isPointerType() || BaseTy->isReferenceType()) &&
!CGF.getContext().hasSameType(BaseTy, ElTy)) {
Tmp = CGF.CreateMemTemp(BaseTy);
if (TopTmp.isValid())
CGF.Builder.CreateStore(Tmp.getPointer(), TopTmp);
else
MostTopTmp = Tmp;
TopTmp = Tmp;
BaseTy = BaseTy->getPointeeType();
}
if (Tmp.isValid()) {
Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
Addr, Tmp.getElementType());
CGF.Builder.CreateStore(Addr, Tmp);
return MostTopTmp;
}
Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
Addr, OriginalBaseAddress.getType());
return OriginalBaseAddress.withPointer(Addr, NotKnownNonNull);
}
static const VarDecl *getBaseDecl(const Expr *Ref, const DeclRefExpr *&DE) {
const VarDecl *OrigVD = nullptr;
if (const auto *OASE = dyn_cast<ArraySectionExpr>(Ref)) {
const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
while (const auto *TempOASE = dyn_cast<ArraySectionExpr>(Base))
Base = TempOASE->getBase()->IgnoreParenImpCasts();
while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
Base = TempASE->getBase()->IgnoreParenImpCasts();
DE = cast<DeclRefExpr>(Base);
OrigVD = cast<VarDecl>(DE->getDecl());
} else if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Ref)) {
const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
Base = TempASE->getBase()->IgnoreParenImpCasts();
DE = cast<DeclRefExpr>(Base);
OrigVD = cast<VarDecl>(DE->getDecl());
}
return OrigVD;
}
Address ReductionCodeGen::adjustPrivateAddress(CodeGenFunction &CGF, unsigned N,
Address PrivateAddr) {
const DeclRefExpr *DE;
if (const VarDecl *OrigVD = ::getBaseDecl(ClausesData[N].Ref, DE)) {
BaseDecls.emplace_back(OrigVD);
LValue OriginalBaseLValue = CGF.EmitLValue(DE);
LValue BaseLValue =
loadToBegin(CGF, OrigVD->getType(), SharedAddresses[N].first.getType(),
OriginalBaseLValue);
Address SharedAddr = SharedAddresses[N].first.getAddress();
llvm::Value *Adjustment = CGF.Builder.CreatePtrDiff(
SharedAddr.getElementType(), BaseLValue.getPointer(CGF),
SharedAddr.emitRawPointer(CGF));
llvm::Value *PrivatePointer =
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
PrivateAddr.emitRawPointer(CGF), SharedAddr.getType());
llvm::Value *Ptr = CGF.Builder.CreateGEP(
SharedAddr.getElementType(), PrivatePointer, Adjustment);
return castToBase(CGF, OrigVD->getType(),
SharedAddresses[N].first.getType(),
OriginalBaseLValue.getAddress(), Ptr);
}
BaseDecls.emplace_back(
cast<VarDecl>(cast<DeclRefExpr>(ClausesData[N].Ref)->getDecl()));
return PrivateAddr;
}
bool ReductionCodeGen::usesReductionInitializer(unsigned N) const {
const OMPDeclareReductionDecl *DRD =
getReductionInit(ClausesData[N].ReductionOp);
return DRD && DRD->getInitializer();
}
LValue CGOpenMPRegionInfo::getThreadIDVariableLValue(CodeGenFunction &CGF) {
return CGF.EmitLoadOfPointerLValue(
CGF.GetAddrOfLocalVar(getThreadIDVariable()),
getThreadIDVariable()->getType()->castAs<PointerType>());
}
void CGOpenMPRegionInfo::EmitBody(CodeGenFunction &CGF, const Stmt *S) {
if (!CGF.HaveInsertPoint())
return;
// 1.2.2 OpenMP Language Terminology
// Structured block - An executable statement with a single entry at the
// top and a single exit at the bottom.
// The point of exit cannot be a branch out of the structured block.
// longjmp() and throw() must not violate the entry/exit criteria.
CGF.EHStack.pushTerminate();
if (S)
CGF.incrementProfileCounter(S);
CodeGen(CGF);
CGF.EHStack.popTerminate();
}
LValue CGOpenMPTaskOutlinedRegionInfo::getThreadIDVariableLValue(
CodeGenFunction &CGF) {
return CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(getThreadIDVariable()),
getThreadIDVariable()->getType(),
AlignmentSource::Decl);
}
static FieldDecl *addFieldToRecordDecl(ASTContext &C, DeclContext *DC,
QualType FieldTy) {
auto *Field = FieldDecl::Create(
C, DC, SourceLocation(), SourceLocation(), /*Id=*/nullptr, FieldTy,
C.getTrivialTypeSourceInfo(FieldTy, SourceLocation()),
/*BW=*/nullptr, /*Mutable=*/false, /*InitStyle=*/ICIS_NoInit);
Field->setAccess(AS_public);
DC->addDecl(Field);
return Field;
}
CGOpenMPRuntime::CGOpenMPRuntime(CodeGenModule &CGM)
: CGM(CGM), OMPBuilder(CGM.getModule()) {
KmpCriticalNameTy = llvm::ArrayType::get(CGM.Int32Ty, /*NumElements*/ 8);
llvm::OpenMPIRBuilderConfig Config(
CGM.getLangOpts().OpenMPIsTargetDevice, isGPU(),
CGM.getLangOpts().OpenMPOffloadMandatory,
/*HasRequiresReverseOffload*/ false, /*HasRequiresUnifiedAddress*/ false,
hasRequiresUnifiedSharedMemory(), /*HasRequiresDynamicAllocators*/ false);
OMPBuilder.initialize();
OMPBuilder.loadOffloadInfoMetadata(CGM.getLangOpts().OpenMPIsTargetDevice
? CGM.getLangOpts().OMPHostIRFile
: StringRef{});
OMPBuilder.setConfig(Config);
// The user forces the compiler to behave as if omp requires
// unified_shared_memory was given.
if (CGM.getLangOpts().OpenMPForceUSM) {
HasRequiresUnifiedSharedMemory = true;
OMPBuilder.Config.setHasRequiresUnifiedSharedMemory(true);
}
}
void CGOpenMPRuntime::clear() {
InternalVars.clear();
// Clean non-target variable declarations possibly used only in debug info.
for (const auto &Data : EmittedNonTargetVariables) {
if (!Data.getValue().pointsToAliveValue())
continue;
auto *GV = dyn_cast<llvm::GlobalVariable>(Data.getValue());
if (!GV)
continue;
if (!GV->isDeclaration() || GV->getNumUses() > 0)
continue;
GV->eraseFromParent();
}
}
std::string CGOpenMPRuntime::getName(ArrayRef<StringRef> Parts) const {
return OMPBuilder.createPlatformSpecificName(Parts);
}
static llvm::Function *
emitCombinerOrInitializer(CodeGenModule &CGM, QualType Ty,
const Expr *CombinerInitializer, const VarDecl *In,
const VarDecl *Out, bool IsCombiner) {
// void .omp_combiner.(Ty *in, Ty *out);
ASTContext &C = CGM.getContext();
QualType PtrTy = C.getPointerType(Ty).withRestrict();
FunctionArgList Args;
ImplicitParamDecl OmpOutParm(C, /*DC=*/nullptr, Out->getLocation(),
/*Id=*/nullptr, PtrTy, ImplicitParamKind::Other);
ImplicitParamDecl OmpInParm(C, /*DC=*/nullptr, In->getLocation(),
/*Id=*/nullptr, PtrTy, ImplicitParamKind::Other);
Args.push_back(&OmpOutParm);
Args.push_back(&OmpInParm);
const CGFunctionInfo &FnInfo =
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
std::string Name = CGM.getOpenMPRuntime().getName(
{IsCombiner ? "omp_combiner" : "omp_initializer", ""});
auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
Name, &CGM.getModule());
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
if (CGM.getLangOpts().Optimize) {
Fn->removeFnAttr(llvm::Attribute::NoInline);
Fn->removeFnAttr(llvm::Attribute::OptimizeNone);
Fn->addFnAttr(llvm::Attribute::AlwaysInline);
}
CodeGenFunction CGF(CGM);
// Map "T omp_in;" variable to "*omp_in_parm" value in all expressions.
// Map "T omp_out;" variable to "*omp_out_parm" value in all expressions.
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, In->getLocation(),
Out->getLocation());
CodeGenFunction::OMPPrivateScope Scope(CGF);
Address AddrIn = CGF.GetAddrOfLocalVar(&OmpInParm);
Scope.addPrivate(
In, CGF.EmitLoadOfPointerLValue(AddrIn, PtrTy->castAs<PointerType>())
.getAddress());
Address AddrOut = CGF.GetAddrOfLocalVar(&OmpOutParm);
Scope.addPrivate(
Out, CGF.EmitLoadOfPointerLValue(AddrOut, PtrTy->castAs<PointerType>())
.getAddress());
(void)Scope.Privatize();
if (!IsCombiner && Out->hasInit() &&
!CGF.isTrivialInitializer(Out->getInit())) {
CGF.EmitAnyExprToMem(Out->getInit(), CGF.GetAddrOfLocalVar(Out),
Out->getType().getQualifiers(),
/*IsInitializer=*/true);
}
if (CombinerInitializer)
CGF.EmitIgnoredExpr(CombinerInitializer);
Scope.ForceCleanup();
CGF.FinishFunction();
return Fn;
}
void CGOpenMPRuntime::emitUserDefinedReduction(
CodeGenFunction *CGF, const OMPDeclareReductionDecl *D) {
if (UDRMap.count(D) > 0)
return;
llvm::Function *Combiner = emitCombinerOrInitializer(
CGM, D->getType(), D->getCombiner(),
cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerIn())->getDecl()),
cast<VarDecl>(cast<DeclRefExpr>(D->getCombinerOut())->getDecl()),
/*IsCombiner=*/true);
llvm::Function *Initializer = nullptr;
if (const Expr *Init = D->getInitializer()) {
Initializer = emitCombinerOrInitializer(
CGM, D->getType(),
D->getInitializerKind() == OMPDeclareReductionInitKind::Call ? Init
: nullptr,
cast<VarDecl>(cast<DeclRefExpr>(D->getInitOrig())->getDecl()),
cast<VarDecl>(cast<DeclRefExpr>(D->getInitPriv())->getDecl()),
/*IsCombiner=*/false);
}
UDRMap.try_emplace(D, Combiner, Initializer);
if (CGF)
FunctionUDRMap[CGF->CurFn].push_back(D);
}
std::pair<llvm::Function *, llvm::Function *>
CGOpenMPRuntime::getUserDefinedReduction(const OMPDeclareReductionDecl *D) {
auto I = UDRMap.find(D);
if (I != UDRMap.end())
return I->second;
emitUserDefinedReduction(/*CGF=*/nullptr, D);
return UDRMap.lookup(D);
}
namespace {
// Temporary RAII solution to perform a push/pop stack event on the OpenMP IR
// Builder if one is present.
struct PushAndPopStackRAII {
PushAndPopStackRAII(llvm::OpenMPIRBuilder *OMPBuilder, CodeGenFunction &CGF,
bool HasCancel, llvm::omp::Directive Kind)
: OMPBuilder(OMPBuilder) {
if (!OMPBuilder)
return;
// The following callback is the crucial part of clangs cleanup process.
//
// NOTE:
// Once the OpenMPIRBuilder is used to create parallel regions (and
// similar), the cancellation destination (Dest below) is determined via
// IP. That means if we have variables to finalize we split the block at IP,
// use the new block (=BB) as destination to build a JumpDest (via
// getJumpDestInCurrentScope(BB)) which then is fed to
// EmitBranchThroughCleanup. Furthermore, there will not be the need
// to push & pop an FinalizationInfo object.
// The FiniCB will still be needed but at the point where the
// OpenMPIRBuilder is asked to construct a parallel (or similar) construct.
auto FiniCB = [&CGF](llvm::OpenMPIRBuilder::InsertPointTy IP) {
assert(IP.getBlock()->end() == IP.getPoint() &&
"Clang CG should cause non-terminated block!");
CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
CGF.Builder.restoreIP(IP);
CodeGenFunction::JumpDest Dest =
CGF.getOMPCancelDestination(OMPD_parallel);
CGF.EmitBranchThroughCleanup(Dest);
return llvm::Error::success();
};
// TODO: Remove this once we emit parallel regions through the
// OpenMPIRBuilder as it can do this setup internally.
llvm::OpenMPIRBuilder::FinalizationInfo FI({FiniCB, Kind, HasCancel});
OMPBuilder->pushFinalizationCB(std::move(FI));
}
~PushAndPopStackRAII() {
if (OMPBuilder)
OMPBuilder->popFinalizationCB();
}
llvm::OpenMPIRBuilder *OMPBuilder;
};
} // namespace
static llvm::Function *emitParallelOrTeamsOutlinedFunction(
CodeGenModule &CGM, const OMPExecutableDirective &D, const CapturedStmt *CS,
const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind,
const StringRef OutlinedHelperName, const RegionCodeGenTy &CodeGen) {
assert(ThreadIDVar->getType()->isPointerType() &&
"thread id variable must be of type kmp_int32 *");
CodeGenFunction CGF(CGM, true);
bool HasCancel = false;
if (const auto *OPD = dyn_cast<OMPParallelDirective>(&D))
HasCancel = OPD->hasCancel();
else if (const auto *OPD = dyn_cast<OMPTargetParallelDirective>(&D))
HasCancel = OPD->hasCancel();
else if (const auto *OPSD = dyn_cast<OMPParallelSectionsDirective>(&D))
HasCancel = OPSD->hasCancel();
else if (const auto *OPFD = dyn_cast<OMPParallelForDirective>(&D))
HasCancel = OPFD->hasCancel();
else if (const auto *OPFD = dyn_cast<OMPTargetParallelForDirective>(&D))
HasCancel = OPFD->hasCancel();
else if (const auto *OPFD = dyn_cast<OMPDistributeParallelForDirective>(&D))
HasCancel = OPFD->hasCancel();
else if (const auto *OPFD =
dyn_cast<OMPTeamsDistributeParallelForDirective>(&D))
HasCancel = OPFD->hasCancel();
else if (const auto *OPFD =
dyn_cast<OMPTargetTeamsDistributeParallelForDirective>(&D))
HasCancel = OPFD->hasCancel();
// TODO: Temporarily inform the OpenMPIRBuilder, if any, about the new
// parallel region to make cancellation barriers work properly.
llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
PushAndPopStackRAII PSR(&OMPBuilder, CGF, HasCancel, InnermostKind);
CGOpenMPOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen, InnermostKind,
HasCancel, OutlinedHelperName);
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
return CGF.GenerateOpenMPCapturedStmtFunction(*CS, D.getBeginLoc());
}
std::string CGOpenMPRuntime::getOutlinedHelperName(StringRef Name) const {
std::string Suffix = getName({"omp_outlined"});
return (Name + Suffix).str();
}
std::string CGOpenMPRuntime::getOutlinedHelperName(CodeGenFunction &CGF) const {
return getOutlinedHelperName(CGF.CurFn->getName());
}
std::string CGOpenMPRuntime::getReductionFuncName(StringRef Name) const {
std::string Suffix = getName({"omp", "reduction", "reduction_func"});
return (Name + Suffix).str();
}
llvm::Function *CGOpenMPRuntime::emitParallelOutlinedFunction(
CodeGenFunction &CGF, const OMPExecutableDirective &D,
const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind,
const RegionCodeGenTy &CodeGen) {
const CapturedStmt *CS = D.getCapturedStmt(OMPD_parallel);
return emitParallelOrTeamsOutlinedFunction(
CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(CGF),
CodeGen);
}
llvm::Function *CGOpenMPRuntime::emitTeamsOutlinedFunction(
CodeGenFunction &CGF, const OMPExecutableDirective &D,
const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind,
const RegionCodeGenTy &CodeGen) {
const CapturedStmt *CS = D.getCapturedStmt(OMPD_teams);
return emitParallelOrTeamsOutlinedFunction(
CGM, D, CS, ThreadIDVar, InnermostKind, getOutlinedHelperName(CGF),
CodeGen);
}
llvm::Function *CGOpenMPRuntime::emitTaskOutlinedFunction(
const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
const VarDecl *PartIDVar, const VarDecl *TaskTVar,
OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
bool Tied, unsigned &NumberOfParts) {
auto &&UntiedCodeGen = [this, &D, TaskTVar](CodeGenFunction &CGF,
PrePostActionTy &) {
llvm::Value *ThreadID = getThreadID(CGF, D.getBeginLoc());
llvm::Value *UpLoc = emitUpdateLocation(CGF, D.getBeginLoc());
llvm::Value *TaskArgs[] = {
UpLoc, ThreadID,
CGF.EmitLoadOfPointerLValue(CGF.GetAddrOfLocalVar(TaskTVar),
TaskTVar->getType()->castAs<PointerType>())
.getPointer(CGF)};
CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_omp_task),
TaskArgs);
};
CGOpenMPTaskOutlinedRegionInfo::UntiedTaskActionTy Action(Tied, PartIDVar,
UntiedCodeGen);
CodeGen.setAction(Action);
assert(!ThreadIDVar->getType()->isPointerType() &&
"thread id variable must be of type kmp_int32 for tasks");
const OpenMPDirectiveKind Region =
isOpenMPTaskLoopDirective(D.getDirectiveKind()) ? OMPD_taskloop
: OMPD_task;
const CapturedStmt *CS = D.getCapturedStmt(Region);
bool HasCancel = false;
if (const auto *TD = dyn_cast<OMPTaskDirective>(&D))
HasCancel = TD->hasCancel();
else if (const auto *TD = dyn_cast<OMPTaskLoopDirective>(&D))
HasCancel = TD->hasCancel();
else if (const auto *TD = dyn_cast<OMPMasterTaskLoopDirective>(&D))
HasCancel = TD->hasCancel();
else if (const auto *TD = dyn_cast<OMPParallelMasterTaskLoopDirective>(&D))
HasCancel = TD->hasCancel();
CodeGenFunction CGF(CGM, true);
CGOpenMPTaskOutlinedRegionInfo CGInfo(*CS, ThreadIDVar, CodeGen,
InnermostKind, HasCancel, Action);
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
llvm::Function *Res = CGF.GenerateCapturedStmtFunction(*CS);
if (!Tied)
NumberOfParts = Action.getNumberOfParts();
return Res;
}
void CGOpenMPRuntime::setLocThreadIdInsertPt(CodeGenFunction &CGF,
bool AtCurrentPoint) {
auto &Elem = OpenMPLocThreadIDMap[CGF.CurFn];
assert(!Elem.ServiceInsertPt && "Insert point is set already.");
llvm::Value *Undef = llvm::UndefValue::get(CGF.Int32Ty);
if (AtCurrentPoint) {
Elem.ServiceInsertPt = new llvm::BitCastInst(Undef, CGF.Int32Ty, "svcpt",
CGF.Builder.GetInsertBlock());
} else {
Elem.ServiceInsertPt = new llvm::BitCastInst(Undef, CGF.Int32Ty, "svcpt");
Elem.ServiceInsertPt->insertAfter(CGF.AllocaInsertPt->getIterator());
}
}
void CGOpenMPRuntime::clearLocThreadIdInsertPt(CodeGenFunction &CGF) {
auto &Elem = OpenMPLocThreadIDMap[CGF.CurFn];
if (Elem.ServiceInsertPt) {
llvm::Instruction *Ptr = Elem.ServiceInsertPt;
Elem.ServiceInsertPt = nullptr;
Ptr->eraseFromParent();
}
}
static StringRef getIdentStringFromSourceLocation(CodeGenFunction &CGF,
SourceLocation Loc,
SmallString<128> &Buffer) {
llvm::raw_svector_ostream OS(Buffer);
// Build debug location
PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc);
OS << ";" << PLoc.getFilename() << ";";
if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CGF.CurFuncDecl))
OS << FD->getQualifiedNameAsString();
OS << ";" << PLoc.getLine() << ";" << PLoc.getColumn() << ";;";
return OS.str();
}
llvm::Value *CGOpenMPRuntime::emitUpdateLocation(CodeGenFunction &CGF,
SourceLocation Loc,
unsigned Flags, bool EmitLoc) {
uint32_t SrcLocStrSize;
llvm::Constant *SrcLocStr;
if ((!EmitLoc && CGM.getCodeGenOpts().getDebugInfo() ==
llvm::codegenoptions::NoDebugInfo) ||
Loc.isInvalid()) {
SrcLocStr = OMPBuilder.getOrCreateDefaultSrcLocStr(SrcLocStrSize);
} else {
std::string FunctionName;
if (const auto *FD = dyn_cast_or_null<FunctionDecl>(CGF.CurFuncDecl))
FunctionName = FD->getQualifiedNameAsString();
PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc);
const char *FileName = PLoc.getFilename();
unsigned Line = PLoc.getLine();
unsigned Column = PLoc.getColumn();
SrcLocStr = OMPBuilder.getOrCreateSrcLocStr(FunctionName, FileName, Line,
Column, SrcLocStrSize);
}
unsigned Reserved2Flags = getDefaultLocationReserved2Flags();
return OMPBuilder.getOrCreateIdent(
SrcLocStr, SrcLocStrSize, llvm::omp::IdentFlag(Flags), Reserved2Flags);
}
llvm::Value *CGOpenMPRuntime::getThreadID(CodeGenFunction &CGF,
SourceLocation Loc) {
assert(CGF.CurFn && "No function in current CodeGenFunction.");
// If the OpenMPIRBuilder is used we need to use it for all thread id calls as
// the clang invariants used below might be broken.
if (CGM.getLangOpts().OpenMPIRBuilder) {
SmallString<128> Buffer;
OMPBuilder.updateToLocation(CGF.Builder.saveIP());
uint32_t SrcLocStrSize;
auto *SrcLocStr = OMPBuilder.getOrCreateSrcLocStr(
getIdentStringFromSourceLocation(CGF, Loc, Buffer), SrcLocStrSize);
return OMPBuilder.getOrCreateThreadID(
OMPBuilder.getOrCreateIdent(SrcLocStr, SrcLocStrSize));
}
llvm::Value *ThreadID = nullptr;
// Check whether we've already cached a load of the thread id in this
// function.
auto I = OpenMPLocThreadIDMap.find(CGF.CurFn);
if (I != OpenMPLocThreadIDMap.end()) {
ThreadID = I->second.ThreadID;
if (ThreadID != nullptr)
return ThreadID;
}
// If exceptions are enabled, do not use parameter to avoid possible crash.
if (auto *OMPRegionInfo =
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
if (OMPRegionInfo->getThreadIDVariable()) {
// Check if this an outlined function with thread id passed as argument.
LValue LVal = OMPRegionInfo->getThreadIDVariableLValue(CGF);
llvm::BasicBlock *TopBlock = CGF.AllocaInsertPt->getParent();
if (!CGF.EHStack.requiresLandingPad() || !CGF.getLangOpts().Exceptions ||
!CGF.getLangOpts().CXXExceptions ||
CGF.Builder.GetInsertBlock() == TopBlock ||
!isa<llvm::Instruction>(LVal.getPointer(CGF)) ||
cast<llvm::Instruction>(LVal.getPointer(CGF))->getParent() ==
TopBlock ||
cast<llvm::Instruction>(LVal.getPointer(CGF))->getParent() ==
CGF.Builder.GetInsertBlock()) {
ThreadID = CGF.EmitLoadOfScalar(LVal, Loc);
// If value loaded in entry block, cache it and use it everywhere in
// function.
if (CGF.Builder.GetInsertBlock() == TopBlock)
OpenMPLocThreadIDMap[CGF.CurFn].ThreadID = ThreadID;
return ThreadID;
}
}
}
// This is not an outlined function region - need to call __kmpc_int32
// kmpc_global_thread_num(ident_t *loc).
// Generate thread id value and cache this value for use across the
// function.
auto &Elem = OpenMPLocThreadIDMap[CGF.CurFn];
if (!Elem.ServiceInsertPt)
setLocThreadIdInsertPt(CGF);
CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
CGF.Builder.SetInsertPoint(Elem.ServiceInsertPt);
auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc);
llvm::CallInst *Call = CGF.Builder.CreateCall(
OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
OMPRTL___kmpc_global_thread_num),
emitUpdateLocation(CGF, Loc));
Call->setCallingConv(CGF.getRuntimeCC());
Elem.ThreadID = Call;
return Call;
}
void CGOpenMPRuntime::functionFinished(CodeGenFunction &CGF) {
assert(CGF.CurFn && "No function in current CodeGenFunction.");
if (OpenMPLocThreadIDMap.count(CGF.CurFn)) {
clearLocThreadIdInsertPt(CGF);
OpenMPLocThreadIDMap.erase(CGF.CurFn);
}
if (FunctionUDRMap.count(CGF.CurFn) > 0) {
for(const auto *D : FunctionUDRMap[CGF.CurFn])
UDRMap.erase(D);
FunctionUDRMap.erase(CGF.CurFn);
}
auto I = FunctionUDMMap.find(CGF.CurFn);
if (I != FunctionUDMMap.end()) {
for(const auto *D : I->second)
UDMMap.erase(D);
FunctionUDMMap.erase(I);
}
LastprivateConditionalToTypes.erase(CGF.CurFn);
FunctionToUntiedTaskStackMap.erase(CGF.CurFn);
}
llvm::Type *CGOpenMPRuntime::getIdentTyPointerTy() {
return OMPBuilder.IdentPtr;
}
llvm::Type *CGOpenMPRuntime::getKmpc_MicroPointerTy() {
if (!Kmpc_MicroTy) {
// Build void (*kmpc_micro)(kmp_int32 *global_tid, kmp_int32 *bound_tid,...)
llvm::Type *MicroParams[] = {llvm::PointerType::getUnqual(CGM.Int32Ty),
llvm::PointerType::getUnqual(CGM.Int32Ty)};
Kmpc_MicroTy = llvm::FunctionType::get(CGM.VoidTy, MicroParams, true);
}
return llvm::PointerType::getUnqual(Kmpc_MicroTy);
}
static llvm::OffloadEntriesInfoManager::OMPTargetDeviceClauseKind
convertDeviceClause(const VarDecl *VD) {
std::optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
OMPDeclareTargetDeclAttr::getDeviceType(VD);
if (!DevTy)
return llvm::OffloadEntriesInfoManager::OMPTargetDeviceClauseNone;
switch ((int)*DevTy) { // Avoid -Wcovered-switch-default
case OMPDeclareTargetDeclAttr::DT_Host:
return llvm::OffloadEntriesInfoManager::OMPTargetDeviceClauseHost;
break;
case OMPDeclareTargetDeclAttr::DT_NoHost:
return llvm::OffloadEntriesInfoManager::OMPTargetDeviceClauseNoHost;
break;
case OMPDeclareTargetDeclAttr::DT_Any:
return llvm::OffloadEntriesInfoManager::OMPTargetDeviceClauseAny;
break;
default:
return llvm::OffloadEntriesInfoManager::OMPTargetDeviceClauseNone;
break;
}
}
static llvm::OffloadEntriesInfoManager::OMPTargetGlobalVarEntryKind
convertCaptureClause(const VarDecl *VD) {
std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> MapType =
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
if (!MapType)
return llvm::OffloadEntriesInfoManager::OMPTargetGlobalVarEntryNone;
switch ((int)*MapType) { // Avoid -Wcovered-switch-default
case OMPDeclareTargetDeclAttr::MapTypeTy::MT_To:
return llvm::OffloadEntriesInfoManager::OMPTargetGlobalVarEntryTo;
break;
case OMPDeclareTargetDeclAttr::MapTypeTy::MT_Enter:
return llvm::OffloadEntriesInfoManager::OMPTargetGlobalVarEntryEnter;
break;
case OMPDeclareTargetDeclAttr::MapTypeTy::MT_Link:
return llvm::OffloadEntriesInfoManager::OMPTargetGlobalVarEntryLink;
break;
default:
return llvm::OffloadEntriesInfoManager::OMPTargetGlobalVarEntryNone;
break;
}
}
static llvm::TargetRegionEntryInfo getEntryInfoFromPresumedLoc(
CodeGenModule &CGM, llvm::OpenMPIRBuilder &OMPBuilder,
SourceLocation BeginLoc, llvm::StringRef ParentName = "") {
auto FileInfoCallBack = [&]() {
SourceManager &SM = CGM.getContext().getSourceManager();
PresumedLoc PLoc = SM.getPresumedLoc(BeginLoc);
llvm::sys::fs::UniqueID ID;
if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
PLoc = SM.getPresumedLoc(BeginLoc, /*UseLineDirectives=*/false);
}
return std::pair<std::string, uint64_t>(PLoc.getFilename(), PLoc.getLine());
};
return OMPBuilder.getTargetEntryUniqueInfo(FileInfoCallBack, ParentName);
}
ConstantAddress CGOpenMPRuntime::getAddrOfDeclareTargetVar(const VarDecl *VD) {
auto AddrOfGlobal = [&VD, this]() { return CGM.GetAddrOfGlobal(VD); };
auto LinkageForVariable = [&VD, this]() {
return CGM.getLLVMLinkageVarDefinition(VD);
};
std::vector<llvm::GlobalVariable *> GeneratedRefs;
llvm::Type *LlvmPtrTy = CGM.getTypes().ConvertTypeForMem(
CGM.getContext().getPointerType(VD->getType()));
llvm::Constant *addr = OMPBuilder.getAddrOfDeclareTargetVar(
convertCaptureClause(VD), convertDeviceClause(VD),
VD->hasDefinition(CGM.getContext()) == VarDecl::DeclarationOnly,
VD->isExternallyVisible(),
getEntryInfoFromPresumedLoc(CGM, OMPBuilder,
VD->getCanonicalDecl()->getBeginLoc()),
CGM.getMangledName(VD), GeneratedRefs, CGM.getLangOpts().OpenMPSimd,
CGM.getLangOpts().OMPTargetTriples, LlvmPtrTy, AddrOfGlobal,
LinkageForVariable);
if (!addr)
return ConstantAddress::invalid();
return ConstantAddress(addr, LlvmPtrTy, CGM.getContext().getDeclAlign(VD));
}
llvm::Constant *
CGOpenMPRuntime::getOrCreateThreadPrivateCache(const VarDecl *VD) {
assert(!CGM.getLangOpts().OpenMPUseTLS ||
!CGM.getContext().getTargetInfo().isTLSSupported());
// Lookup the entry, lazily creating it if necessary.
std::string Suffix = getName({"cache", ""});
return OMPBuilder.getOrCreateInternalVariable(
CGM.Int8PtrPtrTy, Twine(CGM.getMangledName(VD)).concat(Suffix).str());
}
Address CGOpenMPRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
const VarDecl *VD,
Address VDAddr,
SourceLocation Loc) {
if (CGM.getLangOpts().OpenMPUseTLS &&
CGM.getContext().getTargetInfo().isTLSSupported())
return VDAddr;
llvm::Type *VarTy = VDAddr.getElementType();
llvm::Value *Args[] = {
emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
CGF.Builder.CreatePointerCast(VDAddr.emitRawPointer(CGF), CGM.Int8PtrTy),
CGM.getSize(CGM.GetTargetTypeStoreSize(VarTy)),
getOrCreateThreadPrivateCache(VD)};
return Address(
CGF.EmitRuntimeCall(
OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_threadprivate_cached),
Args),
CGF.Int8Ty, VDAddr.getAlignment());
}
void CGOpenMPRuntime::emitThreadPrivateVarInit(
CodeGenFunction &CGF, Address VDAddr, llvm::Value *Ctor,
llvm::Value *CopyCtor, llvm::Value *Dtor, SourceLocation Loc) {
// Call kmp_int32 __kmpc_global_thread_num(&loc) to init OpenMP runtime
// library.
llvm::Value *OMPLoc = emitUpdateLocation(CGF, Loc);
CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_global_thread_num),
OMPLoc);
// Call __kmpc_threadprivate_register(&loc, &var, ctor, cctor/*NULL*/, dtor)
// to register constructor/destructor for variable.
llvm::Value *Args[] = {
OMPLoc,
CGF.Builder.CreatePointerCast(VDAddr.emitRawPointer(CGF), CGM.VoidPtrTy),
Ctor, CopyCtor, Dtor};
CGF.EmitRuntimeCall(
OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_threadprivate_register),
Args);
}
llvm::Function *CGOpenMPRuntime::emitThreadPrivateVarDefinition(
const VarDecl *VD, Address VDAddr, SourceLocation Loc,
bool PerformInit, CodeGenFunction *CGF) {
if (CGM.getLangOpts().OpenMPUseTLS &&
CGM.getContext().getTargetInfo().isTLSSupported())
return nullptr;
VD = VD->getDefinition(CGM.getContext());
if (VD && ThreadPrivateWithDefinition.insert(CGM.getMangledName(VD)).second) {
QualType ASTTy = VD->getType();
llvm::Value *Ctor = nullptr, *CopyCtor = nullptr, *Dtor = nullptr;
const Expr *Init = VD->getAnyInitializer();
if (CGM.getLangOpts().CPlusPlus && PerformInit) {
// Generate function that re-emits the declaration's initializer into the
// threadprivate copy of the variable VD
CodeGenFunction CtorCGF(CGM);
FunctionArgList Args;
ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc,
/*Id=*/nullptr, CGM.getContext().VoidPtrTy,
ImplicitParamKind::Other);
Args.push_back(&Dst);
const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
CGM.getContext().VoidPtrTy, Args);
llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
std::string Name = getName({"__kmpc_global_ctor_", ""});
llvm::Function *Fn =
CGM.CreateGlobalInitOrCleanUpFunction(FTy, Name, FI, Loc);
CtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidPtrTy, Fn, FI,
Args, Loc, Loc);
llvm::Value *ArgVal = CtorCGF.EmitLoadOfScalar(
CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
CGM.getContext().VoidPtrTy, Dst.getLocation());
Address Arg(ArgVal, CtorCGF.ConvertTypeForMem(ASTTy),
VDAddr.getAlignment());
CtorCGF.EmitAnyExprToMem(Init, Arg, Init->getType().getQualifiers(),
/*IsInitializer=*/true);
ArgVal = CtorCGF.EmitLoadOfScalar(
CtorCGF.GetAddrOfLocalVar(&Dst), /*Volatile=*/false,
CGM.getContext().VoidPtrTy, Dst.getLocation());
CtorCGF.Builder.CreateStore(ArgVal, CtorCGF.ReturnValue);
CtorCGF.FinishFunction();
Ctor = Fn;
}
if (VD->getType().isDestructedType() != QualType::DK_none) {
// Generate function that emits destructor call for the threadprivate copy
// of the variable VD
CodeGenFunction DtorCGF(CGM);
FunctionArgList Args;
ImplicitParamDecl Dst(CGM.getContext(), /*DC=*/nullptr, Loc,
/*Id=*/nullptr, CGM.getContext().VoidPtrTy,
ImplicitParamKind::Other);
Args.push_back(&Dst);
const auto &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration(
CGM.getContext().VoidTy, Args);
llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FI);
std::string Name = getName({"__kmpc_global_dtor_", ""});
llvm::Function *Fn =
CGM.CreateGlobalInitOrCleanUpFunction(FTy, Name, FI, Loc);
auto NL = ApplyDebugLocation::CreateEmpty(DtorCGF);
DtorCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, Fn, FI, Args,
Loc, Loc);
// Create a scope with an artificial location for the body of this function.
auto AL = ApplyDebugLocation::CreateArtificial(DtorCGF);
llvm::Value *ArgVal = DtorCGF.EmitLoadOfScalar(
DtorCGF.GetAddrOfLocalVar(&Dst),
/*Volatile=*/false, CGM.getContext().VoidPtrTy, Dst.getLocation());
DtorCGF.emitDestroy(
Address(ArgVal, DtorCGF.Int8Ty, VDAddr.getAlignment()), ASTTy,
DtorCGF.getDestroyer(ASTTy.isDestructedType()),
DtorCGF.needsEHCleanup(ASTTy.isDestructedType()));
DtorCGF.FinishFunction();
Dtor = Fn;
}
// Do not emit init function if it is not required.
if (!Ctor && !Dtor)
return nullptr;
// Copying constructor for the threadprivate variable.
// Must be NULL - reserved by runtime, but currently it requires that this
// parameter is always NULL. Otherwise it fires assertion.
CopyCtor = llvm::Constant::getNullValue(CGM.UnqualPtrTy);
if (Ctor == nullptr) {
Ctor = llvm::Constant::getNullValue(CGM.UnqualPtrTy);
}
if (Dtor == nullptr) {
Dtor = llvm::Constant::getNullValue(CGM.UnqualPtrTy);
}
if (!CGF) {
auto *InitFunctionTy =
llvm::FunctionType::get(CGM.VoidTy, /*isVarArg*/ false);
std::string Name = getName({"__omp_threadprivate_init_", ""});
llvm::Function *InitFunction = CGM.CreateGlobalInitOrCleanUpFunction(
InitFunctionTy, Name, CGM.getTypes().arrangeNullaryFunction());
CodeGenFunction InitCGF(CGM);
FunctionArgList ArgList;
InitCGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, InitFunction,
CGM.getTypes().arrangeNullaryFunction(), ArgList,
Loc, Loc);
emitThreadPrivateVarInit(InitCGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
InitCGF.FinishFunction();
return InitFunction;
}
emitThreadPrivateVarInit(*CGF, VDAddr, Ctor, CopyCtor, Dtor, Loc);
}
return nullptr;
}
void CGOpenMPRuntime::emitDeclareTargetFunction(const FunctionDecl *FD,
llvm::GlobalValue *GV) {
std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
OMPDeclareTargetDeclAttr::getActiveAttr(FD);
// We only need to handle active 'indirect' declare target functions.
if (!ActiveAttr || !(*ActiveAttr)->getIndirect())
return;
// Get a mangled name to store the new device global in.
llvm::TargetRegionEntryInfo EntryInfo = getEntryInfoFromPresumedLoc(
CGM, OMPBuilder, FD->getCanonicalDecl()->getBeginLoc(), FD->getName());
SmallString<128> Name;
OMPBuilder.OffloadInfoManager.getTargetRegionEntryFnName(Name, EntryInfo);
// We need to generate a new global to hold the address of the indirectly
// called device function. Doing this allows us to keep the visibility and
// linkage of the associated function unchanged while allowing the runtime to
// access its value.
llvm::GlobalValue *Addr = GV;
if (CGM.getLangOpts().OpenMPIsTargetDevice) {
Addr = new llvm::GlobalVariable(
CGM.getModule(), CGM.VoidPtrTy,
/*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, GV, Name,
nullptr, llvm::GlobalValue::NotThreadLocal,
CGM.getModule().getDataLayout().getDefaultGlobalsAddressSpace());
Addr->setVisibility(llvm::GlobalValue::ProtectedVisibility);
}
OMPBuilder.OffloadInfoManager.registerDeviceGlobalVarEntryInfo(
Name, Addr, CGM.GetTargetTypeStoreSize(CGM.VoidPtrTy).getQuantity(),
llvm::OffloadEntriesInfoManager::OMPTargetGlobalVarEntryIndirect,
llvm::GlobalValue::WeakODRLinkage);
}
Address CGOpenMPRuntime::getAddrOfArtificialThreadPrivate(CodeGenFunction &CGF,
QualType VarType,
StringRef Name) {
std::string Suffix = getName({"artificial", ""});
llvm::Type *VarLVType = CGF.ConvertTypeForMem(VarType);
llvm::GlobalVariable *GAddr = OMPBuilder.getOrCreateInternalVariable(
VarLVType, Twine(Name).concat(Suffix).str());
if (CGM.getLangOpts().OpenMP && CGM.getLangOpts().OpenMPUseTLS &&
CGM.getTarget().isTLSSupported()) {
GAddr->setThreadLocal(/*Val=*/true);
return Address(GAddr, GAddr->getValueType(),
CGM.getContext().getTypeAlignInChars(VarType));
}
std::string CacheSuffix = getName({"cache", ""});
llvm::Value *Args[] = {
emitUpdateLocation(CGF, SourceLocation()),
getThreadID(CGF, SourceLocation()),
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(GAddr, CGM.VoidPtrTy),
CGF.Builder.CreateIntCast(CGF.getTypeSize(VarType), CGM.SizeTy,
/*isSigned=*/false),
OMPBuilder.getOrCreateInternalVariable(
CGM.VoidPtrPtrTy,
Twine(Name).concat(Suffix).concat(CacheSuffix).str())};
return Address(
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.EmitRuntimeCall(
OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_threadprivate_cached),
Args),
CGF.Builder.getPtrTy(0)),
VarLVType, CGM.getContext().getTypeAlignInChars(VarType));
}
void CGOpenMPRuntime::emitIfClause(CodeGenFunction &CGF, const Expr *Cond,
const RegionCodeGenTy &ThenGen,
const RegionCodeGenTy &ElseGen) {
CodeGenFunction::LexicalScope ConditionScope(CGF, Cond->getSourceRange());
// If the condition constant folds and can be elided, try to avoid emitting
// the condition and the dead arm of the if/else.
bool CondConstant;
if (CGF.ConstantFoldsToSimpleInteger(Cond, CondConstant)) {
if (CondConstant)
ThenGen(CGF);
else
ElseGen(CGF);
return;
}
// Otherwise, the condition did not fold, or we couldn't elide it. Just
// emit the conditional branch.
llvm::BasicBlock *ThenBlock = CGF.createBasicBlock("omp_if.then");
llvm::BasicBlock *ElseBlock = CGF.createBasicBlock("omp_if.else");
llvm::BasicBlock *ContBlock = CGF.createBasicBlock("omp_if.end");
CGF.EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, /*TrueCount=*/0);
// Emit the 'then' code.
CGF.EmitBlock(ThenBlock);
ThenGen(CGF);
CGF.EmitBranch(ContBlock);
// Emit the 'else' code if present.
// There is no need to emit line number for unconditional branch.
(void)ApplyDebugLocation::CreateEmpty(CGF);
CGF.EmitBlock(ElseBlock);
ElseGen(CGF);
// There is no need to emit line number for unconditional branch.
(void)ApplyDebugLocation::CreateEmpty(CGF);
CGF.EmitBranch(ContBlock);
// Emit the continuation block for code after the if.
CGF.EmitBlock(ContBlock, /*IsFinished=*/true);
}
void CGOpenMPRuntime::emitParallelCall(CodeGenFunction &CGF, SourceLocation Loc,
llvm::Function *OutlinedFn,
ArrayRef<llvm::Value *> CapturedVars,
const Expr *IfCond,
llvm::Value *NumThreads) {
if (!CGF.HaveInsertPoint())
return;
llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
auto &M = CGM.getModule();
auto &&ThenGen = [&M, OutlinedFn, CapturedVars, RTLoc,
this](CodeGenFunction &CGF, PrePostActionTy &) {
// Build call __kmpc_fork_call(loc, n, microtask, var1, .., varn);
CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
llvm::Value *Args[] = {
RTLoc,
CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
CGF.Builder.CreateBitCast(OutlinedFn, RT.getKmpc_MicroPointerTy())};
llvm::SmallVector<llvm::Value *, 16> RealArgs;
RealArgs.append(std::begin(Args), std::end(Args));
RealArgs.append(CapturedVars.begin(), CapturedVars.end());
llvm::FunctionCallee RTLFn =
OMPBuilder.getOrCreateRuntimeFunction(M, OMPRTL___kmpc_fork_call);
CGF.EmitRuntimeCall(RTLFn, RealArgs);
};
auto &&ElseGen = [&M, OutlinedFn, CapturedVars, RTLoc, Loc,
this](CodeGenFunction &CGF, PrePostActionTy &) {
CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
llvm::Value *ThreadID = RT.getThreadID(CGF, Loc);
// Build calls:
// __kmpc_serialized_parallel(&Loc, GTid);
llvm::Value *Args[] = {RTLoc, ThreadID};
CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
M, OMPRTL___kmpc_serialized_parallel),
Args);
// OutlinedFn(&GTid, &zero_bound, CapturedStruct);
Address ThreadIDAddr = RT.emitThreadIDAddress(CGF, Loc);
RawAddress ZeroAddrBound =
CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
/*Name=*/".bound.zero.addr");
CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddrBound);
llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
// ThreadId for serialized parallels is 0.
OutlinedFnArgs.push_back(ThreadIDAddr.emitRawPointer(CGF));
OutlinedFnArgs.push_back(ZeroAddrBound.getPointer());
OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
// Ensure we do not inline the function. This is trivially true for the ones
// passed to __kmpc_fork_call but the ones called in serialized regions
// could be inlined. This is not a perfect but it is closer to the invariant
// we want, namely, every data environment starts with a new function.
// TODO: We should pass the if condition to the runtime function and do the
// handling there. Much cleaner code.
OutlinedFn->removeFnAttr(llvm::Attribute::AlwaysInline);
OutlinedFn->addFnAttr(llvm::Attribute::NoInline);
RT.emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
// __kmpc_end_serialized_parallel(&Loc, GTid);
llvm::Value *EndArgs[] = {RT.emitUpdateLocation(CGF, Loc), ThreadID};
CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
M, OMPRTL___kmpc_end_serialized_parallel),
EndArgs);
};
if (IfCond) {
emitIfClause(CGF, IfCond, ThenGen, ElseGen);
} else {
RegionCodeGenTy ThenRCG(ThenGen);
ThenRCG(CGF);
}
}
// If we're inside an (outlined) parallel region, use the region info's
// thread-ID variable (it is passed in a first argument of the outlined function
// as "kmp_int32 *gtid"). Otherwise, if we're not inside parallel region, but in
// regular serial code region, get thread ID by calling kmp_int32
// kmpc_global_thread_num(ident_t *loc), stash this thread ID in a temporary and
// return the address of that temp.
Address CGOpenMPRuntime::emitThreadIDAddress(CodeGenFunction &CGF,
SourceLocation Loc) {
if (auto *OMPRegionInfo =
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
if (OMPRegionInfo->getThreadIDVariable())
return OMPRegionInfo->getThreadIDVariableLValue(CGF).getAddress();
llvm::Value *ThreadID = getThreadID(CGF, Loc);
QualType Int32Ty =
CGF.getContext().getIntTypeForBitwidth(/*DestWidth*/ 32, /*Signed*/ true);
Address ThreadIDTemp = CGF.CreateMemTemp(Int32Ty, /*Name*/ ".threadid_temp.");
CGF.EmitStoreOfScalar(ThreadID,
CGF.MakeAddrLValue(ThreadIDTemp, Int32Ty));
return ThreadIDTemp;
}
llvm::Value *CGOpenMPRuntime::getCriticalRegionLock(StringRef CriticalName) {
std::string Prefix = Twine("gomp_critical_user_", CriticalName).str();
std::string Name = getName({Prefix, "var"});
return OMPBuilder.getOrCreateInternalVariable(KmpCriticalNameTy, Name);
}
namespace {
/// Common pre(post)-action for different OpenMP constructs.
class CommonActionTy final : public PrePostActionTy {
llvm::FunctionCallee EnterCallee;
ArrayRef<llvm::Value *> EnterArgs;
llvm::FunctionCallee ExitCallee;
ArrayRef<llvm::Value *> ExitArgs;
bool Conditional;
llvm::BasicBlock *ContBlock = nullptr;
public:
CommonActionTy(llvm::FunctionCallee EnterCallee,
ArrayRef<llvm::Value *> EnterArgs,
llvm::FunctionCallee ExitCallee,
ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
: EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
ExitArgs(ExitArgs), Conditional(Conditional) {}
void Enter(CodeGenFunction &CGF) override {
llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
if (Conditional) {
llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
ContBlock = CGF.createBasicBlock("omp_if.end");
// Generate the branch (If-stmt)
CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
CGF.EmitBlock(ThenBlock);
}
}
void Done(CodeGenFunction &CGF) {
// Emit the rest of blocks/branches
CGF.EmitBranch(ContBlock);
CGF.EmitBlock(ContBlock, true);
}
void Exit(CodeGenFunction &CGF) override {
CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
}
};
} // anonymous namespace
void CGOpenMPRuntime::emitCriticalRegion(CodeGenFunction &CGF,
StringRef CriticalName,
const RegionCodeGenTy &CriticalOpGen,
SourceLocation Loc, const Expr *Hint) {
// __kmpc_critical[_with_hint](ident_t *, gtid, Lock[, hint]);
// CriticalOpGen();
// __kmpc_end_critical(ident_t *, gtid, Lock);
// Prepare arguments and build a call to __kmpc_critical
if (!CGF.HaveInsertPoint())
return;
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
getCriticalRegionLock(CriticalName)};
llvm::SmallVector<llvm::Value *, 4> EnterArgs(std::begin(Args),
std::end(Args));
if (Hint) {
EnterArgs.push_back(CGF.Builder.CreateIntCast(
CGF.EmitScalarExpr(Hint), CGM.Int32Ty, /*isSigned=*/false));
}
CommonActionTy Action(
OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(),
Hint ? OMPRTL___kmpc_critical_with_hint : OMPRTL___kmpc_critical),
EnterArgs,
OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
OMPRTL___kmpc_end_critical),
Args);
CriticalOpGen.setAction(Action);
emitInlinedDirective(CGF, OMPD_critical, CriticalOpGen);
}
void CGOpenMPRuntime::emitMasterRegion(CodeGenFunction &CGF,
const RegionCodeGenTy &MasterOpGen,
SourceLocation Loc) {
if (!CGF.HaveInsertPoint())
return;
// if(__kmpc_master(ident_t *, gtid)) {
// MasterOpGen();
// __kmpc_end_master(ident_t *, gtid);
// }
// Prepare arguments and build a call to __kmpc_master
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_master),
Args,
OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_end_master),
Args,
/*Conditional=*/true);
MasterOpGen.setAction(Action);
emitInlinedDirective(CGF, OMPD_master, MasterOpGen);
Action.Done(CGF);
}
void CGOpenMPRuntime::emitMaskedRegion(CodeGenFunction &CGF,
const RegionCodeGenTy &MaskedOpGen,
SourceLocation Loc, const Expr *Filter) {
if (!CGF.HaveInsertPoint())
return;
// if(__kmpc_masked(ident_t *, gtid, filter)) {
// MaskedOpGen();
// __kmpc_end_masked(iden_t *, gtid);
// }
// Prepare arguments and build a call to __kmpc_masked
llvm::Value *FilterVal = Filter
? CGF.EmitScalarExpr(Filter, CGF.Int32Ty)
: llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/0);
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
FilterVal};
llvm::Value *ArgsEnd[] = {emitUpdateLocation(CGF, Loc),
getThreadID(CGF, Loc)};
CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_masked),
Args,
OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_end_masked),
ArgsEnd,
/*Conditional=*/true);
MaskedOpGen.setAction(Action);
emitInlinedDirective(CGF, OMPD_masked, MaskedOpGen);
Action.Done(CGF);
}
void CGOpenMPRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
SourceLocation Loc) {
if (!CGF.HaveInsertPoint())
return;
if (CGF.CGM.getLangOpts().OpenMPIRBuilder) {
OMPBuilder.createTaskyield(CGF.Builder);
} else {
// Build call __kmpc_omp_taskyield(loc, thread_id, 0);
llvm::Value *Args[] = {
emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
llvm::ConstantInt::get(CGM.IntTy, /*V=*/0, /*isSigned=*/true)};
CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_omp_taskyield),
Args);
}
if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
Region->emitUntiedSwitch(CGF);
}
void CGOpenMPRuntime::emitTaskgroupRegion(CodeGenFunction &CGF,
const RegionCodeGenTy &TaskgroupOpGen,
SourceLocation Loc) {
if (!CGF.HaveInsertPoint())
return;
// __kmpc_taskgroup(ident_t *, gtid);
// TaskgroupOpGen();
// __kmpc_end_taskgroup(ident_t *, gtid);
// Prepare arguments and build a call to __kmpc_taskgroup
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_taskgroup),
Args,
OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_end_taskgroup),
Args);
TaskgroupOpGen.setAction(Action);
emitInlinedDirective(CGF, OMPD_taskgroup, TaskgroupOpGen);
}
/// Given an array of pointers to variables, project the address of a
/// given variable.
static Address emitAddrOfVarFromArray(CodeGenFunction &CGF, Address Array,
unsigned Index, const VarDecl *Var) {
// Pull out the pointer to the variable.
Address PtrAddr = CGF.Builder.CreateConstArrayGEP(Array, Index);
llvm::Value *Ptr = CGF.Builder.CreateLoad(PtrAddr);
llvm::Type *ElemTy = CGF.ConvertTypeForMem(Var->getType());
return Address(Ptr, ElemTy, CGF.getContext().getDeclAlign(Var));
}
static llvm::Value *emitCopyprivateCopyFunction(
CodeGenModule &CGM, llvm::Type *ArgsElemType,
ArrayRef<const Expr *> CopyprivateVars, ArrayRef<const Expr *> DestExprs,
ArrayRef<const Expr *> SrcExprs, ArrayRef<const Expr *> AssignmentOps,
SourceLocation Loc) {
ASTContext &C = CGM.getContext();
// void copy_func(void *LHSArg, void *RHSArg);
FunctionArgList Args;
ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
ImplicitParamKind::Other);
ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
ImplicitParamKind::Other);
Args.push_back(&LHSArg);
Args.push_back(&RHSArg);
const auto &CGFI =
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
std::string Name =
CGM.getOpenMPRuntime().getName({"omp", "copyprivate", "copy_func"});
auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
llvm::GlobalValue::InternalLinkage, Name,
&CGM.getModule());
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
Fn->setDoesNotRecurse();
CodeGenFunction CGF(CGM);
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
// Dest = (void*[n])(LHSArg);
// Src = (void*[n])(RHSArg);
Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
CGF.Builder.getPtrTy(0)),
ArgsElemType, CGF.getPointerAlign());
Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
CGF.Builder.getPtrTy(0)),
ArgsElemType, CGF.getPointerAlign());
// *(Type0*)Dst[0] = *(Type0*)Src[0];
// *(Type1*)Dst[1] = *(Type1*)Src[1];
// ...
// *(Typen*)Dst[n] = *(Typen*)Src[n];
for (unsigned I = 0, E = AssignmentOps.size(); I < E; ++I) {
const auto *DestVar =
cast<VarDecl>(cast<DeclRefExpr>(DestExprs[I])->getDecl());
Address DestAddr = emitAddrOfVarFromArray(CGF, LHS, I, DestVar);
const auto *SrcVar =
cast<VarDecl>(cast<DeclRefExpr>(SrcExprs[I])->getDecl());
Address SrcAddr = emitAddrOfVarFromArray(CGF, RHS, I, SrcVar);
const auto *VD = cast<DeclRefExpr>(CopyprivateVars[I])->getDecl();
QualType Type = VD->getType();
CGF.EmitOMPCopy(Type, DestAddr, SrcAddr, DestVar, SrcVar, AssignmentOps[I]);
}
CGF.FinishFunction();
return Fn;
}
void CGOpenMPRuntime::emitSingleRegion(CodeGenFunction &CGF,
const RegionCodeGenTy &SingleOpGen,
SourceLocation Loc,
ArrayRef<const Expr *> CopyprivateVars,
ArrayRef<const Expr *> SrcExprs,
ArrayRef<const Expr *> DstExprs,
ArrayRef<const Expr *> AssignmentOps) {
if (!CGF.HaveInsertPoint())
return;
assert(CopyprivateVars.size() == SrcExprs.size() &&
CopyprivateVars.size() == DstExprs.size() &&
CopyprivateVars.size() == AssignmentOps.size());
ASTContext &C = CGM.getContext();
// int32 did_it = 0;
// if(__kmpc_single(ident_t *, gtid)) {
// SingleOpGen();
// __kmpc_end_single(ident_t *, gtid);
// did_it = 1;
// }
// call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
// <copy_func>, did_it);
Address DidIt = Address::invalid();
if (!CopyprivateVars.empty()) {
// int32 did_it = 0;
QualType KmpInt32Ty =
C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
DidIt = CGF.CreateMemTemp(KmpInt32Ty, ".omp.copyprivate.did_it");
CGF.Builder.CreateStore(CGF.Builder.getInt32(0), DidIt);
}
// Prepare arguments and build a call to __kmpc_single
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_single),
Args,
OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_end_single),
Args,
/*Conditional=*/true);
SingleOpGen.setAction(Action);
emitInlinedDirective(CGF, OMPD_single, SingleOpGen);
if (DidIt.isValid()) {
// did_it = 1;
CGF.Builder.CreateStore(CGF.Builder.getInt32(1), DidIt);
}
Action.Done(CGF);
// call __kmpc_copyprivate(ident_t *, gtid, <buf_size>, <copyprivate list>,
// <copy_func>, did_it);
if (DidIt.isValid()) {
llvm::APInt ArraySize(/*unsigned int numBits=*/32, CopyprivateVars.size());
QualType CopyprivateArrayTy = C.getConstantArrayType(
C.VoidPtrTy, ArraySize, nullptr, ArraySizeModifier::Normal,
/*IndexTypeQuals=*/0);
// Create a list of all private variables for copyprivate.
Address CopyprivateList =
CGF.CreateMemTemp(CopyprivateArrayTy, ".omp.copyprivate.cpr_list");
for (unsigned I = 0, E = CopyprivateVars.size(); I < E; ++I) {
Address Elem = CGF.Builder.CreateConstArrayGEP(CopyprivateList, I);
CGF.Builder.CreateStore(
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.EmitLValue(CopyprivateVars[I]).getPointer(CGF),
CGF.VoidPtrTy),
Elem);
}
// Build function that copies private values from single region to all other
// threads in the corresponding parallel region.
llvm::Value *CpyFn = emitCopyprivateCopyFunction(
CGM, CGF.ConvertTypeForMem(CopyprivateArrayTy), CopyprivateVars,
SrcExprs, DstExprs, AssignmentOps, Loc);
llvm::Value *BufSize = CGF.getTypeSize(CopyprivateArrayTy);
Address CL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CopyprivateList, CGF.VoidPtrTy, CGF.Int8Ty);
llvm::Value *DidItVal = CGF.Builder.CreateLoad(DidIt);
llvm::Value *Args[] = {
emitUpdateLocation(CGF, Loc), // ident_t *<loc>
getThreadID(CGF, Loc), // i32 <gtid>
BufSize, // size_t <buf_size>
CL.emitRawPointer(CGF), // void *<copyprivate list>
CpyFn, // void (*) (void *, void *) <copy_func>
DidItVal // i32 did_it
};
CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_copyprivate),
Args);
}
}
void CGOpenMPRuntime::emitOrderedRegion(CodeGenFunction &CGF,
const RegionCodeGenTy &OrderedOpGen,
SourceLocation Loc, bool IsThreads) {
if (!CGF.HaveInsertPoint())
return;
// __kmpc_ordered(ident_t *, gtid);
// OrderedOpGen();
// __kmpc_end_ordered(ident_t *, gtid);
// Prepare arguments and build a call to __kmpc_ordered
if (IsThreads) {
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_ordered),
Args,
OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_end_ordered),
Args);
OrderedOpGen.setAction(Action);
emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
return;
}
emitInlinedDirective(CGF, OMPD_ordered, OrderedOpGen);
}
unsigned CGOpenMPRuntime::getDefaultFlagsForBarriers(OpenMPDirectiveKind Kind) {
unsigned Flags;
if (Kind == OMPD_for)
Flags = OMP_IDENT_BARRIER_IMPL_FOR;
else if (Kind == OMPD_sections)
Flags = OMP_IDENT_BARRIER_IMPL_SECTIONS;
else if (Kind == OMPD_single)
Flags = OMP_IDENT_BARRIER_IMPL_SINGLE;
else if (Kind == OMPD_barrier)
Flags = OMP_IDENT_BARRIER_EXPL;
else
Flags = OMP_IDENT_BARRIER_IMPL;
return Flags;
}
void CGOpenMPRuntime::getDefaultScheduleAndChunk(
CodeGenFunction &CGF, const OMPLoopDirective &S,
OpenMPScheduleClauseKind &ScheduleKind, const Expr *&ChunkExpr) const {
// Check if the loop directive is actually a doacross loop directive. In this
// case choose static, 1 schedule.
if (llvm::any_of(
S.getClausesOfKind<OMPOrderedClause>(),
[](const OMPOrderedClause *C) { return C->getNumForLoops(); })) {
ScheduleKind = OMPC_SCHEDULE_static;
// Chunk size is 1 in this case.
llvm::APInt ChunkSize(32, 1);
ChunkExpr = IntegerLiteral::Create(
CGF.getContext(), ChunkSize,
CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
SourceLocation());
}
}
void CGOpenMPRuntime::emitBarrierCall(CodeGenFunction &CGF, SourceLocation Loc,
OpenMPDirectiveKind Kind, bool EmitChecks,
bool ForceSimpleCall) {
// Check if we should use the OMPBuilder
auto *OMPRegionInfo =
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo);
if (CGF.CGM.getLangOpts().OpenMPIRBuilder) {
llvm::OpenMPIRBuilder::InsertPointTy AfterIP =
cantFail(OMPBuilder.createBarrier(CGF.Builder, Kind, ForceSimpleCall,
EmitChecks));
CGF.Builder.restoreIP(AfterIP);
return;
}
if (!CGF.HaveInsertPoint())
return;
// Build call __kmpc_cancel_barrier(loc, thread_id);
// Build call __kmpc_barrier(loc, thread_id);
unsigned Flags = getDefaultFlagsForBarriers(Kind);
// Build call __kmpc_cancel_barrier(loc, thread_id) or __kmpc_barrier(loc,
// thread_id);
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
getThreadID(CGF, Loc)};
if (OMPRegionInfo) {
if (!ForceSimpleCall && OMPRegionInfo->hasCancel()) {
llvm::Value *Result = CGF.EmitRuntimeCall(
OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
OMPRTL___kmpc_cancel_barrier),
Args);
if (EmitChecks) {
// if (__kmpc_cancel_barrier()) {
// exit from construct;
// }
llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
CGF.EmitBlock(ExitBB);
// exit from construct;
CodeGenFunction::JumpDest CancelDestination =
CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
CGF.EmitBranchThroughCleanup(CancelDestination);
CGF.EmitBlock(ContBB, /*IsFinished=*/true);
}
return;
}
}
CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_barrier),
Args);
}
void CGOpenMPRuntime::emitErrorCall(CodeGenFunction &CGF, SourceLocation Loc,
Expr *ME, bool IsFatal) {
llvm::Value *MVL =
ME ? CGF.EmitStringLiteralLValue(cast<StringLiteral>(ME)).getPointer(CGF)
: llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
// Build call void __kmpc_error(ident_t *loc, int severity, const char
// *message)
llvm::Value *Args[] = {
emitUpdateLocation(CGF, Loc, /*Flags=*/0, /*GenLoc=*/true),
llvm::ConstantInt::get(CGM.Int32Ty, IsFatal ? 2 : 1),
CGF.Builder.CreatePointerCast(MVL, CGM.Int8PtrTy)};
CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_error),
Args);
}
/// Map the OpenMP loop schedule to the runtime enumeration.
static OpenMPSchedType getRuntimeSchedule(OpenMPScheduleClauseKind ScheduleKind,
bool Chunked, bool Ordered) {
switch (ScheduleKind) {
case OMPC_SCHEDULE_static:
return Chunked ? (Ordered ? OMP_ord_static_chunked : OMP_sch_static_chunked)
: (Ordered ? OMP_ord_static : OMP_sch_static);
case OMPC_SCHEDULE_dynamic:
return Ordered ? OMP_ord_dynamic_chunked : OMP_sch_dynamic_chunked;
case OMPC_SCHEDULE_guided:
return Ordered ? OMP_ord_guided_chunked : OMP_sch_guided_chunked;
case OMPC_SCHEDULE_runtime:
return Ordered ? OMP_ord_runtime : OMP_sch_runtime;
case OMPC_SCHEDULE_auto:
return Ordered ? OMP_ord_auto : OMP_sch_auto;
case OMPC_SCHEDULE_unknown:
assert(!Chunked && "chunk was specified but schedule kind not known");
return Ordered ? OMP_ord_static : OMP_sch_static;
}
llvm_unreachable("Unexpected runtime schedule");
}
/// Map the OpenMP distribute schedule to the runtime enumeration.
static OpenMPSchedType
getRuntimeSchedule(OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) {
// only static is allowed for dist_schedule
return Chunked ? OMP_dist_sch_static_chunked : OMP_dist_sch_static;
}
bool CGOpenMPRuntime::isStaticNonchunked(OpenMPScheduleClauseKind ScheduleKind,
bool Chunked) const {
OpenMPSchedType Schedule =
getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
return Schedule == OMP_sch_static;
}
bool CGOpenMPRuntime::isStaticNonchunked(
OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const {
OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked);
return Schedule == OMP_dist_sch_static;
}
bool CGOpenMPRuntime::isStaticChunked(OpenMPScheduleClauseKind ScheduleKind,
bool Chunked) const {
OpenMPSchedType Schedule =
getRuntimeSchedule(ScheduleKind, Chunked, /*Ordered=*/false);
return Schedule == OMP_sch_static_chunked;
}
bool CGOpenMPRuntime::isStaticChunked(
OpenMPDistScheduleClauseKind ScheduleKind, bool Chunked) const {
OpenMPSchedType Schedule = getRuntimeSchedule(ScheduleKind, Chunked);
return Schedule == OMP_dist_sch_static_chunked;
}
bool CGOpenMPRuntime::isDynamic(OpenMPScheduleClauseKind ScheduleKind) const {
OpenMPSchedType Schedule =
getRuntimeSchedule(ScheduleKind, /*Chunked=*/false, /*Ordered=*/false);
assert(Schedule != OMP_sch_static_chunked && "cannot be chunked here");
return Schedule != OMP_sch_static;
}
static int addMonoNonMonoModifier(CodeGenModule &CGM, OpenMPSchedType Schedule,
OpenMPScheduleClauseModifier M1,
OpenMPScheduleClauseModifier M2) {
int Modifier = 0;
switch (M1) {
case OMPC_SCHEDULE_MODIFIER_monotonic:
Modifier = OMP_sch_modifier_monotonic;
break;
case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
Modifier = OMP_sch_modifier_nonmonotonic;
break;
case OMPC_SCHEDULE_MODIFIER_simd:
if (Schedule == OMP_sch_static_chunked)
Schedule = OMP_sch_static_balanced_chunked;
break;
case OMPC_SCHEDULE_MODIFIER_last:
case OMPC_SCHEDULE_MODIFIER_unknown:
break;
}
switch (M2) {
case OMPC_SCHEDULE_MODIFIER_monotonic:
Modifier = OMP_sch_modifier_monotonic;
break;
case OMPC_SCHEDULE_MODIFIER_nonmonotonic:
Modifier = OMP_sch_modifier_nonmonotonic;
break;
case OMPC_SCHEDULE_MODIFIER_simd:
if (Schedule == OMP_sch_static_chunked)
Schedule = OMP_sch_static_balanced_chunked;
break;
case OMPC_SCHEDULE_MODIFIER_last:
case OMPC_SCHEDULE_MODIFIER_unknown:
break;
}
// OpenMP 5.0, 2.9.2 Worksharing-Loop Construct, Desription.
// If the static schedule kind is specified or if the ordered clause is
// specified, and if the nonmonotonic modifier is not specified, the effect is
// as if the monotonic modifier is specified. Otherwise, unless the monotonic
// modifier is specified, the effect is as if the nonmonotonic modifier is
// specified.
if (CGM.getLangOpts().OpenMP >= 50 && Modifier == 0) {
if (!(Schedule == OMP_sch_static_chunked || Schedule == OMP_sch_static ||
Schedule == OMP_sch_static_balanced_chunked ||
Schedule == OMP_ord_static_chunked || Schedule == OMP_ord_static ||
Schedule == OMP_dist_sch_static_chunked ||
Schedule == OMP_dist_sch_static))
Modifier = OMP_sch_modifier_nonmonotonic;
}
return Schedule | Modifier;
}
void CGOpenMPRuntime::emitForDispatchInit(
CodeGenFunction &CGF, SourceLocation Loc,
const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned,
bool Ordered, const DispatchRTInput &DispatchValues) {
if (!CGF.HaveInsertPoint())
return;
OpenMPSchedType Schedule = getRuntimeSchedule(
ScheduleKind.Schedule, DispatchValues.Chunk != nullptr, Ordered);
assert(Ordered ||
(Schedule != OMP_sch_static && Schedule != OMP_sch_static_chunked &&
Schedule != OMP_ord_static && Schedule != OMP_ord_static_chunked &&
Schedule != OMP_sch_static_balanced_chunked));
// Call __kmpc_dispatch_init(
// ident_t *loc, kmp_int32 tid, kmp_int32 schedule,
// kmp_int[32|64] lower, kmp_int[32|64] upper,
// kmp_int[32|64] stride, kmp_int[32|64] chunk);
// If the Chunk was not specified in the clause - use default value 1.
llvm::Value *Chunk = DispatchValues.Chunk ? DispatchValues.Chunk
: CGF.Builder.getIntN(IVSize, 1);
llvm::Value *Args[] = {
emitUpdateLocation(CGF, Loc),
getThreadID(CGF, Loc),
CGF.Builder.getInt32(addMonoNonMonoModifier(
CGM, Schedule, ScheduleKind.M1, ScheduleKind.M2)), // Schedule type
DispatchValues.LB, // Lower
DispatchValues.UB, // Upper
CGF.Builder.getIntN(IVSize, 1), // Stride
Chunk // Chunk
};
CGF.EmitRuntimeCall(OMPBuilder.createDispatchInitFunction(IVSize, IVSigned),
Args);
}
void CGOpenMPRuntime::emitForDispatchDeinit(CodeGenFunction &CGF,
SourceLocation Loc) {
if (!CGF.HaveInsertPoint())
return;
// Call __kmpc_dispatch_deinit(ident_t *loc, kmp_int32 tid);
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
CGF.EmitRuntimeCall(OMPBuilder.createDispatchDeinitFunction(), Args);
}
static void emitForStaticInitCall(
CodeGenFunction &CGF, llvm::Value *UpdateLocation, llvm::Value *ThreadId,
llvm::FunctionCallee ForStaticInitFunction, OpenMPSchedType Schedule,
OpenMPScheduleClauseModifier M1, OpenMPScheduleClauseModifier M2,
const CGOpenMPRuntime::StaticRTInput &Values) {
if (!CGF.HaveInsertPoint())
return;
assert(!Values.Ordered);
assert(Schedule == OMP_sch_static || Schedule == OMP_sch_static_chunked ||
Schedule == OMP_sch_static_balanced_chunked ||
Schedule == OMP_ord_static || Schedule == OMP_ord_static_chunked ||
Schedule == OMP_dist_sch_static ||
Schedule == OMP_dist_sch_static_chunked);
// Call __kmpc_for_static_init(
// ident_t *loc, kmp_int32 tid, kmp_int32 schedtype,
// kmp_int32 *p_lastiter, kmp_int[32|64] *p_lower,
// kmp_int[32|64] *p_upper, kmp_int[32|64] *p_stride,
// kmp_int[32|64] incr, kmp_int[32|64] chunk);
llvm::Value *Chunk = Values.Chunk;
if (Chunk == nullptr) {
assert((Schedule == OMP_sch_static || Schedule == OMP_ord_static ||
Schedule == OMP_dist_sch_static) &&
"expected static non-chunked schedule");
// If the Chunk was not specified in the clause - use default value 1.
Chunk = CGF.Builder.getIntN(Values.IVSize, 1);
} else {
assert((Schedule == OMP_sch_static_chunked ||
Schedule == OMP_sch_static_balanced_chunked ||
Schedule == OMP_ord_static_chunked ||
Schedule == OMP_dist_sch_static_chunked) &&
"expected static chunked schedule");
}
llvm::Value *Args[] = {
UpdateLocation,
ThreadId,
CGF.Builder.getInt32(addMonoNonMonoModifier(CGF.CGM, Schedule, M1,
M2)), // Schedule type
Values.IL.emitRawPointer(CGF), // &isLastIter
Values.LB.emitRawPointer(CGF), // &LB
Values.UB.emitRawPointer(CGF), // &UB
Values.ST.emitRawPointer(CGF), // &Stride
CGF.Builder.getIntN(Values.IVSize, 1), // Incr
Chunk // Chunk
};
CGF.EmitRuntimeCall(ForStaticInitFunction, Args);
}
void CGOpenMPRuntime::emitForStaticInit(CodeGenFunction &CGF,
SourceLocation Loc,
OpenMPDirectiveKind DKind,
const OpenMPScheduleTy &ScheduleKind,
const StaticRTInput &Values) {
OpenMPSchedType ScheduleNum = getRuntimeSchedule(
ScheduleKind.Schedule, Values.Chunk != nullptr, Values.Ordered);
assert((isOpenMPWorksharingDirective(DKind) || (DKind == OMPD_loop)) &&
"Expected loop-based or sections-based directive.");
llvm::Value *UpdatedLocation = emitUpdateLocation(CGF, Loc,
isOpenMPLoopDirective(DKind)
? OMP_IDENT_WORK_LOOP
: OMP_IDENT_WORK_SECTIONS);
llvm::Value *ThreadId = getThreadID(CGF, Loc);
llvm::FunctionCallee StaticInitFunction =
OMPBuilder.createForStaticInitFunction(Values.IVSize, Values.IVSigned,
false);
auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc);
emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
ScheduleNum, ScheduleKind.M1, ScheduleKind.M2, Values);
}
void CGOpenMPRuntime::emitDistributeStaticInit(
CodeGenFunction &CGF, SourceLocation Loc,
OpenMPDistScheduleClauseKind SchedKind,
const CGOpenMPRuntime::StaticRTInput &Values) {
OpenMPSchedType ScheduleNum =
getRuntimeSchedule(SchedKind, Values.Chunk != nullptr);
llvm::Value *UpdatedLocation =
emitUpdateLocation(CGF, Loc, OMP_IDENT_WORK_DISTRIBUTE);
llvm::Value *ThreadId = getThreadID(CGF, Loc);
llvm::FunctionCallee StaticInitFunction;
bool isGPUDistribute =
CGM.getLangOpts().OpenMPIsTargetDevice &&
(CGM.getTriple().isAMDGCN() || CGM.getTriple().isNVPTX());
StaticInitFunction = OMPBuilder.createForStaticInitFunction(
Values.IVSize, Values.IVSigned, isGPUDistribute);
emitForStaticInitCall(CGF, UpdatedLocation, ThreadId, StaticInitFunction,
ScheduleNum, OMPC_SCHEDULE_MODIFIER_unknown,
OMPC_SCHEDULE_MODIFIER_unknown, Values);
}
void CGOpenMPRuntime::emitForStaticFinish(CodeGenFunction &CGF,
SourceLocation Loc,
OpenMPDirectiveKind DKind) {
assert((DKind == OMPD_distribute || DKind == OMPD_for ||
DKind == OMPD_sections) &&
"Expected distribute, for, or sections directive kind");
if (!CGF.HaveInsertPoint())
return;
// Call __kmpc_for_static_fini(ident_t *loc, kmp_int32 tid);
llvm::Value *Args[] = {
emitUpdateLocation(CGF, Loc,
isOpenMPDistributeDirective(DKind) ||
(DKind == OMPD_target_teams_loop)
? OMP_IDENT_WORK_DISTRIBUTE
: isOpenMPLoopDirective(DKind)
? OMP_IDENT_WORK_LOOP
: OMP_IDENT_WORK_SECTIONS),
getThreadID(CGF, Loc)};
auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc);
if (isOpenMPDistributeDirective(DKind) &&
CGM.getLangOpts().OpenMPIsTargetDevice &&
(CGM.getTriple().isAMDGCN() || CGM.getTriple().isNVPTX()))
CGF.EmitRuntimeCall(
OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_distribute_static_fini),
Args);
else
CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_for_static_fini),
Args);
}
void CGOpenMPRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
SourceLocation Loc,
unsigned IVSize,
bool IVSigned) {
if (!CGF.HaveInsertPoint())
return;
// Call __kmpc_for_dynamic_fini_(4|8)[u](ident_t *loc, kmp_int32 tid);
llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc)};
CGF.EmitRuntimeCall(OMPBuilder.createDispatchFiniFunction(IVSize, IVSigned),
Args);
}
llvm::Value *CGOpenMPRuntime::emitForNext(CodeGenFunction &CGF,
SourceLocation Loc, unsigned IVSize,
bool IVSigned, Address IL,
Address LB, Address UB,
Address ST) {
// Call __kmpc_dispatch_next(
// ident_t *loc, kmp_int32 tid, kmp_int32 *p_lastiter,
// kmp_int[32|64] *p_lower, kmp_int[32|64] *p_upper,
// kmp_int[32|64] *p_stride);
llvm::Value *Args[] = {
emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
IL.emitRawPointer(CGF), // &isLastIter
LB.emitRawPointer(CGF), // &Lower
UB.emitRawPointer(CGF), // &Upper
ST.emitRawPointer(CGF) // &Stride
};
llvm::Value *Call = CGF.EmitRuntimeCall(
OMPBuilder.createDispatchNextFunction(IVSize, IVSigned), Args);
return CGF.EmitScalarConversion(
Call, CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/1),
CGF.getContext().BoolTy, Loc);
}
void CGOpenMPRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
llvm::Value *NumThreads,
SourceLocation Loc) {
if (!CGF.HaveInsertPoint())
return;
// Build call __kmpc_push_num_threads(&loc, global_tid, num_threads)
llvm::Value *Args[] = {
emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
CGF.Builder.CreateIntCast(NumThreads, CGF.Int32Ty, /*isSigned*/ true)};
CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_push_num_threads),
Args);
}
void CGOpenMPRuntime::emitProcBindClause(CodeGenFunction &CGF,
ProcBindKind ProcBind,
SourceLocation Loc) {
if (!CGF.HaveInsertPoint())
return;
assert(ProcBind != OMP_PROC_BIND_unknown && "Unsupported proc_bind value.");
// Build call __kmpc_push_proc_bind(&loc, global_tid, proc_bind)
llvm::Value *Args[] = {
emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
llvm::ConstantInt::get(CGM.IntTy, unsigned(ProcBind), /*isSigned=*/true)};
CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_push_proc_bind),
Args);
}
void CGOpenMPRuntime::emitFlush(CodeGenFunction &CGF, ArrayRef<const Expr *>,
SourceLocation Loc, llvm::AtomicOrdering AO) {
if (CGF.CGM.getLangOpts().OpenMPIRBuilder) {
OMPBuilder.createFlush(CGF.Builder);
} else {
if (!CGF.HaveInsertPoint())
return;
// Build call void __kmpc_flush(ident_t *loc)
CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_flush),
emitUpdateLocation(CGF, Loc));
}
}
namespace {
/// Indexes of fields for type kmp_task_t.
enum KmpTaskTFields {
/// List of shared variables.
KmpTaskTShareds,
/// Task routine.
KmpTaskTRoutine,
/// Partition id for the untied tasks.
KmpTaskTPartId,
/// Function with call of destructors for private variables.
Data1,
/// Task priority.
Data2,
/// (Taskloops only) Lower bound.
KmpTaskTLowerBound,
/// (Taskloops only) Upper bound.
KmpTaskTUpperBound,
/// (Taskloops only) Stride.
KmpTaskTStride,
/// (Taskloops only) Is last iteration flag.
KmpTaskTLastIter,
/// (Taskloops only) Reduction data.
KmpTaskTReductions,
};
} // anonymous namespace
void CGOpenMPRuntime::createOffloadEntriesAndInfoMetadata() {
// If we are in simd mode or there are no entries, we don't need to do
// anything.
if (CGM.getLangOpts().OpenMPSimd || OMPBuilder.OffloadInfoManager.empty())
return;
llvm::OpenMPIRBuilder::EmitMetadataErrorReportFunctionTy &&ErrorReportFn =
[this](llvm::OpenMPIRBuilder::EmitMetadataErrorKind Kind,
const llvm::TargetRegionEntryInfo &EntryInfo) -> void {
SourceLocation Loc;
if (Kind != llvm::OpenMPIRBuilder::EMIT_MD_GLOBAL_VAR_LINK_ERROR) {
for (auto I = CGM.getContext().getSourceManager().fileinfo_begin(),
E = CGM.getContext().getSourceManager().fileinfo_end();
I != E; ++I) {
if (I->getFirst().getUniqueID().getDevice() == EntryInfo.DeviceID &&
I->getFirst().getUniqueID().getFile() == EntryInfo.FileID) {
Loc = CGM.getContext().getSourceManager().translateFileLineCol(
I->getFirst(), EntryInfo.Line, 1);
break;
}
}
}
switch (Kind) {
case llvm::OpenMPIRBuilder::EMIT_MD_TARGET_REGION_ERROR: {
unsigned DiagID = CGM.getDiags().getCustomDiagID(
DiagnosticsEngine::Error, "Offloading entry for target region in "
"%0 is incorrect: either the "
"address or the ID is invalid.");
CGM.getDiags().Report(Loc, DiagID) << EntryInfo.ParentName;
} break;
case llvm::OpenMPIRBuilder::EMIT_MD_DECLARE_TARGET_ERROR: {
unsigned DiagID = CGM.getDiags().getCustomDiagID(
DiagnosticsEngine::Error, "Offloading entry for declare target "
"variable %0 is incorrect: the "
"address is invalid.");
CGM.getDiags().Report(Loc, DiagID) << EntryInfo.ParentName;
} break;
case llvm::OpenMPIRBuilder::EMIT_MD_GLOBAL_VAR_LINK_ERROR: {
unsigned DiagID = CGM.getDiags().getCustomDiagID(
DiagnosticsEngine::Error,
"Offloading entry for declare target variable is incorrect: the "
"address is invalid.");
CGM.getDiags().Report(DiagID);
} break;
}
};
OMPBuilder.createOffloadEntriesAndInfoMetadata(ErrorReportFn);
}
void CGOpenMPRuntime::emitKmpRoutineEntryT(QualType KmpInt32Ty) {
if (!KmpRoutineEntryPtrTy) {
// Build typedef kmp_int32 (* kmp_routine_entry_t)(kmp_int32, void *); type.
ASTContext &C = CGM.getContext();
QualType KmpRoutineEntryTyArgs[] = {KmpInt32Ty, C.VoidPtrTy};
FunctionProtoType::ExtProtoInfo EPI;
KmpRoutineEntryPtrQTy = C.getPointerType(
C.getFunctionType(KmpInt32Ty, KmpRoutineEntryTyArgs, EPI));
KmpRoutineEntryPtrTy = CGM.getTypes().ConvertType(KmpRoutineEntryPtrQTy);
}
}
namespace {
struct PrivateHelpersTy {
PrivateHelpersTy(const Expr *OriginalRef, const VarDecl *Original,
const VarDecl *PrivateCopy, const VarDecl *PrivateElemInit)
: OriginalRef(OriginalRef), Original(Original), PrivateCopy(PrivateCopy),
PrivateElemInit(PrivateElemInit) {}
PrivateHelpersTy(const VarDecl *Original) : Original(Original) {}
const Expr *OriginalRef = nullptr;
const VarDecl *Original = nullptr;
const VarDecl *PrivateCopy = nullptr;
const VarDecl *PrivateElemInit = nullptr;
bool isLocalPrivate() const {
return !OriginalRef && !PrivateCopy && !PrivateElemInit;
}
};
typedef std::pair<CharUnits /*Align*/, PrivateHelpersTy> PrivateDataTy;
} // anonymous namespace
static bool isAllocatableDecl(const VarDecl *VD) {
const VarDecl *CVD = VD->getCanonicalDecl();
if (!CVD->hasAttr<OMPAllocateDeclAttr>())
return false;
const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>();
// Use the default allocation.
return !(AA->getAllocatorType() == OMPAllocateDeclAttr::OMPDefaultMemAlloc &&
!AA->getAllocator());
}
static RecordDecl *
createPrivatesRecordDecl(CodeGenModule &CGM, ArrayRef<PrivateDataTy> Privates) {
if (!Privates.empty()) {
ASTContext &C = CGM.getContext();
// Build struct .kmp_privates_t. {
// /* private vars */
// };
RecordDecl *RD = C.buildImplicitRecord(".kmp_privates.t");
RD->startDefinition();
for (const auto &Pair : Privates) {
const VarDecl *VD = Pair.second.Original;
QualType Type = VD->getType().getNonReferenceType();
// If the private variable is a local variable with lvalue ref type,
// allocate the pointer instead of the pointee type.
if (Pair.second.isLocalPrivate()) {
if (VD->getType()->isLValueReferenceType())
Type = C.getPointerType(Type);
if (isAllocatableDecl(VD))
Type = C.getPointerType(Type);
}
FieldDecl *FD = addFieldToRecordDecl(C, RD, Type);
if (VD->hasAttrs()) {
for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
E(VD->getAttrs().end());
I != E; ++I)
FD->addAttr(*I);
}
}
RD->completeDefinition();
return RD;
}
return nullptr;
}
static RecordDecl *
createKmpTaskTRecordDecl(CodeGenModule &CGM, OpenMPDirectiveKind Kind,
QualType KmpInt32Ty,
QualType KmpRoutineEntryPointerQTy) {
ASTContext &C = CGM.getContext();
// Build struct kmp_task_t {
// void * shareds;
// kmp_routine_entry_t routine;
// kmp_int32 part_id;
// kmp_cmplrdata_t data1;
// kmp_cmplrdata_t data2;
// For taskloops additional fields:
// kmp_uint64 lb;
// kmp_uint64 ub;
// kmp_int64 st;
// kmp_int32 liter;
// void * reductions;
// };
RecordDecl *UD = C.buildImplicitRecord("kmp_cmplrdata_t", TagTypeKind::Union);
UD->startDefinition();
addFieldToRecordDecl(C, UD, KmpInt32Ty);
addFieldToRecordDecl(C, UD, KmpRoutineEntryPointerQTy);
UD->completeDefinition();
QualType KmpCmplrdataTy = C.getRecordType(UD);
RecordDecl *RD = C.buildImplicitRecord("kmp_task_t");
RD->startDefinition();
addFieldToRecordDecl(C, RD, C.VoidPtrTy);
addFieldToRecordDecl(C, RD, KmpRoutineEntryPointerQTy);
addFieldToRecordDecl(C, RD, KmpInt32Ty);
addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
addFieldToRecordDecl(C, RD, KmpCmplrdataTy);
if (isOpenMPTaskLoopDirective(Kind)) {
QualType KmpUInt64Ty =
CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0);
QualType KmpInt64Ty =
CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
addFieldToRecordDecl(C, RD, KmpUInt64Ty);
addFieldToRecordDecl(C, RD, KmpUInt64Ty);
addFieldToRecordDecl(C, RD, KmpInt64Ty);
addFieldToRecordDecl(C, RD, KmpInt32Ty);
addFieldToRecordDecl(C, RD, C.VoidPtrTy);
}
RD->completeDefinition();
return RD;
}
static RecordDecl *
createKmpTaskTWithPrivatesRecordDecl(CodeGenModule &CGM, QualType KmpTaskTQTy,
ArrayRef<PrivateDataTy> Privates) {
ASTContext &C = CGM.getContext();
// Build struct kmp_task_t_with_privates {
// kmp_task_t task_data;
// .kmp_privates_t. privates;
// };
RecordDecl *RD = C.buildImplicitRecord("kmp_task_t_with_privates");
RD->startDefinition();
addFieldToRecordDecl(C, RD, KmpTaskTQTy);
if (const RecordDecl *PrivateRD = createPrivatesRecordDecl(CGM, Privates))
addFieldToRecordDecl(C, RD, C.getRecordType(PrivateRD));
RD->completeDefinition();
return RD;
}
/// Emit a proxy function which accepts kmp_task_t as the second
/// argument.
/// \code
/// kmp_int32 .omp_task_entry.(kmp_int32 gtid, kmp_task_t *tt) {
/// TaskFunction(gtid, tt->part_id, &tt->privates, task_privates_map, tt,
/// For taskloops:
/// tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
/// tt->reductions, tt->shareds);
/// return 0;
/// }
/// \endcode
static llvm::Function *
emitProxyTaskFunction(CodeGenModule &CGM, SourceLocation Loc,
OpenMPDirectiveKind Kind, QualType KmpInt32Ty,
QualType KmpTaskTWithPrivatesPtrQTy,
QualType KmpTaskTWithPrivatesQTy, QualType KmpTaskTQTy,
QualType SharedsPtrTy, llvm::Function *TaskFunction,
llvm::Value *TaskPrivatesMap) {
ASTContext &C = CGM.getContext();
FunctionArgList Args;
ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty,
ImplicitParamKind::Other);
ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
KmpTaskTWithPrivatesPtrQTy.withRestrict(),
ImplicitParamKind::Other);
Args.push_back(&GtidArg);
Args.push_back(&TaskTypeArg);
const auto &TaskEntryFnInfo =
CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
llvm::FunctionType *TaskEntryTy =
CGM.getTypes().GetFunctionType(TaskEntryFnInfo);
std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_entry", ""});
auto *TaskEntry = llvm::Function::Create(
TaskEntryTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule());
CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskEntry, TaskEntryFnInfo);
TaskEntry->setDoesNotRecurse();
CodeGenFunction CGF(CGM);
CGF.StartFunction(GlobalDecl(), KmpInt32Ty, TaskEntry, TaskEntryFnInfo, Args,
Loc, Loc);
// TaskFunction(gtid, tt->task_data.part_id, &tt->privates, task_privates_map,
// tt,
// For taskloops:
// tt->task_data.lb, tt->task_data.ub, tt->task_data.st, tt->task_data.liter,
// tt->task_data.shareds);
llvm::Value *GtidParam = CGF.EmitLoadOfScalar(
CGF.GetAddrOfLocalVar(&GtidArg), /*Volatile=*/false, KmpInt32Ty, Loc);
LValue TDBase = CGF.EmitLoadOfPointerLValue(
CGF.GetAddrOfLocalVar(&TaskTypeArg),
KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
const auto *KmpTaskTWithPrivatesQTyRD =
cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
LValue Base =
CGF.EmitLValueForField(TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
LValue PartIdLVal = CGF.EmitLValueForField(Base, *PartIdFI);
llvm::Value *PartidParam = PartIdLVal.getPointer(CGF);
auto SharedsFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTShareds);
LValue SharedsLVal = CGF.EmitLValueForField(Base, *SharedsFI);
llvm::Value *SharedsParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.EmitLoadOfScalar(SharedsLVal, Loc),
CGF.ConvertTypeForMem(SharedsPtrTy));
auto PrivatesFI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin(), 1);
llvm::Value *PrivatesParam;
if (PrivatesFI != KmpTaskTWithPrivatesQTyRD->field_end()) {
LValue PrivatesLVal = CGF.EmitLValueForField(TDBase, *PrivatesFI);
PrivatesParam = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
PrivatesLVal.getPointer(CGF), CGF.VoidPtrTy);
} else {
PrivatesParam = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
}
llvm::Value *CommonArgs[] = {
GtidParam, PartidParam, PrivatesParam, TaskPrivatesMap,
CGF.Builder
.CreatePointerBitCastOrAddrSpaceCast(TDBase.getAddress(),
CGF.VoidPtrTy, CGF.Int8Ty)
.emitRawPointer(CGF)};
SmallVector<llvm::Value *, 16> CallArgs(std::begin(CommonArgs),
std::end(CommonArgs));
if (isOpenMPTaskLoopDirective(Kind)) {
auto LBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound);
LValue LBLVal = CGF.EmitLValueForField(Base, *LBFI);
llvm::Value *LBParam = CGF.EmitLoadOfScalar(LBLVal, Loc);
auto UBFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound);
LValue UBLVal = CGF.EmitLValueForField(Base, *UBFI);
llvm::Value *UBParam = CGF.EmitLoadOfScalar(UBLVal, Loc);
auto StFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTStride);
LValue StLVal = CGF.EmitLValueForField(Base, *StFI);
llvm::Value *StParam = CGF.EmitLoadOfScalar(StLVal, Loc);
auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
LValue LILVal = CGF.EmitLValueForField(Base, *LIFI);
llvm::Value *LIParam = CGF.EmitLoadOfScalar(LILVal, Loc);
auto RFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTReductions);
LValue RLVal = CGF.EmitLValueForField(Base, *RFI);
llvm::Value *RParam = CGF.EmitLoadOfScalar(RLVal, Loc);
CallArgs.push_back(LBParam);
CallArgs.push_back(UBParam);
CallArgs.push_back(StParam);
CallArgs.push_back(LIParam);
CallArgs.push_back(RParam);
}
CallArgs.push_back(SharedsParam);
CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskFunction,
CallArgs);
CGF.EmitStoreThroughLValue(RValue::get(CGF.Builder.getInt32(/*C=*/0)),
CGF.MakeAddrLValue(CGF.ReturnValue, KmpInt32Ty));
CGF.FinishFunction();
return TaskEntry;
}
static llvm::Value *emitDestructorsFunction(CodeGenModule &CGM,
SourceLocation Loc,
QualType KmpInt32Ty,
QualType KmpTaskTWithPrivatesPtrQTy,
QualType KmpTaskTWithPrivatesQTy) {
ASTContext &C = CGM.getContext();
FunctionArgList Args;
ImplicitParamDecl GtidArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, KmpInt32Ty,
ImplicitParamKind::Other);
ImplicitParamDecl TaskTypeArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
KmpTaskTWithPrivatesPtrQTy.withRestrict(),
ImplicitParamKind::Other);
Args.push_back(&GtidArg);
Args.push_back(&TaskTypeArg);
const auto &DestructorFnInfo =
CGM.getTypes().arrangeBuiltinFunctionDeclaration(KmpInt32Ty, Args);
llvm::FunctionType *DestructorFnTy =
CGM.getTypes().GetFunctionType(DestructorFnInfo);
std::string Name =
CGM.getOpenMPRuntime().getName({"omp_task_destructor", ""});
auto *DestructorFn =
llvm::Function::Create(DestructorFnTy, llvm::GlobalValue::InternalLinkage,
Name, &CGM.getModule());
CGM.SetInternalFunctionAttributes(GlobalDecl(), DestructorFn,
DestructorFnInfo);
DestructorFn->setDoesNotRecurse();
CodeGenFunction CGF(CGM);
CGF.StartFunction(GlobalDecl(), KmpInt32Ty, DestructorFn, DestructorFnInfo,
Args, Loc, Loc);
LValue Base = CGF.EmitLoadOfPointerLValue(
CGF.GetAddrOfLocalVar(&TaskTypeArg),
KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
const auto *KmpTaskTWithPrivatesQTyRD =
cast<RecordDecl>(KmpTaskTWithPrivatesQTy->getAsTagDecl());
auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
Base = CGF.EmitLValueForField(Base, *FI);
for (const auto *Field :
cast<RecordDecl>(FI->getType()->getAsTagDecl())->fields()) {
if (QualType::DestructionKind DtorKind =
Field->getType().isDestructedType()) {
LValue FieldLValue = CGF.EmitLValueForField(Base, Field);
CGF.pushDestroy(DtorKind, FieldLValue.getAddress(), Field->getType());
}
}
CGF.FinishFunction();
return DestructorFn;
}
/// Emit a privates mapping function for correct handling of private and
/// firstprivate variables.
/// \code
/// void .omp_task_privates_map.(const .privates. *noalias privs, <ty1>
/// **noalias priv1,..., <tyn> **noalias privn) {
/// *priv1 = &.privates.priv1;
/// ...;
/// *privn = &.privates.privn;
/// }
/// \endcode
static llvm::Value *
emitTaskPrivateMappingFunction(CodeGenModule &CGM, SourceLocation Loc,
const OMPTaskDataTy &Data, QualType PrivatesQTy,
ArrayRef<PrivateDataTy> Privates) {
ASTContext &C = CGM.getContext();
FunctionArgList Args;
ImplicitParamDecl TaskPrivatesArg(
C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
C.getPointerType(PrivatesQTy).withConst().withRestrict(),
ImplicitParamKind::Other);
Args.push_back(&TaskPrivatesArg);
llvm::DenseMap<CanonicalDeclPtr<const VarDecl>, unsigned> PrivateVarsPos;
unsigned Counter = 1;
for (const Expr *E : Data.PrivateVars) {
Args.push_back(ImplicitParamDecl::Create(
C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
C.getPointerType(C.getPointerType(E->getType()))
.withConst()
.withRestrict(),
ImplicitParamKind::Other));
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
PrivateVarsPos[VD] = Counter;
++Counter;
}
for (const Expr *E : Data.FirstprivateVars) {
Args.push_back(ImplicitParamDecl::Create(
C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
C.getPointerType(C.getPointerType(E->getType()))
.withConst()
.withRestrict(),
ImplicitParamKind::Other));
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
PrivateVarsPos[VD] = Counter;
++Counter;
}
for (const Expr *E : Data.LastprivateVars) {
Args.push_back(ImplicitParamDecl::Create(
C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
C.getPointerType(C.getPointerType(E->getType()))
.withConst()
.withRestrict(),
ImplicitParamKind::Other));
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
PrivateVarsPos[VD] = Counter;
++Counter;
}
for (const VarDecl *VD : Data.PrivateLocals) {
QualType Ty = VD->getType().getNonReferenceType();
if (VD->getType()->isLValueReferenceType())
Ty = C.getPointerType(Ty);
if (isAllocatableDecl(VD))
Ty = C.getPointerType(Ty);
Args.push_back(ImplicitParamDecl::Create(
C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
C.getPointerType(C.getPointerType(Ty)).withConst().withRestrict(),
ImplicitParamKind::Other));
PrivateVarsPos[VD] = Counter;
++Counter;
}
const auto &TaskPrivatesMapFnInfo =
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
llvm::FunctionType *TaskPrivatesMapTy =
CGM.getTypes().GetFunctionType(TaskPrivatesMapFnInfo);
std::string Name =
CGM.getOpenMPRuntime().getName({"omp_task_privates_map", ""});
auto *TaskPrivatesMap = llvm::Function::Create(
TaskPrivatesMapTy, llvm::GlobalValue::InternalLinkage, Name,
&CGM.getModule());
CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskPrivatesMap,
TaskPrivatesMapFnInfo);
if (CGM.getLangOpts().Optimize) {
TaskPrivatesMap->removeFnAttr(llvm::Attribute::NoInline);
TaskPrivatesMap->removeFnAttr(llvm::Attribute::OptimizeNone);
TaskPrivatesMap->addFnAttr(llvm::Attribute::AlwaysInline);
}
CodeGenFunction CGF(CGM);
CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskPrivatesMap,
TaskPrivatesMapFnInfo, Args, Loc, Loc);
// *privi = &.privates.privi;
LValue Base = CGF.EmitLoadOfPointerLValue(
CGF.GetAddrOfLocalVar(&TaskPrivatesArg),
TaskPrivatesArg.getType()->castAs<PointerType>());
const auto *PrivatesQTyRD = cast<RecordDecl>(PrivatesQTy->getAsTagDecl());
Counter = 0;
for (const FieldDecl *Field : PrivatesQTyRD->fields()) {
LValue FieldLVal = CGF.EmitLValueForField(Base, Field);
const VarDecl *VD = Args[PrivateVarsPos[Privates[Counter].second.Original]];
LValue RefLVal =
CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
LValue RefLoadLVal = CGF.EmitLoadOfPointerLValue(
RefLVal.getAddress(), RefLVal.getType()->castAs<PointerType>());
CGF.EmitStoreOfScalar(FieldLVal.getPointer(CGF), RefLoadLVal);
++Counter;
}
CGF.FinishFunction();
return TaskPrivatesMap;
}
/// Emit initialization for private variables in task-based directives.
static void emitPrivatesInit(CodeGenFunction &CGF,
const OMPExecutableDirective &D,
Address KmpTaskSharedsPtr, LValue TDBase,
const RecordDecl *KmpTaskTWithPrivatesQTyRD,
QualType SharedsTy, QualType SharedsPtrTy,
const OMPTaskDataTy &Data,
ArrayRef<PrivateDataTy> Privates, bool ForDup) {
ASTContext &C = CGF.getContext();
auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
LValue PrivatesBase = CGF.EmitLValueForField(TDBase, *FI);
OpenMPDirectiveKind Kind = isOpenMPTaskLoopDirective(D.getDirectiveKind())
? OMPD_taskloop
: OMPD_task;
const CapturedStmt &CS = *D.getCapturedStmt(Kind);
CodeGenFunction::CGCapturedStmtInfo CapturesInfo(CS);
LValue SrcBase;
bool IsTargetTask =
isOpenMPTargetDataManagementDirective(D.getDirectiveKind()) ||
isOpenMPTargetExecutionDirective(D.getDirectiveKind());
// For target-based directives skip 4 firstprivate arrays BasePointersArray,
// PointersArray, SizesArray, and MappersArray. The original variables for
// these arrays are not captured and we get their addresses explicitly.
if ((!IsTargetTask && !Data.FirstprivateVars.empty() && ForDup) ||
(IsTargetTask && KmpTaskSharedsPtr.isValid())) {
SrcBase = CGF.MakeAddrLValue(
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
KmpTaskSharedsPtr, CGF.ConvertTypeForMem(SharedsPtrTy),
CGF.ConvertTypeForMem(SharedsTy)),
SharedsTy);
}
FI = cast<RecordDecl>(FI->getType()->getAsTagDecl())->field_begin();
for (const PrivateDataTy &Pair : Privates) {
// Do not initialize private locals.
if (Pair.second.isLocalPrivate()) {
++FI;
continue;
}
const VarDecl *VD = Pair.second.PrivateCopy;
const Expr *Init = VD->getAnyInitializer();
if (Init && (!ForDup || (isa<CXXConstructExpr>(Init) &&
!CGF.isTrivialInitializer(Init)))) {
LValue PrivateLValue = CGF.EmitLValueForField(PrivatesBase, *FI);
if (const VarDecl *Elem = Pair.second.PrivateElemInit) {
const VarDecl *OriginalVD = Pair.second.Original;
// Check if the variable is the target-based BasePointersArray,
// PointersArray, SizesArray, or MappersArray.
LValue SharedRefLValue;
QualType Type = PrivateLValue.getType();
const FieldDecl *SharedField = CapturesInfo.lookup(OriginalVD);
if (IsTargetTask && !SharedField) {
assert(isa<ImplicitParamDecl>(OriginalVD) &&
isa<CapturedDecl>(OriginalVD->getDeclContext()) &&
cast<CapturedDecl>(OriginalVD->getDeclContext())
->getNumParams() == 0 &&
isa<TranslationUnitDecl>(
cast<CapturedDecl>(OriginalVD->getDeclContext())
->getDeclContext()) &&
"Expected artificial target data variable.");
SharedRefLValue =
CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(OriginalVD), Type);
} else if (ForDup) {
SharedRefLValue = CGF.EmitLValueForField(SrcBase, SharedField);
SharedRefLValue = CGF.MakeAddrLValue(
SharedRefLValue.getAddress().withAlignment(
C.getDeclAlign(OriginalVD)),
SharedRefLValue.getType(), LValueBaseInfo(AlignmentSource::Decl),
SharedRefLValue.getTBAAInfo());
} else if (CGF.LambdaCaptureFields.count(
Pair.second.Original->getCanonicalDecl()) > 0 ||
isa_and_nonnull<BlockDecl>(CGF.CurCodeDecl)) {
SharedRefLValue = CGF.EmitLValue(Pair.second.OriginalRef);
} else {
// Processing for implicitly captured variables.
InlinedOpenMPRegionRAII Region(
CGF, [](CodeGenFunction &, PrePostActionTy &) {}, OMPD_unknown,
/*HasCancel=*/false, /*NoInheritance=*/true);
SharedRefLValue = CGF.EmitLValue(Pair.second.OriginalRef);
}
if (Type->isArrayType()) {
// Initialize firstprivate array.
if (!isa<CXXConstructExpr>(Init) || CGF.isTrivialInitializer(Init)) {
// Perform simple memcpy.
CGF.EmitAggregateAssign(PrivateLValue, SharedRefLValue, Type);
} else {
// Initialize firstprivate array using element-by-element
// initialization.
CGF.EmitOMPAggregateAssign(
PrivateLValue.getAddress(), SharedRefLValue.getAddress(), Type,
[&CGF, Elem, Init, &CapturesInfo](Address DestElement,
Address SrcElement) {
// Clean up any temporaries needed by the initialization.
CodeGenFunction::OMPPrivateScope InitScope(CGF);
InitScope.addPrivate(Elem, SrcElement);
(void)InitScope.Privatize();
// Emit initialization for single element.
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(
CGF, &CapturesInfo);
CGF.EmitAnyExprToMem(Init, DestElement,
Init->getType().getQualifiers(),
/*IsInitializer=*/false);
});
}
} else {
CodeGenFunction::OMPPrivateScope InitScope(CGF);
InitScope.addPrivate(Elem, SharedRefLValue.getAddress());
(void)InitScope.Privatize();
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CapturesInfo);
CGF.EmitExprAsInit(Init, VD, PrivateLValue,
/*capturedByInit=*/false);
}
} else {
CGF.EmitExprAsInit(Init, VD, PrivateLValue, /*capturedByInit=*/false);
}
}
++FI;
}
}
/// Check if duplication function is required for taskloops.
static bool checkInitIsRequired(CodeGenFunction &CGF,
ArrayRef<PrivateDataTy> Privates) {
bool InitRequired = false;
for (const PrivateDataTy &Pair : Privates) {
if (Pair.second.isLocalPrivate())
continue;
const VarDecl *VD = Pair.second.PrivateCopy;
const Expr *Init = VD->getAnyInitializer();
InitRequired = InitRequired || (isa_and_nonnull<CXXConstructExpr>(Init) &&
!CGF.isTrivialInitializer(Init));
if (InitRequired)
break;
}
return InitRequired;
}
/// Emit task_dup function (for initialization of
/// private/firstprivate/lastprivate vars and last_iter flag)
/// \code
/// void __task_dup_entry(kmp_task_t *task_dst, const kmp_task_t *task_src, int
/// lastpriv) {
/// // setup lastprivate flag
/// task_dst->last = lastpriv;
/// // could be constructor calls here...
/// }
/// \endcode
static llvm::Value *
emitTaskDupFunction(CodeGenModule &CGM, SourceLocation Loc,
const OMPExecutableDirective &D,
QualType KmpTaskTWithPrivatesPtrQTy,
const RecordDecl *KmpTaskTWithPrivatesQTyRD,
const RecordDecl *KmpTaskTQTyRD, QualType SharedsTy,
QualType SharedsPtrTy, const OMPTaskDataTy &Data,
ArrayRef<PrivateDataTy> Privates, bool WithLastIter) {
ASTContext &C = CGM.getContext();
FunctionArgList Args;
ImplicitParamDecl DstArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
KmpTaskTWithPrivatesPtrQTy,
ImplicitParamKind::Other);
ImplicitParamDecl SrcArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
KmpTaskTWithPrivatesPtrQTy,
ImplicitParamKind::Other);
ImplicitParamDecl LastprivArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
ImplicitParamKind::Other);
Args.push_back(&DstArg);
Args.push_back(&SrcArg);
Args.push_back(&LastprivArg);
const auto &TaskDupFnInfo =
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
llvm::FunctionType *TaskDupTy = CGM.getTypes().GetFunctionType(TaskDupFnInfo);
std::string Name = CGM.getOpenMPRuntime().getName({"omp_task_dup", ""});
auto *TaskDup = llvm::Function::Create(
TaskDupTy, llvm::GlobalValue::InternalLinkage, Name, &CGM.getModule());
CGM.SetInternalFunctionAttributes(GlobalDecl(), TaskDup, TaskDupFnInfo);
TaskDup->setDoesNotRecurse();
CodeGenFunction CGF(CGM);
CGF.StartFunction(GlobalDecl(), C.VoidTy, TaskDup, TaskDupFnInfo, Args, Loc,
Loc);
LValue TDBase = CGF.EmitLoadOfPointerLValue(
CGF.GetAddrOfLocalVar(&DstArg),
KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
// task_dst->liter = lastpriv;
if (WithLastIter) {
auto LIFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTLastIter);
LValue Base = CGF.EmitLValueForField(
TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
LValue LILVal = CGF.EmitLValueForField(Base, *LIFI);
llvm::Value *Lastpriv = CGF.EmitLoadOfScalar(
CGF.GetAddrOfLocalVar(&LastprivArg), /*Volatile=*/false, C.IntTy, Loc);
CGF.EmitStoreOfScalar(Lastpriv, LILVal);
}
// Emit initial values for private copies (if any).
assert(!Privates.empty());
Address KmpTaskSharedsPtr = Address::invalid();
if (!Data.FirstprivateVars.empty()) {
LValue TDBase = CGF.EmitLoadOfPointerLValue(
CGF.GetAddrOfLocalVar(&SrcArg),
KmpTaskTWithPrivatesPtrQTy->castAs<PointerType>());
LValue Base = CGF.EmitLValueForField(
TDBase, *KmpTaskTWithPrivatesQTyRD->field_begin());
KmpTaskSharedsPtr = Address(
CGF.EmitLoadOfScalar(CGF.EmitLValueForField(
Base, *std::next(KmpTaskTQTyRD->field_begin(),
KmpTaskTShareds)),
Loc),
CGF.Int8Ty, CGM.getNaturalTypeAlignment(SharedsTy));
}
emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, TDBase, KmpTaskTWithPrivatesQTyRD,
SharedsTy, SharedsPtrTy, Data, Privates, /*ForDup=*/true);
CGF.FinishFunction();
return TaskDup;
}
/// Checks if destructor function is required to be generated.
/// \return true if cleanups are required, false otherwise.
static bool
checkDestructorsRequired(const RecordDecl *KmpTaskTWithPrivatesQTyRD,
ArrayRef<PrivateDataTy> Privates) {
for (const PrivateDataTy &P : Privates) {
if (P.second.isLocalPrivate())
continue;
QualType Ty = P.second.Original->getType().getNonReferenceType();
if (Ty.isDestructedType())
return true;
}
return false;
}
namespace {
/// Loop generator for OpenMP iterator expression.
class OMPIteratorGeneratorScope final
: public CodeGenFunction::OMPPrivateScope {
CodeGenFunction &CGF;
const OMPIteratorExpr *E = nullptr;
SmallVector<CodeGenFunction::JumpDest, 4> ContDests;
SmallVector<CodeGenFunction::JumpDest, 4> ExitDests;
OMPIteratorGeneratorScope() = delete;
OMPIteratorGeneratorScope(OMPIteratorGeneratorScope &) = delete;
public:
OMPIteratorGeneratorScope(CodeGenFunction &CGF, const OMPIteratorExpr *E)
: CodeGenFunction::OMPPrivateScope(CGF), CGF(CGF), E(E) {
if (!E)
return;
SmallVector<llvm::Value *, 4> Uppers;
for (unsigned I = 0, End = E->numOfIterators(); I < End; ++I) {
Uppers.push_back(CGF.EmitScalarExpr(E->getHelper(I).Upper));
const auto *VD = cast<VarDecl>(E->getIteratorDecl(I));
addPrivate(VD, CGF.CreateMemTemp(VD->getType(), VD->getName()));
const OMPIteratorHelperData &HelperData = E->getHelper(I);
addPrivate(
HelperData.CounterVD,
CGF.CreateMemTemp(HelperData.CounterVD->getType(), "counter.addr"));
}
Privatize();
for (unsigned I = 0, End = E->numOfIterators(); I < End; ++I) {
const OMPIteratorHelperData &HelperData = E->getHelper(I);
LValue CLVal =
CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(HelperData.CounterVD),
HelperData.CounterVD->getType());
// Counter = 0;
CGF.EmitStoreOfScalar(
llvm::ConstantInt::get(CLVal.getAddress().getElementType(), 0),
CLVal);
CodeGenFunction::JumpDest &ContDest =
ContDests.emplace_back(CGF.getJumpDestInCurrentScope("iter.cont"));
CodeGenFunction::JumpDest &ExitDest =
ExitDests.emplace_back(CGF.getJumpDestInCurrentScope("iter.exit"));
// N = <number-of_iterations>;
llvm::Value *N = Uppers[I];
// cont:
// if (Counter < N) goto body; else goto exit;
CGF.EmitBlock(ContDest.getBlock());
auto *CVal =
CGF.EmitLoadOfScalar(CLVal, HelperData.CounterVD->getLocation());
llvm::Value *Cmp =
HelperData.CounterVD->getType()->isSignedIntegerOrEnumerationType()
? CGF.Builder.CreateICmpSLT(CVal, N)
: CGF.Builder.CreateICmpULT(CVal, N);
llvm::BasicBlock *BodyBB = CGF.createBasicBlock("iter.body");
CGF.Builder.CreateCondBr(Cmp, BodyBB, ExitDest.getBlock());
// body:
CGF.EmitBlock(BodyBB);
// Iteri = Begini + Counter * Stepi;
CGF.EmitIgnoredExpr(HelperData.Update);
}
}
~OMPIteratorGeneratorScope() {
if (!E)
return;
for (unsigned I = E->numOfIterators(); I > 0; --I) {
// Counter = Counter + 1;
const OMPIteratorHelperData &HelperData = E->getHelper(I - 1);
CGF.EmitIgnoredExpr(HelperData.CounterUpdate);
// goto cont;
CGF.EmitBranchThroughCleanup(ContDests[I - 1]);
// exit:
CGF.EmitBlock(ExitDests[I - 1].getBlock(), /*IsFinished=*/I == 1);
}
}
};
} // namespace
static std::pair<llvm::Value *, llvm::Value *>
getPointerAndSize(CodeGenFunction &CGF, const Expr *E) {
const auto *OASE = dyn_cast<OMPArrayShapingExpr>(E);
llvm::Value *Addr;
if (OASE) {
const Expr *Base = OASE->getBase();
Addr = CGF.EmitScalarExpr(Base);
} else {
Addr = CGF.EmitLValue(E).getPointer(CGF);
}
llvm::Value *SizeVal;
QualType Ty = E->getType();
if (OASE) {
SizeVal = CGF.getTypeSize(OASE->getBase()->getType()->getPointeeType());
for (const Expr *SE : OASE->getDimensions()) {
llvm::Value *Sz = CGF.EmitScalarExpr(SE);
Sz = CGF.EmitScalarConversion(
Sz, SE->getType(), CGF.getContext().getSizeType(), SE->getExprLoc());
SizeVal = CGF.Builder.CreateNUWMul(SizeVal, Sz);
}
} else if (const auto *ASE =
dyn_cast<ArraySectionExpr>(E->IgnoreParenImpCasts())) {
LValue UpAddrLVal = CGF.EmitArraySectionExpr(ASE, /*IsLowerBound=*/false);
Address UpAddrAddress = UpAddrLVal.getAddress();
llvm::Value *UpAddr = CGF.Builder.CreateConstGEP1_32(
UpAddrAddress.getElementType(), UpAddrAddress.emitRawPointer(CGF),
/*Idx0=*/1);
llvm::Value *LowIntPtr = CGF.Builder.CreatePtrToInt(Addr, CGF.SizeTy);
llvm::Value *UpIntPtr = CGF.Builder.CreatePtrToInt(UpAddr, CGF.SizeTy);
SizeVal = CGF.Builder.CreateNUWSub(UpIntPtr, LowIntPtr);
} else {
SizeVal = CGF.getTypeSize(Ty);
}
return std::make_pair(Addr, SizeVal);
}
/// Builds kmp_depend_info, if it is not built yet, and builds flags type.
static void getKmpAffinityType(ASTContext &C, QualType &KmpTaskAffinityInfoTy) {
QualType FlagsTy = C.getIntTypeForBitwidth(32, /*Signed=*/false);
if (KmpTaskAffinityInfoTy.isNull()) {
RecordDecl *KmpAffinityInfoRD =
C.buildImplicitRecord("kmp_task_affinity_info_t");
KmpAffinityInfoRD->startDefinition();
addFieldToRecordDecl(C, KmpAffinityInfoRD, C.getIntPtrType());
addFieldToRecordDecl(C, KmpAffinityInfoRD, C.getSizeType());
addFieldToRecordDecl(C, KmpAffinityInfoRD, FlagsTy);
KmpAffinityInfoRD->completeDefinition();
KmpTaskAffinityInfoTy = C.getRecordType(KmpAffinityInfoRD);
}
}
CGOpenMPRuntime::TaskResultTy
CGOpenMPRuntime::emitTaskInit(CodeGenFunction &CGF, SourceLocation Loc,
const OMPExecutableDirective &D,
llvm::Function *TaskFunction, QualType SharedsTy,
Address Shareds, const OMPTaskDataTy &Data) {
ASTContext &C = CGM.getContext();
llvm::SmallVector<PrivateDataTy, 4> Privates;
// Aggregate privates and sort them by the alignment.
const auto *I = Data.PrivateCopies.begin();
for (const Expr *E : Data.PrivateVars) {
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
Privates.emplace_back(
C.getDeclAlign(VD),
PrivateHelpersTy(E, VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
/*PrivateElemInit=*/nullptr));
++I;
}
I = Data.FirstprivateCopies.begin();
const auto *IElemInitRef = Data.FirstprivateInits.begin();
for (const Expr *E : Data.FirstprivateVars) {
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
Privates.emplace_back(
C.getDeclAlign(VD),
PrivateHelpersTy(
E, VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
cast<VarDecl>(cast<DeclRefExpr>(*IElemInitRef)->getDecl())));
++I;
++IElemInitRef;
}
I = Data.LastprivateCopies.begin();
for (const Expr *E : Data.LastprivateVars) {
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl());
Privates.emplace_back(
C.getDeclAlign(VD),
PrivateHelpersTy(E, VD, cast<VarDecl>(cast<DeclRefExpr>(*I)->getDecl()),
/*PrivateElemInit=*/nullptr));
++I;
}
for (const VarDecl *VD : Data.PrivateLocals) {
if (isAllocatableDecl(VD))
Privates.emplace_back(CGM.getPointerAlign(), PrivateHelpersTy(VD));
else
Privates.emplace_back(C.getDeclAlign(VD), PrivateHelpersTy(VD));
}
llvm::stable_sort(Privates,
[](const PrivateDataTy &L, const PrivateDataTy &R) {
return L.first > R.first;
});
QualType KmpInt32Ty = C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1);
// Build type kmp_routine_entry_t (if not built yet).
emitKmpRoutineEntryT(KmpInt32Ty);
// Build type kmp_task_t (if not built yet).
if (isOpenMPTaskLoopDirective(D.getDirectiveKind())) {
if (SavedKmpTaskloopTQTy.isNull()) {
SavedKmpTaskloopTQTy = C.getRecordType(createKmpTaskTRecordDecl(
CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy));
}
KmpTaskTQTy = SavedKmpTaskloopTQTy;
} else {
assert((D.getDirectiveKind() == OMPD_task ||
isOpenMPTargetExecutionDirective(D.getDirectiveKind()) ||
isOpenMPTargetDataManagementDirective(D.getDirectiveKind())) &&
"Expected taskloop, task or target directive");
if (SavedKmpTaskTQTy.isNull()) {
SavedKmpTaskTQTy = C.getRecordType(createKmpTaskTRecordDecl(
CGM, D.getDirectiveKind(), KmpInt32Ty, KmpRoutineEntryPtrQTy));
}
KmpTaskTQTy = SavedKmpTaskTQTy;
}
const auto *KmpTaskTQTyRD = cast<RecordDecl>(KmpTaskTQTy->getAsTagDecl());
// Build particular struct kmp_task_t for the given task.
const RecordDecl *KmpTaskTWithPrivatesQTyRD =
createKmpTaskTWithPrivatesRecordDecl(CGM, KmpTaskTQTy, Privates);
QualType KmpTaskTWithPrivatesQTy = C.getRecordType(KmpTaskTWithPrivatesQTyRD);
QualType KmpTaskTWithPrivatesPtrQTy =
C.getPointerType(KmpTaskTWithPrivatesQTy);
llvm::Type *KmpTaskTWithPrivatesPtrTy = CGF.Builder.getPtrTy(0);
llvm::Value *KmpTaskTWithPrivatesTySize =
CGF.getTypeSize(KmpTaskTWithPrivatesQTy);
QualType SharedsPtrTy = C.getPointerType(SharedsTy);
// Emit initial values for private copies (if any).
llvm::Value *TaskPrivatesMap = nullptr;
llvm::Type *TaskPrivatesMapTy =
std::next(TaskFunction->arg_begin(), 3)->getType();
if (!Privates.empty()) {
auto FI = std::next(KmpTaskTWithPrivatesQTyRD->field_begin());
TaskPrivatesMap =
emitTaskPrivateMappingFunction(CGM, Loc, Data, FI->getType(), Privates);
TaskPrivatesMap = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
TaskPrivatesMap, TaskPrivatesMapTy);
} else {
TaskPrivatesMap = llvm::ConstantPointerNull::get(
cast<llvm::PointerType>(TaskPrivatesMapTy));
}
// Build a proxy function kmp_int32 .omp_task_entry.(kmp_int32 gtid,
// kmp_task_t *tt);
llvm::Function *TaskEntry = emitProxyTaskFunction(
CGM, Loc, D.getDirectiveKind(), KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
KmpTaskTWithPrivatesQTy, KmpTaskTQTy, SharedsPtrTy, TaskFunction,
TaskPrivatesMap);
// Build call kmp_task_t * __kmpc_omp_task_alloc(ident_t *, kmp_int32 gtid,
// kmp_int32 flags, size_t sizeof_kmp_task_t, size_t sizeof_shareds,
// kmp_routine_entry_t *task_entry);
// Task flags. Format is taken from
// https://github.com/llvm/llvm-project/blob/main/openmp/runtime/src/kmp.h,
// description of kmp_tasking_flags struct.
enum {
TiedFlag = 0x1,
FinalFlag = 0x2,
DestructorsFlag = 0x8,
PriorityFlag = 0x20,
DetachableFlag = 0x40,
};
unsigned Flags = Data.Tied ? TiedFlag : 0;
bool NeedsCleanup = false;
if (!Privates.empty()) {
NeedsCleanup =
checkDestructorsRequired(KmpTaskTWithPrivatesQTyRD, Privates);
if (NeedsCleanup)
Flags = Flags | DestructorsFlag;
}
if (Data.Priority.getInt())
Flags = Flags | PriorityFlag;
if (D.hasClausesOfKind<OMPDetachClause>())
Flags = Flags | DetachableFlag;
llvm::Value *TaskFlags =
Data.Final.getPointer()
? CGF.Builder.CreateSelect(Data.Final.getPointer(),
CGF.Builder.getInt32(FinalFlag),
CGF.Builder.getInt32(/*C=*/0))
: CGF.Builder.getInt32(Data.Final.getInt() ? FinalFlag : 0);
TaskFlags = CGF.Builder.CreateOr(TaskFlags, CGF.Builder.getInt32(Flags));
llvm::Value *SharedsSize = CGM.getSize(C.getTypeSizeInChars(SharedsTy));
SmallVector<llvm::Value *, 8> AllocArgs = {emitUpdateLocation(CGF, Loc),
getThreadID(CGF, Loc), TaskFlags, KmpTaskTWithPrivatesTySize,
SharedsSize, CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
TaskEntry, KmpRoutineEntryPtrTy)};
llvm::Value *NewTask;
if (D.hasClausesOfKind<OMPNowaitClause>()) {
// Check if we have any device clause associated with the directive.
const Expr *Device = nullptr;
if (auto *C = D.getSingleClause<OMPDeviceClause>())
Device = C->getDevice();
// Emit device ID if any otherwise use default value.
llvm::Value *DeviceID;
if (Device)
DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
CGF.Int64Ty, /*isSigned=*/true);
else
DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
AllocArgs.push_back(DeviceID);
NewTask = CGF.EmitRuntimeCall(
OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_omp_target_task_alloc),
AllocArgs);
} else {
NewTask =
CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_omp_task_alloc),
AllocArgs);
}
// Emit detach clause initialization.
// evt = (typeof(evt))__kmpc_task_allow_completion_event(loc, tid,
// task_descriptor);
if (const auto *DC = D.getSingleClause<OMPDetachClause>()) {
const Expr *Evt = DC->getEventHandler()->IgnoreParenImpCasts();
LValue EvtLVal = CGF.EmitLValue(Evt);
// Build kmp_event_t *__kmpc_task_allow_completion_event(ident_t *loc_ref,
// int gtid, kmp_task_t *task);
llvm::Value *Loc = emitUpdateLocation(CGF, DC->getBeginLoc());
llvm::Value *Tid = getThreadID(CGF, DC->getBeginLoc());
Tid = CGF.Builder.CreateIntCast(Tid, CGF.IntTy, /*isSigned=*/false);
llvm::Value *EvtVal = CGF.EmitRuntimeCall(
OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_task_allow_completion_event),
{Loc, Tid, NewTask});
EvtVal = CGF.EmitScalarConversion(EvtVal, C.VoidPtrTy, Evt->getType(),
Evt->getExprLoc());
CGF.EmitStoreOfScalar(EvtVal, EvtLVal);
}
// Process affinity clauses.
if (D.hasClausesOfKind<OMPAffinityClause>()) {
// Process list of affinity data.
ASTContext &C = CGM.getContext();
Address AffinitiesArray = Address::invalid();
// Calculate number of elements to form the array of affinity data.
llvm::Value *NumOfElements = nullptr;
unsigned NumAffinities = 0;
for (const auto *C : D.getClausesOfKind<OMPAffinityClause>()) {
if (const Expr *Modifier = C->getModifier()) {
const auto *IE = cast<OMPIteratorExpr>(Modifier->IgnoreParenImpCasts());
for (unsigned I = 0, E = IE->numOfIterators(); I < E; ++I) {
llvm::Value *Sz = CGF.EmitScalarExpr(IE->getHelper(I).Upper);
Sz = CGF.Builder.CreateIntCast(Sz, CGF.SizeTy, /*isSigned=*/false);
NumOfElements =
NumOfElements ? CGF.Builder.CreateNUWMul(NumOfElements, Sz) : Sz;
}
} else {
NumAffinities += C->varlist_size();
}
}
getKmpAffinityType(CGM.getContext(), KmpTaskAffinityInfoTy);
// Fields ids in kmp_task_affinity_info record.
enum RTLAffinityInfoFieldsTy { BaseAddr, Len, Flags };
QualType KmpTaskAffinityInfoArrayTy;
if (NumOfElements) {
NumOfElements = CGF.Builder.CreateNUWAdd(
llvm::ConstantInt::get(CGF.SizeTy, NumAffinities), NumOfElements);
auto *OVE = new (C) OpaqueValueExpr(
Loc,
C.getIntTypeForBitwidth(C.getTypeSize(C.getSizeType()), /*Signed=*/0),
VK_PRValue);
CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, OVE,
RValue::get(NumOfElements));
KmpTaskAffinityInfoArrayTy = C.getVariableArrayType(
KmpTaskAffinityInfoTy, OVE, ArraySizeModifier::Normal,
/*IndexTypeQuals=*/0, SourceRange(Loc, Loc));
// Properly emit variable-sized array.
auto *PD = ImplicitParamDecl::Create(C, KmpTaskAffinityInfoArrayTy,
ImplicitParamKind::Other);
CGF.EmitVarDecl(*PD);
AffinitiesArray = CGF.GetAddrOfLocalVar(PD);
NumOfElements = CGF.Builder.CreateIntCast(NumOfElements, CGF.Int32Ty,
/*isSigned=*/false);
} else {
KmpTaskAffinityInfoArrayTy = C.getConstantArrayType(
KmpTaskAffinityInfoTy,
llvm::APInt(C.getTypeSize(C.getSizeType()), NumAffinities), nullptr,
ArraySizeModifier::Normal, /*IndexTypeQuals=*/0);
AffinitiesArray =
CGF.CreateMemTemp(KmpTaskAffinityInfoArrayTy, ".affs.arr.addr");
AffinitiesArray = CGF.Builder.CreateConstArrayGEP(AffinitiesArray, 0);
NumOfElements = llvm::ConstantInt::get(CGM.Int32Ty, NumAffinities,
/*isSigned=*/false);
}
const auto *KmpAffinityInfoRD = KmpTaskAffinityInfoTy->getAsRecordDecl();
// Fill array by elements without iterators.
unsigned Pos = 0;
bool HasIterator = false;
for (const auto *C : D.getClausesOfKind<OMPAffinityClause>()) {
if (C->getModifier()) {
HasIterator = true;
continue;
}
for (const Expr *E : C->varlist()) {
llvm::Value *Addr;
llvm::Value *Size;
std::tie(Addr, Size) = getPointerAndSize(CGF, E);
LValue Base =
CGF.MakeAddrLValue(CGF.Builder.CreateConstGEP(AffinitiesArray, Pos),
KmpTaskAffinityInfoTy);
// affs[i].base_addr = &<Affinities[i].second>;
LValue BaseAddrLVal = CGF.EmitLValueForField(
Base, *std::next(KmpAffinityInfoRD->field_begin(), BaseAddr));
CGF.EmitStoreOfScalar(CGF.Builder.CreatePtrToInt(Addr, CGF.IntPtrTy),
BaseAddrLVal);
// affs[i].len = sizeof(<Affinities[i].second>);
LValue LenLVal = CGF.EmitLValueForField(
Base, *std::next(KmpAffinityInfoRD->field_begin(), Len));
CGF.EmitStoreOfScalar(Size, LenLVal);
++Pos;
}
}
LValue PosLVal;
if (HasIterator) {
PosLVal = CGF.MakeAddrLValue(
CGF.CreateMemTemp(C.getSizeType(), "affs.counter.addr"),
C.getSizeType());
CGF.EmitStoreOfScalar(llvm::ConstantInt::get(CGF.SizeTy, Pos), PosLVal);
}
// Process elements with iterators.
for (const auto *C : D.getClausesOfKind<OMPAffinityClause>()) {
const Expr *Modifier = C->getModifier();
if (!Modifier)
continue;
OMPIteratorGeneratorScope IteratorScope(
CGF, cast_or_null<OMPIteratorExpr>(Modifier->IgnoreParenImpCasts()));
for (const Expr *E : C->varlist()) {
llvm::Value *Addr;
llvm::Value *Size;
std::tie(Addr, Size) = getPointerAndSize(CGF, E);
llvm::Value *Idx = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc());
LValue Base =
CGF.MakeAddrLValue(CGF.Builder.CreateGEP(CGF, AffinitiesArray, Idx),
KmpTaskAffinityInfoTy);
// affs[i].base_addr = &<Affinities[i].second>;
LValue BaseAddrLVal = CGF.EmitLValueForField(
Base, *std::next(KmpAffinityInfoRD->field_begin(), BaseAddr));
CGF.EmitStoreOfScalar(CGF.Builder.CreatePtrToInt(Addr, CGF.IntPtrTy),
BaseAddrLVal);
// affs[i].len = sizeof(<Affinities[i].second>);
LValue LenLVal = CGF.EmitLValueForField(
Base, *std::next(KmpAffinityInfoRD->field_begin(), Len));
CGF.EmitStoreOfScalar(Size, LenLVal);
Idx = CGF.Builder.CreateNUWAdd(
Idx, llvm::ConstantInt::get(Idx->getType(), 1));
CGF.EmitStoreOfScalar(Idx, PosLVal);
}
}
// Call to kmp_int32 __kmpc_omp_reg_task_with_affinity(ident_t *loc_ref,
// kmp_int32 gtid, kmp_task_t *new_task, kmp_int32
// naffins, kmp_task_affinity_info_t *affin_list);
llvm::Value *LocRef = emitUpdateLocation(CGF, Loc);
llvm::Value *GTid = getThreadID(CGF, Loc);
llvm::Value *AffinListPtr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
AffinitiesArray.emitRawPointer(CGF), CGM.VoidPtrTy);
// FIXME: Emit the function and ignore its result for now unless the
// runtime function is properly implemented.
(void)CGF.EmitRuntimeCall(
OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_omp_reg_task_with_affinity),
{LocRef, GTid, NewTask, NumOfElements, AffinListPtr});
}
llvm::Value *NewTaskNewTaskTTy =
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
NewTask, KmpTaskTWithPrivatesPtrTy);
LValue Base = CGF.MakeNaturalAlignRawAddrLValue(NewTaskNewTaskTTy,
KmpTaskTWithPrivatesQTy);
LValue TDBase =
CGF.EmitLValueForField(Base, *KmpTaskTWithPrivatesQTyRD->field_begin());
// Fill the data in the resulting kmp_task_t record.
// Copy shareds if there are any.
Address KmpTaskSharedsPtr = Address::invalid();
if (!SharedsTy->getAsStructureType()->getDecl()->field_empty()) {
KmpTaskSharedsPtr = Address(
CGF.EmitLoadOfScalar(
CGF.EmitLValueForField(
TDBase,
*std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTShareds)),
Loc),
CGF.Int8Ty, CGM.getNaturalTypeAlignment(SharedsTy));
LValue Dest = CGF.MakeAddrLValue(KmpTaskSharedsPtr, SharedsTy);
LValue Src = CGF.MakeAddrLValue(Shareds, SharedsTy);
CGF.EmitAggregateCopy(Dest, Src, SharedsTy, AggValueSlot::DoesNotOverlap);
}
// Emit initial values for private copies (if any).
TaskResultTy Result;
if (!Privates.empty()) {
emitPrivatesInit(CGF, D, KmpTaskSharedsPtr, Base, KmpTaskTWithPrivatesQTyRD,
SharedsTy, SharedsPtrTy, Data, Privates,
/*ForDup=*/false);
if (isOpenMPTaskLoopDirective(D.getDirectiveKind()) &&
(!Data.LastprivateVars.empty() || checkInitIsRequired(CGF, Privates))) {
Result.TaskDupFn = emitTaskDupFunction(
CGM, Loc, D, KmpTaskTWithPrivatesPtrQTy, KmpTaskTWithPrivatesQTyRD,
KmpTaskTQTyRD, SharedsTy, SharedsPtrTy, Data, Privates,
/*WithLastIter=*/!Data.LastprivateVars.empty());
}
}
// Fields of union "kmp_cmplrdata_t" for destructors and priority.
enum { Priority = 0, Destructors = 1 };
// Provide pointer to function with destructors for privates.
auto FI = std::next(KmpTaskTQTyRD->field_begin(), Data1);
const RecordDecl *KmpCmplrdataUD =
(*FI)->getType()->getAsUnionType()->getDecl();
if (NeedsCleanup) {
llvm::Value *DestructorFn = emitDestructorsFunction(
CGM, Loc, KmpInt32Ty, KmpTaskTWithPrivatesPtrQTy,
KmpTaskTWithPrivatesQTy);
LValue Data1LV = CGF.EmitLValueForField(TDBase, *FI);
LValue DestructorsLV = CGF.EmitLValueForField(
Data1LV, *std::next(KmpCmplrdataUD->field_begin(), Destructors));
CGF.EmitStoreOfScalar(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
DestructorFn, KmpRoutineEntryPtrTy),
DestructorsLV);
}
// Set priority.
if (Data.Priority.getInt()) {
LValue Data2LV = CGF.EmitLValueForField(
TDBase, *std::next(KmpTaskTQTyRD->field_begin(), Data2));
LValue PriorityLV = CGF.EmitLValueForField(
Data2LV, *std::next(KmpCmplrdataUD->field_begin(), Priority));
CGF.EmitStoreOfScalar(Data.Priority.getPointer(), PriorityLV);
}
Result.NewTask = NewTask;
Result.TaskEntry = TaskEntry;
Result.NewTaskNewTaskTTy = NewTaskNewTaskTTy;
Result.TDBase = TDBase;
Result.KmpTaskTQTyRD = KmpTaskTQTyRD;
return Result;
}
/// Translates internal dependency kind into the runtime kind.
static RTLDependenceKindTy translateDependencyKind(OpenMPDependClauseKind K) {
RTLDependenceKindTy DepKind;
switch (K) {
case OMPC_DEPEND_in:
DepKind = RTLDependenceKindTy::DepIn;
break;
// Out and InOut dependencies must use the same code.
case OMPC_DEPEND_out:
case OMPC_DEPEND_inout:
DepKind = RTLDependenceKindTy::DepInOut;
break;
case OMPC_DEPEND_mutexinoutset:
DepKind = RTLDependenceKindTy::DepMutexInOutSet;
break;
case OMPC_DEPEND_inoutset:
DepKind = RTLDependenceKindTy::DepInOutSet;
break;
case OMPC_DEPEND_outallmemory:
DepKind = RTLDependenceKindTy::DepOmpAllMem;
break;
case OMPC_DEPEND_source:
case OMPC_DEPEND_sink:
case OMPC_DEPEND_depobj:
case OMPC_DEPEND_inoutallmemory:
case OMPC_DEPEND_unknown:
llvm_unreachable("Unknown task dependence type");
}
return DepKind;
}
/// Builds kmp_depend_info, if it is not built yet, and builds flags type.
static void getDependTypes(ASTContext &C, QualType &KmpDependInfoTy,
QualType &FlagsTy) {
FlagsTy = C.getIntTypeForBitwidth(C.getTypeSize(C.BoolTy), /*Signed=*/false);
if (KmpDependInfoTy.isNull()) {
RecordDecl *KmpDependInfoRD = C.buildImplicitRecord("kmp_depend_info");
KmpDependInfoRD->startDefinition();
addFieldToRecordDecl(C, KmpDependInfoRD, C.getIntPtrType());
addFieldToRecordDecl(C, KmpDependInfoRD, C.getSizeType());
addFieldToRecordDecl(C, KmpDependInfoRD, FlagsTy);
KmpDependInfoRD->completeDefinition();
KmpDependInfoTy = C.getRecordType(KmpDependInfoRD);
}
}
std::pair<llvm::Value *, LValue>
CGOpenMPRuntime::getDepobjElements(CodeGenFunction &CGF, LValue DepobjLVal,
SourceLocation Loc) {
ASTContext &C = CGM.getContext();
QualType FlagsTy;
getDependTypes(C, KmpDependInfoTy, FlagsTy);
RecordDecl *KmpDependInfoRD =
cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
QualType KmpDependInfoPtrTy = C.getPointerType(KmpDependInfoTy);
LValue Base = CGF.EmitLoadOfPointerLValue(
DepobjLVal.getAddress().withElementType(
CGF.ConvertTypeForMem(KmpDependInfoPtrTy)),
KmpDependInfoPtrTy->castAs<PointerType>());
Address DepObjAddr = CGF.Builder.CreateGEP(
CGF, Base.getAddress(),
llvm::ConstantInt::get(CGF.IntPtrTy, -1, /*isSigned=*/true));
LValue NumDepsBase = CGF.MakeAddrLValue(
DepObjAddr, KmpDependInfoTy, Base.getBaseInfo(), Base.getTBAAInfo());
// NumDeps = deps[i].base_addr;
LValue BaseAddrLVal = CGF.EmitLValueForField(
NumDepsBase,
*std::next(KmpDependInfoRD->field_begin(),
static_cast<unsigned int>(RTLDependInfoFields::BaseAddr)));
llvm::Value *NumDeps = CGF.EmitLoadOfScalar(BaseAddrLVal, Loc);
return std::make_pair(NumDeps, Base);
}
static void emitDependData(CodeGenFunction &CGF, QualType &KmpDependInfoTy,
llvm::PointerUnion<unsigned *, LValue *> Pos,
const OMPTaskDataTy::DependData &Data,
Address DependenciesArray) {
CodeGenModule &CGM = CGF.CGM;
ASTContext &C = CGM.getContext();
QualType FlagsTy;
getDependTypes(C, KmpDependInfoTy, FlagsTy);
RecordDecl *KmpDependInfoRD =
cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy);
OMPIteratorGeneratorScope IteratorScope(
CGF, cast_or_null<OMPIteratorExpr>(
Data.IteratorExpr ? Data.IteratorExpr->IgnoreParenImpCasts()
: nullptr));
for (const Expr *E : Data.DepExprs) {
llvm::Value *Addr;
llvm::Value *Size;
// The expression will be a nullptr in the 'omp_all_memory' case.
if (E) {
std::tie(Addr, Size) = getPointerAndSize(CGF, E);
Addr = CGF.Builder.CreatePtrToInt(Addr, CGF.IntPtrTy);
} else {
Addr = llvm::ConstantInt::get(CGF.IntPtrTy, 0);
Size = llvm::ConstantInt::get(CGF.SizeTy, 0);
}
LValue Base;
if (unsigned *P = dyn_cast<unsigned *>(Pos)) {
Base = CGF.MakeAddrLValue(
CGF.Builder.CreateConstGEP(DependenciesArray, *P), KmpDependInfoTy);
} else {
assert(E && "Expected a non-null expression");
LValue &PosLVal = *cast<LValue *>(Pos);
llvm::Value *Idx = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc());
Base = CGF.MakeAddrLValue(
CGF.Builder.CreateGEP(CGF, DependenciesArray, Idx), KmpDependInfoTy);
}
// deps[i].base_addr = &<Dependencies[i].second>;
LValue BaseAddrLVal = CGF.EmitLValueForField(
Base,
*std::next(KmpDependInfoRD->field_begin(),
static_cast<unsigned int>(RTLDependInfoFields::BaseAddr)));
CGF.EmitStoreOfScalar(Addr, BaseAddrLVal);
// deps[i].len = sizeof(<Dependencies[i].second>);
LValue LenLVal = CGF.EmitLValueForField(
Base, *std::next(KmpDependInfoRD->field_begin(),
static_cast<unsigned int>(RTLDependInfoFields::Len)));
CGF.EmitStoreOfScalar(Size, LenLVal);
// deps[i].flags = <Dependencies[i].first>;
RTLDependenceKindTy DepKind = translateDependencyKind(Data.DepKind);
LValue FlagsLVal = CGF.EmitLValueForField(
Base,
*std::next(KmpDependInfoRD->field_begin(),
static_cast<unsigned int>(RTLDependInfoFields::Flags)));
CGF.EmitStoreOfScalar(
llvm::ConstantInt::get(LLVMFlagsTy, static_cast<unsigned int>(DepKind)),
FlagsLVal);
if (unsigned *P = dyn_cast<unsigned *>(Pos)) {
++(*P);
} else {
LValue &PosLVal = *cast<LValue *>(Pos);
llvm::Value *Idx = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc());
Idx = CGF.Builder.CreateNUWAdd(Idx,
llvm::ConstantInt::get(Idx->getType(), 1));
CGF.EmitStoreOfScalar(Idx, PosLVal);
}
}
}
SmallVector<llvm::Value *, 4> CGOpenMPRuntime::emitDepobjElementsSizes(
CodeGenFunction &CGF, QualType &KmpDependInfoTy,
const OMPTaskDataTy::DependData &Data) {
assert(Data.DepKind == OMPC_DEPEND_depobj &&
"Expected depobj dependency kind.");
SmallVector<llvm::Value *, 4> Sizes;
SmallVector<LValue, 4> SizeLVals;
ASTContext &C = CGF.getContext();
{
OMPIteratorGeneratorScope IteratorScope(
CGF, cast_or_null<OMPIteratorExpr>(
Data.IteratorExpr ? Data.IteratorExpr->IgnoreParenImpCasts()
: nullptr));
for (const Expr *E : Data.DepExprs) {
llvm::Value *NumDeps;
LValue Base;
LValue DepobjLVal = CGF.EmitLValue(E->IgnoreParenImpCasts());
std::tie(NumDeps, Base) =
getDepobjElements(CGF, DepobjLVal, E->getExprLoc());
LValue NumLVal = CGF.MakeAddrLValue(
CGF.CreateMemTemp(C.getUIntPtrType(), "depobj.size.addr"),
C.getUIntPtrType());
CGF.Builder.CreateStore(llvm::ConstantInt::get(CGF.IntPtrTy, 0),
NumLVal.getAddress());
llvm::Value *PrevVal = CGF.EmitLoadOfScalar(NumLVal, E->getExprLoc());
llvm::Value *Add = CGF.Builder.CreateNUWAdd(PrevVal, NumDeps);
CGF.EmitStoreOfScalar(Add, NumLVal);
SizeLVals.push_back(NumLVal);
}
}
for (unsigned I = 0, E = SizeLVals.size(); I < E; ++I) {
llvm::Value *Size =
CGF.EmitLoadOfScalar(SizeLVals[I], Data.DepExprs[I]->getExprLoc());
Sizes.push_back(Size);
}
return Sizes;
}
void CGOpenMPRuntime::emitDepobjElements(CodeGenFunction &CGF,
QualType &KmpDependInfoTy,
LValue PosLVal,
const OMPTaskDataTy::DependData &Data,
Address DependenciesArray) {
assert(Data.DepKind == OMPC_DEPEND_depobj &&
"Expected depobj dependency kind.");
llvm::Value *ElSize = CGF.getTypeSize(KmpDependInfoTy);
{
OMPIteratorGeneratorScope IteratorScope(
CGF, cast_or_null<OMPIteratorExpr>(
Data.IteratorExpr ? Data.IteratorExpr->IgnoreParenImpCasts()
: nullptr));
for (unsigned I = 0, End = Data.DepExprs.size(); I < End; ++I) {
const Expr *E = Data.DepExprs[I];
llvm::Value *NumDeps;
LValue Base;
LValue DepobjLVal = CGF.EmitLValue(E->IgnoreParenImpCasts());
std::tie(NumDeps, Base) =
getDepobjElements(CGF, DepobjLVal, E->getExprLoc());
// memcopy dependency data.
llvm::Value *Size = CGF.Builder.CreateNUWMul(
ElSize,
CGF.Builder.CreateIntCast(NumDeps, CGF.SizeTy, /*isSigned=*/false));
llvm::Value *Pos = CGF.EmitLoadOfScalar(PosLVal, E->getExprLoc());
Address DepAddr = CGF.Builder.CreateGEP(CGF, DependenciesArray, Pos);
CGF.Builder.CreateMemCpy(DepAddr, Base.getAddress(), Size);
// Increase pos.
// pos += size;
llvm::Value *Add = CGF.Builder.CreateNUWAdd(Pos, NumDeps);
CGF.EmitStoreOfScalar(Add, PosLVal);
}
}
}
std::pair<llvm::Value *, Address> CGOpenMPRuntime::emitDependClause(
CodeGenFunction &CGF, ArrayRef<OMPTaskDataTy::DependData> Dependencies,
SourceLocation Loc) {
if (llvm::all_of(Dependencies, [](const OMPTaskDataTy::DependData &D) {
return D.DepExprs.empty();
}))
return std::make_pair(nullptr, Address::invalid());
// Process list of dependencies.
ASTContext &C = CGM.getContext();
Address DependenciesArray = Address::invalid();
llvm::Value *NumOfElements = nullptr;
unsigned NumDependencies = std::accumulate(
Dependencies.begin(), Dependencies.end(), 0,
[](unsigned V, const OMPTaskDataTy::DependData &D) {
return D.DepKind == OMPC_DEPEND_depobj
? V
: (V + (D.IteratorExpr ? 0 : D.DepExprs.size()));
});
QualType FlagsTy;
getDependTypes(C, KmpDependInfoTy, FlagsTy);
bool HasDepobjDeps = false;
bool HasRegularWithIterators = false;
llvm::Value *NumOfDepobjElements = llvm::ConstantInt::get(CGF.IntPtrTy, 0);
llvm::Value *NumOfRegularWithIterators =
llvm::ConstantInt::get(CGF.IntPtrTy, 0);
// Calculate number of depobj dependencies and regular deps with the
// iterators.
for (const OMPTaskDataTy::DependData &D : Dependencies) {
if (D.DepKind == OMPC_DEPEND_depobj) {
SmallVector<llvm::Value *, 4> Sizes =
emitDepobjElementsSizes(CGF, KmpDependInfoTy, D);
for (llvm::Value *Size : Sizes) {
NumOfDepobjElements =
CGF.Builder.CreateNUWAdd(NumOfDepobjElements, Size);
}
HasDepobjDeps = true;
continue;
}
// Include number of iterations, if any.
if (const auto *IE = cast_or_null<OMPIteratorExpr>(D.IteratorExpr)) {
llvm::Value *ClauseIteratorSpace =
llvm::ConstantInt::get(CGF.IntPtrTy, 1);
for (unsigned I = 0, E = IE->numOfIterators(); I < E; ++I) {
llvm::Value *Sz = CGF.EmitScalarExpr(IE->getHelper(I).Upper);
Sz = CGF.Builder.CreateIntCast(Sz, CGF.IntPtrTy, /*isSigned=*/false);
ClauseIteratorSpace = CGF.Builder.CreateNUWMul(Sz, ClauseIteratorSpace);
}
llvm::Value *NumClauseDeps = CGF.Builder.CreateNUWMul(
ClauseIteratorSpace,
llvm::ConstantInt::get(CGF.IntPtrTy, D.DepExprs.size()));
NumOfRegularWithIterators =
CGF.Builder.CreateNUWAdd(NumOfRegularWithIterators, NumClauseDeps);
HasRegularWithIterators = true;
continue;
}
}
QualType KmpDependInfoArrayTy;
if (HasDepobjDeps || HasRegularWithIterators) {
NumOfElements = llvm::ConstantInt::get(CGM.IntPtrTy, NumDependencies,
/*isSigned=*/false);
if (HasDepobjDeps) {
NumOfElements =
CGF.Builder.CreateNUWAdd(NumOfDepobjElements, NumOfElements);
}
if (HasRegularWithIterators) {
NumOfElements =
CGF.Builder.CreateNUWAdd(NumOfRegularWithIterators, NumOfElements);
}
auto *OVE = new (C) OpaqueValueExpr(
Loc, C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/0),
VK_PRValue);
CodeGenFunction::OpaqueValueMapping OpaqueMap(CGF, OVE,
RValue::get(NumOfElements));
KmpDependInfoArrayTy =
C.getVariableArrayType(KmpDependInfoTy, OVE, ArraySizeModifier::Normal,
/*IndexTypeQuals=*/0, SourceRange(Loc, Loc));
// CGF.EmitVariablyModifiedType(KmpDependInfoArrayTy);
// Properly emit variable-sized array.
auto *PD = ImplicitParamDecl::Create(C, KmpDependInfoArrayTy,
ImplicitParamKind::Other);
CGF.EmitVarDecl(*PD);
DependenciesArray = CGF.GetAddrOfLocalVar(PD);
NumOfElements = CGF.Builder.CreateIntCast(NumOfElements, CGF.Int32Ty,
/*isSigned=*/false);
} else {
KmpDependInfoArrayTy = C.getConstantArrayType(
KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies), nullptr,
ArraySizeModifier::Normal, /*IndexTypeQuals=*/0);
DependenciesArray =
CGF.CreateMemTemp(KmpDependInfoArrayTy, ".dep.arr.addr");
DependenciesArray = CGF.Builder.CreateConstArrayGEP(DependenciesArray, 0);
NumOfElements = llvm::ConstantInt::get(CGM.Int32Ty, NumDependencies,
/*isSigned=*/false);
}
unsigned Pos = 0;
for (unsigned I = 0, End = Dependencies.size(); I < End; ++I) {
if (Dependencies[I].DepKind == OMPC_DEPEND_depobj ||
Dependencies[I].IteratorExpr)
continue;
emitDependData(CGF, KmpDependInfoTy, &Pos, Dependencies[I],
DependenciesArray);
}
// Copy regular dependencies with iterators.
LValue PosLVal = CGF.MakeAddrLValue(
CGF.CreateMemTemp(C.getSizeType(), "dep.counter.addr"), C.getSizeType());
CGF.EmitStoreOfScalar(llvm::ConstantInt::get(CGF.SizeTy, Pos), PosLVal);
for (unsigned I = 0, End = Dependencies.size(); I < End; ++I) {
if (Dependencies[I].DepKind == OMPC_DEPEND_depobj ||
!Dependencies[I].IteratorExpr)
continue;
emitDependData(CGF, KmpDependInfoTy, &PosLVal, Dependencies[I],
DependenciesArray);
}
// Copy final depobj arrays without iterators.
if (HasDepobjDeps) {
for (unsigned I = 0, End = Dependencies.size(); I < End; ++I) {
if (Dependencies[I].DepKind != OMPC_DEPEND_depobj)
continue;
emitDepobjElements(CGF, KmpDependInfoTy, PosLVal, Dependencies[I],
DependenciesArray);
}
}
DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
DependenciesArray, CGF.VoidPtrTy, CGF.Int8Ty);
return std::make_pair(NumOfElements, DependenciesArray);
}
Address CGOpenMPRuntime::emitDepobjDependClause(
CodeGenFunction &CGF, const OMPTaskDataTy::DependData &Dependencies,
SourceLocation Loc) {
if (Dependencies.DepExprs.empty())
return Address::invalid();
// Process list of dependencies.
ASTContext &C = CGM.getContext();
Address DependenciesArray = Address::invalid();
unsigned NumDependencies = Dependencies.DepExprs.size();
QualType FlagsTy;
getDependTypes(C, KmpDependInfoTy, FlagsTy);
RecordDecl *KmpDependInfoRD =
cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
llvm::Value *Size;
// Define type kmp_depend_info[<Dependencies.size()>];
// For depobj reserve one extra element to store the number of elements.
// It is required to handle depobj(x) update(in) construct.
// kmp_depend_info[<Dependencies.size()>] deps;
llvm::Value *NumDepsVal;
CharUnits Align = C.getTypeAlignInChars(KmpDependInfoTy);
if (const auto *IE =
cast_or_null<OMPIteratorExpr>(Dependencies.IteratorExpr)) {
NumDepsVal = llvm::ConstantInt::get(CGF.SizeTy, 1);
for (unsigned I = 0, E = IE->numOfIterators(); I < E; ++I) {
llvm::Value *Sz = CGF.EmitScalarExpr(IE->getHelper(I).Upper);
Sz = CGF.Builder.CreateIntCast(Sz, CGF.SizeTy, /*isSigned=*/false);
NumDepsVal = CGF.Builder.CreateNUWMul(NumDepsVal, Sz);
}
Size = CGF.Builder.CreateNUWAdd(llvm::ConstantInt::get(CGF.SizeTy, 1),
NumDepsVal);
CharUnits SizeInBytes =
C.getTypeSizeInChars(KmpDependInfoTy).alignTo(Align);
llvm::Value *RecSize = CGM.getSize(SizeInBytes);
Size = CGF.Builder.CreateNUWMul(Size, RecSize);
NumDepsVal =
CGF.Builder.CreateIntCast(NumDepsVal, CGF.IntPtrTy, /*isSigned=*/false);
} else {
QualType KmpDependInfoArrayTy = C.getConstantArrayType(
KmpDependInfoTy, llvm::APInt(/*numBits=*/64, NumDependencies + 1),
nullptr, ArraySizeModifier::Normal, /*IndexTypeQuals=*/0);
CharUnits Sz = C.getTypeSizeInChars(KmpDependInfoArrayTy);
Size = CGM.getSize(Sz.alignTo(Align));
NumDepsVal = llvm::ConstantInt::get(CGF.IntPtrTy, NumDependencies);
}
// Need to allocate on the dynamic memory.
llvm::Value *ThreadID = getThreadID(CGF, Loc);
// Use default allocator.
llvm::Value *Allocator = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
llvm::Value *Args[] = {ThreadID, Size, Allocator};
llvm::Value *Addr =
CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_alloc),
Args, ".dep.arr.addr");
llvm::Type *KmpDependInfoLlvmTy = CGF.ConvertTypeForMem(KmpDependInfoTy);
Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
Addr, CGF.Builder.getPtrTy(0));
DependenciesArray = Address(Addr, KmpDependInfoLlvmTy, Align);
// Write number of elements in the first element of array for depobj.
LValue Base = CGF.MakeAddrLValue(DependenciesArray, KmpDependInfoTy);
// deps[i].base_addr = NumDependencies;
LValue BaseAddrLVal = CGF.EmitLValueForField(
Base,
*std::next(KmpDependInfoRD->field_begin(),
static_cast<unsigned int>(RTLDependInfoFields::BaseAddr)));
CGF.EmitStoreOfScalar(NumDepsVal, BaseAddrLVal);
llvm::PointerUnion<unsigned *, LValue *> Pos;
unsigned Idx = 1;
LValue PosLVal;
if (Dependencies.IteratorExpr) {
PosLVal = CGF.MakeAddrLValue(
CGF.CreateMemTemp(C.getSizeType(), "iterator.counter.addr"),
C.getSizeType());
CGF.EmitStoreOfScalar(llvm::ConstantInt::get(CGF.SizeTy, Idx), PosLVal,
/*IsInit=*/true);
Pos = &PosLVal;
} else {
Pos = &Idx;
}
emitDependData(CGF, KmpDependInfoTy, Pos, Dependencies, DependenciesArray);
DependenciesArray = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.Builder.CreateConstGEP(DependenciesArray, 1), CGF.VoidPtrTy,
CGF.Int8Ty);
return DependenciesArray;
}
void CGOpenMPRuntime::emitDestroyClause(CodeGenFunction &CGF, LValue DepobjLVal,
SourceLocation Loc) {
ASTContext &C = CGM.getContext();
QualType FlagsTy;
getDependTypes(C, KmpDependInfoTy, FlagsTy);
LValue Base = CGF.EmitLoadOfPointerLValue(DepobjLVal.getAddress(),
C.VoidPtrTy.castAs<PointerType>());
QualType KmpDependInfoPtrTy = C.getPointerType(KmpDependInfoTy);
Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
Base.getAddress(), CGF.ConvertTypeForMem(KmpDependInfoPtrTy),
CGF.ConvertTypeForMem(KmpDependInfoTy));
llvm::Value *DepObjAddr = CGF.Builder.CreateGEP(
Addr.getElementType(), Addr.emitRawPointer(CGF),
llvm::ConstantInt::get(CGF.IntPtrTy, -1, /*isSigned=*/true));
DepObjAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(DepObjAddr,
CGF.VoidPtrTy);
llvm::Value *ThreadID = getThreadID(CGF, Loc);
// Use default allocator.
llvm::Value *Allocator = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
llvm::Value *Args[] = {ThreadID, DepObjAddr, Allocator};
// _kmpc_free(gtid, addr, nullptr);
(void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_free),
Args);
}
void CGOpenMPRuntime::emitUpdateClause(CodeGenFunction &CGF, LValue DepobjLVal,
OpenMPDependClauseKind NewDepKind,
SourceLocation Loc) {
ASTContext &C = CGM.getContext();
QualType FlagsTy;
getDependTypes(C, KmpDependInfoTy, FlagsTy);
RecordDecl *KmpDependInfoRD =
cast<RecordDecl>(KmpDependInfoTy->getAsTagDecl());
llvm::Type *LLVMFlagsTy = CGF.ConvertTypeForMem(FlagsTy);
llvm::Value *NumDeps;
LValue Base;
std::tie(NumDeps, Base) = getDepobjElements(CGF, DepobjLVal, Loc);
Address Begin = Base.getAddress();
// Cast from pointer to array type to pointer to single element.
llvm::Value *End = CGF.Builder.CreateGEP(Begin.getElementType(),
Begin.emitRawPointer(CGF), NumDeps);
// The basic structure here is a while-do loop.
llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.body");
llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.done");
llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
CGF.EmitBlock(BodyBB);
llvm::PHINode *ElementPHI =
CGF.Builder.CreatePHI(Begin.getType(), 2, "omp.elementPast");
ElementPHI->addIncoming(Begin.emitRawPointer(CGF), EntryBB);
Begin = Begin.withPointer(ElementPHI, KnownNonNull);
Base = CGF.MakeAddrLValue(Begin, KmpDependInfoTy, Base.getBaseInfo(),
Base.getTBAAInfo());
// deps[i].flags = NewDepKind;
RTLDependenceKindTy DepKind = translateDependencyKind(NewDepKind);
LValue FlagsLVal = CGF.EmitLValueForField(
Base, *std::next(KmpDependInfoRD->field_begin(),
static_cast<unsigned int>(RTLDependInfoFields::Flags)));
CGF.EmitStoreOfScalar(
llvm::ConstantInt::get(LLVMFlagsTy, static_cast<unsigned int>(DepKind)),
FlagsLVal);
// Shift the address forward by one element.
llvm::Value *ElementNext =
CGF.Builder.CreateConstGEP(Begin, /*Index=*/1, "omp.elementNext")
.emitRawPointer(CGF);
ElementPHI->addIncoming(ElementNext, CGF.Builder.GetInsertBlock());
llvm::Value *IsEmpty =
CGF.Builder.CreateICmpEQ(ElementNext, End, "omp.isempty");
CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
// Done.
CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
}
void CGOpenMPRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc,
const OMPExecutableDirective &D,
llvm::Function *TaskFunction,
QualType SharedsTy, Address Shareds,
const Expr *IfCond,
const OMPTaskDataTy &Data) {
if (!CGF.HaveInsertPoint())
return;
TaskResultTy Result =
emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
llvm::Value *NewTask = Result.NewTask;
llvm::Function *TaskEntry = Result.TaskEntry;
llvm::Value *NewTaskNewTaskTTy = Result.NewTaskNewTaskTTy;
LValue TDBase = Result.TDBase;
const RecordDecl *KmpTaskTQTyRD = Result.KmpTaskTQTyRD;
// Process list of dependences.
Address DependenciesArray = Address::invalid();
llvm::Value *NumOfElements;
std::tie(NumOfElements, DependenciesArray) =
emitDependClause(CGF, Data.Dependences, Loc);
// NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc()
// libcall.
// Build kmp_int32 __kmpc_omp_task_with_deps(ident_t *, kmp_int32 gtid,
// kmp_task_t *new_task, kmp_int32 ndeps, kmp_depend_info_t *dep_list,
// kmp_int32 ndeps_noalias, kmp_depend_info_t *noalias_dep_list) if dependence
// list is not empty
llvm::Value *ThreadID = getThreadID(CGF, Loc);
llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
llvm::Value *TaskArgs[] = { UpLoc, ThreadID, NewTask };
llvm::Value *DepTaskArgs[7];
if (!Data.Dependences.empty()) {
DepTaskArgs[0] = UpLoc;
DepTaskArgs[1] = ThreadID;
DepTaskArgs[2] = NewTask;
DepTaskArgs[3] = NumOfElements;
DepTaskArgs[4] = DependenciesArray.emitRawPointer(CGF);
DepTaskArgs[5] = CGF.Builder.getInt32(0);
DepTaskArgs[6] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
}
auto &&ThenCodeGen = [this, &Data, TDBase, KmpTaskTQTyRD, &TaskArgs,
&DepTaskArgs](CodeGenFunction &CGF, PrePostActionTy &) {
if (!Data.Tied) {
auto PartIdFI = std::next(KmpTaskTQTyRD->field_begin(), KmpTaskTPartId);
LValue PartIdLVal = CGF.EmitLValueForField(TDBase, *PartIdFI);
CGF.EmitStoreOfScalar(CGF.Builder.getInt32(0), PartIdLVal);
}
if (!Data.Dependences.empty()) {
CGF.EmitRuntimeCall(
OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_omp_task_with_deps),
DepTaskArgs);
} else {
CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_omp_task),
TaskArgs);
}
// Check if parent region is untied and build return for untied task;
if (auto *Region =
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
Region->emitUntiedSwitch(CGF);
};
llvm::Value *DepWaitTaskArgs[7];
if (!Data.Dependences.empty()) {
DepWaitTaskArgs[0] = UpLoc;
DepWaitTaskArgs[1] = ThreadID;
DepWaitTaskArgs[2] = NumOfElements;
DepWaitTaskArgs[3] = DependenciesArray.emitRawPointer(CGF);
DepWaitTaskArgs[4] = CGF.Builder.getInt32(0);
DepWaitTaskArgs[5] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
DepWaitTaskArgs[6] =
llvm::ConstantInt::get(CGF.Int32Ty, Data.HasNowaitClause);
}
auto &M = CGM.getModule();
auto &&ElseCodeGen = [this, &M, &TaskArgs, ThreadID, NewTaskNewTaskTTy,
TaskEntry, &Data, &DepWaitTaskArgs,
Loc](CodeGenFunction &CGF, PrePostActionTy &) {
CodeGenFunction::RunCleanupsScope LocalScope(CGF);
// Build void __kmpc_omp_wait_deps(ident_t *, kmp_int32 gtid,
// kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32
// ndeps_noalias, kmp_depend_info_t *noalias_dep_list); if dependence info
// is specified.
if (!Data.Dependences.empty())
CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
M, OMPRTL___kmpc_omp_taskwait_deps_51),
DepWaitTaskArgs);
// Call proxy_task_entry(gtid, new_task);
auto &&CodeGen = [TaskEntry, ThreadID, NewTaskNewTaskTTy,
Loc](CodeGenFunction &CGF, PrePostActionTy &Action) {
Action.Enter(CGF);
llvm::Value *OutlinedFnArgs[] = {ThreadID, NewTaskNewTaskTTy};
CGF.CGM.getOpenMPRuntime().emitOutlinedFunctionCall(CGF, Loc, TaskEntry,
OutlinedFnArgs);
};
// Build void __kmpc_omp_task_begin_if0(ident_t *, kmp_int32 gtid,
// kmp_task_t *new_task);
// Build void __kmpc_omp_task_complete_if0(ident_t *, kmp_int32 gtid,
// kmp_task_t *new_task);
RegionCodeGenTy RCG(CodeGen);
CommonActionTy Action(OMPBuilder.getOrCreateRuntimeFunction(
M, OMPRTL___kmpc_omp_task_begin_if0),
TaskArgs,
OMPBuilder.getOrCreateRuntimeFunction(
M, OMPRTL___kmpc_omp_task_complete_if0),
TaskArgs);
RCG.setAction(Action);
RCG(CGF);
};
if (IfCond) {
emitIfClause(CGF, IfCond, ThenCodeGen, ElseCodeGen);
} else {
RegionCodeGenTy ThenRCG(ThenCodeGen);
ThenRCG(CGF);
}
}
void CGOpenMPRuntime::emitTaskLoopCall(CodeGenFunction &CGF, SourceLocation Loc,
const OMPLoopDirective &D,
llvm::Function *TaskFunction,
QualType SharedsTy, Address Shareds,
const Expr *IfCond,
const OMPTaskDataTy &Data) {
if (!CGF.HaveInsertPoint())
return;
TaskResultTy Result =
emitTaskInit(CGF, Loc, D, TaskFunction, SharedsTy, Shareds, Data);
// NOTE: routine and part_id fields are initialized by __kmpc_omp_task_alloc()
// libcall.
// Call to void __kmpc_taskloop(ident_t *loc, int gtid, kmp_task_t *task, int
// if_val, kmp_uint64 *lb, kmp_uint64 *ub, kmp_int64 st, int nogroup, int
// sched, kmp_uint64 grainsize, void *task_dup);
llvm::Value *ThreadID = getThreadID(CGF, Loc);
llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
llvm::Value *IfVal;
if (IfCond) {
IfVal = CGF.Builder.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.IntTy,
/*isSigned=*/true);
} else {
IfVal = llvm::ConstantInt::getSigned(CGF.IntTy, /*V=*/1);
}
LValue LBLVal = CGF.EmitLValueForField(
Result.TDBase,
*std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTLowerBound));
const auto *LBVar =
cast<VarDecl>(cast<DeclRefExpr>(D.getLowerBoundVariable())->getDecl());
CGF.EmitAnyExprToMem(LBVar->getInit(), LBLVal.getAddress(), LBLVal.getQuals(),
/*IsInitializer=*/true);
LValue UBLVal = CGF.EmitLValueForField(
Result.TDBase,
*std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTUpperBound));
const auto *UBVar =
cast<VarDecl>(cast<DeclRefExpr>(D.getUpperBoundVariable())->getDecl());
CGF.EmitAnyExprToMem(UBVar->getInit(), UBLVal.getAddress(), UBLVal.getQuals(),
/*IsInitializer=*/true);
LValue StLVal = CGF.EmitLValueForField(
Result.TDBase,
*std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTStride));
const auto *StVar =
cast<VarDecl>(cast<DeclRefExpr>(D.getStrideVariable())->getDecl());
CGF.EmitAnyExprToMem(StVar->getInit(), StLVal.getAddress(), StLVal.getQuals(),
/*IsInitializer=*/true);
// Store reductions address.
LValue RedLVal = CGF.EmitLValueForField(
Result.TDBase,
*std::next(Result.KmpTaskTQTyRD->field_begin(), KmpTaskTReductions));
if (Data.Reductions) {
CGF.EmitStoreOfScalar(Data.Reductions, RedLVal);
} else {
CGF.EmitNullInitialization(RedLVal.getAddress(),
CGF.getContext().VoidPtrTy);
}
enum { NoSchedule = 0, Grainsize = 1, NumTasks = 2 };
llvm::SmallVector<llvm::Value *, 12> TaskArgs{
UpLoc,
ThreadID,
Result.NewTask,
IfVal,
LBLVal.getPointer(CGF),
UBLVal.getPointer(CGF),
CGF.EmitLoadOfScalar(StLVal, Loc),
llvm::ConstantInt::getSigned(
CGF.IntTy, 1), // Always 1 because taskgroup emitted by the compiler
llvm::ConstantInt::getSigned(
CGF.IntTy, Data.Schedule.getPointer()
? Data.Schedule.getInt() ? NumTasks : Grainsize
: NoSchedule),
Data.Schedule.getPointer()
? CGF.Builder.CreateIntCast(Data.Schedule.getPointer(), CGF.Int64Ty,
/*isSigned=*/false)
: llvm::ConstantInt::get(CGF.Int64Ty, /*V=*/0)};
if (Data.HasModifier)
TaskArgs.push_back(llvm::ConstantInt::get(CGF.Int32Ty, 1));
TaskArgs.push_back(Result.TaskDupFn
? CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
Result.TaskDupFn, CGF.VoidPtrTy)
: llvm::ConstantPointerNull::get(CGF.VoidPtrTy));
CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), Data.HasModifier
? OMPRTL___kmpc_taskloop_5
: OMPRTL___kmpc_taskloop),
TaskArgs);
}
/// Emit reduction operation for each element of array (required for
/// array sections) LHS op = RHS.
/// \param Type Type of array.
/// \param LHSVar Variable on the left side of the reduction operation
/// (references element of array in original variable).
/// \param RHSVar Variable on the right side of the reduction operation
/// (references element of array in original variable).
/// \param RedOpGen Generator of reduction operation with use of LHSVar and
/// RHSVar.
static void EmitOMPAggregateReduction(
CodeGenFunction &CGF, QualType Type, const VarDecl *LHSVar,
const VarDecl *RHSVar,
const llvm::function_ref<void(CodeGenFunction &CGF, const Expr *,
const Expr *, const Expr *)> &RedOpGen,
const Expr *XExpr = nullptr, const Expr *EExpr = nullptr,
const Expr *UpExpr = nullptr) {
// Perform element-by-element initialization.
QualType ElementTy;
Address LHSAddr = CGF.GetAddrOfLocalVar(LHSVar);
Address RHSAddr = CGF.GetAddrOfLocalVar(RHSVar);
// Drill down to the base element type on both arrays.
const ArrayType *ArrayTy = Type->getAsArrayTypeUnsafe();
llvm::Value *NumElements = CGF.emitArrayLength(ArrayTy, ElementTy, LHSAddr);
llvm::Value *RHSBegin = RHSAddr.emitRawPointer(CGF);
llvm::Value *LHSBegin = LHSAddr.emitRawPointer(CGF);
// Cast from pointer to array type to pointer to single element.
llvm::Value *LHSEnd =
CGF.Builder.CreateGEP(LHSAddr.getElementType(), LHSBegin, NumElements);
// The basic structure here is a while-do loop.
llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.arraycpy.body");
llvm::BasicBlock *DoneBB = CGF.createBasicBlock("omp.arraycpy.done");
llvm::Value *IsEmpty =
CGF.Builder.CreateICmpEQ(LHSBegin, LHSEnd, "omp.arraycpy.isempty");
CGF.Builder.CreateCondBr(IsEmpty, DoneBB, BodyBB);
// Enter the loop body, making that address the current address.
llvm::BasicBlock *EntryBB = CGF.Builder.GetInsertBlock();
CGF.EmitBlock(BodyBB);
CharUnits ElementSize = CGF.getContext().getTypeSizeInChars(ElementTy);
llvm::PHINode *RHSElementPHI = CGF.Builder.CreatePHI(
RHSBegin->getType(), 2, "omp.arraycpy.srcElementPast");
RHSElementPHI->addIncoming(RHSBegin, EntryBB);
Address RHSElementCurrent(
RHSElementPHI, RHSAddr.getElementType(),
RHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
llvm::PHINode *LHSElementPHI = CGF.Builder.CreatePHI(
LHSBegin->getType(), 2, "omp.arraycpy.destElementPast");
LHSElementPHI->addIncoming(LHSBegin, EntryBB);
Address LHSElementCurrent(
LHSElementPHI, LHSAddr.getElementType(),
LHSAddr.getAlignment().alignmentOfArrayElement(ElementSize));
// Emit copy.
CodeGenFunction::OMPPrivateScope Scope(CGF);
Scope.addPrivate(LHSVar, LHSElementCurrent);
Scope.addPrivate(RHSVar, RHSElementCurrent);
Scope.Privatize();
RedOpGen(CGF, XExpr, EExpr, UpExpr);
Scope.ForceCleanup();
// Shift the address forward by one element.
llvm::Value *LHSElementNext = CGF.Builder.CreateConstGEP1_32(
LHSAddr.getElementType(), LHSElementPHI, /*Idx0=*/1,
"omp.arraycpy.dest.element");
llvm::Value *RHSElementNext = CGF.Builder.CreateConstGEP1_32(
RHSAddr.getElementType(), RHSElementPHI, /*Idx0=*/1,
"omp.arraycpy.src.element");
// Check whether we've reached the end.
llvm::Value *Done =
CGF.Builder.CreateICmpEQ(LHSElementNext, LHSEnd, "omp.arraycpy.done");
CGF.Builder.CreateCondBr(Done, DoneBB, BodyBB);
LHSElementPHI->addIncoming(LHSElementNext, CGF.Builder.GetInsertBlock());
RHSElementPHI->addIncoming(RHSElementNext, CGF.Builder.GetInsertBlock());
// Done.
CGF.EmitBlock(DoneBB, /*IsFinished=*/true);
}
/// Emit reduction combiner. If the combiner is a simple expression emit it as
/// is, otherwise consider it as combiner of UDR decl and emit it as a call of
/// UDR combiner function.
static void emitReductionCombiner(CodeGenFunction &CGF,
const Expr *ReductionOp) {
if (const auto *CE = dyn_cast<CallExpr>(ReductionOp))
if (const auto *OVE = dyn_cast<OpaqueValueExpr>(CE->getCallee()))
if (const auto *DRE =
dyn_cast<DeclRefExpr>(OVE->getSourceExpr()->IgnoreImpCasts()))
if (const auto *DRD =
dyn_cast<OMPDeclareReductionDecl>(DRE->getDecl())) {
std::pair<llvm::Function *, llvm::Function *> Reduction =
CGF.CGM.getOpenMPRuntime().getUserDefinedReduction(DRD);
RValue Func = RValue::get(Reduction.first);
CodeGenFunction::OpaqueValueMapping Map(CGF, OVE, Func);
CGF.EmitIgnoredExpr(ReductionOp);
return;
}
CGF.EmitIgnoredExpr(ReductionOp);
}
llvm::Function *CGOpenMPRuntime::emitReductionFunction(
StringRef ReducerName, SourceLocation Loc, llvm::Type *ArgsElemType,
ArrayRef<const Expr *> Privates, ArrayRef<const Expr *> LHSExprs,
ArrayRef<const Expr *> RHSExprs, ArrayRef<const Expr *> ReductionOps) {
ASTContext &C = CGM.getContext();
// void reduction_func(void *LHSArg, void *RHSArg);
FunctionArgList Args;
ImplicitParamDecl LHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
ImplicitParamKind::Other);
ImplicitParamDecl RHSArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
ImplicitParamKind::Other);
Args.push_back(&LHSArg);
Args.push_back(&RHSArg);
const auto &CGFI =
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
std::string Name = getReductionFuncName(ReducerName);
auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
llvm::GlobalValue::InternalLinkage, Name,
&CGM.getModule());
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
Fn->setDoesNotRecurse();
CodeGenFunction CGF(CGM);
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
// Dst = (void*[n])(LHSArg);
// Src = (void*[n])(RHSArg);
Address LHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&LHSArg)),
CGF.Builder.getPtrTy(0)),
ArgsElemType, CGF.getPointerAlign());
Address RHS(CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&RHSArg)),
CGF.Builder.getPtrTy(0)),
ArgsElemType, CGF.getPointerAlign());
// ...
// *(Type<i>*)lhs[i] = RedOp<i>(*(Type<i>*)lhs[i], *(Type<i>*)rhs[i]);
// ...
CodeGenFunction::OMPPrivateScope Scope(CGF);
const auto *IPriv = Privates.begin();
unsigned Idx = 0;
for (unsigned I = 0, E = ReductionOps.size(); I < E; ++I, ++IPriv, ++Idx) {
const auto *RHSVar =
cast<VarDecl>(cast<DeclRefExpr>(RHSExprs[I])->getDecl());
Scope.addPrivate(RHSVar, emitAddrOfVarFromArray(CGF, RHS, Idx, RHSVar));
const auto *LHSVar =
cast<VarDecl>(cast<DeclRefExpr>(LHSExprs[I])->getDecl());
Scope.addPrivate(LHSVar, emitAddrOfVarFromArray(CGF, LHS, Idx, LHSVar));
QualType PrivTy = (*IPriv)->getType();
if (PrivTy->isVariablyModifiedType()) {
// Get array size and emit VLA type.
++Idx;
Address Elem = CGF.Builder.CreateConstArrayGEP(LHS, Idx);
llvm::Value *Ptr = CGF.Builder.CreateLoad(Elem);
const VariableArrayType *VLA =
CGF.getContext().getAsVariableArrayType(PrivTy);
const auto *OVE = cast<OpaqueValueExpr>(VLA->getSizeExpr());
CodeGenFunction::OpaqueValueMapping OpaqueMap(
CGF, OVE, RValue::get(CGF.Builder.CreatePtrToInt(Ptr, CGF.SizeTy)));
CGF.EmitVariablyModifiedType(PrivTy);
}
}
Scope.Privatize();
IPriv = Privates.begin();
const auto *ILHS = LHSExprs.begin();
const auto *IRHS = RHSExprs.begin();
for (const Expr *E : ReductionOps) {
if ((*IPriv)->getType()->isArrayType()) {
// Emit reduction for array section.
const auto *LHSVar = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
const auto *RHSVar = cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
EmitOMPAggregateReduction(
CGF, (*IPriv)->getType(), LHSVar, RHSVar,
[=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
emitReductionCombiner(CGF, E);
});
} else {
// Emit reduction for array subscript or single variable.
emitReductionCombiner(CGF, E);
}
++IPriv;
++ILHS;
++IRHS;
}
Scope.ForceCleanup();
CGF.FinishFunction();
return Fn;
}
void CGOpenMPRuntime::emitSingleReductionCombiner(CodeGenFunction &CGF,
const Expr *ReductionOp,
const Expr *PrivateRef,
const DeclRefExpr *LHS,
const DeclRefExpr *RHS) {
if (PrivateRef->getType()->isArrayType()) {
// Emit reduction for array section.
const auto *LHSVar = cast<VarDecl>(LHS->getDecl());
const auto *RHSVar = cast<VarDecl>(RHS->getDecl());
EmitOMPAggregateReduction(
CGF, PrivateRef->getType(), LHSVar, RHSVar,
[=](CodeGenFunction &CGF, const Expr *, const Expr *, const Expr *) {
emitReductionCombiner(CGF, ReductionOp);
});
} else {
// Emit reduction for array subscript or single variable.
emitReductionCombiner(CGF, ReductionOp);
}
}
void CGOpenMPRuntime::emitReduction(CodeGenFunction &CGF, SourceLocation Loc,
ArrayRef<const Expr *> Privates,
ArrayRef<const Expr *> LHSExprs,
ArrayRef<const Expr *> RHSExprs,
ArrayRef<const Expr *> ReductionOps,
ReductionOptionsTy Options) {
if (!CGF.HaveInsertPoint())
return;
bool WithNowait = Options.WithNowait;
bool SimpleReduction = Options.SimpleReduction;
// Next code should be emitted for reduction:
//
// static kmp_critical_name lock = { 0 };
//
// void reduce_func(void *lhs[<n>], void *rhs[<n>]) {
// *(Type0*)lhs[0] = ReductionOperation0(*(Type0*)lhs[0], *(Type0*)rhs[0]);
// ...
// *(Type<n>-1*)lhs[<n>-1] = ReductionOperation<n>-1(*(Type<n>-1*)lhs[<n>-1],
// *(Type<n>-1*)rhs[<n>-1]);
// }
//
// ...
// void *RedList[<n>] = {&<RHSExprs>[0], ..., &<RHSExprs>[<n>-1]};
// switch (__kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
// RedList, reduce_func, &<lock>)) {
// case 1:
// ...
// <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
// ...
// __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
// break;
// case 2:
// ...
// Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
// ...
// [__kmpc_end_reduce(<loc>, <gtid>, &<lock>);]
// break;
// default:;
// }
//
// if SimpleReduction is true, only the next code is generated:
// ...
// <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
// ...
ASTContext &C = CGM.getContext();
if (SimpleReduction) {
CodeGenFunction::RunCleanupsScope Scope(CGF);
const auto *IPriv = Privates.begin();
const auto *ILHS = LHSExprs.begin();
const auto *IRHS = RHSExprs.begin();
for (const Expr *E : ReductionOps) {
emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
cast<DeclRefExpr>(*IRHS));
++IPriv;
++ILHS;
++IRHS;
}
return;
}
// 1. Build a list of reduction variables.
// void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
auto Size = RHSExprs.size();
for (const Expr *E : Privates) {
if (E->getType()->isVariablyModifiedType())
// Reserve place for array size.
++Size;
}
llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
QualType ReductionArrayTy = C.getConstantArrayType(
C.VoidPtrTy, ArraySize, nullptr, ArraySizeModifier::Normal,
/*IndexTypeQuals=*/0);
RawAddress ReductionList =
CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
const auto *IPriv = Privates.begin();
unsigned Idx = 0;
for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
CGF.Builder.CreateStore(
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy),
Elem);
if ((*IPriv)->getType()->isVariablyModifiedType()) {
// Store array size.
++Idx;
Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
llvm::Value *Size = CGF.Builder.CreateIntCast(
CGF.getVLASize(
CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
.NumElts,
CGF.SizeTy, /*isSigned=*/false);
CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
Elem);
}
}
// 2. Emit reduce_func().
llvm::Function *ReductionFn = emitReductionFunction(
CGF.CurFn->getName(), Loc, CGF.ConvertTypeForMem(ReductionArrayTy),
Privates, LHSExprs, RHSExprs, ReductionOps);
// 3. Create static kmp_critical_name lock = { 0 };
std::string Name = getName({"reduction"});
llvm::Value *Lock = getCriticalRegionLock(Name);
// 4. Build res = __kmpc_reduce{_nowait}(<loc>, <gtid>, <n>, sizeof(RedList),
// RedList, reduce_func, &<lock>);
llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc, OMP_ATOMIC_REDUCE);
llvm::Value *ThreadId = getThreadID(CGF, Loc);
llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
ReductionList.getPointer(), CGF.VoidPtrTy);
llvm::Value *Args[] = {
IdentTLoc, // ident_t *<loc>
ThreadId, // i32 <gtid>
CGF.Builder.getInt32(RHSExprs.size()), // i32 <n>
ReductionArrayTySize, // size_type sizeof(RedList)
RL, // void *RedList
ReductionFn, // void (*) (void *, void *) <reduce_func>
Lock // kmp_critical_name *&<lock>
};
llvm::Value *Res = CGF.EmitRuntimeCall(
OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(),
WithNowait ? OMPRTL___kmpc_reduce_nowait : OMPRTL___kmpc_reduce),
Args);
// 5. Build switch(res)
llvm::BasicBlock *DefaultBB = CGF.createBasicBlock(".omp.reduction.default");
llvm::SwitchInst *SwInst =
CGF.Builder.CreateSwitch(Res, DefaultBB, /*NumCases=*/2);
// 6. Build case 1:
// ...
// <LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]);
// ...
// __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
// break;
llvm::BasicBlock *Case1BB = CGF.createBasicBlock(".omp.reduction.case1");
SwInst->addCase(CGF.Builder.getInt32(1), Case1BB);
CGF.EmitBlock(Case1BB);
// Add emission of __kmpc_end_reduce{_nowait}(<loc>, <gtid>, &<lock>);
llvm::Value *EndArgs[] = {
IdentTLoc, // ident_t *<loc>
ThreadId, // i32 <gtid>
Lock // kmp_critical_name *&<lock>
};
auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps](
CodeGenFunction &CGF, PrePostActionTy &Action) {
CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
const auto *IPriv = Privates.begin();
const auto *ILHS = LHSExprs.begin();
const auto *IRHS = RHSExprs.begin();
for (const Expr *E : ReductionOps) {
RT.emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
cast<DeclRefExpr>(*IRHS));
++IPriv;
++ILHS;
++IRHS;
}
};
RegionCodeGenTy RCG(CodeGen);
CommonActionTy Action(
nullptr, {},
OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), WithNowait ? OMPRTL___kmpc_end_reduce_nowait
: OMPRTL___kmpc_end_reduce),
EndArgs);
RCG.setAction(Action);
RCG(CGF);
CGF.EmitBranch(DefaultBB);
// 7. Build case 2:
// ...
// Atomic(<LHSExprs>[i] = RedOp<i>(*<LHSExprs>[i], *<RHSExprs>[i]));
// ...
// break;
llvm::BasicBlock *Case2BB = CGF.createBasicBlock(".omp.reduction.case2");
SwInst->addCase(CGF.Builder.getInt32(2), Case2BB);
CGF.EmitBlock(Case2BB);
auto &&AtomicCodeGen = [Loc, Privates, LHSExprs, RHSExprs, ReductionOps](
CodeGenFunction &CGF, PrePostActionTy &Action) {
const auto *ILHS = LHSExprs.begin();
const auto *IRHS = RHSExprs.begin();
const auto *IPriv = Privates.begin();
for (const Expr *E : ReductionOps) {
const Expr *XExpr = nullptr;
const Expr *EExpr = nullptr;
const Expr *UpExpr = nullptr;
BinaryOperatorKind BO = BO_Comma;
if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
if (BO->getOpcode() == BO_Assign) {
XExpr = BO->getLHS();
UpExpr = BO->getRHS();
}
}
// Try to emit update expression as a simple atomic.
const Expr *RHSExpr = UpExpr;
if (RHSExpr) {
// Analyze RHS part of the whole expression.
if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(
RHSExpr->IgnoreParenImpCasts())) {
// If this is a conditional operator, analyze its condition for
// min/max reduction operator.
RHSExpr = ACO->getCond();
}
if (const auto *BORHS =
dyn_cast<BinaryOperator>(RHSExpr->IgnoreParenImpCasts())) {
EExpr = BORHS->getRHS();
BO = BORHS->getOpcode();
}
}
if (XExpr) {
const auto *VD = cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
auto &&AtomicRedGen = [BO, VD,
Loc](CodeGenFunction &CGF, const Expr *XExpr,
const Expr *EExpr, const Expr *UpExpr) {
LValue X = CGF.EmitLValue(XExpr);
RValue E;
if (EExpr)
E = CGF.EmitAnyExpr(EExpr);
CGF.EmitOMPAtomicSimpleUpdateExpr(
X, E, BO, /*IsXLHSInRHSPart=*/true,
llvm::AtomicOrdering::Monotonic, Loc,
[&CGF, UpExpr, VD, Loc](RValue XRValue) {
CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
Address LHSTemp = CGF.CreateMemTemp(VD->getType());
CGF.emitOMPSimpleStore(
CGF.MakeAddrLValue(LHSTemp, VD->getType()), XRValue,
VD->getType().getNonReferenceType(), Loc);
PrivateScope.addPrivate(VD, LHSTemp);
(void)PrivateScope.Privatize();
return CGF.EmitAnyExpr(UpExpr);
});
};
if ((*IPriv)->getType()->isArrayType()) {
// Emit atomic reduction for array section.
const auto *RHSVar =
cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), VD, RHSVar,
AtomicRedGen, XExpr, EExpr, UpExpr);
} else {
// Emit atomic reduction for array subscript or single variable.
AtomicRedGen(CGF, XExpr, EExpr, UpExpr);
}
} else {
// Emit as a critical region.
auto &&CritRedGen = [E, Loc](CodeGenFunction &CGF, const Expr *,
const Expr *, const Expr *) {
CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
std::string Name = RT.getName({"atomic_reduction"});
RT.emitCriticalRegion(
CGF, Name,
[=](CodeGenFunction &CGF, PrePostActionTy &Action) {
Action.Enter(CGF);
emitReductionCombiner(CGF, E);
},
Loc);
};
if ((*IPriv)->getType()->isArrayType()) {
const auto *LHSVar =
cast<VarDecl>(cast<DeclRefExpr>(*ILHS)->getDecl());
const auto *RHSVar =
cast<VarDecl>(cast<DeclRefExpr>(*IRHS)->getDecl());
EmitOMPAggregateReduction(CGF, (*IPriv)->getType(), LHSVar, RHSVar,
CritRedGen);
} else {
CritRedGen(CGF, nullptr, nullptr, nullptr);
}
}
++ILHS;
++IRHS;
++IPriv;
}
};
RegionCodeGenTy AtomicRCG(AtomicCodeGen);
if (!WithNowait) {
// Add emission of __kmpc_end_reduce(<loc>, <gtid>, &<lock>);
llvm::Value *EndArgs[] = {
IdentTLoc, // ident_t *<loc>
ThreadId, // i32 <gtid>
Lock // kmp_critical_name *&<lock>
};
CommonActionTy Action(nullptr, {},
OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_end_reduce),
EndArgs);
AtomicRCG.setAction(Action);
AtomicRCG(CGF);
} else {
AtomicRCG(CGF);
}
CGF.EmitBranch(DefaultBB);
CGF.EmitBlock(DefaultBB, /*IsFinished=*/true);
}
/// Generates unique name for artificial threadprivate variables.
/// Format is: <Prefix> "." <Decl_mangled_name> "_" "<Decl_start_loc_raw_enc>"
static std::string generateUniqueName(CodeGenModule &CGM, StringRef Prefix,
const Expr *Ref) {
SmallString<256> Buffer;
llvm::raw_svector_ostream Out(Buffer);
const clang::DeclRefExpr *DE;
const VarDecl *D = ::getBaseDecl(Ref, DE);
if (!D)
D = cast<VarDecl>(cast<DeclRefExpr>(Ref)->getDecl());
D = D->getCanonicalDecl();
std::string Name = CGM.getOpenMPRuntime().getName(
{D->isLocalVarDeclOrParm() ? D->getName() : CGM.getMangledName(D)});
Out << Prefix << Name << "_"
<< D->getCanonicalDecl()->getBeginLoc().getRawEncoding();
return std::string(Out.str());
}
/// Emits reduction initializer function:
/// \code
/// void @.red_init(void* %arg, void* %orig) {
/// %0 = bitcast void* %arg to <type>*
/// store <type> <init>, <type>* %0
/// ret void
/// }
/// \endcode
static llvm::Value *emitReduceInitFunction(CodeGenModule &CGM,
SourceLocation Loc,
ReductionCodeGen &RCG, unsigned N) {
ASTContext &C = CGM.getContext();
QualType VoidPtrTy = C.VoidPtrTy;
VoidPtrTy.addRestrict();
FunctionArgList Args;
ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, VoidPtrTy,
ImplicitParamKind::Other);
ImplicitParamDecl ParamOrig(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, VoidPtrTy,
ImplicitParamKind::Other);
Args.emplace_back(&Param);
Args.emplace_back(&ParamOrig);
const auto &FnInfo =
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
std::string Name = CGM.getOpenMPRuntime().getName({"red_init", ""});
auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
Name, &CGM.getModule());
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
Fn->setDoesNotRecurse();
CodeGenFunction CGF(CGM);
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
QualType PrivateType = RCG.getPrivateType(N);
Address PrivateAddr = CGF.EmitLoadOfPointer(
CGF.GetAddrOfLocalVar(&Param).withElementType(CGF.Builder.getPtrTy(0)),
C.getPointerType(PrivateType)->castAs<PointerType>());
llvm::Value *Size = nullptr;
// If the size of the reduction item is non-constant, load it from global
// threadprivate variable.
if (RCG.getSizes(N).second) {
Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
CGF, CGM.getContext().getSizeType(),
generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
CGM.getContext().getSizeType(), Loc);
}
RCG.emitAggregateType(CGF, N, Size);
Address OrigAddr = Address::invalid();
// If initializer uses initializer from declare reduction construct, emit a
// pointer to the address of the original reduction item (reuired by reduction
// initializer)
if (RCG.usesReductionInitializer(N)) {
Address SharedAddr = CGF.GetAddrOfLocalVar(&ParamOrig);
OrigAddr = CGF.EmitLoadOfPointer(
SharedAddr,
CGM.getContext().VoidPtrTy.castAs<PointerType>()->getTypePtr());
}
// Emit the initializer:
// %0 = bitcast void* %arg to <type>*
// store <type> <init>, <type>* %0
RCG.emitInitialization(CGF, N, PrivateAddr, OrigAddr,
[](CodeGenFunction &) { return false; });
CGF.FinishFunction();
return Fn;
}
/// Emits reduction combiner function:
/// \code
/// void @.red_comb(void* %arg0, void* %arg1) {
/// %lhs = bitcast void* %arg0 to <type>*
/// %rhs = bitcast void* %arg1 to <type>*
/// %2 = <ReductionOp>(<type>* %lhs, <type>* %rhs)
/// store <type> %2, <type>* %lhs
/// ret void
/// }
/// \endcode
static llvm::Value *emitReduceCombFunction(CodeGenModule &CGM,
SourceLocation Loc,
ReductionCodeGen &RCG, unsigned N,
const Expr *ReductionOp,
const Expr *LHS, const Expr *RHS,
const Expr *PrivateRef) {
ASTContext &C = CGM.getContext();
const auto *LHSVD = cast<VarDecl>(cast<DeclRefExpr>(LHS)->getDecl());
const auto *RHSVD = cast<VarDecl>(cast<DeclRefExpr>(RHS)->getDecl());
FunctionArgList Args;
ImplicitParamDecl ParamInOut(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
C.VoidPtrTy, ImplicitParamKind::Other);
ImplicitParamDecl ParamIn(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
ImplicitParamKind::Other);
Args.emplace_back(&ParamInOut);
Args.emplace_back(&ParamIn);
const auto &FnInfo =
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
std::string Name = CGM.getOpenMPRuntime().getName({"red_comb", ""});
auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
Name, &CGM.getModule());
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
Fn->setDoesNotRecurse();
CodeGenFunction CGF(CGM);
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
llvm::Value *Size = nullptr;
// If the size of the reduction item is non-constant, load it from global
// threadprivate variable.
if (RCG.getSizes(N).second) {
Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
CGF, CGM.getContext().getSizeType(),
generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
CGM.getContext().getSizeType(), Loc);
}
RCG.emitAggregateType(CGF, N, Size);
// Remap lhs and rhs variables to the addresses of the function arguments.
// %lhs = bitcast void* %arg0 to <type>*
// %rhs = bitcast void* %arg1 to <type>*
CodeGenFunction::OMPPrivateScope PrivateScope(CGF);
PrivateScope.addPrivate(
LHSVD,
// Pull out the pointer to the variable.
CGF.EmitLoadOfPointer(
CGF.GetAddrOfLocalVar(&ParamInOut)
.withElementType(CGF.Builder.getPtrTy(0)),
C.getPointerType(LHSVD->getType())->castAs<PointerType>()));
PrivateScope.addPrivate(
RHSVD,
// Pull out the pointer to the variable.
CGF.EmitLoadOfPointer(
CGF.GetAddrOfLocalVar(&ParamIn).withElementType(
CGF.Builder.getPtrTy(0)),
C.getPointerType(RHSVD->getType())->castAs<PointerType>()));
PrivateScope.Privatize();
// Emit the combiner body:
// %2 = <ReductionOp>(<type> *%lhs, <type> *%rhs)
// store <type> %2, <type>* %lhs
CGM.getOpenMPRuntime().emitSingleReductionCombiner(
CGF, ReductionOp, PrivateRef, cast<DeclRefExpr>(LHS),
cast<DeclRefExpr>(RHS));
CGF.FinishFunction();
return Fn;
}
/// Emits reduction finalizer function:
/// \code
/// void @.red_fini(void* %arg) {
/// %0 = bitcast void* %arg to <type>*
/// <destroy>(<type>* %0)
/// ret void
/// }
/// \endcode
static llvm::Value *emitReduceFiniFunction(CodeGenModule &CGM,
SourceLocation Loc,
ReductionCodeGen &RCG, unsigned N) {
if (!RCG.needCleanups(N))
return nullptr;
ASTContext &C = CGM.getContext();
FunctionArgList Args;
ImplicitParamDecl Param(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.VoidPtrTy,
ImplicitParamKind::Other);
Args.emplace_back(&Param);
const auto &FnInfo =
CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FnInfo);
std::string Name = CGM.getOpenMPRuntime().getName({"red_fini", ""});
auto *Fn = llvm::Function::Create(FnTy, llvm::GlobalValue::InternalLinkage,
Name, &CGM.getModule());
CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, FnInfo);
Fn->setDoesNotRecurse();
CodeGenFunction CGF(CGM);
CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, FnInfo, Args, Loc, Loc);
Address PrivateAddr = CGF.EmitLoadOfPointer(
CGF.GetAddrOfLocalVar(&Param), C.VoidPtrTy.castAs<PointerType>());
llvm::Value *Size = nullptr;
// If the size of the reduction item is non-constant, load it from global
// threadprivate variable.
if (RCG.getSizes(N).second) {
Address SizeAddr = CGM.getOpenMPRuntime().getAddrOfArtificialThreadPrivate(
CGF, CGM.getContext().getSizeType(),
generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
Size = CGF.EmitLoadOfScalar(SizeAddr, /*Volatile=*/false,
CGM.getContext().getSizeType(), Loc);
}
RCG.emitAggregateType(CGF, N, Size);
// Emit the finalizer body:
// <destroy>(<type>* %0)
RCG.emitCleanups(CGF, N, PrivateAddr);
CGF.FinishFunction(Loc);
return Fn;
}
llvm::Value *CGOpenMPRuntime::emitTaskReductionInit(
CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs,
ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) {
if (!CGF.HaveInsertPoint() || Data.ReductionVars.empty())
return nullptr;
// Build typedef struct:
// kmp_taskred_input {
// void *reduce_shar; // shared reduction item
// void *reduce_orig; // original reduction item used for initialization
// size_t reduce_size; // size of data item
// void *reduce_init; // data initialization routine
// void *reduce_fini; // data finalization routine
// void *reduce_comb; // data combiner routine
// kmp_task_red_flags_t flags; // flags for additional info from compiler
// } kmp_taskred_input_t;
ASTContext &C = CGM.getContext();
RecordDecl *RD = C.buildImplicitRecord("kmp_taskred_input_t");
RD->startDefinition();
const FieldDecl *SharedFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
const FieldDecl *OrigFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
const FieldDecl *SizeFD = addFieldToRecordDecl(C, RD, C.getSizeType());
const FieldDecl *InitFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
const FieldDecl *FiniFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
const FieldDecl *CombFD = addFieldToRecordDecl(C, RD, C.VoidPtrTy);
const FieldDecl *FlagsFD = addFieldToRecordDecl(
C, RD, C.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false));
RD->completeDefinition();
QualType RDType = C.getRecordType(RD);
unsigned Size = Data.ReductionVars.size();
llvm::APInt ArraySize(/*numBits=*/64, Size);
QualType ArrayRDType =
C.getConstantArrayType(RDType, ArraySize, nullptr,
ArraySizeModifier::Normal, /*IndexTypeQuals=*/0);
// kmp_task_red_input_t .rd_input.[Size];
RawAddress TaskRedInput = CGF.CreateMemTemp(ArrayRDType, ".rd_input.");
ReductionCodeGen RCG(Data.ReductionVars, Data.ReductionOrigs,
Data.ReductionCopies, Data.ReductionOps);
for (unsigned Cnt = 0; Cnt < Size; ++Cnt) {
// kmp_task_red_input_t &ElemLVal = .rd_input.[Cnt];
llvm::Value *Idxs[] = {llvm::ConstantInt::get(CGM.SizeTy, /*V=*/0),
llvm::ConstantInt::get(CGM.SizeTy, Cnt)};
llvm::Value *GEP = CGF.EmitCheckedInBoundsGEP(
TaskRedInput.getElementType(), TaskRedInput.getPointer(), Idxs,
/*SignedIndices=*/false, /*IsSubtraction=*/false, Loc,
".rd_input.gep.");
LValue ElemLVal = CGF.MakeNaturalAlignRawAddrLValue(GEP, RDType);
// ElemLVal.reduce_shar = &Shareds[Cnt];
LValue SharedLVal = CGF.EmitLValueForField(ElemLVal, SharedFD);
RCG.emitSharedOrigLValue(CGF, Cnt);
llvm::Value *Shared = RCG.getSharedLValue(Cnt).getPointer(CGF);
CGF.EmitStoreOfScalar(Shared, SharedLVal);
// ElemLVal.reduce_orig = &Origs[Cnt];
LValue OrigLVal = CGF.EmitLValueForField(ElemLVal, OrigFD);
llvm::Value *Orig = RCG.getOrigLValue(Cnt).getPointer(CGF);
CGF.EmitStoreOfScalar(Orig, OrigLVal);
RCG.emitAggregateType(CGF, Cnt);
llvm::Value *SizeValInChars;
llvm::Value *SizeVal;
std::tie(SizeValInChars, SizeVal) = RCG.getSizes(Cnt);
// We use delayed creation/initialization for VLAs and array sections. It is
// required because runtime does not provide the way to pass the sizes of
// VLAs/array sections to initializer/combiner/finalizer functions. Instead
// threadprivate global variables are used to store these values and use
// them in the functions.
bool DelayedCreation = !!SizeVal;
SizeValInChars = CGF.Builder.CreateIntCast(SizeValInChars, CGM.SizeTy,
/*isSigned=*/false);
LValue SizeLVal = CGF.EmitLValueForField(ElemLVal, SizeFD);
CGF.EmitStoreOfScalar(SizeValInChars, SizeLVal);
// ElemLVal.reduce_init = init;
LValue InitLVal = CGF.EmitLValueForField(ElemLVal, InitFD);
llvm::Value *InitAddr = emitReduceInitFunction(CGM, Loc, RCG, Cnt);
CGF.EmitStoreOfScalar(InitAddr, InitLVal);
// ElemLVal.reduce_fini = fini;
LValue FiniLVal = CGF.EmitLValueForField(ElemLVal, FiniFD);
llvm::Value *Fini = emitReduceFiniFunction(CGM, Loc, RCG, Cnt);
llvm::Value *FiniAddr =
Fini ? Fini : llvm::ConstantPointerNull::get(CGM.VoidPtrTy);
CGF.EmitStoreOfScalar(FiniAddr, FiniLVal);
// ElemLVal.reduce_comb = comb;
LValue CombLVal = CGF.EmitLValueForField(ElemLVal, CombFD);
llvm::Value *CombAddr = emitReduceCombFunction(
CGM, Loc, RCG, Cnt, Data.ReductionOps[Cnt], LHSExprs[Cnt],
RHSExprs[Cnt], Data.ReductionCopies[Cnt]);
CGF.EmitStoreOfScalar(CombAddr, CombLVal);
// ElemLVal.flags = 0;
LValue FlagsLVal = CGF.EmitLValueForField(ElemLVal, FlagsFD);
if (DelayedCreation) {
CGF.EmitStoreOfScalar(
llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1, /*isSigned=*/true),
FlagsLVal);
} else
CGF.EmitNullInitialization(FlagsLVal.getAddress(), FlagsLVal.getType());
}
if (Data.IsReductionWithTaskMod) {
// Build call void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int
// is_ws, int num, void *data);
llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc);
llvm::Value *GTid = CGF.Builder.CreateIntCast(getThreadID(CGF, Loc),
CGM.IntTy, /*isSigned=*/true);
llvm::Value *Args[] = {
IdentTLoc, GTid,
llvm::ConstantInt::get(CGM.IntTy, Data.IsWorksharingReduction ? 1 : 0,
/*isSigned=*/true),
llvm::ConstantInt::get(CGM.IntTy, Size, /*isSigned=*/true),
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
TaskRedInput.getPointer(), CGM.VoidPtrTy)};
return CGF.EmitRuntimeCall(
OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_taskred_modifier_init),
Args);
}
// Build call void *__kmpc_taskred_init(int gtid, int num_data, void *data);
llvm::Value *Args[] = {
CGF.Builder.CreateIntCast(getThreadID(CGF, Loc), CGM.IntTy,
/*isSigned=*/true),
llvm::ConstantInt::get(CGM.IntTy, Size, /*isSigned=*/true),
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TaskRedInput.getPointer(),
CGM.VoidPtrTy)};
return CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_taskred_init),
Args);
}
void CGOpenMPRuntime::emitTaskReductionFini(CodeGenFunction &CGF,
SourceLocation Loc,
bool IsWorksharingReduction) {
// Build call void *__kmpc_taskred_modifier_init(ident_t *loc, int gtid, int
// is_ws, int num, void *data);
llvm::Value *IdentTLoc = emitUpdateLocation(CGF, Loc);
llvm::Value *GTid = CGF.Builder.CreateIntCast(getThreadID(CGF, Loc),
CGM.IntTy, /*isSigned=*/true);
llvm::Value *Args[] = {IdentTLoc, GTid,
llvm::ConstantInt::get(CGM.IntTy,
IsWorksharingReduction ? 1 : 0,
/*isSigned=*/true)};
(void)CGF.EmitRuntimeCall(
OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_task_reduction_modifier_fini),
Args);
}
void CGOpenMPRuntime::emitTaskReductionFixups(CodeGenFunction &CGF,
SourceLocation Loc,
ReductionCodeGen &RCG,
unsigned N) {
auto Sizes = RCG.getSizes(N);
// Emit threadprivate global variable if the type is non-constant
// (Sizes.second = nullptr).
if (Sizes.second) {
llvm::Value *SizeVal = CGF.Builder.CreateIntCast(Sizes.second, CGM.SizeTy,
/*isSigned=*/false);
Address SizeAddr = getAddrOfArtificialThreadPrivate(
CGF, CGM.getContext().getSizeType(),
generateUniqueName(CGM, "reduction_size", RCG.getRefExpr(N)));
CGF.Builder.CreateStore(SizeVal, SizeAddr, /*IsVolatile=*/false);
}
}
Address CGOpenMPRuntime::getTaskReductionItem(CodeGenFunction &CGF,
SourceLocation Loc,
llvm::Value *ReductionsPtr,
LValue SharedLVal) {
// Build call void *__kmpc_task_reduction_get_th_data(int gtid, void *tg, void
// *d);
llvm::Value *Args[] = {CGF.Builder.CreateIntCast(getThreadID(CGF, Loc),
CGM.IntTy,
/*isSigned=*/true),
ReductionsPtr,
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
SharedLVal.getPointer(CGF), CGM.VoidPtrTy)};
return Address(
CGF.EmitRuntimeCall(
OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_task_reduction_get_th_data),
Args),
CGF.Int8Ty, SharedLVal.getAlignment());
}
void CGOpenMPRuntime::emitTaskwaitCall(CodeGenFunction &CGF, SourceLocation Loc,
const OMPTaskDataTy &Data) {
if (!CGF.HaveInsertPoint())
return;
if (CGF.CGM.getLangOpts().OpenMPIRBuilder && Data.Dependences.empty()) {
// TODO: Need to support taskwait with dependences in the OpenMPIRBuilder.
OMPBuilder.createTaskwait(CGF.Builder);
} else {
llvm::Value *ThreadID = getThreadID(CGF, Loc);
llvm::Value *UpLoc = emitUpdateLocation(CGF, Loc);
auto &M = CGM.getModule();
Address DependenciesArray = Address::invalid();
llvm::Value *NumOfElements;
std::tie(NumOfElements, DependenciesArray) =
emitDependClause(CGF, Data.Dependences, Loc);
if (!Data.Dependences.empty()) {
llvm::Value *DepWaitTaskArgs[7];
DepWaitTaskArgs[0] = UpLoc;
DepWaitTaskArgs[1] = ThreadID;
DepWaitTaskArgs[2] = NumOfElements;
DepWaitTaskArgs[3] = DependenciesArray.emitRawPointer(CGF);
DepWaitTaskArgs[4] = CGF.Builder.getInt32(0);
DepWaitTaskArgs[5] = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
DepWaitTaskArgs[6] =
llvm::ConstantInt::get(CGF.Int32Ty, Data.HasNowaitClause);
CodeGenFunction::RunCleanupsScope LocalScope(CGF);
// Build void __kmpc_omp_taskwait_deps_51(ident_t *, kmp_int32 gtid,
// kmp_int32 ndeps, kmp_depend_info_t *dep_list, kmp_int32
// ndeps_noalias, kmp_depend_info_t *noalias_dep_list,
// kmp_int32 has_no_wait); if dependence info is specified.
CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
M, OMPRTL___kmpc_omp_taskwait_deps_51),
DepWaitTaskArgs);
} else {
// Build call kmp_int32 __kmpc_omp_taskwait(ident_t *loc, kmp_int32
// global_tid);
llvm::Value *Args[] = {UpLoc, ThreadID};
// Ignore return result until untied tasks are supported.
CGF.EmitRuntimeCall(
OMPBuilder.getOrCreateRuntimeFunction(M, OMPRTL___kmpc_omp_taskwait),
Args);
}
}
if (auto *Region = dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
Region->emitUntiedSwitch(CGF);
}
void CGOpenMPRuntime::emitInlinedDirective(CodeGenFunction &CGF,
OpenMPDirectiveKind InnerKind,
const RegionCodeGenTy &CodeGen,
bool HasCancel) {
if (!CGF.HaveInsertPoint())
return;
InlinedOpenMPRegionRAII Region(CGF, CodeGen, InnerKind, HasCancel,
InnerKind != OMPD_critical &&
InnerKind != OMPD_master &&
InnerKind != OMPD_masked);
CGF.CapturedStmtInfo->EmitBody(CGF, /*S=*/nullptr);
}
namespace {
enum RTCancelKind {
CancelNoreq = 0,
CancelParallel = 1,
CancelLoop = 2,
CancelSections = 3,
CancelTaskgroup = 4
};
} // anonymous namespace
static RTCancelKind getCancellationKind(OpenMPDirectiveKind CancelRegion) {
RTCancelKind CancelKind = CancelNoreq;
if (CancelRegion == OMPD_parallel)
CancelKind = CancelParallel;
else if (CancelRegion == OMPD_for)
CancelKind = CancelLoop;
else if (CancelRegion == OMPD_sections)
CancelKind = CancelSections;
else {
assert(CancelRegion == OMPD_taskgroup);
CancelKind = CancelTaskgroup;
}
return CancelKind;
}
void CGOpenMPRuntime::emitCancellationPointCall(
CodeGenFunction &CGF, SourceLocation Loc,
OpenMPDirectiveKind CancelRegion) {
if (!CGF.HaveInsertPoint())
return;
// Build call kmp_int32 __kmpc_cancellationpoint(ident_t *loc, kmp_int32
// global_tid, kmp_int32 cncl_kind);
if (auto *OMPRegionInfo =
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
// For 'cancellation point taskgroup', the task region info may not have a
// cancel. This may instead happen in another adjacent task.
if (CancelRegion == OMPD_taskgroup || OMPRegionInfo->hasCancel()) {
llvm::Value *Args[] = {
emitUpdateLocation(CGF, Loc), getThreadID(CGF, Loc),
CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
// Ignore return result until untied tasks are supported.
llvm::Value *Result = CGF.EmitRuntimeCall(
OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_cancellationpoint),
Args);
// if (__kmpc_cancellationpoint()) {
// call i32 @__kmpc_cancel_barrier( // for parallel cancellation only
// exit from construct;
// }
llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
CGF.EmitBlock(ExitBB);
if (CancelRegion == OMPD_parallel)
emitBarrierCall(CGF, Loc, OMPD_unknown, /*EmitChecks=*/false);
// exit from construct;
CodeGenFunction::JumpDest CancelDest =
CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
CGF.EmitBranchThroughCleanup(CancelDest);
CGF.EmitBlock(ContBB, /*IsFinished=*/true);
}
}
}
void CGOpenMPRuntime::emitCancelCall(CodeGenFunction &CGF, SourceLocation Loc,
const Expr *IfCond,
OpenMPDirectiveKind CancelRegion) {
if (!CGF.HaveInsertPoint())
return;
// Build call kmp_int32 __kmpc_cancel(ident_t *loc, kmp_int32 global_tid,
// kmp_int32 cncl_kind);
auto &M = CGM.getModule();
if (auto *OMPRegionInfo =
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo)) {
auto &&ThenGen = [this, &M, Loc, CancelRegion,
OMPRegionInfo](CodeGenFunction &CGF, PrePostActionTy &) {
CGOpenMPRuntime &RT = CGF.CGM.getOpenMPRuntime();
llvm::Value *Args[] = {
RT.emitUpdateLocation(CGF, Loc), RT.getThreadID(CGF, Loc),
CGF.Builder.getInt32(getCancellationKind(CancelRegion))};
// Ignore return result until untied tasks are supported.
llvm::Value *Result = CGF.EmitRuntimeCall(
OMPBuilder.getOrCreateRuntimeFunction(M, OMPRTL___kmpc_cancel), Args);
// if (__kmpc_cancel()) {
// call i32 @__kmpc_cancel_barrier( // for parallel cancellation only
// exit from construct;
// }
llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".cancel.exit");
llvm::BasicBlock *ContBB = CGF.createBasicBlock(".cancel.continue");
llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Result);
CGF.Builder.CreateCondBr(Cmp, ExitBB, ContBB);
CGF.EmitBlock(ExitBB);
if (CancelRegion == OMPD_parallel)
RT.emitBarrierCall(CGF, Loc, OMPD_unknown, /*EmitChecks=*/false);
// exit from construct;
CodeGenFunction::JumpDest CancelDest =
CGF.getOMPCancelDestination(OMPRegionInfo->getDirectiveKind());
CGF.EmitBranchThroughCleanup(CancelDest);
CGF.EmitBlock(ContBB, /*IsFinished=*/true);
};
if (IfCond) {
emitIfClause(CGF, IfCond, ThenGen,
[](CodeGenFunction &, PrePostActionTy &) {});
} else {
RegionCodeGenTy ThenRCG(ThenGen);
ThenRCG(CGF);
}
}
}
namespace {
/// Cleanup action for uses_allocators support.
class OMPUsesAllocatorsActionTy final : public PrePostActionTy {
ArrayRef<std::pair<const Expr *, const Expr *>> Allocators;
public:
OMPUsesAllocatorsActionTy(
ArrayRef<std::pair<const Expr *, const Expr *>> Allocators)
: Allocators(Allocators) {}
void Enter(CodeGenFunction &CGF) override {
if (!CGF.HaveInsertPoint())
return;
for (const auto &AllocatorData : Allocators) {
CGF.CGM.getOpenMPRuntime().emitUsesAllocatorsInit(
CGF, AllocatorData.first, AllocatorData.second);
}
}
void Exit(CodeGenFunction &CGF) override {
if (!CGF.HaveInsertPoint())
return;
for (const auto &AllocatorData : Allocators) {
CGF.CGM.getOpenMPRuntime().emitUsesAllocatorsFini(CGF,
AllocatorData.first);
}
}
};
} // namespace
void CGOpenMPRuntime::emitTargetOutlinedFunction(
const OMPExecutableDirective &D, StringRef ParentName,
llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
assert(!ParentName.empty() && "Invalid target entry parent name!");
HasEmittedTargetRegion = true;
SmallVector<std::pair<const Expr *, const Expr *>, 4> Allocators;
for (const auto *C : D.getClausesOfKind<OMPUsesAllocatorsClause>()) {
for (unsigned I = 0, E = C->getNumberOfAllocators(); I < E; ++I) {
const OMPUsesAllocatorsClause::Data D = C->getAllocatorData(I);
if (!D.AllocatorTraits)
continue;
Allocators.emplace_back(D.Allocator, D.AllocatorTraits);
}
}
OMPUsesAllocatorsActionTy UsesAllocatorAction(Allocators);
CodeGen.setAction(UsesAllocatorAction);
emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
IsOffloadEntry, CodeGen);
}
void CGOpenMPRuntime::emitUsesAllocatorsInit(CodeGenFunction &CGF,
const Expr *Allocator,
const Expr *AllocatorTraits) {
llvm::Value *ThreadId = getThreadID(CGF, Allocator->getExprLoc());
ThreadId = CGF.Builder.CreateIntCast(ThreadId, CGF.IntTy, /*isSigned=*/true);
// Use default memspace handle.
llvm::Value *MemSpaceHandle = llvm::ConstantPointerNull::get(CGF.VoidPtrTy);
llvm::Value *NumTraits = llvm::ConstantInt::get(
CGF.IntTy, cast<ConstantArrayType>(
AllocatorTraits->getType()->getAsArrayTypeUnsafe())
->getSize()
.getLimitedValue());
LValue AllocatorTraitsLVal = CGF.EmitLValue(AllocatorTraits);
Address Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
AllocatorTraitsLVal.getAddress(), CGF.VoidPtrPtrTy, CGF.VoidPtrTy);
AllocatorTraitsLVal = CGF.MakeAddrLValue(Addr, CGF.getContext().VoidPtrTy,
AllocatorTraitsLVal.getBaseInfo(),
AllocatorTraitsLVal.getTBAAInfo());
llvm::Value *Traits = Addr.emitRawPointer(CGF);
llvm::Value *AllocatorVal =
CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_init_allocator),
{ThreadId, MemSpaceHandle, NumTraits, Traits});
// Store to allocator.
CGF.EmitAutoVarAlloca(*cast<VarDecl>(
cast<DeclRefExpr>(Allocator->IgnoreParenImpCasts())->getDecl()));
LValue AllocatorLVal = CGF.EmitLValue(Allocator->IgnoreParenImpCasts());
AllocatorVal =
CGF.EmitScalarConversion(AllocatorVal, CGF.getContext().VoidPtrTy,
Allocator->getType(), Allocator->getExprLoc());
CGF.EmitStoreOfScalar(AllocatorVal, AllocatorLVal);
}
void CGOpenMPRuntime::emitUsesAllocatorsFini(CodeGenFunction &CGF,
const Expr *Allocator) {
llvm::Value *ThreadId = getThreadID(CGF, Allocator->getExprLoc());
ThreadId = CGF.Builder.CreateIntCast(ThreadId, CGF.IntTy, /*isSigned=*/true);
LValue AllocatorLVal = CGF.EmitLValue(Allocator->IgnoreParenImpCasts());
llvm::Value *AllocatorVal =
CGF.EmitLoadOfScalar(AllocatorLVal, Allocator->getExprLoc());
AllocatorVal = CGF.EmitScalarConversion(AllocatorVal, Allocator->getType(),
CGF.getContext().VoidPtrTy,
Allocator->getExprLoc());
(void)CGF.EmitRuntimeCall(
OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
OMPRTL___kmpc_destroy_allocator),
{ThreadId, AllocatorVal});
}
void CGOpenMPRuntime::computeMinAndMaxThreadsAndTeams(
const OMPExecutableDirective &D, CodeGenFunction &CGF,
llvm::OpenMPIRBuilder::TargetKernelDefaultAttrs &Attrs) {
assert(Attrs.MaxTeams.size() == 1 && Attrs.MaxThreads.size() == 1 &&
"invalid default attrs structure");
int32_t &MaxTeamsVal = Attrs.MaxTeams.front();
int32_t &MaxThreadsVal = Attrs.MaxThreads.front();
getNumTeamsExprForTargetDirective(CGF, D, Attrs.MinTeams, MaxTeamsVal);
getNumThreadsExprForTargetDirective(CGF, D, MaxThreadsVal,
/*UpperBoundOnly=*/true);
for (auto *C : D.getClausesOfKind<OMPXAttributeClause>()) {
for (auto *A : C->getAttrs()) {
int32_t AttrMinThreadsVal = 1, AttrMaxThreadsVal = -1;
int32_t AttrMinBlocksVal = 1, AttrMaxBlocksVal = -1;
if (auto *Attr = dyn_cast<CUDALaunchBoundsAttr>(A))
CGM.handleCUDALaunchBoundsAttr(nullptr, Attr, &AttrMaxThreadsVal,
&AttrMinBlocksVal, &AttrMaxBlocksVal);
else if (auto *Attr = dyn_cast<AMDGPUFlatWorkGroupSizeAttr>(A))
CGM.handleAMDGPUFlatWorkGroupSizeAttr(
nullptr, Attr, /*ReqdWGS=*/nullptr, &AttrMinThreadsVal,
&AttrMaxThreadsVal);
else
continue;
Attrs.MinThreads = std::max(Attrs.MinThreads, AttrMinThreadsVal);
if (AttrMaxThreadsVal > 0)
MaxThreadsVal = MaxThreadsVal > 0
? std::min(MaxThreadsVal, AttrMaxThreadsVal)
: AttrMaxThreadsVal;
Attrs.MinTeams = std::max(Attrs.MinTeams, AttrMinBlocksVal);
if (AttrMaxBlocksVal > 0)
MaxTeamsVal = MaxTeamsVal > 0 ? std::min(MaxTeamsVal, AttrMaxBlocksVal)
: AttrMaxBlocksVal;
}
}
}
void CGOpenMPRuntime::emitTargetOutlinedFunctionHelper(
const OMPExecutableDirective &D, StringRef ParentName,
llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
llvm::TargetRegionEntryInfo EntryInfo =
getEntryInfoFromPresumedLoc(CGM, OMPBuilder, D.getBeginLoc(), ParentName);
CodeGenFunction CGF(CGM, true);
llvm::OpenMPIRBuilder::FunctionGenCallback &&GenerateOutlinedFunction =
[&CGF, &D, &CodeGen](StringRef EntryFnName) {
const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target);
CGOpenMPTargetRegionInfo CGInfo(CS, CodeGen, EntryFnName);
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
return CGF.GenerateOpenMPCapturedStmtFunction(CS, D.getBeginLoc());
};
cantFail(OMPBuilder.emitTargetRegionFunction(
EntryInfo, GenerateOutlinedFunction, IsOffloadEntry, OutlinedFn,
OutlinedFnID));
if (!OutlinedFn)
return;
CGM.getTargetCodeGenInfo().setTargetAttributes(nullptr, OutlinedFn, CGM);
for (auto *C : D.getClausesOfKind<OMPXAttributeClause>()) {
for (auto *A : C->getAttrs()) {
if (auto *Attr = dyn_cast<AMDGPUWavesPerEUAttr>(A))
CGM.handleAMDGPUWavesPerEUAttr(OutlinedFn, Attr);
}
}
}
/// Checks if the expression is constant or does not have non-trivial function
/// calls.
static bool isTrivial(ASTContext &Ctx, const Expr * E) {
// We can skip constant expressions.
// We can skip expressions with trivial calls or simple expressions.
return (E->isEvaluatable(Ctx, Expr::SE_AllowUndefinedBehavior) ||
!E->hasNonTrivialCall(Ctx)) &&
!E->HasSideEffects(Ctx, /*IncludePossibleEffects=*/true);
}
const Stmt *CGOpenMPRuntime::getSingleCompoundChild(ASTContext &Ctx,
const Stmt *Body) {
const Stmt *Child = Body->IgnoreContainers();
while (const auto *C = dyn_cast_or_null<CompoundStmt>(Child)) {
Child = nullptr;
for (const Stmt *S : C->body()) {
if (const auto *E = dyn_cast<Expr>(S)) {
if (isTrivial(Ctx, E))
continue;
}
// Some of the statements can be ignored.
if (isa<AsmStmt>(S) || isa<NullStmt>(S) || isa<OMPFlushDirective>(S) ||
isa<OMPBarrierDirective>(S) || isa<OMPTaskyieldDirective>(S))
continue;
// Analyze declarations.
if (const auto *DS = dyn_cast<DeclStmt>(S)) {
if (llvm::all_of(DS->decls(), [](const Decl *D) {
if (isa<EmptyDecl>(D) || isa<DeclContext>(D) ||
isa<TypeDecl>(D) || isa<PragmaCommentDecl>(D) ||
isa<PragmaDetectMismatchDecl>(D) || isa<UsingDecl>(D) ||
isa<UsingDirectiveDecl>(D) ||
isa<OMPDeclareReductionDecl>(D) ||
isa<OMPThreadPrivateDecl>(D) || isa<OMPAllocateDecl>(D))
return true;
const auto *VD = dyn_cast<VarDecl>(D);
if (!VD)
return false;
return VD->hasGlobalStorage() || !VD->isUsed();
}))
continue;
}
// Found multiple children - cannot get the one child only.
if (Child)
return nullptr;
Child = S;
}
if (Child)
Child = Child->IgnoreContainers();
}
return Child;
}
const Expr *CGOpenMPRuntime::getNumTeamsExprForTargetDirective(
CodeGenFunction &CGF, const OMPExecutableDirective &D, int32_t &MinTeamsVal,
int32_t &MaxTeamsVal) {
OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
assert(isOpenMPTargetExecutionDirective(DirectiveKind) &&
"Expected target-based executable directive.");
switch (DirectiveKind) {
case OMPD_target: {
const auto *CS = D.getInnermostCapturedStmt();
const auto *Body =
CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
const Stmt *ChildStmt =
CGOpenMPRuntime::getSingleCompoundChild(CGF.getContext(), Body);
if (const auto *NestedDir =
dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
if (isOpenMPTeamsDirective(NestedDir->getDirectiveKind())) {
if (NestedDir->hasClausesOfKind<OMPNumTeamsClause>()) {
const Expr *NumTeams = NestedDir->getSingleClause<OMPNumTeamsClause>()
->getNumTeams()
.front();
if (NumTeams->isIntegerConstantExpr(CGF.getContext()))
if (auto Constant =
NumTeams->getIntegerConstantExpr(CGF.getContext()))
MinTeamsVal = MaxTeamsVal = Constant->getExtValue();
return NumTeams;
}
MinTeamsVal = MaxTeamsVal = 0;
return nullptr;
}
MinTeamsVal = MaxTeamsVal = 1;
return nullptr;
}
// A value of -1 is used to check if we need to emit no teams region
MinTeamsVal = MaxTeamsVal = -1;
return nullptr;
}
case OMPD_target_teams_loop:
case OMPD_target_teams:
case OMPD_target_teams_distribute:
case OMPD_target_teams_distribute_simd:
case OMPD_target_teams_distribute_parallel_for:
case OMPD_target_teams_distribute_parallel_for_simd: {
if (D.hasClausesOfKind<OMPNumTeamsClause>()) {
const Expr *NumTeams =
D.getSingleClause<OMPNumTeamsClause>()->getNumTeams().front();
if (NumTeams->isIntegerConstantExpr(CGF.getContext()))
if (auto Constant = NumTeams->getIntegerConstantExpr(CGF.getContext()))
MinTeamsVal = MaxTeamsVal = Constant->getExtValue();
return NumTeams;
}
MinTeamsVal = MaxTeamsVal = 0;
return nullptr;
}
case OMPD_target_parallel:
case OMPD_target_parallel_for:
case OMPD_target_parallel_for_simd:
case OMPD_target_parallel_loop:
case OMPD_target_simd:
MinTeamsVal = MaxTeamsVal = 1;
return nullptr;
case OMPD_parallel:
case OMPD_for:
case OMPD_parallel_for:
case OMPD_parallel_loop:
case OMPD_parallel_master:
case OMPD_parallel_sections:
case OMPD_for_simd:
case OMPD_parallel_for_simd:
case OMPD_cancel:
case OMPD_cancellation_point:
case OMPD_ordered:
case OMPD_threadprivate:
case OMPD_allocate:
case OMPD_task:
case OMPD_simd:
case OMPD_tile:
case OMPD_unroll:
case OMPD_sections:
case OMPD_section:
case OMPD_single:
case OMPD_master:
case OMPD_critical:
case OMPD_taskyield:
case OMPD_barrier:
case OMPD_taskwait:
case OMPD_taskgroup:
case OMPD_atomic:
case OMPD_flush:
case OMPD_depobj:
case OMPD_scan:
case OMPD_teams:
case OMPD_target_data:
case OMPD_target_exit_data:
case OMPD_target_enter_data:
case OMPD_distribute:
case OMPD_distribute_simd:
case OMPD_distribute_parallel_for:
case OMPD_distribute_parallel_for_simd:
case OMPD_teams_distribute:
case OMPD_teams_distribute_simd:
case OMPD_teams_distribute_parallel_for:
case OMPD_teams_distribute_parallel_for_simd:
case OMPD_target_update:
case OMPD_declare_simd:
case OMPD_declare_variant:
case OMPD_begin_declare_variant:
case OMPD_end_declare_variant:
case OMPD_declare_target:
case OMPD_end_declare_target:
case OMPD_declare_reduction:
case OMPD_declare_mapper:
case OMPD_taskloop:
case OMPD_taskloop_simd:
case OMPD_master_taskloop:
case OMPD_master_taskloop_simd:
case OMPD_parallel_master_taskloop:
case OMPD_parallel_master_taskloop_simd:
case OMPD_requires:
case OMPD_metadirective:
case OMPD_unknown:
break;
default:
break;
}
llvm_unreachable("Unexpected directive kind.");
}
llvm::Value *CGOpenMPRuntime::emitNumTeamsForTargetDirective(
CodeGenFunction &CGF, const OMPExecutableDirective &D) {
assert(!CGF.getLangOpts().OpenMPIsTargetDevice &&
"Clauses associated with the teams directive expected to be emitted "
"only for the host!");
CGBuilderTy &Bld = CGF.Builder;
int32_t MinNT = -1, MaxNT = -1;
const Expr *NumTeams =
getNumTeamsExprForTargetDirective(CGF, D, MinNT, MaxNT);
if (NumTeams != nullptr) {
OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
switch (DirectiveKind) {
case OMPD_target: {
const auto *CS = D.getInnermostCapturedStmt();
CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
llvm::Value *NumTeamsVal = CGF.EmitScalarExpr(NumTeams,
/*IgnoreResultAssign*/ true);
return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty,
/*isSigned=*/true);
}
case OMPD_target_teams:
case OMPD_target_teams_distribute:
case OMPD_target_teams_distribute_simd:
case OMPD_target_teams_distribute_parallel_for:
case OMPD_target_teams_distribute_parallel_for_simd: {
CodeGenFunction::RunCleanupsScope NumTeamsScope(CGF);
llvm::Value *NumTeamsVal = CGF.EmitScalarExpr(NumTeams,
/*IgnoreResultAssign*/ true);
return Bld.CreateIntCast(NumTeamsVal, CGF.Int32Ty,
/*isSigned=*/true);
}
default:
break;
}
}
assert(MinNT == MaxNT && "Num threads ranges require handling here.");
return llvm::ConstantInt::get(CGF.Int32Ty, MinNT);
}
/// Check for a num threads constant value (stored in \p DefaultVal), or
/// expression (stored in \p E). If the value is conditional (via an if-clause),
/// store the condition in \p CondVal. If \p E, and \p CondVal respectively, are
/// nullptr, no expression evaluation is perfomed.
static void getNumThreads(CodeGenFunction &CGF, const CapturedStmt *CS,
const Expr **E, int32_t &UpperBound,
bool UpperBoundOnly, llvm::Value **CondVal) {
const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
CGF.getContext(), CS->getCapturedStmt());
const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child);
if (!Dir)
return;
if (isOpenMPParallelDirective(Dir->getDirectiveKind())) {
// Handle if clause. If if clause present, the number of threads is
// calculated as <cond> ? (<numthreads> ? <numthreads> : 0 ) : 1.
if (CondVal && Dir->hasClausesOfKind<OMPIfClause>()) {
CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
const OMPIfClause *IfClause = nullptr;
for (const auto *C : Dir->getClausesOfKind<OMPIfClause>()) {
if (C->getNameModifier() == OMPD_unknown ||
C->getNameModifier() == OMPD_parallel) {
IfClause = C;
break;
}
}
if (IfClause) {
const Expr *CondExpr = IfClause->getCondition();
bool Result;
if (CondExpr->EvaluateAsBooleanCondition(Result, CGF.getContext())) {
if (!Result) {
UpperBound = 1;
return;
}
} else {
CodeGenFunction::LexicalScope Scope(CGF, CondExpr->getSourceRange());
if (const auto *PreInit =
cast_or_null<DeclStmt>(IfClause->getPreInitStmt())) {
for (const auto *I : PreInit->decls()) {
if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
CGF.EmitVarDecl(cast<VarDecl>(*I));
} else {
CodeGenFunction::AutoVarEmission Emission =
CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
CGF.EmitAutoVarCleanups(Emission);
}
}
*CondVal = CGF.EvaluateExprAsBool(CondExpr);
}
}
}
}
// Check the value of num_threads clause iff if clause was not specified
// or is not evaluated to false.
if (Dir->hasClausesOfKind<OMPNumThreadsClause>()) {
CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
const auto *NumThreadsClause =
Dir->getSingleClause<OMPNumThreadsClause>();
const Expr *NTExpr = NumThreadsClause->getNumThreads();
if (NTExpr->isIntegerConstantExpr(CGF.getContext()))
if (auto Constant = NTExpr->getIntegerConstantExpr(CGF.getContext()))
UpperBound =
UpperBound
? Constant->getZExtValue()
: std::min(UpperBound,
static_cast<int32_t>(Constant->getZExtValue()));
// If we haven't found a upper bound, remember we saw a thread limiting
// clause.
if (UpperBound == -1)
UpperBound = 0;
if (!E)
return;
CodeGenFunction::LexicalScope Scope(CGF, NTExpr->getSourceRange());
if (const auto *PreInit =
cast_or_null<DeclStmt>(NumThreadsClause->getPreInitStmt())) {
for (const auto *I : PreInit->decls()) {
if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
CGF.EmitVarDecl(cast<VarDecl>(*I));
} else {
CodeGenFunction::AutoVarEmission Emission =
CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
CGF.EmitAutoVarCleanups(Emission);
}
}
}
*E = NTExpr;
}
return;
}
if (isOpenMPSimdDirective(Dir->getDirectiveKind()))
UpperBound = 1;
}
const Expr *CGOpenMPRuntime::getNumThreadsExprForTargetDirective(
CodeGenFunction &CGF, const OMPExecutableDirective &D, int32_t &UpperBound,
bool UpperBoundOnly, llvm::Value **CondVal, const Expr **ThreadLimitExpr) {
assert((!CGF.getLangOpts().OpenMPIsTargetDevice || UpperBoundOnly) &&
"Clauses associated with the teams directive expected to be emitted "
"only for the host!");
OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
assert(isOpenMPTargetExecutionDirective(DirectiveKind) &&
"Expected target-based executable directive.");
const Expr *NT = nullptr;
const Expr **NTPtr = UpperBoundOnly ? nullptr : &NT;
auto CheckForConstExpr = [&](const Expr *E, const Expr **EPtr) {
if (E->isIntegerConstantExpr(CGF.getContext())) {
if (auto Constant = E->getIntegerConstantExpr(CGF.getContext()))
UpperBound = UpperBound ? Constant->getZExtValue()
: std::min(UpperBound,
int32_t(Constant->getZExtValue()));
}
// If we haven't found a upper bound, remember we saw a thread limiting
// clause.
if (UpperBound == -1)
UpperBound = 0;
if (EPtr)
*EPtr = E;
};
auto ReturnSequential = [&]() {
UpperBound = 1;
return NT;
};
switch (DirectiveKind) {
case OMPD_target: {
const CapturedStmt *CS = D.getInnermostCapturedStmt();
getNumThreads(CGF, CS, NTPtr, UpperBound, UpperBoundOnly, CondVal);
const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
CGF.getContext(), CS->getCapturedStmt());
// TODO: The standard is not clear how to resolve two thread limit clauses,
// let's pick the teams one if it's present, otherwise the target one.
const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
if (const auto *TLC = Dir->getSingleClause<OMPThreadLimitClause>()) {
ThreadLimitClause = TLC;
if (ThreadLimitExpr) {
CGOpenMPInnerExprInfo CGInfo(CGF, *CS);
CodeGenFunction::CGCapturedStmtRAII CapInfoRAII(CGF, &CGInfo);
CodeGenFunction::LexicalScope Scope(
CGF,
ThreadLimitClause->getThreadLimit().front()->getSourceRange());
if (const auto *PreInit =
cast_or_null<DeclStmt>(ThreadLimitClause->getPreInitStmt())) {
for (const auto *I : PreInit->decls()) {
if (!I->hasAttr<OMPCaptureNoInitAttr>()) {
CGF.EmitVarDecl(cast<VarDecl>(*I));
} else {
CodeGenFunction::AutoVarEmission Emission =
CGF.EmitAutoVarAlloca(cast<VarDecl>(*I));
CGF.EmitAutoVarCleanups(Emission);
}
}
}
}
}
}
if (ThreadLimitClause)
CheckForConstExpr(ThreadLimitClause->getThreadLimit().front(),
ThreadLimitExpr);
if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
if (isOpenMPTeamsDirective(Dir->getDirectiveKind()) &&
!isOpenMPDistributeDirective(Dir->getDirectiveKind())) {
CS = Dir->getInnermostCapturedStmt();
const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
CGF.getContext(), CS->getCapturedStmt());
Dir = dyn_cast_or_null<OMPExecutableDirective>(Child);
}
if (Dir && isOpenMPParallelDirective(Dir->getDirectiveKind())) {
CS = Dir->getInnermostCapturedStmt();
getNumThreads(CGF, CS, NTPtr, UpperBound, UpperBoundOnly, CondVal);
} else if (Dir && isOpenMPSimdDirective(Dir->getDirectiveKind()))
return ReturnSequential();
}
return NT;
}
case OMPD_target_teams: {
if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
CheckForConstExpr(ThreadLimitClause->getThreadLimit().front(),
ThreadLimitExpr);
}
const CapturedStmt *CS = D.getInnermostCapturedStmt();
getNumThreads(CGF, CS, NTPtr, UpperBound, UpperBoundOnly, CondVal);
const Stmt *Child = CGOpenMPRuntime::getSingleCompoundChild(
CGF.getContext(), CS->getCapturedStmt());
if (const auto *Dir = dyn_cast_or_null<OMPExecutableDirective>(Child)) {
if (Dir->getDirectiveKind() == OMPD_distribute) {
CS = Dir->getInnermostCapturedStmt();
getNumThreads(CGF, CS, NTPtr, UpperBound, UpperBoundOnly, CondVal);
}
}
return NT;
}
case OMPD_target_teams_distribute:
if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
CheckForConstExpr(ThreadLimitClause->getThreadLimit().front(),
ThreadLimitExpr);
}
getNumThreads(CGF, D.getInnermostCapturedStmt(), NTPtr, UpperBound,
UpperBoundOnly, CondVal);
return NT;
case OMPD_target_teams_loop:
case OMPD_target_parallel_loop:
case OMPD_target_parallel:
case OMPD_target_parallel_for:
case OMPD_target_parallel_for_simd:
case OMPD_target_teams_distribute_parallel_for:
case OMPD_target_teams_distribute_parallel_for_simd: {
if (CondVal && D.hasClausesOfKind<OMPIfClause>()) {
const OMPIfClause *IfClause = nullptr;
for (const auto *C : D.getClausesOfKind<OMPIfClause>()) {
if (C->getNameModifier() == OMPD_unknown ||
C->getNameModifier() == OMPD_parallel) {
IfClause = C;
break;
}
}
if (IfClause) {
const Expr *Cond = IfClause->getCondition();
bool Result;
if (Cond->EvaluateAsBooleanCondition(Result, CGF.getContext())) {
if (!Result)
return ReturnSequential();
} else {
CodeGenFunction::RunCleanupsScope Scope(CGF);
*CondVal = CGF.EvaluateExprAsBool(Cond);
}
}
}
if (D.hasClausesOfKind<OMPThreadLimitClause>()) {
CodeGenFunction::RunCleanupsScope ThreadLimitScope(CGF);
const auto *ThreadLimitClause = D.getSingleClause<OMPThreadLimitClause>();
CheckForConstExpr(ThreadLimitClause->getThreadLimit().front(),
ThreadLimitExpr);
}
if (D.hasClausesOfKind<OMPNumThreadsClause>()) {
CodeGenFunction::RunCleanupsScope NumThreadsScope(CGF);
const auto *NumThreadsClause = D.getSingleClause<OMPNumThreadsClause>();
CheckForConstExpr(NumThreadsClause->getNumThreads(), nullptr);
return NumThreadsClause->getNumThreads();
}
return NT;
}
case OMPD_target_teams_distribute_simd:
case OMPD_target_simd:
return ReturnSequential();
default:
break;
}
llvm_unreachable("Unsupported directive kind.");
}
llvm::Value *CGOpenMPRuntime::emitNumThreadsForTargetDirective(
CodeGenFunction &CGF, const OMPExecutableDirective &D) {
llvm::Value *NumThreadsVal = nullptr;
llvm::Value *CondVal = nullptr;
llvm::Value *ThreadLimitVal = nullptr;
const Expr *ThreadLimitExpr = nullptr;
int32_t UpperBound = -1;
const Expr *NT = getNumThreadsExprForTargetDirective(
CGF, D, UpperBound, /* UpperBoundOnly */ false, &CondVal,
&ThreadLimitExpr);
// Thread limit expressions are used below, emit them.
if (ThreadLimitExpr) {
ThreadLimitVal =
CGF.EmitScalarExpr(ThreadLimitExpr, /*IgnoreResultAssign=*/true);
ThreadLimitVal = CGF.Builder.CreateIntCast(ThreadLimitVal, CGF.Int32Ty,
/*isSigned=*/false);
}
// Generate the num teams expression.
if (UpperBound == 1) {
NumThreadsVal = CGF.Builder.getInt32(UpperBound);
} else if (NT) {
NumThreadsVal = CGF.EmitScalarExpr(NT, /*IgnoreResultAssign=*/true);
NumThreadsVal = CGF.Builder.CreateIntCast(NumThreadsVal, CGF.Int32Ty,
/*isSigned=*/false);
} else if (ThreadLimitVal) {
// If we do not have a num threads value but a thread limit, replace the
// former with the latter. We know handled the thread limit expression.
NumThreadsVal = ThreadLimitVal;
ThreadLimitVal = nullptr;
} else {
// Default to "0" which means runtime choice.
assert(!ThreadLimitVal && "Default not applicable with thread limit value");
NumThreadsVal = CGF.Builder.getInt32(0);
}
// Handle if clause. If if clause present, the number of threads is
// calculated as <cond> ? (<numthreads> ? <numthreads> : 0 ) : 1.
if (CondVal) {
CodeGenFunction::RunCleanupsScope Scope(CGF);
NumThreadsVal = CGF.Builder.CreateSelect(CondVal, NumThreadsVal,
CGF.Builder.getInt32(1));
}
// If the thread limit and num teams expression were present, take the
// minimum.
if (ThreadLimitVal) {
NumThreadsVal = CGF.Builder.CreateSelect(
CGF.Builder.CreateICmpULT(ThreadLimitVal, NumThreadsVal),
ThreadLimitVal, NumThreadsVal);
}
return NumThreadsVal;
}
namespace {
LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
// Utility to handle information from clauses associated with a given
// construct that use mappable expressions (e.g. 'map' clause, 'to' clause).
// It provides a convenient interface to obtain the information and generate
// code for that information.
class MappableExprsHandler {
public:
/// Get the offset of the OMP_MAP_MEMBER_OF field.
static unsigned getFlagMemberOffset() {
unsigned Offset = 0;
for (uint64_t Remain =
static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>(
OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF);
!(Remain & 1); Remain = Remain >> 1)
Offset++;
return Offset;
}
/// Class that holds debugging information for a data mapping to be passed to
/// the runtime library.
class MappingExprInfo {
/// The variable declaration used for the data mapping.
const ValueDecl *MapDecl = nullptr;
/// The original expression used in the map clause, or null if there is
/// none.
const Expr *MapExpr = nullptr;
public:
MappingExprInfo(const ValueDecl *MapDecl, const Expr *MapExpr = nullptr)
: MapDecl(MapDecl), MapExpr(MapExpr) {}
const ValueDecl *getMapDecl() const { return MapDecl; }
const Expr *getMapExpr() const { return MapExpr; }
};
using DeviceInfoTy = llvm::OpenMPIRBuilder::DeviceInfoTy;
using MapBaseValuesArrayTy = llvm::OpenMPIRBuilder::MapValuesArrayTy;
using MapValuesArrayTy = llvm::OpenMPIRBuilder::MapValuesArrayTy;
using MapFlagsArrayTy = llvm::OpenMPIRBuilder::MapFlagsArrayTy;
using MapDimArrayTy = llvm::OpenMPIRBuilder::MapDimArrayTy;
using MapNonContiguousArrayTy =
llvm::OpenMPIRBuilder::MapNonContiguousArrayTy;
using MapExprsArrayTy = SmallVector<MappingExprInfo, 4>;
using MapValueDeclsArrayTy = SmallVector<const ValueDecl *, 4>;
/// This structure contains combined information generated for mappable
/// clauses, including base pointers, pointers, sizes, map types, user-defined
/// mappers, and non-contiguous information.
struct MapCombinedInfoTy : llvm::OpenMPIRBuilder::MapInfosTy {
MapExprsArrayTy Exprs;
MapValueDeclsArrayTy Mappers;
MapValueDeclsArrayTy DevicePtrDecls;
/// Append arrays in \a CurInfo.
void append(MapCombinedInfoTy &CurInfo) {
Exprs.append(CurInfo.Exprs.begin(), CurInfo.Exprs.end());
DevicePtrDecls.append(CurInfo.DevicePtrDecls.begin(),
CurInfo.DevicePtrDecls.end());
Mappers.append(CurInfo.Mappers.begin(), CurInfo.Mappers.end());
llvm::OpenMPIRBuilder::MapInfosTy::append(CurInfo);
}
};
/// Map between a struct and the its lowest & highest elements which have been
/// mapped.
/// [ValueDecl *] --> {LE(FieldIndex, Pointer),
/// HE(FieldIndex, Pointer)}
struct StructRangeInfoTy {
MapCombinedInfoTy PreliminaryMapData;
std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> LowestElem = {
0, Address::invalid()};
std::pair<unsigned /*FieldIndex*/, Address /*Pointer*/> HighestElem = {
0, Address::invalid()};
Address Base = Address::invalid();
Address LB = Address::invalid();
bool IsArraySection = false;
bool HasCompleteRecord = false;
};
private:
/// Kind that defines how a device pointer has to be returned.
struct MapInfo {
OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
OpenMPMapClauseKind MapType = OMPC_MAP_unknown;
ArrayRef<OpenMPMapModifierKind> MapModifiers;
ArrayRef<OpenMPMotionModifierKind> MotionModifiers;
bool ReturnDevicePointer = false;
bool IsImplicit = false;
const ValueDecl *Mapper = nullptr;
const Expr *VarRef = nullptr;
bool ForDeviceAddr = false;
MapInfo() = default;
MapInfo(
OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
OpenMPMapClauseKind MapType,
ArrayRef<OpenMPMapModifierKind> MapModifiers,
ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
bool ReturnDevicePointer, bool IsImplicit,
const ValueDecl *Mapper = nullptr, const Expr *VarRef = nullptr,
bool ForDeviceAddr = false)
: Components(Components), MapType(MapType), MapModifiers(MapModifiers),
MotionModifiers(MotionModifiers),
ReturnDevicePointer(ReturnDevicePointer), IsImplicit(IsImplicit),
Mapper(Mapper), VarRef(VarRef), ForDeviceAddr(ForDeviceAddr) {}
};
/// If use_device_ptr or use_device_addr is used on a decl which is a struct
/// member and there is no map information about it, then emission of that
/// entry is deferred until the whole struct has been processed.
struct DeferredDevicePtrEntryTy {
const Expr *IE = nullptr;
const ValueDecl *VD = nullptr;
bool ForDeviceAddr = false;
DeferredDevicePtrEntryTy(const Expr *IE, const ValueDecl *VD,
bool ForDeviceAddr)
: IE(IE), VD(VD), ForDeviceAddr(ForDeviceAddr) {}
};
/// The target directive from where the mappable clauses were extracted. It
/// is either a executable directive or a user-defined mapper directive.
llvm::PointerUnion<const OMPExecutableDirective *,
const OMPDeclareMapperDecl *>
CurDir;
/// Function the directive is being generated for.
CodeGenFunction &CGF;
/// Set of all first private variables in the current directive.
/// bool data is set to true if the variable is implicitly marked as
/// firstprivate, false otherwise.
llvm::DenseMap<CanonicalDeclPtr<const VarDecl>, bool> FirstPrivateDecls;
/// Map between device pointer declarations and their expression components.
/// The key value for declarations in 'this' is null.
llvm::DenseMap<
const ValueDecl *,
SmallVector<OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>>
DevPointersMap;
/// Map between device addr declarations and their expression components.
/// The key value for declarations in 'this' is null.
llvm::DenseMap<
const ValueDecl *,
SmallVector<OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>>
HasDevAddrsMap;
/// Map between lambda declarations and their map type.
llvm::DenseMap<const ValueDecl *, const OMPMapClause *> LambdasMap;
llvm::Value *getExprTypeSize(const Expr *E) const {
QualType ExprTy = E->getType().getCanonicalType();
// Calculate the size for array shaping expression.
if (const auto *OAE = dyn_cast<OMPArrayShapingExpr>(E)) {
llvm::Value *Size =
CGF.getTypeSize(OAE->getBase()->getType()->getPointeeType());
for (const Expr *SE : OAE->getDimensions()) {
llvm::Value *Sz = CGF.EmitScalarExpr(SE);
Sz = CGF.EmitScalarConversion(Sz, SE->getType(),
CGF.getContext().getSizeType(),
SE->getExprLoc());
Size = CGF.Builder.CreateNUWMul(Size, Sz);
}
return Size;
}
// Reference types are ignored for mapping purposes.
if (const auto *RefTy = ExprTy->getAs<ReferenceType>())
ExprTy = RefTy->getPointeeType().getCanonicalType();
// Given that an array section is considered a built-in type, we need to
// do the calculation based on the length of the section instead of relying
// on CGF.getTypeSize(E->getType()).
if (const auto *OAE = dyn_cast<ArraySectionExpr>(E)) {
QualType BaseTy = ArraySectionExpr::getBaseOriginalType(
OAE->getBase()->IgnoreParenImpCasts())
.getCanonicalType();
// If there is no length associated with the expression and lower bound is
// not specified too, that means we are using the whole length of the
// base.
if (!OAE->getLength() && OAE->getColonLocFirst().isValid() &&
!OAE->getLowerBound())
return CGF.getTypeSize(BaseTy);
llvm::Value *ElemSize;
if (const auto *PTy = BaseTy->getAs<PointerType>()) {
ElemSize = CGF.getTypeSize(PTy->getPointeeType().getCanonicalType());
} else {
const auto *ATy = cast<ArrayType>(BaseTy.getTypePtr());
assert(ATy && "Expecting array type if not a pointer type.");
ElemSize = CGF.getTypeSize(ATy->getElementType().getCanonicalType());
}
// If we don't have a length at this point, that is because we have an
// array section with a single element.
if (!OAE->getLength() && OAE->getColonLocFirst().isInvalid())
return ElemSize;
if (const Expr *LenExpr = OAE->getLength()) {
llvm::Value *LengthVal = CGF.EmitScalarExpr(LenExpr);
LengthVal = CGF.EmitScalarConversion(LengthVal, LenExpr->getType(),
CGF.getContext().getSizeType(),
LenExpr->getExprLoc());
return CGF.Builder.CreateNUWMul(LengthVal, ElemSize);
}
assert(!OAE->getLength() && OAE->getColonLocFirst().isValid() &&
OAE->getLowerBound() && "expected array_section[lb:].");
// Size = sizetype - lb * elemtype;
llvm::Value *LengthVal = CGF.getTypeSize(BaseTy);
llvm::Value *LBVal = CGF.EmitScalarExpr(OAE->getLowerBound());
LBVal = CGF.EmitScalarConversion(LBVal, OAE->getLowerBound()->getType(),
CGF.getContext().getSizeType(),
OAE->getLowerBound()->getExprLoc());
LBVal = CGF.Builder.CreateNUWMul(LBVal, ElemSize);
llvm::Value *Cmp = CGF.Builder.CreateICmpUGT(LengthVal, LBVal);
llvm::Value *TrueVal = CGF.Builder.CreateNUWSub(LengthVal, LBVal);
LengthVal = CGF.Builder.CreateSelect(
Cmp, TrueVal, llvm::ConstantInt::get(CGF.SizeTy, 0));
return LengthVal;
}
return CGF.getTypeSize(ExprTy);
}
/// Return the corresponding bits for a given map clause modifier. Add
/// a flag marking the map as a pointer if requested. Add a flag marking the
/// map as the first one of a series of maps that relate to the same map
/// expression.
OpenMPOffloadMappingFlags getMapTypeBits(
OpenMPMapClauseKind MapType, ArrayRef<OpenMPMapModifierKind> MapModifiers,
ArrayRef<OpenMPMotionModifierKind> MotionModifiers, bool IsImplicit,
bool AddPtrFlag, bool AddIsTargetParamFlag, bool IsNonContiguous) const {
OpenMPOffloadMappingFlags Bits =
IsImplicit ? OpenMPOffloadMappingFlags::OMP_MAP_IMPLICIT
: OpenMPOffloadMappingFlags::OMP_MAP_NONE;
switch (MapType) {
case OMPC_MAP_alloc:
case OMPC_MAP_release:
// alloc and release is the default behavior in the runtime library, i.e.
// if we don't pass any bits alloc/release that is what the runtime is
// going to do. Therefore, we don't need to signal anything for these two
// type modifiers.
break;
case OMPC_MAP_to:
Bits |= OpenMPOffloadMappingFlags::OMP_MAP_TO;
break;
case OMPC_MAP_from:
Bits |= OpenMPOffloadMappingFlags::OMP_MAP_FROM;
break;
case OMPC_MAP_tofrom:
Bits |= OpenMPOffloadMappingFlags::OMP_MAP_TO |
OpenMPOffloadMappingFlags::OMP_MAP_FROM;
break;
case OMPC_MAP_delete:
Bits |= OpenMPOffloadMappingFlags::OMP_MAP_DELETE;
break;
case OMPC_MAP_unknown:
llvm_unreachable("Unexpected map type!");
}
if (AddPtrFlag)
Bits |= OpenMPOffloadMappingFlags::OMP_MAP_PTR_AND_OBJ;
if (AddIsTargetParamFlag)
Bits |= OpenMPOffloadMappingFlags::OMP_MAP_TARGET_PARAM;
if (llvm::is_contained(MapModifiers, OMPC_MAP_MODIFIER_always))
Bits |= OpenMPOffloadMappingFlags::OMP_MAP_ALWAYS;
if (llvm::is_contained(MapModifiers, OMPC_MAP_MODIFIER_close))
Bits |= OpenMPOffloadMappingFlags::OMP_MAP_CLOSE;
if (llvm::is_contained(MapModifiers, OMPC_MAP_MODIFIER_present) ||
llvm::is_contained(MotionModifiers, OMPC_MOTION_MODIFIER_present))
Bits |= OpenMPOffloadMappingFlags::OMP_MAP_PRESENT;
if (llvm::is_contained(MapModifiers, OMPC_MAP_MODIFIER_ompx_hold))
Bits |= OpenMPOffloadMappingFlags::OMP_MAP_OMPX_HOLD;
if (IsNonContiguous)
Bits |= OpenMPOffloadMappingFlags::OMP_MAP_NON_CONTIG;
return Bits;
}
/// Return true if the provided expression is a final array section. A
/// final array section, is one whose length can't be proved to be one.
bool isFinalArraySectionExpression(const Expr *E) const {
const auto *OASE = dyn_cast<ArraySectionExpr>(E);
// It is not an array section and therefore not a unity-size one.
if (!OASE)
return false;
// An array section with no colon always refer to a single element.
if (OASE->getColonLocFirst().isInvalid())
return false;
const Expr *Length = OASE->getLength();
// If we don't have a length we have to check if the array has size 1
// for this dimension. Also, we should always expect a length if the
// base type is pointer.
if (!Length) {
QualType BaseQTy = ArraySectionExpr::getBaseOriginalType(
OASE->getBase()->IgnoreParenImpCasts())
.getCanonicalType();
if (const auto *ATy = dyn_cast<ConstantArrayType>(BaseQTy.getTypePtr()))
return ATy->getSExtSize() != 1;
// If we don't have a constant dimension length, we have to consider
// the current section as having any size, so it is not necessarily
// unitary. If it happen to be unity size, that's user fault.
return true;
}
// Check if the length evaluates to 1.
Expr::EvalResult Result;
if (!Length->EvaluateAsInt(Result, CGF.getContext()))
return true; // Can have more that size 1.
llvm::APSInt ConstLength = Result.Val.getInt();
return ConstLength.getSExtValue() != 1;
}
/// Generate the base pointers, section pointers, sizes, map type bits, and
/// user-defined mappers (all included in \a CombinedInfo) for the provided
/// map type, map or motion modifiers, and expression components.
/// \a IsFirstComponent should be set to true if the provided set of
/// components is the first associated with a capture.
void generateInfoForComponentList(
OpenMPMapClauseKind MapType, ArrayRef<OpenMPMapModifierKind> MapModifiers,
ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
OMPClauseMappableExprCommon::MappableExprComponentListRef Components,
MapCombinedInfoTy &CombinedInfo,
MapCombinedInfoTy &StructBaseCombinedInfo,
StructRangeInfoTy &PartialStruct, bool IsFirstComponentList,
bool IsImplicit, bool GenerateAllInfoForClauses,
const ValueDecl *Mapper = nullptr, bool ForDeviceAddr = false,
const ValueDecl *BaseDecl = nullptr, const Expr *MapExpr = nullptr,
ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef>
OverlappedElements = {},
bool AreBothBasePtrAndPteeMapped = false) const {
// The following summarizes what has to be generated for each map and the
// types below. The generated information is expressed in this order:
// base pointer, section pointer, size, flags
// (to add to the ones that come from the map type and modifier).
//
// double d;
// int i[100];
// float *p;
// int **a = &i;
//
// struct S1 {
// int i;
// float f[50];
// }
// struct S2 {
// int i;
// float f[50];
// S1 s;
// double *p;
// struct S2 *ps;
// int &ref;
// }
// S2 s;
// S2 *ps;
//
// map(d)
// &d, &d, sizeof(double), TARGET_PARAM | TO | FROM
//
// map(i)
// &i, &i, 100*sizeof(int), TARGET_PARAM | TO | FROM
//
// map(i[1:23])
// &i(=&i[0]), &i[1], 23*sizeof(int), TARGET_PARAM | TO | FROM
//
// map(p)
// &p, &p, sizeof(float*), TARGET_PARAM | TO | FROM
//
// map(p[1:24])
// &p, &p[1], 24*sizeof(float), TARGET_PARAM | TO | FROM | PTR_AND_OBJ
// in unified shared memory mode or for local pointers
// p, &p[1], 24*sizeof(float), TARGET_PARAM | TO | FROM
//
// map((*a)[0:3])
// &(*a), &(*a), sizeof(pointer), TARGET_PARAM | TO | FROM
// &(*a), &(*a)[0], 3*sizeof(int), PTR_AND_OBJ | TO | FROM
//
// map(**a)
// &(*a), &(*a), sizeof(pointer), TARGET_PARAM | TO | FROM
// &(*a), &(**a), sizeof(int), PTR_AND_OBJ | TO | FROM
//
// map(s)
// &s, &s, sizeof(S2), TARGET_PARAM | TO | FROM
//
// map(s.i)
// &s, &(s.i), sizeof(int), TARGET_PARAM | TO | FROM
//
// map(s.s.f)
// &s, &(s.s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM
//
// map(s.p)
// &s, &(s.p), sizeof(double*), TARGET_PARAM | TO | FROM
//
// map(to: s.p[:22])
// &s, &(s.p), sizeof(double*), TARGET_PARAM (*)
// &s, &(s.p), sizeof(double*), MEMBER_OF(1) (**)
// &(s.p), &(s.p[0]), 22*sizeof(double),
// MEMBER_OF(1) | PTR_AND_OBJ | TO (***)
// (*) alloc space for struct members, only this is a target parameter
// (**) map the pointer (nothing to be mapped in this example) (the compiler
// optimizes this entry out, same in the examples below)
// (***) map the pointee (map: to)
//
// map(to: s.ref)
// &s, &(s.ref), sizeof(int*), TARGET_PARAM (*)
// &s, &(s.ref), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ | TO (***)
// (*) alloc space for struct members, only this is a target parameter
// (**) map the pointer (nothing to be mapped in this example) (the compiler
// optimizes this entry out, same in the examples below)
// (***) map the pointee (map: to)
//
// map(s.ps)
// &s, &(s.ps), sizeof(S2*), TARGET_PARAM | TO | FROM
//
// map(from: s.ps->s.i)
// &s, &(s.ps), sizeof(S2*), TARGET_PARAM
// &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
// &(s.ps), &(s.ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ | FROM
//
// map(to: s.ps->ps)
// &s, &(s.ps), sizeof(S2*), TARGET_PARAM
// &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
// &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ | TO
//
// map(s.ps->ps->ps)
// &s, &(s.ps), sizeof(S2*), TARGET_PARAM
// &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
// &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
// &(s.ps->ps), &(s.ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM
//
// map(to: s.ps->ps->s.f[:22])
// &s, &(s.ps), sizeof(S2*), TARGET_PARAM
// &s, &(s.ps), sizeof(S2*), MEMBER_OF(1)
// &(s.ps), &(s.ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
// &(s.ps->ps), &(s.ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO
//
// map(ps)
// &ps, &ps, sizeof(S2*), TARGET_PARAM | TO | FROM
//
// map(ps->i)
// ps, &(ps->i), sizeof(int), TARGET_PARAM | TO | FROM
//
// map(ps->s.f)
// ps, &(ps->s.f[0]), 50*sizeof(float), TARGET_PARAM | TO | FROM
//
// map(from: ps->p)
// ps, &(ps->p), sizeof(double*), TARGET_PARAM | FROM
//
// map(to: ps->p[:22])
// ps, &(ps->p), sizeof(double*), TARGET_PARAM
// ps, &(ps->p), sizeof(double*), MEMBER_OF(1)
// &(ps->p), &(ps->p[0]), 22*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | TO
//
// map(ps->ps)
// ps, &(ps->ps), sizeof(S2*), TARGET_PARAM | TO | FROM
//
// map(from: ps->ps->s.i)
// ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
// ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
// &(ps->ps), &(ps->ps->s.i), sizeof(int), MEMBER_OF(1) | PTR_AND_OBJ | FROM
//
// map(from: ps->ps->ps)
// ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
// ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
// &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ | FROM
//
// map(ps->ps->ps->ps)
// ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
// ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
// &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
// &(ps->ps->ps), &(ps->ps->ps->ps), sizeof(S2*), PTR_AND_OBJ | TO | FROM
//
// map(to: ps->ps->ps->s.f[:22])
// ps, &(ps->ps), sizeof(S2*), TARGET_PARAM
// ps, &(ps->ps), sizeof(S2*), MEMBER_OF(1)
// &(ps->ps), &(ps->ps->ps), sizeof(S2*), MEMBER_OF(1) | PTR_AND_OBJ
// &(ps->ps->ps), &(ps->ps->ps->s.f[0]), 22*sizeof(float), PTR_AND_OBJ | TO
//
// map(to: s.f[:22]) map(from: s.p[:33])
// &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1) +
// sizeof(double*) (**), TARGET_PARAM
// &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | TO
// &s, &(s.p), sizeof(double*), MEMBER_OF(1)
// &(s.p), &(s.p[0]), 33*sizeof(double), MEMBER_OF(1) | PTR_AND_OBJ | FROM
// (*) allocate contiguous space needed to fit all mapped members even if
// we allocate space for members not mapped (in this example,
// s.f[22..49] and s.s are not mapped, yet we must allocate space for
// them as well because they fall between &s.f[0] and &s.p)
//
// map(from: s.f[:22]) map(to: ps->p[:33])
// &s, &(s.f[0]), 22*sizeof(float), TARGET_PARAM | FROM
// ps, &(ps->p), sizeof(S2*), TARGET_PARAM
// ps, &(ps->p), sizeof(double*), MEMBER_OF(2) (*)
// &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(2) | PTR_AND_OBJ | TO
// (*) the struct this entry pertains to is the 2nd element in the list of
// arguments, hence MEMBER_OF(2)
//
// map(from: s.f[:22], s.s) map(to: ps->p[:33])
// &s, &(s.f[0]), 50*sizeof(float) + sizeof(struct S1), TARGET_PARAM
// &s, &(s.f[0]), 22*sizeof(float), MEMBER_OF(1) | FROM
// &s, &(s.s), sizeof(struct S1), MEMBER_OF(1) | FROM
// ps, &(ps->p), sizeof(S2*), TARGET_PARAM
// ps, &(ps->p), sizeof(double*), MEMBER_OF(4) (*)
// &(ps->p), &(ps->p[0]), 33*sizeof(double), MEMBER_OF(4) | PTR_AND_OBJ | TO
// (*) the struct this entry pertains to is the 4th element in the list
// of arguments, hence MEMBER_OF(4)
//
// map(p, p[:100])
// ===> map(p[:100])
// &p, &p[0], 100*sizeof(float), TARGET_PARAM | PTR_AND_OBJ | TO | FROM
// Track if the map information being generated is the first for a capture.
bool IsCaptureFirstInfo = IsFirstComponentList;
// When the variable is on a declare target link or in a to clause with
// unified memory, a reference is needed to hold the host/device address
// of the variable.
bool RequiresReference = false;
// Scan the components from the base to the complete expression.
auto CI = Components.rbegin();
auto CE = Components.rend();
auto I = CI;
// Track if the map information being generated is the first for a list of
// components.
bool IsExpressionFirstInfo = true;
bool FirstPointerInComplexData = false;
Address BP = Address::invalid();
const Expr *AssocExpr = I->getAssociatedExpression();
const auto *AE = dyn_cast<ArraySubscriptExpr>(AssocExpr);
const auto *OASE = dyn_cast<ArraySectionExpr>(AssocExpr);
const auto *OAShE = dyn_cast<OMPArrayShapingExpr>(AssocExpr);
if (AreBothBasePtrAndPteeMapped && std::next(I) == CE)
return;
if (isa<MemberExpr>(AssocExpr)) {
// The base is the 'this' pointer. The content of the pointer is going
// to be the base of the field being mapped.
BP = CGF.LoadCXXThisAddress();
} else if ((AE && isa<CXXThisExpr>(AE->getBase()->IgnoreParenImpCasts())) ||
(OASE &&
isa<CXXThisExpr>(OASE->getBase()->IgnoreParenImpCasts()))) {
BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress();
} else if (OAShE &&
isa<CXXThisExpr>(OAShE->getBase()->IgnoreParenCasts())) {
BP = Address(
CGF.EmitScalarExpr(OAShE->getBase()),
CGF.ConvertTypeForMem(OAShE->getBase()->getType()->getPointeeType()),
CGF.getContext().getTypeAlignInChars(OAShE->getBase()->getType()));
} else {
// The base is the reference to the variable.
// BP = &Var.
BP = CGF.EmitOMPSharedLValue(AssocExpr).getAddress();
if (const auto *VD =
dyn_cast_or_null<VarDecl>(I->getAssociatedDeclaration())) {
if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
if ((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
((*Res == OMPDeclareTargetDeclAttr::MT_To ||
*Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) {
RequiresReference = true;
BP = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
}
}
}
// If the variable is a pointer and is being dereferenced (i.e. is not
// the last component), the base has to be the pointer itself, not its
// reference. References are ignored for mapping purposes.
QualType Ty =
I->getAssociatedDeclaration()->getType().getNonReferenceType();
if (Ty->isAnyPointerType() && std::next(I) != CE) {
// No need to generate individual map information for the pointer, it
// can be associated with the combined storage if shared memory mode is
// active or the base declaration is not global variable.
const auto *VD = dyn_cast<VarDecl>(I->getAssociatedDeclaration());
if (!AreBothBasePtrAndPteeMapped &&
(CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory() ||
!VD || VD->hasLocalStorage()))
BP = CGF.EmitLoadOfPointer(BP, Ty->castAs<PointerType>());
else
FirstPointerInComplexData = true;
++I;
}
}
// Track whether a component of the list should be marked as MEMBER_OF some
// combined entry (for partial structs). Only the first PTR_AND_OBJ entry
// in a component list should be marked as MEMBER_OF, all subsequent entries
// do not belong to the base struct. E.g.
// struct S2 s;
// s.ps->ps->ps->f[:]
// (1) (2) (3) (4)
// ps(1) is a member pointer, ps(2) is a pointee of ps(1), so it is a
// PTR_AND_OBJ entry; the PTR is ps(1), so MEMBER_OF the base struct. ps(3)
// is the pointee of ps(2) which is not member of struct s, so it should not
// be marked as such (it is still PTR_AND_OBJ).
// The variable is initialized to false so that PTR_AND_OBJ entries which
// are not struct members are not considered (e.g. array of pointers to
// data).
bool ShouldBeMemberOf = false;
// Variable keeping track of whether or not we have encountered a component
// in the component list which is a member expression. Useful when we have a
// pointer or a final array section, in which case it is the previous
// component in the list which tells us whether we have a member expression.
// E.g. X.f[:]
// While processing the final array section "[:]" it is "f" which tells us
// whether we are dealing with a member of a declared struct.
const MemberExpr *EncounteredME = nullptr;
// Track for the total number of dimension. Start from one for the dummy
// dimension.
uint64_t DimSize = 1;
bool IsNonContiguous = CombinedInfo.NonContigInfo.IsNonContiguous;
bool IsPrevMemberReference = false;
bool IsPartialMapped =
!PartialStruct.PreliminaryMapData.BasePointers.empty();
// We need to check if we will be encountering any MEs. If we do not
// encounter any ME expression it means we will be mapping the whole struct.
// In that case we need to skip adding an entry for the struct to the
// CombinedInfo list and instead add an entry to the StructBaseCombinedInfo
// list only when generating all info for clauses.
bool IsMappingWholeStruct = true;
if (!GenerateAllInfoForClauses) {
IsMappingWholeStruct = false;
} else {
for (auto TempI = I; TempI != CE; ++TempI) {
const MemberExpr *PossibleME =
dyn_cast<MemberExpr>(TempI->getAssociatedExpression());
if (PossibleME) {
IsMappingWholeStruct = false;
break;
}
}
}
for (; I != CE; ++I) {
// If the current component is member of a struct (parent struct) mark it.
if (!EncounteredME) {
EncounteredME = dyn_cast<MemberExpr>(I->getAssociatedExpression());
// If we encounter a PTR_AND_OBJ entry from now on it should be marked
// as MEMBER_OF the parent struct.
if (EncounteredME) {
ShouldBeMemberOf = true;
// Do not emit as complex pointer if this is actually not array-like
// expression.
if (FirstPointerInComplexData) {
QualType Ty = std::prev(I)
->getAssociatedDeclaration()
->getType()
.getNonReferenceType();
BP = CGF.EmitLoadOfPointer(BP, Ty->castAs<PointerType>());
FirstPointerInComplexData = false;
}
}
}
auto Next = std::next(I);
// We need to generate the addresses and sizes if this is the last
// component, if the component is a pointer or if it is an array section
// whose length can't be proved to be one. If this is a pointer, it
// becomes the base address for the following components.
// A final array section, is one whose length can't be proved to be one.
// If the map item is non-contiguous then we don't treat any array section
// as final array section.
bool IsFinalArraySection =
!IsNonContiguous &&
isFinalArraySectionExpression(I->getAssociatedExpression());
// If we have a declaration for the mapping use that, otherwise use
// the base declaration of the map clause.
const ValueDecl *MapDecl = (I->getAssociatedDeclaration())
? I->getAssociatedDeclaration()
: BaseDecl;
MapExpr = (I->getAssociatedExpression()) ? I->getAssociatedExpression()
: MapExpr;
// Get information on whether the element is a pointer. Have to do a
// special treatment for array sections given that they are built-in
// types.
const auto *OASE =
dyn_cast<ArraySectionExpr>(I->getAssociatedExpression());
const auto *OAShE =
dyn_cast<OMPArrayShapingExpr>(I->getAssociatedExpression());
const auto *UO = dyn_cast<UnaryOperator>(I->getAssociatedExpression());
const auto *BO = dyn_cast<BinaryOperator>(I->getAssociatedExpression());
bool IsPointer =
OAShE ||
(OASE && ArraySectionExpr::getBaseOriginalType(OASE)
.getCanonicalType()
->isAnyPointerType()) ||
I->getAssociatedExpression()->getType()->isAnyPointerType();
bool IsMemberReference = isa<MemberExpr>(I->getAssociatedExpression()) &&
MapDecl &&
MapDecl->getType()->isLValueReferenceType();
bool IsNonDerefPointer = IsPointer &&
!(UO && UO->getOpcode() != UO_Deref) && !BO &&
!IsNonContiguous;
if (OASE)
++DimSize;
if (Next == CE || IsMemberReference || IsNonDerefPointer ||
IsFinalArraySection) {
// If this is not the last component, we expect the pointer to be
// associated with an array expression or member expression.
assert((Next == CE ||
isa<MemberExpr>(Next->getAssociatedExpression()) ||
isa<ArraySubscriptExpr>(Next->getAssociatedExpression()) ||
isa<ArraySectionExpr>(Next->getAssociatedExpression()) ||
isa<OMPArrayShapingExpr>(Next->getAssociatedExpression()) ||
isa<UnaryOperator>(Next->getAssociatedExpression()) ||
isa<BinaryOperator>(Next->getAssociatedExpression())) &&
"Unexpected expression");
Address LB = Address::invalid();
Address LowestElem = Address::invalid();
auto &&EmitMemberExprBase = [](CodeGenFunction &CGF,
const MemberExpr *E) {
const Expr *BaseExpr = E->getBase();
// If this is s.x, emit s as an lvalue. If it is s->x, emit s as a
// scalar.
LValue BaseLV;
if (E->isArrow()) {
LValueBaseInfo BaseInfo;
TBAAAccessInfo TBAAInfo;
Address Addr =
CGF.EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
QualType PtrTy = BaseExpr->getType()->getPointeeType();
BaseLV = CGF.MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
} else {
BaseLV = CGF.EmitOMPSharedLValue(BaseExpr);
}
return BaseLV;
};
if (OAShE) {
LowestElem = LB =
Address(CGF.EmitScalarExpr(OAShE->getBase()),
CGF.ConvertTypeForMem(
OAShE->getBase()->getType()->getPointeeType()),
CGF.getContext().getTypeAlignInChars(
OAShE->getBase()->getType()));
} else if (IsMemberReference) {
const auto *ME = cast<MemberExpr>(I->getAssociatedExpression());
LValue BaseLVal = EmitMemberExprBase(CGF, ME);
LowestElem = CGF.EmitLValueForFieldInitialization(
BaseLVal, cast<FieldDecl>(MapDecl))
.getAddress();
LB = CGF.EmitLoadOfReferenceLValue(LowestElem, MapDecl->getType())
.getAddress();
} else {
LowestElem = LB =
CGF.EmitOMPSharedLValue(I->getAssociatedExpression())
.getAddress();
}
// If this component is a pointer inside the base struct then we don't
// need to create any entry for it - it will be combined with the object
// it is pointing to into a single PTR_AND_OBJ entry.
bool IsMemberPointerOrAddr =
EncounteredME &&
(((IsPointer || ForDeviceAddr) &&
I->getAssociatedExpression() == EncounteredME) ||
(IsPrevMemberReference && !IsPointer) ||
(IsMemberReference && Next != CE &&
!Next->getAssociatedExpression()->getType()->isPointerType()));
if (!OverlappedElements.empty() && Next == CE) {
// Handle base element with the info for overlapped elements.
assert(!PartialStruct.Base.isValid() && "The base element is set.");
assert(!IsPointer &&
"Unexpected base element with the pointer type.");
// Mark the whole struct as the struct that requires allocation on the
// device.
PartialStruct.LowestElem = {0, LowestElem};
CharUnits TypeSize = CGF.getContext().getTypeSizeInChars(
I->getAssociatedExpression()->getType());
Address HB = CGF.Builder.CreateConstGEP(
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
LowestElem, CGF.VoidPtrTy, CGF.Int8Ty),
TypeSize.getQuantity() - 1);
PartialStruct.HighestElem = {
std::numeric_limits<decltype(
PartialStruct.HighestElem.first)>::max(),
HB};
PartialStruct.Base = BP;
PartialStruct.LB = LB;
assert(
PartialStruct.PreliminaryMapData.BasePointers.empty() &&
"Overlapped elements must be used only once for the variable.");
std::swap(PartialStruct.PreliminaryMapData, CombinedInfo);
// Emit data for non-overlapped data.
OpenMPOffloadMappingFlags Flags =
OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF |
getMapTypeBits(MapType, MapModifiers, MotionModifiers, IsImplicit,
/*AddPtrFlag=*/false,
/*AddIsTargetParamFlag=*/false, IsNonContiguous);
llvm::Value *Size = nullptr;
// Do bitcopy of all non-overlapped structure elements.
for (OMPClauseMappableExprCommon::MappableExprComponentListRef
Component : OverlappedElements) {
Address ComponentLB = Address::invalid();
for (const OMPClauseMappableExprCommon::MappableComponent &MC :
Component) {
if (const ValueDecl *VD = MC.getAssociatedDeclaration()) {
const auto *FD = dyn_cast<FieldDecl>(VD);
if (FD && FD->getType()->isLValueReferenceType()) {
const auto *ME =
cast<MemberExpr>(MC.getAssociatedExpression());
LValue BaseLVal = EmitMemberExprBase(CGF, ME);
ComponentLB =
CGF.EmitLValueForFieldInitialization(BaseLVal, FD)
.getAddress();
} else {
ComponentLB =
CGF.EmitOMPSharedLValue(MC.getAssociatedExpression())
.getAddress();
}
llvm::Value *ComponentLBPtr = ComponentLB.emitRawPointer(CGF);
llvm::Value *LBPtr = LB.emitRawPointer(CGF);
Size = CGF.Builder.CreatePtrDiff(CGF.Int8Ty, ComponentLBPtr,
LBPtr);
break;
}
}
assert(Size && "Failed to determine structure size");
CombinedInfo.Exprs.emplace_back(MapDecl, MapExpr);
CombinedInfo.BasePointers.push_back(BP.emitRawPointer(CGF));
CombinedInfo.DevicePtrDecls.push_back(nullptr);
CombinedInfo.DevicePointers.push_back(DeviceInfoTy::None);
CombinedInfo.Pointers.push_back(LB.emitRawPointer(CGF));
CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
Size, CGF.Int64Ty, /*isSigned=*/true));
CombinedInfo.Types.push_back(Flags);
CombinedInfo.Mappers.push_back(nullptr);
CombinedInfo.NonContigInfo.Dims.push_back(IsNonContiguous ? DimSize
: 1);
LB = CGF.Builder.CreateConstGEP(ComponentLB, 1);
}
CombinedInfo.Exprs.emplace_back(MapDecl, MapExpr);
CombinedInfo.BasePointers.push_back(BP.emitRawPointer(CGF));
CombinedInfo.DevicePtrDecls.push_back(nullptr);
CombinedInfo.DevicePointers.push_back(DeviceInfoTy::None);
CombinedInfo.Pointers.push_back(LB.emitRawPointer(CGF));
llvm::Value *LBPtr = LB.emitRawPointer(CGF);
Size = CGF.Builder.CreatePtrDiff(
CGF.Int8Ty, CGF.Builder.CreateConstGEP(HB, 1).emitRawPointer(CGF),
LBPtr);
CombinedInfo.Sizes.push_back(
CGF.Builder.CreateIntCast(Size, CGF.Int64Ty, /*isSigned=*/true));
CombinedInfo.Types.push_back(Flags);
CombinedInfo.Mappers.push_back(nullptr);
CombinedInfo.NonContigInfo.Dims.push_back(IsNonContiguous ? DimSize
: 1);
break;
}
llvm::Value *Size = getExprTypeSize(I->getAssociatedExpression());
// Skip adding an entry in the CurInfo of this combined entry if the
// whole struct is currently being mapped. The struct needs to be added
// in the first position before any data internal to the struct is being
// mapped.
// Skip adding an entry in the CurInfo of this combined entry if the
// PartialStruct.PreliminaryMapData.BasePointers has been mapped.
if ((!IsMemberPointerOrAddr && !IsPartialMapped) ||
(Next == CE && MapType != OMPC_MAP_unknown)) {
if (!IsMappingWholeStruct) {
CombinedInfo.Exprs.emplace_back(MapDecl, MapExpr);
CombinedInfo.BasePointers.push_back(BP.emitRawPointer(CGF));
CombinedInfo.DevicePtrDecls.push_back(nullptr);
CombinedInfo.DevicePointers.push_back(DeviceInfoTy::None);
CombinedInfo.Pointers.push_back(LB.emitRawPointer(CGF));
CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
Size, CGF.Int64Ty, /*isSigned=*/true));
CombinedInfo.NonContigInfo.Dims.push_back(IsNonContiguous ? DimSize
: 1);
} else {
StructBaseCombinedInfo.Exprs.emplace_back(MapDecl, MapExpr);
StructBaseCombinedInfo.BasePointers.push_back(
BP.emitRawPointer(CGF));
StructBaseCombinedInfo.DevicePtrDecls.push_back(nullptr);
StructBaseCombinedInfo.DevicePointers.push_back(DeviceInfoTy::None);
StructBaseCombinedInfo.Pointers.push_back(LB.emitRawPointer(CGF));
StructBaseCombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
Size, CGF.Int64Ty, /*isSigned=*/true));
StructBaseCombinedInfo.NonContigInfo.Dims.push_back(
IsNonContiguous ? DimSize : 1);
}
// If Mapper is valid, the last component inherits the mapper.
bool HasMapper = Mapper && Next == CE;
if (!IsMappingWholeStruct)
CombinedInfo.Mappers.push_back(HasMapper ? Mapper : nullptr);
else
StructBaseCombinedInfo.Mappers.push_back(HasMapper ? Mapper
: nullptr);
// We need to add a pointer flag for each map that comes from the
// same expression except for the first one. We also need to signal
// this map is the first one that relates with the current capture
// (there is a set of entries for each capture).
OpenMPOffloadMappingFlags Flags =
getMapTypeBits(MapType, MapModifiers, MotionModifiers, IsImplicit,
!IsExpressionFirstInfo || RequiresReference ||
FirstPointerInComplexData || IsMemberReference,
AreBothBasePtrAndPteeMapped ||
(IsCaptureFirstInfo && !RequiresReference),
IsNonContiguous);
if (!IsExpressionFirstInfo || IsMemberReference) {
// If we have a PTR_AND_OBJ pair where the OBJ is a pointer as well,
// then we reset the TO/FROM/ALWAYS/DELETE/CLOSE flags.
if (IsPointer || (IsMemberReference && Next != CE))
Flags &= ~(OpenMPOffloadMappingFlags::OMP_MAP_TO |
OpenMPOffloadMappingFlags::OMP_MAP_FROM |
OpenMPOffloadMappingFlags::OMP_MAP_ALWAYS |
OpenMPOffloadMappingFlags::OMP_MAP_DELETE |
OpenMPOffloadMappingFlags::OMP_MAP_CLOSE);
if (ShouldBeMemberOf) {
// Set placeholder value MEMBER_OF=FFFF to indicate that the flag
// should be later updated with the correct value of MEMBER_OF.
Flags |= OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF;
// From now on, all subsequent PTR_AND_OBJ entries should not be
// marked as MEMBER_OF.
ShouldBeMemberOf = false;
}
}
if (!IsMappingWholeStruct)
CombinedInfo.Types.push_back(Flags);
else
StructBaseCombinedInfo.Types.push_back(Flags);
}
// If we have encountered a member expression so far, keep track of the
// mapped member. If the parent is "*this", then the value declaration
// is nullptr.
if (EncounteredME) {
const auto *FD = cast<FieldDecl>(EncounteredME->getMemberDecl());
unsigned FieldIndex = FD->getFieldIndex();
// Update info about the lowest and highest elements for this struct
if (!PartialStruct.Base.isValid()) {
PartialStruct.LowestElem = {FieldIndex, LowestElem};
if (IsFinalArraySection) {
Address HB =
CGF.EmitArraySectionExpr(OASE, /*IsLowerBound=*/false)
.getAddress();
PartialStruct.HighestElem = {FieldIndex, HB};
} else {
PartialStruct.HighestElem = {FieldIndex, LowestElem};
}
PartialStruct.Base = BP;
PartialStruct.LB = BP;
} else if (FieldIndex < PartialStruct.LowestElem.first) {
PartialStruct.LowestElem = {FieldIndex, LowestElem};
} else if (FieldIndex > PartialStruct.HighestElem.first) {
if (IsFinalArraySection) {
Address HB =
CGF.EmitArraySectionExpr(OASE, /*IsLowerBound=*/false)
.getAddress();
PartialStruct.HighestElem = {FieldIndex, HB};
} else {
PartialStruct.HighestElem = {FieldIndex, LowestElem};
}
}
}
// Need to emit combined struct for array sections.
if (IsFinalArraySection || IsNonContiguous)
PartialStruct.IsArraySection = true;
// If we have a final array section, we are done with this expression.
if (IsFinalArraySection)
break;
// The pointer becomes the base for the next element.
if (Next != CE)
BP = IsMemberReference ? LowestElem : LB;
if (!IsPartialMapped)
IsExpressionFirstInfo = false;
IsCaptureFirstInfo = false;
FirstPointerInComplexData = false;
IsPrevMemberReference = IsMemberReference;
} else if (FirstPointerInComplexData) {
QualType Ty = Components.rbegin()
->getAssociatedDeclaration()
->getType()
.getNonReferenceType();
BP = CGF.EmitLoadOfPointer(BP, Ty->castAs<PointerType>());
FirstPointerInComplexData = false;
}
}
// If ran into the whole component - allocate the space for the whole
// record.
if (!EncounteredME)
PartialStruct.HasCompleteRecord = true;
if (!IsNonContiguous)
return;
const ASTContext &Context = CGF.getContext();
// For supporting stride in array section, we need to initialize the first
// dimension size as 1, first offset as 0, and first count as 1
MapValuesArrayTy CurOffsets = {llvm::ConstantInt::get(CGF.CGM.Int64Ty, 0)};
MapValuesArrayTy CurCounts = {llvm::ConstantInt::get(CGF.CGM.Int64Ty, 1)};
MapValuesArrayTy CurStrides;
MapValuesArrayTy DimSizes{llvm::ConstantInt::get(CGF.CGM.Int64Ty, 1)};
uint64_t ElementTypeSize;
// Collect Size information for each dimension and get the element size as
// the first Stride. For example, for `int arr[10][10]`, the DimSizes
// should be [10, 10] and the first stride is 4 btyes.
for (const OMPClauseMappableExprCommon::MappableComponent &Component :
Components) {
const Expr *AssocExpr = Component.getAssociatedExpression();
const auto *OASE = dyn_cast<ArraySectionExpr>(AssocExpr);
if (!OASE)
continue;
QualType Ty = ArraySectionExpr::getBaseOriginalType(OASE->getBase());
auto *CAT = Context.getAsConstantArrayType(Ty);
auto *VAT = Context.getAsVariableArrayType(Ty);
// We need all the dimension size except for the last dimension.
assert((VAT || CAT || &Component == &*Components.begin()) &&
"Should be either ConstantArray or VariableArray if not the "
"first Component");
// Get element size if CurStrides is empty.
if (CurStrides.empty()) {
const Type *ElementType = nullptr;
if (CAT)
ElementType = CAT->getElementType().getTypePtr();
else if (VAT)
ElementType = VAT->getElementType().getTypePtr();
else
assert(&Component == &*Components.begin() &&
"Only expect pointer (non CAT or VAT) when this is the "
"first Component");
// If ElementType is null, then it means the base is a pointer
// (neither CAT nor VAT) and we'll attempt to get ElementType again
// for next iteration.
if (ElementType) {
// For the case that having pointer as base, we need to remove one
// level of indirection.
if (&Component != &*Components.begin())
ElementType = ElementType->getPointeeOrArrayElementType();
ElementTypeSize =
Context.getTypeSizeInChars(ElementType).getQuantity();
CurStrides.push_back(
llvm::ConstantInt::get(CGF.Int64Ty, ElementTypeSize));
}
}
// Get dimension value except for the last dimension since we don't need
// it.
if (DimSizes.size() < Components.size() - 1) {
if (CAT)
DimSizes.push_back(
llvm::ConstantInt::get(CGF.Int64Ty, CAT->getZExtSize()));
else if (VAT)
DimSizes.push_back(CGF.Builder.CreateIntCast(
CGF.EmitScalarExpr(VAT->getSizeExpr()), CGF.Int64Ty,
/*IsSigned=*/false));
}
}
// Skip the dummy dimension since we have already have its information.
auto *DI = DimSizes.begin() + 1;
// Product of dimension.
llvm::Value *DimProd =
llvm::ConstantInt::get(CGF.CGM.Int64Ty, ElementTypeSize);
// Collect info for non-contiguous. Notice that offset, count, and stride
// are only meaningful for array-section, so we insert a null for anything
// other than array-section.
// Also, the size of offset, count, and stride are not the same as
// pointers, base_pointers, sizes, or dims. Instead, the size of offset,
// count, and stride are the same as the number of non-contiguous
// declaration in target update to/from clause.
for (const OMPClauseMappableExprCommon::MappableComponent &Component :
Components) {
const Expr *AssocExpr = Component.getAssociatedExpression();
if (const auto *AE = dyn_cast<ArraySubscriptExpr>(AssocExpr)) {
llvm::Value *Offset = CGF.Builder.CreateIntCast(
CGF.EmitScalarExpr(AE->getIdx()), CGF.Int64Ty,
/*isSigned=*/false);
CurOffsets.push_back(Offset);
CurCounts.push_back(llvm::ConstantInt::get(CGF.Int64Ty, /*V=*/1));
CurStrides.push_back(CurStrides.back());
continue;
}
const auto *OASE = dyn_cast<ArraySectionExpr>(AssocExpr);
if (!OASE)
continue;
// Offset
const Expr *OffsetExpr = OASE->getLowerBound();
llvm::Value *Offset = nullptr;
if (!OffsetExpr) {
// If offset is absent, then we just set it to zero.
Offset = llvm::ConstantInt::get(CGF.Int64Ty, 0);
} else {
Offset = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(OffsetExpr),
CGF.Int64Ty,
/*isSigned=*/false);
}
CurOffsets.push_back(Offset);
// Count
const Expr *CountExpr = OASE->getLength();
llvm::Value *Count = nullptr;
if (!CountExpr) {
// In Clang, once a high dimension is an array section, we construct all
// the lower dimension as array section, however, for case like
// arr[0:2][2], Clang construct the inner dimension as an array section
// but it actually is not in an array section form according to spec.
if (!OASE->getColonLocFirst().isValid() &&
!OASE->getColonLocSecond().isValid()) {
Count = llvm::ConstantInt::get(CGF.Int64Ty, 1);
} else {
// OpenMP 5.0, 2.1.5 Array Sections, Description.
// When the length is absent it defaults to ⌈(size
// lower-bound)/stride⌉, where size is the size of the array
// dimension.
const Expr *StrideExpr = OASE->getStride();
llvm::Value *Stride =
StrideExpr
? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(StrideExpr),
CGF.Int64Ty, /*isSigned=*/false)
: nullptr;
if (Stride)
Count = CGF.Builder.CreateUDiv(
CGF.Builder.CreateNUWSub(*DI, Offset), Stride);
else
Count = CGF.Builder.CreateNUWSub(*DI, Offset);
}
} else {
Count = CGF.EmitScalarExpr(CountExpr);
}
Count = CGF.Builder.CreateIntCast(Count, CGF.Int64Ty, /*isSigned=*/false);
CurCounts.push_back(Count);
// Stride_n' = Stride_n * (D_0 * D_1 ... * D_n-1) * Unit size
// Take `int arr[5][5][5]` and `arr[0:2:2][1:2:1][0:2:2]` as an example:
// Offset Count Stride
// D0 0 1 4 (int) <- dummy dimension
// D1 0 2 8 (2 * (1) * 4)
// D2 1 2 20 (1 * (1 * 5) * 4)
// D3 0 2 200 (2 * (1 * 5 * 4) * 4)
const Expr *StrideExpr = OASE->getStride();
llvm::Value *Stride =
StrideExpr
? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(StrideExpr),
CGF.Int64Ty, /*isSigned=*/false)
: nullptr;
DimProd = CGF.Builder.CreateNUWMul(DimProd, *(DI - 1));
if (Stride)
CurStrides.push_back(CGF.Builder.CreateNUWMul(DimProd, Stride));
else
CurStrides.push_back(DimProd);
if (DI != DimSizes.end())
++DI;
}
CombinedInfo.NonContigInfo.Offsets.push_back(CurOffsets);
CombinedInfo.NonContigInfo.Counts.push_back(CurCounts);
CombinedInfo.NonContigInfo.Strides.push_back(CurStrides);
}
/// Return the adjusted map modifiers if the declaration a capture refers to
/// appears in a first-private clause. This is expected to be used only with
/// directives that start with 'target'.
OpenMPOffloadMappingFlags
getMapModifiersForPrivateClauses(const CapturedStmt::Capture &Cap) const {
assert(Cap.capturesVariable() && "Expected capture by reference only!");
// A first private variable captured by reference will use only the
// 'private ptr' and 'map to' flag. Return the right flags if the captured
// declaration is known as first-private in this handler.
if (FirstPrivateDecls.count(Cap.getCapturedVar())) {
if (Cap.getCapturedVar()->getType()->isAnyPointerType())
return OpenMPOffloadMappingFlags::OMP_MAP_TO |
OpenMPOffloadMappingFlags::OMP_MAP_PTR_AND_OBJ;
return OpenMPOffloadMappingFlags::OMP_MAP_PRIVATE |
OpenMPOffloadMappingFlags::OMP_MAP_TO;
}
auto I = LambdasMap.find(Cap.getCapturedVar()->getCanonicalDecl());
if (I != LambdasMap.end())
// for map(to: lambda): using user specified map type.
return getMapTypeBits(
I->getSecond()->getMapType(), I->getSecond()->getMapTypeModifiers(),
/*MotionModifiers=*/{}, I->getSecond()->isImplicit(),
/*AddPtrFlag=*/false,
/*AddIsTargetParamFlag=*/false,
/*isNonContiguous=*/false);
return OpenMPOffloadMappingFlags::OMP_MAP_TO |
OpenMPOffloadMappingFlags::OMP_MAP_FROM;
}
void getPlainLayout(const CXXRecordDecl *RD,
llvm::SmallVectorImpl<const FieldDecl *> &Layout,
bool AsBase) const {
const CGRecordLayout &RL = CGF.getTypes().getCGRecordLayout(RD);
llvm::StructType *St =
AsBase ? RL.getBaseSubobjectLLVMType() : RL.getLLVMType();
unsigned NumElements = St->getNumElements();
llvm::SmallVector<
llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *>, 4>
RecordLayout(NumElements);
// Fill bases.
for (const auto &I : RD->bases()) {
if (I.isVirtual())
continue;
QualType BaseTy = I.getType();
const auto *Base = BaseTy->getAsCXXRecordDecl();
// Ignore empty bases.
if (isEmptyRecordForLayout(CGF.getContext(), BaseTy) ||
CGF.getContext()
.getASTRecordLayout(Base)
.getNonVirtualSize()
.isZero())
continue;
unsigned FieldIndex = RL.getNonVirtualBaseLLVMFieldNo(Base);
RecordLayout[FieldIndex] = Base;
}
// Fill in virtual bases.
for (const auto &I : RD->vbases()) {
QualType BaseTy = I.getType();
// Ignore empty bases.
if (isEmptyRecordForLayout(CGF.getContext(), BaseTy))
continue;
const auto *Base = BaseTy->getAsCXXRecordDecl();
unsigned FieldIndex = RL.getVirtualBaseIndex(Base);
if (RecordLayout[FieldIndex])
continue;
RecordLayout[FieldIndex] = Base;
}
// Fill in all the fields.
assert(!RD->isUnion() && "Unexpected union.");
for (const auto *Field : RD->fields()) {
// Fill in non-bitfields. (Bitfields always use a zero pattern, which we
// will fill in later.)
if (!Field->isBitField() &&
!isEmptyFieldForLayout(CGF.getContext(), Field)) {
unsigned FieldIndex = RL.getLLVMFieldNo(Field);
RecordLayout[FieldIndex] = Field;
}
}
for (const llvm::PointerUnion<const CXXRecordDecl *, const FieldDecl *>
&Data : RecordLayout) {
if (Data.isNull())
continue;
if (const auto *Base = dyn_cast<const CXXRecordDecl *>(Data))
getPlainLayout(Base, Layout, /*AsBase=*/true);
else
Layout.push_back(cast<const FieldDecl *>(Data));
}
}
/// Generate all the base pointers, section pointers, sizes, map types, and
/// mappers for the extracted mappable expressions (all included in \a
/// CombinedInfo). Also, for each item that relates with a device pointer, a
/// pair of the relevant declaration and index where it occurs is appended to
/// the device pointers info array.
void generateAllInfoForClauses(
ArrayRef<const OMPClause *> Clauses, MapCombinedInfoTy &CombinedInfo,
llvm::OpenMPIRBuilder &OMPBuilder,
const llvm::DenseSet<CanonicalDeclPtr<const Decl>> &SkipVarSet =
llvm::DenseSet<CanonicalDeclPtr<const Decl>>()) const {
// We have to process the component lists that relate with the same
// declaration in a single chunk so that we can generate the map flags
// correctly. Therefore, we organize all lists in a map.
enum MapKind { Present, Allocs, Other, Total };
llvm::MapVector<CanonicalDeclPtr<const Decl>,
SmallVector<SmallVector<MapInfo, 8>, 4>>
Info;
// Helper function to fill the information map for the different supported
// clauses.
auto &&InfoGen =
[&Info, &SkipVarSet](
const ValueDecl *D, MapKind Kind,
OMPClauseMappableExprCommon::MappableExprComponentListRef L,
OpenMPMapClauseKind MapType,
ArrayRef<OpenMPMapModifierKind> MapModifiers,
ArrayRef<OpenMPMotionModifierKind> MotionModifiers,
bool ReturnDevicePointer, bool IsImplicit, const ValueDecl *Mapper,
const Expr *VarRef = nullptr, bool ForDeviceAddr = false) {
if (SkipVarSet.contains(D))
return;
auto It = Info.try_emplace(D, Total).first;
It->second[Kind].emplace_back(
L, MapType, MapModifiers, MotionModifiers, ReturnDevicePointer,
IsImplicit, Mapper, VarRef, ForDeviceAddr);
};
for (const auto *Cl : Clauses) {
const auto *C = dyn_cast<OMPMapClause>(Cl);
if (!C)
continue;
MapKind Kind = Other;
if (llvm::is_contained(C->getMapTypeModifiers(),
OMPC_MAP_MODIFIER_present))
Kind = Present;
else if (C->getMapType() == OMPC_MAP_alloc)
Kind = Allocs;
const auto *EI = C->getVarRefs().begin();
for (const auto L : C->component_lists()) {
const Expr *E = (C->getMapLoc().isValid()) ? *EI : nullptr;
InfoGen(std::get<0>(L), Kind, std::get<1>(L), C->getMapType(),
C->getMapTypeModifiers(), {},
/*ReturnDevicePointer=*/false, C->isImplicit(), std::get<2>(L),
E);
++EI;
}
}
for (const auto *Cl : Clauses) {
const auto *C = dyn_cast<OMPToClause>(Cl);
if (!C)
continue;
MapKind Kind = Other;
if (llvm::is_contained(C->getMotionModifiers(),
OMPC_MOTION_MODIFIER_present))
Kind = Present;
const auto *EI = C->getVarRefs().begin();
for (const auto L : C->component_lists()) {
InfoGen(std::get<0>(L), Kind, std::get<1>(L), OMPC_MAP_to, {},
C->getMotionModifiers(), /*ReturnDevicePointer=*/false,
C->isImplicit(), std::get<2>(L), *EI);
++EI;
}
}
for (const auto *Cl : Clauses) {
const auto *C = dyn_cast<OMPFromClause>(Cl);
if (!C)
continue;
MapKind Kind = Other;
if (llvm::is_contained(C->getMotionModifiers(),
OMPC_MOTION_MODIFIER_present))
Kind = Present;
const auto *EI = C->getVarRefs().begin();
for (const auto L : C->component_lists()) {
InfoGen(std::get<0>(L), Kind, std::get<1>(L), OMPC_MAP_from, {},
C->getMotionModifiers(),
/*ReturnDevicePointer=*/false, C->isImplicit(), std::get<2>(L),
*EI);
++EI;
}
}
// Look at the use_device_ptr and use_device_addr clauses information and
// mark the existing map entries as such. If there is no map information for
// an entry in the use_device_ptr and use_device_addr list, we create one
// with map type 'alloc' and zero size section. It is the user fault if that
// was not mapped before. If there is no map information and the pointer is
// a struct member, then we defer the emission of that entry until the whole
// struct has been processed.
llvm::MapVector<CanonicalDeclPtr<const Decl>,
SmallVector<DeferredDevicePtrEntryTy, 4>>
DeferredInfo;
MapCombinedInfoTy UseDeviceDataCombinedInfo;
auto &&UseDeviceDataCombinedInfoGen =
[&UseDeviceDataCombinedInfo](const ValueDecl *VD, llvm::Value *Ptr,
CodeGenFunction &CGF, bool IsDevAddr) {
UseDeviceDataCombinedInfo.Exprs.push_back(VD);
UseDeviceDataCombinedInfo.BasePointers.emplace_back(Ptr);
UseDeviceDataCombinedInfo.DevicePtrDecls.emplace_back(VD);
UseDeviceDataCombinedInfo.DevicePointers.emplace_back(
IsDevAddr ? DeviceInfoTy::Address : DeviceInfoTy::Pointer);
UseDeviceDataCombinedInfo.Pointers.push_back(Ptr);
UseDeviceDataCombinedInfo.Sizes.push_back(
llvm::Constant::getNullValue(CGF.Int64Ty));
UseDeviceDataCombinedInfo.Types.push_back(
OpenMPOffloadMappingFlags::OMP_MAP_RETURN_PARAM);
UseDeviceDataCombinedInfo.Mappers.push_back(nullptr);
};
auto &&MapInfoGen =
[&DeferredInfo, &UseDeviceDataCombinedInfoGen,
&InfoGen](CodeGenFunction &CGF, const Expr *IE, const ValueDecl *VD,
OMPClauseMappableExprCommon::MappableExprComponentListRef
Components,
bool IsImplicit, bool IsDevAddr) {
// We didn't find any match in our map information - generate a zero
// size array section - if the pointer is a struct member we defer
// this action until the whole struct has been processed.
if (isa<MemberExpr>(IE)) {
// Insert the pointer into Info to be processed by
// generateInfoForComponentList. Because it is a member pointer
// without a pointee, no entry will be generated for it, therefore
// we need to generate one after the whole struct has been
// processed. Nonetheless, generateInfoForComponentList must be
// called to take the pointer into account for the calculation of
// the range of the partial struct.
InfoGen(nullptr, Other, Components, OMPC_MAP_unknown, {}, {},
/*ReturnDevicePointer=*/false, IsImplicit, nullptr, nullptr,
IsDevAddr);
DeferredInfo[nullptr].emplace_back(IE, VD, IsDevAddr);
} else {
llvm::Value *Ptr;
if (IsDevAddr) {
if (IE->isGLValue())
Ptr = CGF.EmitLValue(IE).getPointer(CGF);
else
Ptr = CGF.EmitScalarExpr(IE);
} else {
Ptr = CGF.EmitLoadOfScalar(CGF.EmitLValue(IE), IE->getExprLoc());
}
UseDeviceDataCombinedInfoGen(VD, Ptr, CGF, IsDevAddr);
}
};
auto &&IsMapInfoExist = [&Info](CodeGenFunction &CGF, const ValueDecl *VD,
const Expr *IE, bool IsDevAddr) -> bool {
// We potentially have map information for this declaration already.
// Look for the first set of components that refer to it. If found,
// return true.
// If the first component is a member expression, we have to look into
// 'this', which maps to null in the map of map information. Otherwise
// look directly for the information.
auto It = Info.find(isa<MemberExpr>(IE) ? nullptr : VD);
if (It != Info.end()) {
bool Found = false;
for (auto &Data : It->second) {
auto *CI = llvm::find_if(Data, [VD](const MapInfo &MI) {
return MI.Components.back().getAssociatedDeclaration() == VD;
});
// If we found a map entry, signal that the pointer has to be
// returned and move on to the next declaration. Exclude cases where
// the base pointer is mapped as array subscript, array section or
// array shaping. The base address is passed as a pointer to base in
// this case and cannot be used as a base for use_device_ptr list
// item.
if (CI != Data.end()) {
if (IsDevAddr) {
CI->ForDeviceAddr = IsDevAddr;
CI->ReturnDevicePointer = true;
Found = true;
break;
} else {
auto PrevCI = std::next(CI->Components.rbegin());
const auto *VarD = dyn_cast<VarDecl>(VD);
if (CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory() ||
isa<MemberExpr>(IE) ||
!VD->getType().getNonReferenceType()->isPointerType() ||
PrevCI == CI->Components.rend() ||
isa<MemberExpr>(PrevCI->getAssociatedExpression()) || !VarD ||
VarD->hasLocalStorage()) {
CI->ForDeviceAddr = IsDevAddr;
CI->ReturnDevicePointer = true;
Found = true;
break;
}
}
}
}
return Found;
}
return false;
};
// Look at the use_device_ptr clause information and mark the existing map
// entries as such. If there is no map information for an entry in the
// use_device_ptr list, we create one with map type 'alloc' and zero size
// section. It is the user fault if that was not mapped before. If there is
// no map information and the pointer is a struct member, then we defer the
// emission of that entry until the whole struct has been processed.
for (const auto *Cl : Clauses) {
const auto *C = dyn_cast<OMPUseDevicePtrClause>(Cl);
if (!C)
continue;
for (const auto L : C->component_lists()) {
OMPClauseMappableExprCommon::MappableExprComponentListRef Components =
std::get<1>(L);
assert(!Components.empty() &&
"Not expecting empty list of components!");
const ValueDecl *VD = Components.back().getAssociatedDeclaration();
VD = cast<ValueDecl>(VD->getCanonicalDecl());
const Expr *IE = Components.back().getAssociatedExpression();
if (IsMapInfoExist(CGF, VD, IE, /*IsDevAddr=*/false))
continue;
MapInfoGen(CGF, IE, VD, Components, C->isImplicit(),
/*IsDevAddr=*/false);
}
}
llvm::SmallDenseSet<CanonicalDeclPtr<const Decl>, 4> Processed;
for (const auto *Cl : Clauses) {
const auto *C = dyn_cast<OMPUseDeviceAddrClause>(Cl);
if (!C)
continue;
for (const auto L : C->component_lists()) {
OMPClauseMappableExprCommon::MappableExprComponentListRef Components =
std::get<1>(L);
assert(!std::get<1>(L).empty() &&
"Not expecting empty list of components!");
const ValueDecl *VD = std::get<1>(L).back().getAssociatedDeclaration();
if (!Processed.insert(VD).second)
continue;
VD = cast<ValueDecl>(VD->getCanonicalDecl());
const Expr *IE = std::get<1>(L).back().getAssociatedExpression();
if (IsMapInfoExist(CGF, VD, IE, /*IsDevAddr=*/true))
continue;
MapInfoGen(CGF, IE, VD, Components, C->isImplicit(),
/*IsDevAddr=*/true);
}
}
for (const auto &Data : Info) {
StructRangeInfoTy PartialStruct;
// Current struct information:
MapCombinedInfoTy CurInfo;
// Current struct base information:
MapCombinedInfoTy StructBaseCurInfo;
const Decl *D = Data.first;
const ValueDecl *VD = cast_or_null<ValueDecl>(D);
bool HasMapBasePtr = false;
bool HasMapArraySec = false;
if (VD && VD->getType()->isAnyPointerType()) {
for (const auto &M : Data.second) {
HasMapBasePtr = any_of(M, [](const MapInfo &L) {
return isa_and_present<DeclRefExpr>(L.VarRef);
});
HasMapArraySec = any_of(M, [](const MapInfo &L) {
return isa_and_present<ArraySectionExpr, ArraySubscriptExpr>(
L.VarRef);
});
if (HasMapBasePtr && HasMapArraySec)
break;
}
}
for (const auto &M : Data.second) {
for (const MapInfo &L : M) {
assert(!L.Components.empty() &&
"Not expecting declaration with no component lists.");
// Remember the current base pointer index.
unsigned CurrentBasePointersIdx = CurInfo.BasePointers.size();
unsigned StructBasePointersIdx =
StructBaseCurInfo.BasePointers.size();
CurInfo.NonContigInfo.IsNonContiguous =
L.Components.back().isNonContiguous();
generateInfoForComponentList(
L.MapType, L.MapModifiers, L.MotionModifiers, L.Components,
CurInfo, StructBaseCurInfo, PartialStruct,
/*IsFirstComponentList=*/false, L.IsImplicit,
/*GenerateAllInfoForClauses*/ true, L.Mapper, L.ForDeviceAddr, VD,
L.VarRef, /*OverlappedElements*/ {},
HasMapBasePtr && HasMapArraySec);
// If this entry relates to a device pointer, set the relevant
// declaration and add the 'return pointer' flag.
if (L.ReturnDevicePointer) {
// Check whether a value was added to either CurInfo or
// StructBaseCurInfo and error if no value was added to either of
// them:
assert((CurrentBasePointersIdx < CurInfo.BasePointers.size() ||
StructBasePointersIdx <
StructBaseCurInfo.BasePointers.size()) &&
"Unexpected number of mapped base pointers.");
// Choose a base pointer index which is always valid:
const ValueDecl *RelevantVD =
L.Components.back().getAssociatedDeclaration();
assert(RelevantVD &&
"No relevant declaration related with device pointer??");
// If StructBaseCurInfo has been updated this iteration then work on
// the first new entry added to it i.e. make sure that when multiple
// values are added to any of the lists, the first value added is
// being modified by the assignments below (not the last value
// added).
if (StructBasePointersIdx < StructBaseCurInfo.BasePointers.size()) {
StructBaseCurInfo.DevicePtrDecls[StructBasePointersIdx] =
RelevantVD;
StructBaseCurInfo.DevicePointers[StructBasePointersIdx] =
L.ForDeviceAddr ? DeviceInfoTy::Address
: DeviceInfoTy::Pointer;
StructBaseCurInfo.Types[StructBasePointersIdx] |=
OpenMPOffloadMappingFlags::OMP_MAP_RETURN_PARAM;
} else {
CurInfo.DevicePtrDecls[CurrentBasePointersIdx] = RelevantVD;
CurInfo.DevicePointers[CurrentBasePointersIdx] =
L.ForDeviceAddr ? DeviceInfoTy::Address
: DeviceInfoTy::Pointer;
CurInfo.Types[CurrentBasePointersIdx] |=
OpenMPOffloadMappingFlags::OMP_MAP_RETURN_PARAM;
}
}
}
}
// Append any pending zero-length pointers which are struct members and
// used with use_device_ptr or use_device_addr.
auto CI = DeferredInfo.find(Data.first);
if (CI != DeferredInfo.end()) {
for (const DeferredDevicePtrEntryTy &L : CI->second) {
llvm::Value *BasePtr;
llvm::Value *Ptr;
if (L.ForDeviceAddr) {
if (L.IE->isGLValue())
Ptr = this->CGF.EmitLValue(L.IE).getPointer(CGF);
else
Ptr = this->CGF.EmitScalarExpr(L.IE);
BasePtr = Ptr;
// Entry is RETURN_PARAM. Also, set the placeholder value
// MEMBER_OF=FFFF so that the entry is later updated with the
// correct value of MEMBER_OF.
CurInfo.Types.push_back(
OpenMPOffloadMappingFlags::OMP_MAP_RETURN_PARAM |
OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF);
} else {
BasePtr = this->CGF.EmitLValue(L.IE).getPointer(CGF);
Ptr = this->CGF.EmitLoadOfScalar(this->CGF.EmitLValue(L.IE),
L.IE->getExprLoc());
// Entry is PTR_AND_OBJ and RETURN_PARAM. Also, set the
// placeholder value MEMBER_OF=FFFF so that the entry is later
// updated with the correct value of MEMBER_OF.
CurInfo.Types.push_back(
OpenMPOffloadMappingFlags::OMP_MAP_PTR_AND_OBJ |
OpenMPOffloadMappingFlags::OMP_MAP_RETURN_PARAM |
OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF);
}
CurInfo.Exprs.push_back(L.VD);
CurInfo.BasePointers.emplace_back(BasePtr);
CurInfo.DevicePtrDecls.emplace_back(L.VD);
CurInfo.DevicePointers.emplace_back(
L.ForDeviceAddr ? DeviceInfoTy::Address : DeviceInfoTy::Pointer);
CurInfo.Pointers.push_back(Ptr);
CurInfo.Sizes.push_back(
llvm::Constant::getNullValue(this->CGF.Int64Ty));
CurInfo.Mappers.push_back(nullptr);
}
}
// Unify entries in one list making sure the struct mapping precedes the
// individual fields:
MapCombinedInfoTy UnionCurInfo;
UnionCurInfo.append(StructBaseCurInfo);
UnionCurInfo.append(CurInfo);
// If there is an entry in PartialStruct it means we have a struct with
// individual members mapped. Emit an extra combined entry.
if (PartialStruct.Base.isValid()) {
UnionCurInfo.NonContigInfo.Dims.push_back(0);
// Emit a combined entry:
emitCombinedEntry(CombinedInfo, UnionCurInfo.Types, PartialStruct,
/*IsMapThis*/ !VD, OMPBuilder, VD);
}
// We need to append the results of this capture to what we already have.
CombinedInfo.append(UnionCurInfo);
}
// Append data for use_device_ptr clauses.
CombinedInfo.append(UseDeviceDataCombinedInfo);
}
public:
MappableExprsHandler(const OMPExecutableDirective &Dir, CodeGenFunction &CGF)
: CurDir(&Dir), CGF(CGF) {
// Extract firstprivate clause information.
for (const auto *C : Dir.getClausesOfKind<OMPFirstprivateClause>())
for (const auto *D : C->varlist())
FirstPrivateDecls.try_emplace(
cast<VarDecl>(cast<DeclRefExpr>(D)->getDecl()), C->isImplicit());
// Extract implicit firstprivates from uses_allocators clauses.
for (const auto *C : Dir.getClausesOfKind<OMPUsesAllocatorsClause>()) {
for (unsigned I = 0, E = C->getNumberOfAllocators(); I < E; ++I) {
OMPUsesAllocatorsClause::Data D = C->getAllocatorData(I);
if (const auto *DRE = dyn_cast_or_null<DeclRefExpr>(D.AllocatorTraits))
FirstPrivateDecls.try_emplace(cast<VarDecl>(DRE->getDecl()),
/*Implicit=*/true);
else if (const auto *VD = dyn_cast<VarDecl>(
cast<DeclRefExpr>(D.Allocator->IgnoreParenImpCasts())
->getDecl()))
FirstPrivateDecls.try_emplace(VD, /*Implicit=*/true);
}
}
// Extract device pointer clause information.
for (const auto *C : Dir.getClausesOfKind<OMPIsDevicePtrClause>())
for (auto L : C->component_lists())
DevPointersMap[std::get<0>(L)].push_back(std::get<1>(L));
// Extract device addr clause information.
for (const auto *C : Dir.getClausesOfKind<OMPHasDeviceAddrClause>())
for (auto L : C->component_lists())
HasDevAddrsMap[std::get<0>(L)].push_back(std::get<1>(L));
// Extract map information.
for (const auto *C : Dir.getClausesOfKind<OMPMapClause>()) {
if (C->getMapType() != OMPC_MAP_to)
continue;
for (auto L : C->component_lists()) {
const ValueDecl *VD = std::get<0>(L);
const auto *RD = VD ? VD->getType()
.getCanonicalType()
.getNonReferenceType()
->getAsCXXRecordDecl()
: nullptr;
if (RD && RD->isLambda())
LambdasMap.try_emplace(std::get<0>(L), C);
}
}
}
/// Constructor for the declare mapper directive.
MappableExprsHandler(const OMPDeclareMapperDecl &Dir, CodeGenFunction &CGF)
: CurDir(&Dir), CGF(CGF) {}
/// Generate code for the combined entry if we have a partially mapped struct
/// and take care of the mapping flags of the arguments corresponding to
/// individual struct members.
void emitCombinedEntry(MapCombinedInfoTy &CombinedInfo,
MapFlagsArrayTy &CurTypes,
const StructRangeInfoTy &PartialStruct, bool IsMapThis,
llvm::OpenMPIRBuilder &OMPBuilder,
const ValueDecl *VD = nullptr,
bool NotTargetParams = true) const {
if (CurTypes.size() == 1 &&
((CurTypes.back() & OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF) !=
OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF) &&
!PartialStruct.IsArraySection)
return;
Address LBAddr = PartialStruct.LowestElem.second;
Address HBAddr = PartialStruct.HighestElem.second;
if (PartialStruct.HasCompleteRecord) {
LBAddr = PartialStruct.LB;
HBAddr = PartialStruct.LB;
}
CombinedInfo.Exprs.push_back(VD);
// Base is the base of the struct
CombinedInfo.BasePointers.push_back(PartialStruct.Base.emitRawPointer(CGF));
CombinedInfo.DevicePtrDecls.push_back(nullptr);
CombinedInfo.DevicePointers.push_back(DeviceInfoTy::None);
// Pointer is the address of the lowest element
llvm::Value *LB = LBAddr.emitRawPointer(CGF);
const CXXMethodDecl *MD =
CGF.CurFuncDecl ? dyn_cast<CXXMethodDecl>(CGF.CurFuncDecl) : nullptr;
const CXXRecordDecl *RD = MD ? MD->getParent() : nullptr;
bool HasBaseClass = RD && IsMapThis ? RD->getNumBases() > 0 : false;
// There should not be a mapper for a combined entry.
if (HasBaseClass) {
// OpenMP 5.2 148:21:
// If the target construct is within a class non-static member function,
// and a variable is an accessible data member of the object for which the
// non-static data member function is invoked, the variable is treated as
// if the this[:1] expression had appeared in a map clause with a map-type
// of tofrom.
// Emit this[:1]
CombinedInfo.Pointers.push_back(PartialStruct.Base.emitRawPointer(CGF));
QualType Ty = MD->getFunctionObjectParameterType();
llvm::Value *Size =
CGF.Builder.CreateIntCast(CGF.getTypeSize(Ty), CGF.Int64Ty,
/*isSigned=*/true);
CombinedInfo.Sizes.push_back(Size);
} else {
CombinedInfo.Pointers.push_back(LB);
// Size is (addr of {highest+1} element) - (addr of lowest element)
llvm::Value *HB = HBAddr.emitRawPointer(CGF);
llvm::Value *HAddr = CGF.Builder.CreateConstGEP1_32(
HBAddr.getElementType(), HB, /*Idx0=*/1);
llvm::Value *CLAddr = CGF.Builder.CreatePointerCast(LB, CGF.VoidPtrTy);
llvm::Value *CHAddr = CGF.Builder.CreatePointerCast(HAddr, CGF.VoidPtrTy);
llvm::Value *Diff = CGF.Builder.CreatePtrDiff(CGF.Int8Ty, CHAddr, CLAddr);
llvm::Value *Size = CGF.Builder.CreateIntCast(Diff, CGF.Int64Ty,
/*isSigned=*/false);
CombinedInfo.Sizes.push_back(Size);
}
CombinedInfo.Mappers.push_back(nullptr);
// Map type is always TARGET_PARAM, if generate info for captures.
CombinedInfo.Types.push_back(
NotTargetParams ? OpenMPOffloadMappingFlags::OMP_MAP_NONE
: !PartialStruct.PreliminaryMapData.BasePointers.empty()
? OpenMPOffloadMappingFlags::OMP_MAP_PTR_AND_OBJ
: OpenMPOffloadMappingFlags::OMP_MAP_TARGET_PARAM);
// If any element has the present modifier, then make sure the runtime
// doesn't attempt to allocate the struct.
if (CurTypes.end() !=
llvm::find_if(CurTypes, [](OpenMPOffloadMappingFlags Type) {
return static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>(
Type & OpenMPOffloadMappingFlags::OMP_MAP_PRESENT);
}))
CombinedInfo.Types.back() |= OpenMPOffloadMappingFlags::OMP_MAP_PRESENT;
// Remove TARGET_PARAM flag from the first element
(*CurTypes.begin()) &= ~OpenMPOffloadMappingFlags::OMP_MAP_TARGET_PARAM;
// If any element has the ompx_hold modifier, then make sure the runtime
// uses the hold reference count for the struct as a whole so that it won't
// be unmapped by an extra dynamic reference count decrement. Add it to all
// elements as well so the runtime knows which reference count to check
// when determining whether it's time for device-to-host transfers of
// individual elements.
if (CurTypes.end() !=
llvm::find_if(CurTypes, [](OpenMPOffloadMappingFlags Type) {
return static_cast<std::underlying_type_t<OpenMPOffloadMappingFlags>>(
Type & OpenMPOffloadMappingFlags::OMP_MAP_OMPX_HOLD);
})) {
CombinedInfo.Types.back() |= OpenMPOffloadMappingFlags::OMP_MAP_OMPX_HOLD;
for (auto &M : CurTypes)
M |= OpenMPOffloadMappingFlags::OMP_MAP_OMPX_HOLD;
}
// All other current entries will be MEMBER_OF the combined entry
// (except for PTR_AND_OBJ entries which do not have a placeholder value
// 0xFFFF in the MEMBER_OF field).
OpenMPOffloadMappingFlags MemberOfFlag =
OMPBuilder.getMemberOfFlag(CombinedInfo.BasePointers.size() - 1);
for (auto &M : CurTypes)
OMPBuilder.setCorrectMemberOfFlag(M, MemberOfFlag);
}
/// Generate all the base pointers, section pointers, sizes, map types, and
/// mappers for the extracted mappable expressions (all included in \a
/// CombinedInfo). Also, for each item that relates with a device pointer, a
/// pair of the relevant declaration and index where it occurs is appended to
/// the device pointers info array.
void generateAllInfo(
MapCombinedInfoTy &CombinedInfo, llvm::OpenMPIRBuilder &OMPBuilder,
const llvm::DenseSet<CanonicalDeclPtr<const Decl>> &SkipVarSet =
llvm::DenseSet<CanonicalDeclPtr<const Decl>>()) const {
assert(isa<const OMPExecutableDirective *>(CurDir) &&
"Expect a executable directive");
const auto *CurExecDir = cast<const OMPExecutableDirective *>(CurDir);
generateAllInfoForClauses(CurExecDir->clauses(), CombinedInfo, OMPBuilder,
SkipVarSet);
}
/// Generate all the base pointers, section pointers, sizes, map types, and
/// mappers for the extracted map clauses of user-defined mapper (all included
/// in \a CombinedInfo).
void generateAllInfoForMapper(MapCombinedInfoTy &CombinedInfo,
llvm::OpenMPIRBuilder &OMPBuilder) const {
assert(isa<const OMPDeclareMapperDecl *>(CurDir) &&
"Expect a declare mapper directive");
const auto *CurMapperDir = cast<const OMPDeclareMapperDecl *>(CurDir);
generateAllInfoForClauses(CurMapperDir->clauses(), CombinedInfo,
OMPBuilder);
}
/// Emit capture info for lambdas for variables captured by reference.
void generateInfoForLambdaCaptures(
const ValueDecl *VD, llvm::Value *Arg, MapCombinedInfoTy &CombinedInfo,
llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers) const {
QualType VDType = VD->getType().getCanonicalType().getNonReferenceType();
const auto *RD = VDType->getAsCXXRecordDecl();
if (!RD || !RD->isLambda())
return;
Address VDAddr(Arg, CGF.ConvertTypeForMem(VDType),
CGF.getContext().getDeclAlign(VD));
LValue VDLVal = CGF.MakeAddrLValue(VDAddr, VDType);
llvm::DenseMap<const ValueDecl *, FieldDecl *> Captures;
FieldDecl *ThisCapture = nullptr;
RD->getCaptureFields(Captures, ThisCapture);
if (ThisCapture) {
LValue ThisLVal =
CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
LValue ThisLValVal = CGF.EmitLValueForField(VDLVal, ThisCapture);
LambdaPointers.try_emplace(ThisLVal.getPointer(CGF),
VDLVal.getPointer(CGF));
CombinedInfo.Exprs.push_back(VD);
CombinedInfo.BasePointers.push_back(ThisLVal.getPointer(CGF));
CombinedInfo.DevicePtrDecls.push_back(nullptr);
CombinedInfo.DevicePointers.push_back(DeviceInfoTy::None);
CombinedInfo.Pointers.push_back(ThisLValVal.getPointer(CGF));
CombinedInfo.Sizes.push_back(
CGF.Builder.CreateIntCast(CGF.getTypeSize(CGF.getContext().VoidPtrTy),
CGF.Int64Ty, /*isSigned=*/true));
CombinedInfo.Types.push_back(
OpenMPOffloadMappingFlags::OMP_MAP_PTR_AND_OBJ |
OpenMPOffloadMappingFlags::OMP_MAP_LITERAL |
OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF |
OpenMPOffloadMappingFlags::OMP_MAP_IMPLICIT);
CombinedInfo.Mappers.push_back(nullptr);
}
for (const LambdaCapture &LC : RD->captures()) {
if (!LC.capturesVariable())
continue;
const VarDecl *VD = cast<VarDecl>(LC.getCapturedVar());
if (LC.getCaptureKind() != LCK_ByRef && !VD->getType()->isPointerType())
continue;
auto It = Captures.find(VD);
assert(It != Captures.end() && "Found lambda capture without field.");
LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
if (LC.getCaptureKind() == LCK_ByRef) {
LValue VarLValVal = CGF.EmitLValueForField(VDLVal, It->second);
LambdaPointers.try_emplace(VarLVal.getPointer(CGF),
VDLVal.getPointer(CGF));
CombinedInfo.Exprs.push_back(VD);
CombinedInfo.BasePointers.push_back(VarLVal.getPointer(CGF));
CombinedInfo.DevicePtrDecls.push_back(nullptr);
CombinedInfo.DevicePointers.push_back(DeviceInfoTy::None);
CombinedInfo.Pointers.push_back(VarLValVal.getPointer(CGF));
CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
CGF.getTypeSize(
VD->getType().getCanonicalType().getNonReferenceType()),
CGF.Int64Ty, /*isSigned=*/true));
} else {
RValue VarRVal = CGF.EmitLoadOfLValue(VarLVal, RD->getLocation());
LambdaPointers.try_emplace(VarLVal.getPointer(CGF),
VDLVal.getPointer(CGF));
CombinedInfo.Exprs.push_back(VD);
CombinedInfo.BasePointers.push_back(VarLVal.getPointer(CGF));
CombinedInfo.DevicePtrDecls.push_back(nullptr);
CombinedInfo.DevicePointers.push_back(DeviceInfoTy::None);
CombinedInfo.Pointers.push_back(VarRVal.getScalarVal());
CombinedInfo.Sizes.push_back(llvm::ConstantInt::get(CGF.Int64Ty, 0));
}
CombinedInfo.Types.push_back(
OpenMPOffloadMappingFlags::OMP_MAP_PTR_AND_OBJ |
OpenMPOffloadMappingFlags::OMP_MAP_LITERAL |
OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF |
OpenMPOffloadMappingFlags::OMP_MAP_IMPLICIT);
CombinedInfo.Mappers.push_back(nullptr);
}
}
/// Set correct indices for lambdas captures.
void adjustMemberOfForLambdaCaptures(
llvm::OpenMPIRBuilder &OMPBuilder,
const llvm::DenseMap<llvm::Value *, llvm::Value *> &LambdaPointers,
MapBaseValuesArrayTy &BasePointers, MapValuesArrayTy &Pointers,
MapFlagsArrayTy &Types) const {
for (unsigned I = 0, E = Types.size(); I < E; ++I) {
// Set correct member_of idx for all implicit lambda captures.
if (Types[I] != (OpenMPOffloadMappingFlags::OMP_MAP_PTR_AND_OBJ |
OpenMPOffloadMappingFlags::OMP_MAP_LITERAL |
OpenMPOffloadMappingFlags::OMP_MAP_MEMBER_OF |
OpenMPOffloadMappingFlags::OMP_MAP_IMPLICIT))
continue;
llvm::Value *BasePtr = LambdaPointers.lookup(BasePointers[I]);
assert(BasePtr && "Unable to find base lambda address.");
int TgtIdx = -1;
for (unsigned J = I; J > 0; --J) {
unsigned Idx = J - 1;
if (Pointers[Idx] != BasePtr)
continue;
TgtIdx = Idx;
break;
}
assert(TgtIdx != -1 && "Unable to find parent lambda.");
// All other current entries will be MEMBER_OF the combined entry
// (except for PTR_AND_OBJ entries which do not have a placeholder value
// 0xFFFF in the MEMBER_OF field).
OpenMPOffloadMappingFlags MemberOfFlag =
OMPBuilder.getMemberOfFlag(TgtIdx);
OMPBuilder.setCorrectMemberOfFlag(Types[I], MemberOfFlag);
}
}
/// Generate the base pointers, section pointers, sizes, map types, and
/// mappers associated to a given capture (all included in \a CombinedInfo).
void generateInfoForCapture(const CapturedStmt::Capture *Cap,
llvm::Value *Arg, MapCombinedInfoTy &CombinedInfo,
StructRangeInfoTy &PartialStruct) const {
assert(!Cap->capturesVariableArrayType() &&
"Not expecting to generate map info for a variable array type!");
// We need to know when we generating information for the first component
const ValueDecl *VD = Cap->capturesThis()
? nullptr
: Cap->getCapturedVar()->getCanonicalDecl();
// for map(to: lambda): skip here, processing it in
// generateDefaultMapInfo
if (LambdasMap.count(VD))
return;
// If this declaration appears in a is_device_ptr clause we just have to
// pass the pointer by value. If it is a reference to a declaration, we just
// pass its value.
if (VD && (DevPointersMap.count(VD) || HasDevAddrsMap.count(VD))) {
CombinedInfo.Exprs.push_back(VD);
CombinedInfo.BasePointers.emplace_back(Arg);
CombinedInfo.DevicePtrDecls.emplace_back(VD);
CombinedInfo.DevicePointers.emplace_back(DeviceInfoTy::Pointer);
CombinedInfo.Pointers.push_back(Arg);
CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
CGF.getTypeSize(CGF.getContext().VoidPtrTy), CGF.Int64Ty,
/*isSigned=*/true));
CombinedInfo.Types.push_back(
OpenMPOffloadMappingFlags::OMP_MAP_LITERAL |
OpenMPOffloadMappingFlags::OMP_MAP_TARGET_PARAM);
CombinedInfo.Mappers.push_back(nullptr);
return;
}
using MapData =
std::tuple<OMPClauseMappableExprCommon::MappableExprComponentListRef,
OpenMPMapClauseKind, ArrayRef<OpenMPMapModifierKind>, bool,
const ValueDecl *, const Expr *>;
SmallVector<MapData, 4> DeclComponentLists;
// For member fields list in is_device_ptr, store it in
// DeclComponentLists for generating components info.
static const OpenMPMapModifierKind Unknown = OMPC_MAP_MODIFIER_unknown;
auto It = DevPointersMap.find(VD);
if (It != DevPointersMap.end())
for (const auto &MCL : It->second)
DeclComponentLists.emplace_back(MCL, OMPC_MAP_to, Unknown,
/*IsImpicit = */ true, nullptr,
nullptr);
auto I = HasDevAddrsMap.find(VD);
if (I != HasDevAddrsMap.end())
for (const auto &MCL : I->second)
DeclComponentLists.emplace_back(MCL, OMPC_MAP_tofrom, Unknown,
/*IsImpicit = */ true, nullptr,
nullptr);
assert(isa<const OMPExecutableDirective *>(CurDir) &&
"Expect a executable directive");
const auto *CurExecDir = cast<const OMPExecutableDirective *>(CurDir);
bool HasMapBasePtr = false;
bool HasMapArraySec = false;
for (const auto *C : CurExecDir->getClausesOfKind<OMPMapClause>()) {
const auto *EI = C->getVarRefs().begin();
for (const auto L : C->decl_component_lists(VD)) {
const ValueDecl *VDecl, *Mapper;
// The Expression is not correct if the mapping is implicit
const Expr *E = (C->getMapLoc().isValid()) ? *EI : nullptr;
OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
std::tie(VDecl, Components, Mapper) = L;
assert(VDecl == VD && "We got information for the wrong declaration??");
assert(!Components.empty() &&
"Not expecting declaration with no component lists.");
if (VD && E && VD->getType()->isAnyPointerType() && isa<DeclRefExpr>(E))
HasMapBasePtr = true;
if (VD && E && VD->getType()->isAnyPointerType() &&
(isa<ArraySectionExpr>(E) || isa<ArraySubscriptExpr>(E)))
HasMapArraySec = true;
DeclComponentLists.emplace_back(Components, C->getMapType(),
C->getMapTypeModifiers(),
C->isImplicit(), Mapper, E);
++EI;
}
}
llvm::stable_sort(DeclComponentLists, [](const MapData &LHS,
const MapData &RHS) {
ArrayRef<OpenMPMapModifierKind> MapModifiers = std::get<2>(LHS);
OpenMPMapClauseKind MapType = std::get<1>(RHS);
bool HasPresent =
llvm::is_contained(MapModifiers, clang::OMPC_MAP_MODIFIER_present);
bool HasAllocs = MapType == OMPC_MAP_alloc;
MapModifiers = std::get<2>(RHS);
MapType = std::get<1>(LHS);
bool HasPresentR =
llvm::is_contained(MapModifiers, clang::OMPC_MAP_MODIFIER_present);
bool HasAllocsR = MapType == OMPC_MAP_alloc;
return (HasPresent && !HasPresentR) || (HasAllocs && !HasAllocsR);
});
// Find overlapping elements (including the offset from the base element).
llvm::SmallDenseMap<
const MapData *,
llvm::SmallVector<
OMPClauseMappableExprCommon::MappableExprComponentListRef, 4>,
4>
OverlappedData;
size_t Count = 0;
for (const MapData &L : DeclComponentLists) {
OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
OpenMPMapClauseKind MapType;
ArrayRef<OpenMPMapModifierKind> MapModifiers;
bool IsImplicit;
const ValueDecl *Mapper;
const Expr *VarRef;
std::tie(Components, MapType, MapModifiers, IsImplicit, Mapper, VarRef) =
L;
++Count;
for (const MapData &L1 : ArrayRef(DeclComponentLists).slice(Count)) {
OMPClauseMappableExprCommon::MappableExprComponentListRef Components1;
std::tie(Components1, MapType, MapModifiers, IsImplicit, Mapper,
VarRef) = L1;
auto CI = Components.rbegin();
auto CE = Components.rend();
auto SI = Components1.rbegin();
auto SE = Components1.rend();
for (; CI != CE && SI != SE; ++CI, ++SI) {
if (CI->getAssociatedExpression()->getStmtClass() !=
SI->getAssociatedExpression()->getStmtClass())
break;
// Are we dealing with different variables/fields?
if (CI->getAssociatedDeclaration() != SI->getAssociatedDeclaration())
break;
}
// Found overlapping if, at least for one component, reached the head
// of the components list.
if (CI == CE || SI == SE) {
// Ignore it if it is the same component.
if (CI == CE && SI == SE)
continue;
const auto It = (SI == SE) ? CI : SI;
// If one component is a pointer and another one is a kind of
// dereference of this pointer (array subscript, section, dereference,
// etc.), it is not an overlapping.
// Same, if one component is a base and another component is a
// dereferenced pointer memberexpr with the same base.
if (!isa<MemberExpr>(It->getAssociatedExpression()) ||
(std::prev(It)->getAssociatedDeclaration() &&
std::prev(It)
->getAssociatedDeclaration()
->getType()
->isPointerType()) ||
(It->getAssociatedDeclaration() &&
It->getAssociatedDeclaration()->getType()->isPointerType() &&
std::next(It) != CE && std::next(It) != SE))
continue;
const MapData &BaseData = CI == CE ? L : L1;
OMPClauseMappableExprCommon::MappableExprComponentListRef SubData =
SI == SE ? Components : Components1;
OverlappedData[&BaseData].push_back(SubData);
}
}
}
// Sort the overlapped elements for each item.
llvm::SmallVector<const FieldDecl *, 4> Layout;
if (!OverlappedData.empty()) {
const Type *BaseType = VD->getType().getCanonicalType().getTypePtr();
const Type *OrigType = BaseType->getPointeeOrArrayElementType();
while (BaseType != OrigType) {
BaseType = OrigType->getCanonicalTypeInternal().getTypePtr();
OrigType = BaseType->getPointeeOrArrayElementType();
}
if (const auto *CRD = BaseType->getAsCXXRecordDecl())
getPlainLayout(CRD, Layout, /*AsBase=*/false);
else {
const auto *RD = BaseType->getAsRecordDecl();
Layout.append(RD->field_begin(), RD->field_end());
}
}
for (auto &Pair : OverlappedData) {
llvm::stable_sort(
Pair.getSecond(),
[&Layout](
OMPClauseMappableExprCommon::MappableExprComponentListRef First,
OMPClauseMappableExprCommon::MappableExprComponentListRef
Second) {
auto CI = First.rbegin();
auto CE = First.rend();
auto SI = Second.rbegin();
auto SE = Second.rend();
for (; CI != CE && SI != SE; ++CI, ++SI) {
if (CI->getAssociatedExpression()->getStmtClass() !=
SI->getAssociatedExpression()->getStmtClass())
break;
// Are we dealing with different variables/fields?
if (CI->getAssociatedDeclaration() !=
SI->getAssociatedDeclaration())
break;
}
// Lists contain the same elements.
if (CI == CE && SI == SE)
return false;
// List with less elements is less than list with more elements.
if (CI == CE || SI == SE)
return CI == CE;
const auto *FD1 = cast<FieldDecl>(CI->getAssociatedDeclaration());
const auto *FD2 = cast<FieldDecl>(SI->getAssociatedDeclaration());
if (FD1->getParent() == FD2->getParent())
return FD1->getFieldIndex() < FD2->getFieldIndex();
const auto *It =
llvm::find_if(Layout, [FD1, FD2](const FieldDecl *FD) {
return FD == FD1 || FD == FD2;
});
return *It == FD1;
});
}
// Associated with a capture, because the mapping flags depend on it.
// Go through all of the elements with the overlapped elements.
bool IsFirstComponentList = true;
MapCombinedInfoTy StructBaseCombinedInfo;
for (const auto &Pair : OverlappedData) {
const MapData &L = *Pair.getFirst();
OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
OpenMPMapClauseKind MapType;
ArrayRef<OpenMPMapModifierKind> MapModifiers;
bool IsImplicit;
const ValueDecl *Mapper;
const Expr *VarRef;
std::tie(Components, MapType, MapModifiers, IsImplicit, Mapper, VarRef) =
L;
ArrayRef<OMPClauseMappableExprCommon::MappableExprComponentListRef>
OverlappedComponents = Pair.getSecond();
generateInfoForComponentList(
MapType, MapModifiers, {}, Components, CombinedInfo,
StructBaseCombinedInfo, PartialStruct, IsFirstComponentList,
IsImplicit, /*GenerateAllInfoForClauses*/ false, Mapper,
/*ForDeviceAddr=*/false, VD, VarRef, OverlappedComponents);
IsFirstComponentList = false;
}
// Go through other elements without overlapped elements.
for (const MapData &L : DeclComponentLists) {
OMPClauseMappableExprCommon::MappableExprComponentListRef Components;
OpenMPMapClauseKind MapType;
ArrayRef<OpenMPMapModifierKind> MapModifiers;
bool IsImplicit;
const ValueDecl *Mapper;
const Expr *VarRef;
std::tie(Components, MapType, MapModifiers, IsImplicit, Mapper, VarRef) =
L;
auto It = OverlappedData.find(&L);
if (It == OverlappedData.end())
generateInfoForComponentList(
MapType, MapModifiers, {}, Components, CombinedInfo,
StructBaseCombinedInfo, PartialStruct, IsFirstComponentList,
IsImplicit, /*GenerateAllInfoForClauses*/ false, Mapper,
/*ForDeviceAddr=*/false, VD, VarRef,
/*OverlappedElements*/ {}, HasMapBasePtr && HasMapArraySec);
IsFirstComponentList = false;
}
}
/// Generate the default map information for a given capture \a CI,
/// record field declaration \a RI and captured value \a CV.
void generateDefaultMapInfo(const CapturedStmt::Capture &CI,
const FieldDecl &RI, llvm::Value *CV,
MapCombinedInfoTy &CombinedInfo) const {
bool IsImplicit = true;
// Do the default mapping.
if (CI.capturesThis()) {
CombinedInfo.Exprs.push_back(nullptr);
CombinedInfo.BasePointers.push_back(CV);
CombinedInfo.DevicePtrDecls.push_back(nullptr);
CombinedInfo.DevicePointers.push_back(DeviceInfoTy::None);
CombinedInfo.Pointers.push_back(CV);
const auto *PtrTy = cast<PointerType>(RI.getType().getTypePtr());
CombinedInfo.Sizes.push_back(
CGF.Builder.CreateIntCast(CGF.getTypeSize(PtrTy->getPointeeType()),
CGF.Int64Ty, /*isSigned=*/true));
// Default map type.
CombinedInfo.Types.push_back(OpenMPOffloadMappingFlags::OMP_MAP_TO |
OpenMPOffloadMappingFlags::OMP_MAP_FROM);
} else if (CI.capturesVariableByCopy()) {
const VarDecl *VD = CI.getCapturedVar();
CombinedInfo.Exprs.push_back(VD->getCanonicalDecl());
CombinedInfo.BasePointers.push_back(CV);
CombinedInfo.DevicePtrDecls.push_back(nullptr);
CombinedInfo.DevicePointers.push_back(DeviceInfoTy::None);
CombinedInfo.Pointers.push_back(CV);
if (!RI.getType()->isAnyPointerType()) {
// We have to signal to the runtime captures passed by value that are
// not pointers.
CombinedInfo.Types.push_back(
OpenMPOffloadMappingFlags::OMP_MAP_LITERAL);
CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
CGF.getTypeSize(RI.getType()), CGF.Int64Ty, /*isSigned=*/true));
} else {
// Pointers are implicitly mapped with a zero size and no flags
// (other than first map that is added for all implicit maps).
CombinedInfo.Types.push_back(OpenMPOffloadMappingFlags::OMP_MAP_NONE);
CombinedInfo.Sizes.push_back(llvm::Constant::getNullValue(CGF.Int64Ty));
}
auto I = FirstPrivateDecls.find(VD);
if (I != FirstPrivateDecls.end())
IsImplicit = I->getSecond();
} else {
assert(CI.capturesVariable() && "Expected captured reference.");
const auto *PtrTy = cast<ReferenceType>(RI.getType().getTypePtr());
QualType ElementType = PtrTy->getPointeeType();
CombinedInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
CGF.getTypeSize(ElementType), CGF.Int64Ty, /*isSigned=*/true));
// The default map type for a scalar/complex type is 'to' because by
// default the value doesn't have to be retrieved. For an aggregate
// type, the default is 'tofrom'.
CombinedInfo.Types.push_back(getMapModifiersForPrivateClauses(CI));
const VarDecl *VD = CI.getCapturedVar();
auto I = FirstPrivateDecls.find(VD);
CombinedInfo.Exprs.push_back(VD->getCanonicalDecl());
CombinedInfo.BasePointers.push_back(CV);
CombinedInfo.DevicePtrDecls.push_back(nullptr);
CombinedInfo.DevicePointers.push_back(DeviceInfoTy::None);
if (I != FirstPrivateDecls.end() && ElementType->isAnyPointerType()) {
Address PtrAddr = CGF.EmitLoadOfReference(CGF.MakeAddrLValue(
CV, ElementType, CGF.getContext().getDeclAlign(VD),
AlignmentSource::Decl));
CombinedInfo.Pointers.push_back(PtrAddr.emitRawPointer(CGF));
} else {
CombinedInfo.Pointers.push_back(CV);
}
if (I != FirstPrivateDecls.end())
IsImplicit = I->getSecond();
}
// Every default map produces a single argument which is a target parameter.
CombinedInfo.Types.back() |=
OpenMPOffloadMappingFlags::OMP_MAP_TARGET_PARAM;
// Add flag stating this is an implicit map.
if (IsImplicit)
CombinedInfo.Types.back() |= OpenMPOffloadMappingFlags::OMP_MAP_IMPLICIT;
// No user-defined mapper for default mapping.
CombinedInfo.Mappers.push_back(nullptr);
}
};
} // anonymous namespace
// Try to extract the base declaration from a `this->x` expression if possible.
static ValueDecl *getDeclFromThisExpr(const Expr *E) {
if (!E)
return nullptr;
if (const auto *OASE = dyn_cast<ArraySectionExpr>(E->IgnoreParenCasts()))
if (const MemberExpr *ME =
dyn_cast<MemberExpr>(OASE->getBase()->IgnoreParenImpCasts()))
return ME->getMemberDecl();
return nullptr;
}
/// Emit a string constant containing the names of the values mapped to the
/// offloading runtime library.
static llvm::Constant *
emitMappingInformation(CodeGenFunction &CGF, llvm::OpenMPIRBuilder &OMPBuilder,
MappableExprsHandler::MappingExprInfo &MapExprs) {
uint32_t SrcLocStrSize;
if (!MapExprs.getMapDecl() && !MapExprs.getMapExpr())
return OMPBuilder.getOrCreateDefaultSrcLocStr(SrcLocStrSize);
SourceLocation Loc;
if (!MapExprs.getMapDecl() && MapExprs.getMapExpr()) {
if (const ValueDecl *VD = getDeclFromThisExpr(MapExprs.getMapExpr()))
Loc = VD->getLocation();
else
Loc = MapExprs.getMapExpr()->getExprLoc();
} else {
Loc = MapExprs.getMapDecl()->getLocation();
}
std::string ExprName;
if (MapExprs.getMapExpr()) {
PrintingPolicy P(CGF.getContext().getLangOpts());
llvm::raw_string_ostream OS(ExprName);
MapExprs.getMapExpr()->printPretty(OS, nullptr, P);
} else {
ExprName = MapExprs.getMapDecl()->getNameAsString();
}
PresumedLoc PLoc = CGF.getContext().getSourceManager().getPresumedLoc(Loc);
return OMPBuilder.getOrCreateSrcLocStr(PLoc.getFilename(), ExprName,
PLoc.getLine(), PLoc.getColumn(),
SrcLocStrSize);
}
/// Emit the arrays used to pass the captures and map information to the
/// offloading runtime library. If there is no map or capture information,
/// return nullptr by reference.
static void emitOffloadingArraysAndArgs(
CodeGenFunction &CGF, MappableExprsHandler::MapCombinedInfoTy &CombinedInfo,
CGOpenMPRuntime::TargetDataInfo &Info, llvm::OpenMPIRBuilder &OMPBuilder,
bool IsNonContiguous = false, bool ForEndCall = false) {
CodeGenModule &CGM = CGF.CGM;
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
InsertPointTy AllocaIP(CGF.AllocaInsertPt->getParent(),
CGF.AllocaInsertPt->getIterator());
InsertPointTy CodeGenIP(CGF.Builder.GetInsertBlock(),
CGF.Builder.GetInsertPoint());
auto DeviceAddrCB = [&](unsigned int I, llvm::Value *NewDecl) {
if (const ValueDecl *DevVD = CombinedInfo.DevicePtrDecls[I]) {
Info.CaptureDeviceAddrMap.try_emplace(DevVD, NewDecl);
}
};
auto CustomMapperCB = [&](unsigned int I) {
llvm::Value *MFunc = nullptr;
if (CombinedInfo.Mappers[I]) {
Info.HasMapper = true;
MFunc = CGM.getOpenMPRuntime().getOrCreateUserDefinedMapperFunc(
cast<OMPDeclareMapperDecl>(CombinedInfo.Mappers[I]));
}
return MFunc;
};
OMPBuilder.emitOffloadingArraysAndArgs(
AllocaIP, CodeGenIP, Info, Info.RTArgs, CombinedInfo, IsNonContiguous,
ForEndCall, DeviceAddrCB, CustomMapperCB);
}
/// Check for inner distribute directive.
static const OMPExecutableDirective *
getNestedDistributeDirective(ASTContext &Ctx, const OMPExecutableDirective &D) {
const auto *CS = D.getInnermostCapturedStmt();
const auto *Body =
CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
const Stmt *ChildStmt =
CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body);
if (const auto *NestedDir =
dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
switch (D.getDirectiveKind()) {
case OMPD_target:
// For now, treat 'target' with nested 'teams loop' as if it's
// distributed (target teams distribute).
if (isOpenMPDistributeDirective(DKind) || DKind == OMPD_teams_loop)
return NestedDir;
if (DKind == OMPD_teams) {
Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
/*IgnoreCaptured=*/true);
if (!Body)
return nullptr;
ChildStmt = CGOpenMPSIMDRuntime::getSingleCompoundChild(Ctx, Body);
if (const auto *NND =
dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
DKind = NND->getDirectiveKind();
if (isOpenMPDistributeDirective(DKind))
return NND;
}
}
return nullptr;
case OMPD_target_teams:
if (isOpenMPDistributeDirective(DKind))
return NestedDir;
return nullptr;
case OMPD_target_parallel:
case OMPD_target_simd:
case OMPD_target_parallel_for:
case OMPD_target_parallel_for_simd:
return nullptr;
case OMPD_target_teams_distribute:
case OMPD_target_teams_distribute_simd:
case OMPD_target_teams_distribute_parallel_for:
case OMPD_target_teams_distribute_parallel_for_simd:
case OMPD_parallel:
case OMPD_for:
case OMPD_parallel_for:
case OMPD_parallel_master:
case OMPD_parallel_sections:
case OMPD_for_simd:
case OMPD_parallel_for_simd:
case OMPD_cancel:
case OMPD_cancellation_point:
case OMPD_ordered:
case OMPD_threadprivate:
case OMPD_allocate:
case OMPD_task:
case OMPD_simd:
case OMPD_tile:
case OMPD_unroll:
case OMPD_sections:
case OMPD_section:
case OMPD_single:
case OMPD_master:
case OMPD_critical:
case OMPD_taskyield:
case OMPD_barrier:
case OMPD_taskwait:
case OMPD_taskgroup:
case OMPD_atomic:
case OMPD_flush:
case OMPD_depobj:
case OMPD_scan:
case OMPD_teams:
case OMPD_target_data:
case OMPD_target_exit_data:
case OMPD_target_enter_data:
case OMPD_distribute:
case OMPD_distribute_simd:
case OMPD_distribute_parallel_for:
case OMPD_distribute_parallel_for_simd:
case OMPD_teams_distribute:
case OMPD_teams_distribute_simd:
case OMPD_teams_distribute_parallel_for:
case OMPD_teams_distribute_parallel_for_simd:
case OMPD_target_update:
case OMPD_declare_simd:
case OMPD_declare_variant:
case OMPD_begin_declare_variant:
case OMPD_end_declare_variant:
case OMPD_declare_target:
case OMPD_end_declare_target:
case OMPD_declare_reduction:
case OMPD_declare_mapper:
case OMPD_taskloop:
case OMPD_taskloop_simd:
case OMPD_master_taskloop:
case OMPD_master_taskloop_simd:
case OMPD_parallel_master_taskloop:
case OMPD_parallel_master_taskloop_simd:
case OMPD_requires:
case OMPD_metadirective:
case OMPD_unknown:
default:
llvm_unreachable("Unexpected directive.");
}
}
return nullptr;
}
/// Emit the user-defined mapper function. The code generation follows the
/// pattern in the example below.
/// \code
/// void .omp_mapper.<type_name>.<mapper_id>.(void *rt_mapper_handle,
/// void *base, void *begin,
/// int64_t size, int64_t type,
/// void *name = nullptr) {
/// // Allocate space for an array section first or add a base/begin for
/// // pointer dereference.
/// if ((size > 1 || (base != begin && maptype.IsPtrAndObj)) &&
/// !maptype.IsDelete)
/// __tgt_push_mapper_component(rt_mapper_handle, base, begin,
/// size*sizeof(Ty), clearToFromMember(type));
/// // Map members.
/// for (unsigned i = 0; i < size; i++) {
/// // For each component specified by this mapper:
/// for (auto c : begin[i]->all_components) {
/// if (c.hasMapper())
/// (*c.Mapper())(rt_mapper_handle, c.arg_base, c.arg_begin, c.arg_size,
/// c.arg_type, c.arg_name);
/// else
/// __tgt_push_mapper_component(rt_mapper_handle, c.arg_base,
/// c.arg_begin, c.arg_size, c.arg_type,
/// c.arg_name);
/// }
/// }
/// // Delete the array section.
/// if (size > 1 && maptype.IsDelete)
/// __tgt_push_mapper_component(rt_mapper_handle, base, begin,
/// size*sizeof(Ty), clearToFromMember(type));
/// }
/// \endcode
void CGOpenMPRuntime::emitUserDefinedMapper(const OMPDeclareMapperDecl *D,
CodeGenFunction *CGF) {
if (UDMMap.count(D) > 0)
return;
ASTContext &C = CGM.getContext();
QualType Ty = D->getType();
auto *MapperVarDecl =
cast<VarDecl>(cast<DeclRefExpr>(D->getMapperVarRef())->getDecl());
CharUnits ElementSize = C.getTypeSizeInChars(Ty);
llvm::Type *ElemTy = CGM.getTypes().ConvertTypeForMem(Ty);
CodeGenFunction MapperCGF(CGM);
MappableExprsHandler::MapCombinedInfoTy CombinedInfo;
auto PrivatizeAndGenMapInfoCB =
[&](llvm::OpenMPIRBuilder::InsertPointTy CodeGenIP, llvm::Value *PtrPHI,
llvm::Value *BeginArg) -> llvm::OpenMPIRBuilder::MapInfosTy & {
MapperCGF.Builder.restoreIP(CodeGenIP);
// Privatize the declared variable of mapper to be the current array
// element.
Address PtrCurrent(
PtrPHI, ElemTy,
Address(BeginArg, MapperCGF.VoidPtrTy, CGM.getPointerAlign())
.getAlignment()
.alignmentOfArrayElement(ElementSize));
CodeGenFunction::OMPPrivateScope Scope(MapperCGF);
Scope.addPrivate(MapperVarDecl, PtrCurrent);
(void)Scope.Privatize();
// Get map clause information.
MappableExprsHandler MEHandler(*D, MapperCGF);
MEHandler.generateAllInfoForMapper(CombinedInfo, OMPBuilder);
auto FillInfoMap = [&](MappableExprsHandler::MappingExprInfo &MapExpr) {
return emitMappingInformation(MapperCGF, OMPBuilder, MapExpr);
};
if (CGM.getCodeGenOpts().getDebugInfo() !=
llvm::codegenoptions::NoDebugInfo) {
CombinedInfo.Names.resize(CombinedInfo.Exprs.size());
llvm::transform(CombinedInfo.Exprs, CombinedInfo.Names.begin(),
FillInfoMap);
}
return CombinedInfo;
};
auto CustomMapperCB = [&](unsigned I, llvm::Function **MapperFunc) {
if (CombinedInfo.Mappers[I]) {
// Call the corresponding mapper function.
*MapperFunc = getOrCreateUserDefinedMapperFunc(
cast<OMPDeclareMapperDecl>(CombinedInfo.Mappers[I]));
assert(*MapperFunc && "Expect a valid mapper function is available.");
return true;
}
return false;
};
SmallString<64> TyStr;
llvm::raw_svector_ostream Out(TyStr);
CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out);
std::string Name = getName({"omp_mapper", TyStr, D->getName()});
auto *NewFn = OMPBuilder.emitUserDefinedMapper(PrivatizeAndGenMapInfoCB,
ElemTy, Name, CustomMapperCB);
UDMMap.try_emplace(D, NewFn);
if (CGF)
FunctionUDMMap[CGF->CurFn].push_back(D);
}
llvm::Function *CGOpenMPRuntime::getOrCreateUserDefinedMapperFunc(
const OMPDeclareMapperDecl *D) {
auto I = UDMMap.find(D);
if (I != UDMMap.end())
return I->second;
emitUserDefinedMapper(D);
return UDMMap.lookup(D);
}
llvm::Value *CGOpenMPRuntime::emitTargetNumIterationsCall(
CodeGenFunction &CGF, const OMPExecutableDirective &D,
llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
const OMPLoopDirective &D)>
SizeEmitter) {
OpenMPDirectiveKind Kind = D.getDirectiveKind();
const OMPExecutableDirective *TD = &D;
// Get nested teams distribute kind directive, if any. For now, treat
// 'target_teams_loop' as if it's really a target_teams_distribute.
if ((!isOpenMPDistributeDirective(Kind) || !isOpenMPTeamsDirective(Kind)) &&
Kind != OMPD_target_teams_loop)
TD = getNestedDistributeDirective(CGM.getContext(), D);
if (!TD)
return llvm::ConstantInt::get(CGF.Int64Ty, 0);
const auto *LD = cast<OMPLoopDirective>(TD);
if (llvm::Value *NumIterations = SizeEmitter(CGF, *LD))
return NumIterations;
return llvm::ConstantInt::get(CGF.Int64Ty, 0);
}
static void
emitTargetCallFallback(CGOpenMPRuntime *OMPRuntime, llvm::Function *OutlinedFn,
const OMPExecutableDirective &D,
llvm::SmallVectorImpl<llvm::Value *> &CapturedVars,
bool RequiresOuterTask, const CapturedStmt &CS,
bool OffloadingMandatory, CodeGenFunction &CGF) {
if (OffloadingMandatory) {
CGF.Builder.CreateUnreachable();
} else {
if (RequiresOuterTask) {
CapturedVars.clear();
CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
}
OMPRuntime->emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedFn,
CapturedVars);
}
}
static llvm::Value *emitDeviceID(
llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device,
CodeGenFunction &CGF) {
// Emit device ID if any.
llvm::Value *DeviceID;
if (Device.getPointer()) {
assert((Device.getInt() == OMPC_DEVICE_unknown ||
Device.getInt() == OMPC_DEVICE_device_num) &&
"Expected device_num modifier.");
llvm::Value *DevVal = CGF.EmitScalarExpr(Device.getPointer());
DeviceID =
CGF.Builder.CreateIntCast(DevVal, CGF.Int64Ty, /*isSigned=*/true);
} else {
DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
}
return DeviceID;
}
static llvm::Value *emitDynCGGroupMem(const OMPExecutableDirective &D,
CodeGenFunction &CGF) {
llvm::Value *DynCGroupMem = CGF.Builder.getInt32(0);
if (auto *DynMemClause = D.getSingleClause<OMPXDynCGroupMemClause>()) {
CodeGenFunction::RunCleanupsScope DynCGroupMemScope(CGF);
llvm::Value *DynCGroupMemVal = CGF.EmitScalarExpr(
DynMemClause->getSize(), /*IgnoreResultAssign=*/true);
DynCGroupMem = CGF.Builder.CreateIntCast(DynCGroupMemVal, CGF.Int32Ty,
/*isSigned=*/false);
}
return DynCGroupMem;
}
static void genMapInfoForCaptures(
MappableExprsHandler &MEHandler, CodeGenFunction &CGF,
const CapturedStmt &CS, llvm::SmallVectorImpl<llvm::Value *> &CapturedVars,
llvm::OpenMPIRBuilder &OMPBuilder,
llvm::DenseSet<CanonicalDeclPtr<const Decl>> &MappedVarSet,
MappableExprsHandler::MapCombinedInfoTy &CombinedInfo) {
llvm::DenseMap<llvm::Value *, llvm::Value *> LambdaPointers;
auto RI = CS.getCapturedRecordDecl()->field_begin();
auto *CV = CapturedVars.begin();
for (CapturedStmt::const_capture_iterator CI = CS.capture_begin(),
CE = CS.capture_end();
CI != CE; ++CI, ++RI, ++CV) {
MappableExprsHandler::MapCombinedInfoTy CurInfo;
MappableExprsHandler::StructRangeInfoTy PartialStruct;
// VLA sizes are passed to the outlined region by copy and do not have map
// information associated.
if (CI->capturesVariableArrayType()) {
CurInfo.Exprs.push_back(nullptr);
CurInfo.BasePointers.push_back(*CV);
CurInfo.DevicePtrDecls.push_back(nullptr);
CurInfo.DevicePointers.push_back(
MappableExprsHandler::DeviceInfoTy::None);
CurInfo.Pointers.push_back(*CV);
CurInfo.Sizes.push_back(CGF.Builder.CreateIntCast(
CGF.getTypeSize(RI->getType()), CGF.Int64Ty, /*isSigned=*/true));
// Copy to the device as an argument. No need to retrieve it.
CurInfo.Types.push_back(OpenMPOffloadMappingFlags::OMP_MAP_LITERAL |
OpenMPOffloadMappingFlags::OMP_MAP_TARGET_PARAM |
OpenMPOffloadMappingFlags::OMP_MAP_IMPLICIT);
CurInfo.Mappers.push_back(nullptr);
} else {
// If we have any information in the map clause, we use it, otherwise we
// just do a default mapping.
MEHandler.generateInfoForCapture(CI, *CV, CurInfo, PartialStruct);
if (!CI->capturesThis())
MappedVarSet.insert(CI->getCapturedVar());
else
MappedVarSet.insert(nullptr);
if (CurInfo.BasePointers.empty() && !PartialStruct.Base.isValid())
MEHandler.generateDefaultMapInfo(*CI, **RI, *CV, CurInfo);
// Generate correct mapping for variables captured by reference in
// lambdas.
if (CI->capturesVariable())
MEHandler.generateInfoForLambdaCaptures(CI->getCapturedVar(), *CV,
CurInfo, LambdaPointers);
}
// We expect to have at least an element of information for this capture.
assert((!CurInfo.BasePointers.empty() || PartialStruct.Base.isValid()) &&
"Non-existing map pointer for capture!");
assert(CurInfo.BasePointers.size() == CurInfo.Pointers.size() &&
CurInfo.BasePointers.size() == CurInfo.Sizes.size() &&
CurInfo.BasePointers.size() == CurInfo.Types.size() &&
CurInfo.BasePointers.size() == CurInfo.Mappers.size() &&
"Inconsistent map information sizes!");
// If there is an entry in PartialStruct it means we have a struct with
// individual members mapped. Emit an extra combined entry.
if (PartialStruct.Base.isValid()) {
CombinedInfo.append(PartialStruct.PreliminaryMapData);
MEHandler.emitCombinedEntry(CombinedInfo, CurInfo.Types, PartialStruct,
CI->capturesThis(), OMPBuilder, nullptr,
/*NotTargetParams*/ false);
}
// We need to append the results of this capture to what we already have.
CombinedInfo.append(CurInfo);
}
// Adjust MEMBER_OF flags for the lambdas captures.
MEHandler.adjustMemberOfForLambdaCaptures(
OMPBuilder, LambdaPointers, CombinedInfo.BasePointers,
CombinedInfo.Pointers, CombinedInfo.Types);
}
static void
genMapInfo(MappableExprsHandler &MEHandler, CodeGenFunction &CGF,
MappableExprsHandler::MapCombinedInfoTy &CombinedInfo,
llvm::OpenMPIRBuilder &OMPBuilder,
const llvm::DenseSet<CanonicalDeclPtr<const Decl>> &SkippedVarSet =
llvm::DenseSet<CanonicalDeclPtr<const Decl>>()) {
CodeGenModule &CGM = CGF.CGM;
// Map any list items in a map clause that were not captures because they
// weren't referenced within the construct.
MEHandler.generateAllInfo(CombinedInfo, OMPBuilder, SkippedVarSet);
auto FillInfoMap = [&](MappableExprsHandler::MappingExprInfo &MapExpr) {
return emitMappingInformation(CGF, OMPBuilder, MapExpr);
};
if (CGM.getCodeGenOpts().getDebugInfo() !=
llvm::codegenoptions::NoDebugInfo) {
CombinedInfo.Names.resize(CombinedInfo.Exprs.size());
llvm::transform(CombinedInfo.Exprs, CombinedInfo.Names.begin(),
FillInfoMap);
}
}
static void genMapInfo(const OMPExecutableDirective &D, CodeGenFunction &CGF,
const CapturedStmt &CS,
llvm::SmallVectorImpl<llvm::Value *> &CapturedVars,
llvm::OpenMPIRBuilder &OMPBuilder,
MappableExprsHandler::MapCombinedInfoTy &CombinedInfo) {
// Get mappable expression information.
MappableExprsHandler MEHandler(D, CGF);
llvm::DenseSet<CanonicalDeclPtr<const Decl>> MappedVarSet;
genMapInfoForCaptures(MEHandler, CGF, CS, CapturedVars, OMPBuilder,
MappedVarSet, CombinedInfo);
genMapInfo(MEHandler, CGF, CombinedInfo, OMPBuilder, MappedVarSet);
}
template <typename ClauseTy>
static void
emitClauseForBareTargetDirective(CodeGenFunction &CGF,
const OMPExecutableDirective &D,
llvm::SmallVectorImpl<llvm::Value *> &Values) {
const auto *C = D.getSingleClause<ClauseTy>();
assert(!C->varlist_empty() &&
"ompx_bare requires explicit num_teams and thread_limit");
CodeGenFunction::RunCleanupsScope Scope(CGF);
for (auto *E : C->varlist()) {
llvm::Value *V = CGF.EmitScalarExpr(E);
Values.push_back(
CGF.Builder.CreateIntCast(V, CGF.Int32Ty, /*isSigned=*/true));
}
}
static void emitTargetCallKernelLaunch(
CGOpenMPRuntime *OMPRuntime, llvm::Function *OutlinedFn,
const OMPExecutableDirective &D,
llvm::SmallVectorImpl<llvm::Value *> &CapturedVars, bool RequiresOuterTask,
const CapturedStmt &CS, bool OffloadingMandatory,
llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device,
llvm::Value *OutlinedFnID, CodeGenFunction::OMPTargetDataInfo &InputInfo,
llvm::Value *&MapTypesArray, llvm::Value *&MapNamesArray,
llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
const OMPLoopDirective &D)>
SizeEmitter,
CodeGenFunction &CGF, CodeGenModule &CGM) {
llvm::OpenMPIRBuilder &OMPBuilder = OMPRuntime->getOMPBuilder();
// Fill up the arrays with all the captured variables.
MappableExprsHandler::MapCombinedInfoTy CombinedInfo;
CGOpenMPRuntime::TargetDataInfo Info;
genMapInfo(D, CGF, CS, CapturedVars, OMPBuilder, CombinedInfo);
emitOffloadingArraysAndArgs(CGF, CombinedInfo, Info, OMPBuilder,
/*IsNonContiguous=*/true, /*ForEndCall=*/false);
InputInfo.NumberOfTargetItems = Info.NumberOfPtrs;
InputInfo.BasePointersArray = Address(Info.RTArgs.BasePointersArray,
CGF.VoidPtrTy, CGM.getPointerAlign());
InputInfo.PointersArray =
Address(Info.RTArgs.PointersArray, CGF.VoidPtrTy, CGM.getPointerAlign());
InputInfo.SizesArray =
Address(Info.RTArgs.SizesArray, CGF.Int64Ty, CGM.getPointerAlign());
InputInfo.MappersArray =
Address(Info.RTArgs.MappersArray, CGF.VoidPtrTy, CGM.getPointerAlign());
MapTypesArray = Info.RTArgs.MapTypesArray;
MapNamesArray = Info.RTArgs.MapNamesArray;
auto &&ThenGen = [&OMPRuntime, OutlinedFn, &D, &CapturedVars,
RequiresOuterTask, &CS, OffloadingMandatory, Device,
OutlinedFnID, &InputInfo, &MapTypesArray, &MapNamesArray,
SizeEmitter](CodeGenFunction &CGF, PrePostActionTy &) {
bool IsReverseOffloading = Device.getInt() == OMPC_DEVICE_ancestor;
if (IsReverseOffloading) {
// Reverse offloading is not supported, so just execute on the host.
// FIXME: This fallback solution is incorrect since it ignores the
// OMP_TARGET_OFFLOAD environment variable. Instead it would be better to
// assert here and ensure SEMA emits an error.
emitTargetCallFallback(OMPRuntime, OutlinedFn, D, CapturedVars,
RequiresOuterTask, CS, OffloadingMandatory, CGF);
return;
}
bool HasNoWait = D.hasClausesOfKind<OMPNowaitClause>();
unsigned NumTargetItems = InputInfo.NumberOfTargetItems;
llvm::Value *BasePointersArray =
InputInfo.BasePointersArray.emitRawPointer(CGF);
llvm::Value *PointersArray = InputInfo.PointersArray.emitRawPointer(CGF);
llvm::Value *SizesArray = InputInfo.SizesArray.emitRawPointer(CGF);
llvm::Value *MappersArray = InputInfo.MappersArray.emitRawPointer(CGF);
auto &&EmitTargetCallFallbackCB =
[&OMPRuntime, OutlinedFn, &D, &CapturedVars, RequiresOuterTask, &CS,
OffloadingMandatory, &CGF](llvm::OpenMPIRBuilder::InsertPointTy IP)
-> llvm::OpenMPIRBuilder::InsertPointTy {
CGF.Builder.restoreIP(IP);
emitTargetCallFallback(OMPRuntime, OutlinedFn, D, CapturedVars,
RequiresOuterTask, CS, OffloadingMandatory, CGF);
return CGF.Builder.saveIP();
};
bool IsBare = D.hasClausesOfKind<OMPXBareClause>();
SmallVector<llvm::Value *, 3> NumTeams;
SmallVector<llvm::Value *, 3> NumThreads;
if (IsBare) {
emitClauseForBareTargetDirective<OMPNumTeamsClause>(CGF, D, NumTeams);
emitClauseForBareTargetDirective<OMPThreadLimitClause>(CGF, D,
NumThreads);
} else {
NumTeams.push_back(OMPRuntime->emitNumTeamsForTargetDirective(CGF, D));
NumThreads.push_back(
OMPRuntime->emitNumThreadsForTargetDirective(CGF, D));
}
llvm::Value *DeviceID = emitDeviceID(Device, CGF);
llvm::Value *RTLoc = OMPRuntime->emitUpdateLocation(CGF, D.getBeginLoc());
llvm::Value *NumIterations =
OMPRuntime->emitTargetNumIterationsCall(CGF, D, SizeEmitter);
llvm::Value *DynCGGroupMem = emitDynCGGroupMem(D, CGF);
llvm::OpenMPIRBuilder::InsertPointTy AllocaIP(
CGF.AllocaInsertPt->getParent(), CGF.AllocaInsertPt->getIterator());
llvm::OpenMPIRBuilder::TargetDataRTArgs RTArgs(
BasePointersArray, PointersArray, SizesArray, MapTypesArray,
nullptr /* MapTypesArrayEnd */, MappersArray, MapNamesArray);
llvm::OpenMPIRBuilder::TargetKernelArgs Args(
NumTargetItems, RTArgs, NumIterations, NumTeams, NumThreads,
DynCGGroupMem, HasNoWait);
llvm::OpenMPIRBuilder::InsertPointTy AfterIP =
cantFail(OMPRuntime->getOMPBuilder().emitKernelLaunch(
CGF.Builder, OutlinedFnID, EmitTargetCallFallbackCB, Args, DeviceID,
RTLoc, AllocaIP));
CGF.Builder.restoreIP(AfterIP);
};
if (RequiresOuterTask)
CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo);
else
OMPRuntime->emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen);
}
static void
emitTargetCallElse(CGOpenMPRuntime *OMPRuntime, llvm::Function *OutlinedFn,
const OMPExecutableDirective &D,
llvm::SmallVectorImpl<llvm::Value *> &CapturedVars,
bool RequiresOuterTask, const CapturedStmt &CS,
bool OffloadingMandatory, CodeGenFunction &CGF) {
// Notify that the host version must be executed.
auto &&ElseGen =
[&OMPRuntime, OutlinedFn, &D, &CapturedVars, RequiresOuterTask, &CS,
OffloadingMandatory](CodeGenFunction &CGF, PrePostActionTy &) {
emitTargetCallFallback(OMPRuntime, OutlinedFn, D, CapturedVars,
RequiresOuterTask, CS, OffloadingMandatory, CGF);
};
if (RequiresOuterTask) {
CodeGenFunction::OMPTargetDataInfo InputInfo;
CGF.EmitOMPTargetTaskBasedDirective(D, ElseGen, InputInfo);
} else {
OMPRuntime->emitInlinedDirective(CGF, D.getDirectiveKind(), ElseGen);
}
}
void CGOpenMPRuntime::emitTargetCall(
CodeGenFunction &CGF, const OMPExecutableDirective &D,
llvm::Function *OutlinedFn, llvm::Value *OutlinedFnID, const Expr *IfCond,
llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device,
llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
const OMPLoopDirective &D)>
SizeEmitter) {
if (!CGF.HaveInsertPoint())
return;
const bool OffloadingMandatory = !CGM.getLangOpts().OpenMPIsTargetDevice &&
CGM.getLangOpts().OpenMPOffloadMandatory;
assert((OffloadingMandatory || OutlinedFn) && "Invalid outlined function!");
const bool RequiresOuterTask =
D.hasClausesOfKind<OMPDependClause>() ||
D.hasClausesOfKind<OMPNowaitClause>() ||
D.hasClausesOfKind<OMPInReductionClause>() ||
(CGM.getLangOpts().OpenMP >= 51 &&
needsTaskBasedThreadLimit(D.getDirectiveKind()) &&
D.hasClausesOfKind<OMPThreadLimitClause>());
llvm::SmallVector<llvm::Value *, 16> CapturedVars;
const CapturedStmt &CS = *D.getCapturedStmt(OMPD_target);
auto &&ArgsCodegen = [&CS, &CapturedVars](CodeGenFunction &CGF,
PrePostActionTy &) {
CGF.GenerateOpenMPCapturedVars(CS, CapturedVars);
};
emitInlinedDirective(CGF, OMPD_unknown, ArgsCodegen);
CodeGenFunction::OMPTargetDataInfo InputInfo;
llvm::Value *MapTypesArray = nullptr;
llvm::Value *MapNamesArray = nullptr;
auto &&TargetThenGen = [this, OutlinedFn, &D, &CapturedVars,
RequiresOuterTask, &CS, OffloadingMandatory, Device,
OutlinedFnID, &InputInfo, &MapTypesArray,
&MapNamesArray, SizeEmitter](CodeGenFunction &CGF,
PrePostActionTy &) {
emitTargetCallKernelLaunch(this, OutlinedFn, D, CapturedVars,
RequiresOuterTask, CS, OffloadingMandatory,
Device, OutlinedFnID, InputInfo, MapTypesArray,
MapNamesArray, SizeEmitter, CGF, CGM);
};
auto &&TargetElseGen =
[this, OutlinedFn, &D, &CapturedVars, RequiresOuterTask, &CS,
OffloadingMandatory](CodeGenFunction &CGF, PrePostActionTy &) {
emitTargetCallElse(this, OutlinedFn, D, CapturedVars, RequiresOuterTask,
CS, OffloadingMandatory, CGF);
};
// If we have a target function ID it means that we need to support
// offloading, otherwise, just execute on the host. We need to execute on host
// regardless of the conditional in the if clause if, e.g., the user do not
// specify target triples.
if (OutlinedFnID) {
if (IfCond) {
emitIfClause(CGF, IfCond, TargetThenGen, TargetElseGen);
} else {
RegionCodeGenTy ThenRCG(TargetThenGen);
ThenRCG(CGF);
}
} else {
RegionCodeGenTy ElseRCG(TargetElseGen);
ElseRCG(CGF);
}
}
void CGOpenMPRuntime::scanForTargetRegionsFunctions(const Stmt *S,
StringRef ParentName) {
if (!S)
return;
// Codegen OMP target directives that offload compute to the device.
bool RequiresDeviceCodegen =
isa<OMPExecutableDirective>(S) &&
isOpenMPTargetExecutionDirective(
cast<OMPExecutableDirective>(S)->getDirectiveKind());
if (RequiresDeviceCodegen) {
const auto &E = *cast<OMPExecutableDirective>(S);
llvm::TargetRegionEntryInfo EntryInfo = getEntryInfoFromPresumedLoc(
CGM, OMPBuilder, E.getBeginLoc(), ParentName);
// Is this a target region that should not be emitted as an entry point? If
// so just signal we are done with this target region.
if (!OMPBuilder.OffloadInfoManager.hasTargetRegionEntryInfo(EntryInfo))
return;
switch (E.getDirectiveKind()) {
case OMPD_target:
CodeGenFunction::EmitOMPTargetDeviceFunction(CGM, ParentName,
cast<OMPTargetDirective>(E));
break;
case OMPD_target_parallel:
CodeGenFunction::EmitOMPTargetParallelDeviceFunction(
CGM, ParentName, cast<OMPTargetParallelDirective>(E));
break;
case OMPD_target_teams:
CodeGenFunction::EmitOMPTargetTeamsDeviceFunction(
CGM, ParentName, cast<OMPTargetTeamsDirective>(E));
break;
case OMPD_target_teams_distribute:
CodeGenFunction::EmitOMPTargetTeamsDistributeDeviceFunction(
CGM, ParentName, cast<OMPTargetTeamsDistributeDirective>(E));
break;
case OMPD_target_teams_distribute_simd:
CodeGenFunction::EmitOMPTargetTeamsDistributeSimdDeviceFunction(
CGM, ParentName, cast<OMPTargetTeamsDistributeSimdDirective>(E));
break;
case OMPD_target_parallel_for:
CodeGenFunction::EmitOMPTargetParallelForDeviceFunction(
CGM, ParentName, cast<OMPTargetParallelForDirective>(E));
break;
case OMPD_target_parallel_for_simd:
CodeGenFunction::EmitOMPTargetParallelForSimdDeviceFunction(
CGM, ParentName, cast<OMPTargetParallelForSimdDirective>(E));
break;
case OMPD_target_simd:
CodeGenFunction::EmitOMPTargetSimdDeviceFunction(
CGM, ParentName, cast<OMPTargetSimdDirective>(E));
break;
case OMPD_target_teams_distribute_parallel_for:
CodeGenFunction::EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
CGM, ParentName,
cast<OMPTargetTeamsDistributeParallelForDirective>(E));
break;
case OMPD_target_teams_distribute_parallel_for_simd:
CodeGenFunction::
EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
CGM, ParentName,
cast<OMPTargetTeamsDistributeParallelForSimdDirective>(E));
break;
case OMPD_target_teams_loop:
CodeGenFunction::EmitOMPTargetTeamsGenericLoopDeviceFunction(
CGM, ParentName, cast<OMPTargetTeamsGenericLoopDirective>(E));
break;
case OMPD_target_parallel_loop:
CodeGenFunction::EmitOMPTargetParallelGenericLoopDeviceFunction(
CGM, ParentName, cast<OMPTargetParallelGenericLoopDirective>(E));
break;
case OMPD_parallel:
case OMPD_for:
case OMPD_parallel_for:
case OMPD_parallel_master:
case OMPD_parallel_sections:
case OMPD_for_simd:
case OMPD_parallel_for_simd:
case OMPD_cancel:
case OMPD_cancellation_point:
case OMPD_ordered:
case OMPD_threadprivate:
case OMPD_allocate:
case OMPD_task:
case OMPD_simd:
case OMPD_tile:
case OMPD_unroll:
case OMPD_sections:
case OMPD_section:
case OMPD_single:
case OMPD_master:
case OMPD_critical:
case OMPD_taskyield:
case OMPD_barrier:
case OMPD_taskwait:
case OMPD_taskgroup:
case OMPD_atomic:
case OMPD_flush:
case OMPD_depobj:
case OMPD_scan:
case OMPD_teams:
case OMPD_target_data:
case OMPD_target_exit_data:
case OMPD_target_enter_data:
case OMPD_distribute:
case OMPD_distribute_simd:
case OMPD_distribute_parallel_for:
case OMPD_distribute_parallel_for_simd:
case OMPD_teams_distribute:
case OMPD_teams_distribute_simd:
case OMPD_teams_distribute_parallel_for:
case OMPD_teams_distribute_parallel_for_simd:
case OMPD_target_update:
case OMPD_declare_simd:
case OMPD_declare_variant:
case OMPD_begin_declare_variant:
case OMPD_end_declare_variant:
case OMPD_declare_target:
case OMPD_end_declare_target:
case OMPD_declare_reduction:
case OMPD_declare_mapper:
case OMPD_taskloop:
case OMPD_taskloop_simd:
case OMPD_master_taskloop:
case OMPD_master_taskloop_simd:
case OMPD_parallel_master_taskloop:
case OMPD_parallel_master_taskloop_simd:
case OMPD_requires:
case OMPD_metadirective:
case OMPD_unknown:
default:
llvm_unreachable("Unknown target directive for OpenMP device codegen.");
}
return;
}
if (const auto *E = dyn_cast<OMPExecutableDirective>(S)) {
if (!E->hasAssociatedStmt() || !E->getAssociatedStmt())
return;
scanForTargetRegionsFunctions(E->getRawStmt(), ParentName);
return;
}
// If this is a lambda function, look into its body.
if (const auto *L = dyn_cast<LambdaExpr>(S))
S = L->getBody();
// Keep looking for target regions recursively.
for (const Stmt *II : S->children())
scanForTargetRegionsFunctions(II, ParentName);
}
static bool isAssumedToBeNotEmitted(const ValueDecl *VD, bool IsDevice) {
std::optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
OMPDeclareTargetDeclAttr::getDeviceType(VD);
if (!DevTy)
return false;
// Do not emit device_type(nohost) functions for the host.
if (!IsDevice && DevTy == OMPDeclareTargetDeclAttr::DT_NoHost)
return true;
// Do not emit device_type(host) functions for the device.
if (IsDevice && DevTy == OMPDeclareTargetDeclAttr::DT_Host)
return true;
return false;
}
bool CGOpenMPRuntime::emitTargetFunctions(GlobalDecl GD) {
// If emitting code for the host, we do not process FD here. Instead we do
// the normal code generation.
if (!CGM.getLangOpts().OpenMPIsTargetDevice) {
if (const auto *FD = dyn_cast<FunctionDecl>(GD.getDecl()))
if (isAssumedToBeNotEmitted(cast<ValueDecl>(FD),
CGM.getLangOpts().OpenMPIsTargetDevice))
return true;
return false;
}
const ValueDecl *VD = cast<ValueDecl>(GD.getDecl());
// Try to detect target regions in the function.
if (const auto *FD = dyn_cast<FunctionDecl>(VD)) {
StringRef Name = CGM.getMangledName(GD);
scanForTargetRegionsFunctions(FD->getBody(), Name);
if (isAssumedToBeNotEmitted(cast<ValueDecl>(FD),
CGM.getLangOpts().OpenMPIsTargetDevice))
return true;
}
// Do not to emit function if it is not marked as declare target.
return !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD) &&
AlreadyEmittedTargetDecls.count(VD) == 0;
}
bool CGOpenMPRuntime::emitTargetGlobalVariable(GlobalDecl GD) {
if (isAssumedToBeNotEmitted(cast<ValueDecl>(GD.getDecl()),
CGM.getLangOpts().OpenMPIsTargetDevice))
return true;
if (!CGM.getLangOpts().OpenMPIsTargetDevice)
return false;
// Check if there are Ctors/Dtors in this declaration and look for target
// regions in it. We use the complete variant to produce the kernel name
// mangling.
QualType RDTy = cast<VarDecl>(GD.getDecl())->getType();
if (const auto *RD = RDTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) {
for (const CXXConstructorDecl *Ctor : RD->ctors()) {
StringRef ParentName =
CGM.getMangledName(GlobalDecl(Ctor, Ctor_Complete));
scanForTargetRegionsFunctions(Ctor->getBody(), ParentName);
}
if (const CXXDestructorDecl *Dtor = RD->getDestructor()) {
StringRef ParentName =
CGM.getMangledName(GlobalDecl(Dtor, Dtor_Complete));
scanForTargetRegionsFunctions(Dtor->getBody(), ParentName);
}
}
// Do not to emit variable if it is not marked as declare target.
std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(
cast<VarDecl>(GD.getDecl()));
if (!Res || *Res == OMPDeclareTargetDeclAttr::MT_Link ||
((*Res == OMPDeclareTargetDeclAttr::MT_To ||
*Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
HasRequiresUnifiedSharedMemory)) {
DeferredGlobalVariables.insert(cast<VarDecl>(GD.getDecl()));
return true;
}
return false;
}
void CGOpenMPRuntime::registerTargetGlobalVariable(const VarDecl *VD,
llvm::Constant *Addr) {
if (CGM.getLangOpts().OMPTargetTriples.empty() &&
!CGM.getLangOpts().OpenMPIsTargetDevice)
return;
std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
// If this is an 'extern' declaration we defer to the canonical definition and
// do not emit an offloading entry.
if (Res && *Res != OMPDeclareTargetDeclAttr::MT_Link &&
VD->hasExternalStorage())
return;
if (!Res) {
if (CGM.getLangOpts().OpenMPIsTargetDevice) {
// Register non-target variables being emitted in device code (debug info
// may cause this).
StringRef VarName = CGM.getMangledName(VD);
EmittedNonTargetVariables.try_emplace(VarName, Addr);
}
return;
}
auto AddrOfGlobal = [&VD, this]() { return CGM.GetAddrOfGlobal(VD); };
auto LinkageForVariable = [&VD, this]() {
return CGM.getLLVMLinkageVarDefinition(VD);
};
std::vector<llvm::GlobalVariable *> GeneratedRefs;
OMPBuilder.registerTargetGlobalVariable(
convertCaptureClause(VD), convertDeviceClause(VD),
VD->hasDefinition(CGM.getContext()) == VarDecl::DeclarationOnly,
VD->isExternallyVisible(),
getEntryInfoFromPresumedLoc(CGM, OMPBuilder,
VD->getCanonicalDecl()->getBeginLoc()),
CGM.getMangledName(VD), GeneratedRefs, CGM.getLangOpts().OpenMPSimd,
CGM.getLangOpts().OMPTargetTriples, AddrOfGlobal, LinkageForVariable,
CGM.getTypes().ConvertTypeForMem(
CGM.getContext().getPointerType(VD->getType())),
Addr);
for (auto *ref : GeneratedRefs)
CGM.addCompilerUsedGlobal(ref);
}
bool CGOpenMPRuntime::emitTargetGlobal(GlobalDecl GD) {
if (isa<FunctionDecl>(GD.getDecl()) ||
isa<OMPDeclareReductionDecl>(GD.getDecl()))
return emitTargetFunctions(GD);
return emitTargetGlobalVariable(GD);
}
void CGOpenMPRuntime::emitDeferredTargetDecls() const {
for (const VarDecl *VD : DeferredGlobalVariables) {
std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
if (!Res)
continue;
if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
*Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
!HasRequiresUnifiedSharedMemory) {
CGM.EmitGlobal(VD);
} else {
assert((*Res == OMPDeclareTargetDeclAttr::MT_Link ||
((*Res == OMPDeclareTargetDeclAttr::MT_To ||
*Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
HasRequiresUnifiedSharedMemory)) &&
"Expected link clause or to clause with unified memory.");
(void)CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
}
}
}
void CGOpenMPRuntime::adjustTargetSpecificDataForLambdas(
CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
" Expected target-based directive.");
}
void CGOpenMPRuntime::processRequiresDirective(const OMPRequiresDecl *D) {
for (const OMPClause *Clause : D->clauselists()) {
if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
HasRequiresUnifiedSharedMemory = true;
OMPBuilder.Config.setHasRequiresUnifiedSharedMemory(true);
} else if (const auto *AC =
dyn_cast<OMPAtomicDefaultMemOrderClause>(Clause)) {
switch (AC->getAtomicDefaultMemOrderKind()) {
case OMPC_ATOMIC_DEFAULT_MEM_ORDER_acq_rel:
RequiresAtomicOrdering = llvm::AtomicOrdering::AcquireRelease;
break;
case OMPC_ATOMIC_DEFAULT_MEM_ORDER_seq_cst:
RequiresAtomicOrdering = llvm::AtomicOrdering::SequentiallyConsistent;
break;
case OMPC_ATOMIC_DEFAULT_MEM_ORDER_relaxed:
RequiresAtomicOrdering = llvm::AtomicOrdering::Monotonic;
break;
case OMPC_ATOMIC_DEFAULT_MEM_ORDER_unknown:
break;
}
}
}
}
llvm::AtomicOrdering CGOpenMPRuntime::getDefaultMemoryOrdering() const {
return RequiresAtomicOrdering;
}
bool CGOpenMPRuntime::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
LangAS &AS) {
if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
return false;
const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
switch(A->getAllocatorType()) {
case OMPAllocateDeclAttr::OMPNullMemAlloc:
case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
// Not supported, fallback to the default mem space.
case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
case OMPAllocateDeclAttr::OMPThreadMemAlloc:
case OMPAllocateDeclAttr::OMPConstMemAlloc:
case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
AS = LangAS::Default;
return true;
case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
llvm_unreachable("Expected predefined allocator for the variables with the "
"static storage.");
}
return false;
}
bool CGOpenMPRuntime::hasRequiresUnifiedSharedMemory() const {
return HasRequiresUnifiedSharedMemory;
}
CGOpenMPRuntime::DisableAutoDeclareTargetRAII::DisableAutoDeclareTargetRAII(
CodeGenModule &CGM)
: CGM(CGM) {
if (CGM.getLangOpts().OpenMPIsTargetDevice) {
SavedShouldMarkAsGlobal = CGM.getOpenMPRuntime().ShouldMarkAsGlobal;
CGM.getOpenMPRuntime().ShouldMarkAsGlobal = false;
}
}
CGOpenMPRuntime::DisableAutoDeclareTargetRAII::~DisableAutoDeclareTargetRAII() {
if (CGM.getLangOpts().OpenMPIsTargetDevice)
CGM.getOpenMPRuntime().ShouldMarkAsGlobal = SavedShouldMarkAsGlobal;
}
bool CGOpenMPRuntime::markAsGlobalTarget(GlobalDecl GD) {
if (!CGM.getLangOpts().OpenMPIsTargetDevice || !ShouldMarkAsGlobal)
return true;
const auto *D = cast<FunctionDecl>(GD.getDecl());
// Do not to emit function if it is marked as declare target as it was already
// emitted.
if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(D)) {
if (D->hasBody() && AlreadyEmittedTargetDecls.count(D) == 0) {
if (auto *F = dyn_cast_or_null<llvm::Function>(
CGM.GetGlobalValue(CGM.getMangledName(GD))))
return !F->isDeclaration();
return false;
}
return true;
}
return !AlreadyEmittedTargetDecls.insert(D).second;
}
void CGOpenMPRuntime::emitTeamsCall(CodeGenFunction &CGF,
const OMPExecutableDirective &D,
SourceLocation Loc,
llvm::Function *OutlinedFn,
ArrayRef<llvm::Value *> CapturedVars) {
if (!CGF.HaveInsertPoint())
return;
llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
CodeGenFunction::RunCleanupsScope Scope(CGF);
// Build call __kmpc_fork_teams(loc, n, microtask, var1, .., varn);
llvm::Value *Args[] = {
RTLoc,
CGF.Builder.getInt32(CapturedVars.size()), // Number of captured vars
CGF.Builder.CreateBitCast(OutlinedFn, getKmpc_MicroPointerTy())};
llvm::SmallVector<llvm::Value *, 16> RealArgs;
RealArgs.append(std::begin(Args), std::end(Args));
RealArgs.append(CapturedVars.begin(), CapturedVars.end());
llvm::FunctionCallee RTLFn = OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_fork_teams);
CGF.EmitRuntimeCall(RTLFn, RealArgs);
}
void CGOpenMPRuntime::emitNumTeamsClause(CodeGenFunction &CGF,
const Expr *NumTeams,
const Expr *ThreadLimit,
SourceLocation Loc) {
if (!CGF.HaveInsertPoint())
return;
llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
llvm::Value *NumTeamsVal =
NumTeams
? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(NumTeams),
CGF.CGM.Int32Ty, /* isSigned = */ true)
: CGF.Builder.getInt32(0);
llvm::Value *ThreadLimitVal =
ThreadLimit
? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(ThreadLimit),
CGF.CGM.Int32Ty, /* isSigned = */ true)
: CGF.Builder.getInt32(0);
// Build call __kmpc_push_num_teamss(&loc, global_tid, num_teams, thread_limit)
llvm::Value *PushNumTeamsArgs[] = {RTLoc, getThreadID(CGF, Loc), NumTeamsVal,
ThreadLimitVal};
CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_push_num_teams),
PushNumTeamsArgs);
}
void CGOpenMPRuntime::emitThreadLimitClause(CodeGenFunction &CGF,
const Expr *ThreadLimit,
SourceLocation Loc) {
llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
llvm::Value *ThreadLimitVal =
ThreadLimit
? CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(ThreadLimit),
CGF.CGM.Int32Ty, /* isSigned = */ true)
: CGF.Builder.getInt32(0);
// Build call __kmpc_set_thread_limit(&loc, global_tid, thread_limit)
llvm::Value *ThreadLimitArgs[] = {RTLoc, getThreadID(CGF, Loc),
ThreadLimitVal};
CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_set_thread_limit),
ThreadLimitArgs);
}
void CGOpenMPRuntime::emitTargetDataCalls(
CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
const Expr *Device, const RegionCodeGenTy &CodeGen,
CGOpenMPRuntime::TargetDataInfo &Info) {
if (!CGF.HaveInsertPoint())
return;
// Action used to replace the default codegen action and turn privatization
// off.
PrePostActionTy NoPrivAction;
using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
llvm::Value *IfCondVal = nullptr;
if (IfCond)
IfCondVal = CGF.EvaluateExprAsBool(IfCond);
// Emit device ID if any.
llvm::Value *DeviceID = nullptr;
if (Device) {
DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
CGF.Int64Ty, /*isSigned=*/true);
} else {
DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
}
// Fill up the arrays with all the mapped variables.
MappableExprsHandler::MapCombinedInfoTy CombinedInfo;
auto GenMapInfoCB =
[&](InsertPointTy CodeGenIP) -> llvm::OpenMPIRBuilder::MapInfosTy & {
CGF.Builder.restoreIP(CodeGenIP);
// Get map clause information.
MappableExprsHandler MEHandler(D, CGF);
MEHandler.generateAllInfo(CombinedInfo, OMPBuilder);
auto FillInfoMap = [&](MappableExprsHandler::MappingExprInfo &MapExpr) {
return emitMappingInformation(CGF, OMPBuilder, MapExpr);
};
if (CGM.getCodeGenOpts().getDebugInfo() !=
llvm::codegenoptions::NoDebugInfo) {
CombinedInfo.Names.resize(CombinedInfo.Exprs.size());
llvm::transform(CombinedInfo.Exprs, CombinedInfo.Names.begin(),
FillInfoMap);
}
return CombinedInfo;
};
using BodyGenTy = llvm::OpenMPIRBuilder::BodyGenTy;
auto BodyCB = [&](InsertPointTy CodeGenIP, BodyGenTy BodyGenType) {
CGF.Builder.restoreIP(CodeGenIP);
switch (BodyGenType) {
case BodyGenTy::Priv:
if (!Info.CaptureDeviceAddrMap.empty())
CodeGen(CGF);
break;
case BodyGenTy::DupNoPriv:
if (!Info.CaptureDeviceAddrMap.empty()) {
CodeGen.setAction(NoPrivAction);
CodeGen(CGF);
}
break;
case BodyGenTy::NoPriv:
if (Info.CaptureDeviceAddrMap.empty()) {
CodeGen.setAction(NoPrivAction);
CodeGen(CGF);
}
break;
}
return InsertPointTy(CGF.Builder.GetInsertBlock(),
CGF.Builder.GetInsertPoint());
};
auto DeviceAddrCB = [&](unsigned int I, llvm::Value *NewDecl) {
if (const ValueDecl *DevVD = CombinedInfo.DevicePtrDecls[I]) {
Info.CaptureDeviceAddrMap.try_emplace(DevVD, NewDecl);
}
};
auto CustomMapperCB = [&](unsigned int I) {
llvm::Value *MFunc = nullptr;
if (CombinedInfo.Mappers[I]) {
Info.HasMapper = true;
MFunc = CGF.CGM.getOpenMPRuntime().getOrCreateUserDefinedMapperFunc(
cast<OMPDeclareMapperDecl>(CombinedInfo.Mappers[I]));
}
return MFunc;
};
// Source location for the ident struct
llvm::Value *RTLoc = emitUpdateLocation(CGF, D.getBeginLoc());
InsertPointTy AllocaIP(CGF.AllocaInsertPt->getParent(),
CGF.AllocaInsertPt->getIterator());
InsertPointTy CodeGenIP(CGF.Builder.GetInsertBlock(),
CGF.Builder.GetInsertPoint());
llvm::OpenMPIRBuilder::LocationDescription OmpLoc(CodeGenIP);
llvm::OpenMPIRBuilder::InsertPointTy AfterIP =
cantFail(OMPBuilder.createTargetData(
OmpLoc, AllocaIP, CodeGenIP, DeviceID, IfCondVal, Info, GenMapInfoCB,
/*MapperFunc=*/nullptr, BodyCB, DeviceAddrCB, CustomMapperCB, RTLoc));
CGF.Builder.restoreIP(AfterIP);
}
void CGOpenMPRuntime::emitTargetDataStandAloneCall(
CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
const Expr *Device) {
if (!CGF.HaveInsertPoint())
return;
assert((isa<OMPTargetEnterDataDirective>(D) ||
isa<OMPTargetExitDataDirective>(D) ||
isa<OMPTargetUpdateDirective>(D)) &&
"Expecting either target enter, exit data, or update directives.");
CodeGenFunction::OMPTargetDataInfo InputInfo;
llvm::Value *MapTypesArray = nullptr;
llvm::Value *MapNamesArray = nullptr;
// Generate the code for the opening of the data environment.
auto &&ThenGen = [this, &D, Device, &InputInfo, &MapTypesArray,
&MapNamesArray](CodeGenFunction &CGF, PrePostActionTy &) {
// Emit device ID if any.
llvm::Value *DeviceID = nullptr;
if (Device) {
DeviceID = CGF.Builder.CreateIntCast(CGF.EmitScalarExpr(Device),
CGF.Int64Ty, /*isSigned=*/true);
} else {
DeviceID = CGF.Builder.getInt64(OMP_DEVICEID_UNDEF);
}
// Emit the number of elements in the offloading arrays.
llvm::Constant *PointerNum =
CGF.Builder.getInt32(InputInfo.NumberOfTargetItems);
// Source location for the ident struct
llvm::Value *RTLoc = emitUpdateLocation(CGF, D.getBeginLoc());
SmallVector<llvm::Value *, 13> OffloadingArgs(
{RTLoc, DeviceID, PointerNum,
InputInfo.BasePointersArray.emitRawPointer(CGF),
InputInfo.PointersArray.emitRawPointer(CGF),
InputInfo.SizesArray.emitRawPointer(CGF), MapTypesArray, MapNamesArray,
InputInfo.MappersArray.emitRawPointer(CGF)});
// Select the right runtime function call for each standalone
// directive.
const bool HasNowait = D.hasClausesOfKind<OMPNowaitClause>();
RuntimeFunction RTLFn;
switch (D.getDirectiveKind()) {
case OMPD_target_enter_data:
RTLFn = HasNowait ? OMPRTL___tgt_target_data_begin_nowait_mapper
: OMPRTL___tgt_target_data_begin_mapper;
break;
case OMPD_target_exit_data:
RTLFn = HasNowait ? OMPRTL___tgt_target_data_end_nowait_mapper
: OMPRTL___tgt_target_data_end_mapper;
break;
case OMPD_target_update:
RTLFn = HasNowait ? OMPRTL___tgt_target_data_update_nowait_mapper
: OMPRTL___tgt_target_data_update_mapper;
break;
case OMPD_parallel:
case OMPD_for:
case OMPD_parallel_for:
case OMPD_parallel_master:
case OMPD_parallel_sections:
case OMPD_for_simd:
case OMPD_parallel_for_simd:
case OMPD_cancel:
case OMPD_cancellation_point:
case OMPD_ordered:
case OMPD_threadprivate:
case OMPD_allocate:
case OMPD_task:
case OMPD_simd:
case OMPD_tile:
case OMPD_unroll:
case OMPD_sections:
case OMPD_section:
case OMPD_single:
case OMPD_master:
case OMPD_critical:
case OMPD_taskyield:
case OMPD_barrier:
case OMPD_taskwait:
case OMPD_taskgroup:
case OMPD_atomic:
case OMPD_flush:
case OMPD_depobj:
case OMPD_scan:
case OMPD_teams:
case OMPD_target_data:
case OMPD_distribute:
case OMPD_distribute_simd:
case OMPD_distribute_parallel_for:
case OMPD_distribute_parallel_for_simd:
case OMPD_teams_distribute:
case OMPD_teams_distribute_simd:
case OMPD_teams_distribute_parallel_for:
case OMPD_teams_distribute_parallel_for_simd:
case OMPD_declare_simd:
case OMPD_declare_variant:
case OMPD_begin_declare_variant:
case OMPD_end_declare_variant:
case OMPD_declare_target:
case OMPD_end_declare_target:
case OMPD_declare_reduction:
case OMPD_declare_mapper:
case OMPD_taskloop:
case OMPD_taskloop_simd:
case OMPD_master_taskloop:
case OMPD_master_taskloop_simd:
case OMPD_parallel_master_taskloop:
case OMPD_parallel_master_taskloop_simd:
case OMPD_target:
case OMPD_target_simd:
case OMPD_target_teams_distribute:
case OMPD_target_teams_distribute_simd:
case OMPD_target_teams_distribute_parallel_for:
case OMPD_target_teams_distribute_parallel_for_simd:
case OMPD_target_teams:
case OMPD_target_parallel:
case OMPD_target_parallel_for:
case OMPD_target_parallel_for_simd:
case OMPD_requires:
case OMPD_metadirective:
case OMPD_unknown:
default:
llvm_unreachable("Unexpected standalone target data directive.");
break;
}
if (HasNowait) {
OffloadingArgs.push_back(llvm::Constant::getNullValue(CGF.Int32Ty));
OffloadingArgs.push_back(llvm::Constant::getNullValue(CGF.VoidPtrTy));
OffloadingArgs.push_back(llvm::Constant::getNullValue(CGF.Int32Ty));
OffloadingArgs.push_back(llvm::Constant::getNullValue(CGF.VoidPtrTy));
}
CGF.EmitRuntimeCall(
OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), RTLFn),
OffloadingArgs);
};
auto &&TargetThenGen = [this, &ThenGen, &D, &InputInfo, &MapTypesArray,
&MapNamesArray](CodeGenFunction &CGF,
PrePostActionTy &) {
// Fill up the arrays with all the mapped variables.
MappableExprsHandler::MapCombinedInfoTy CombinedInfo;
CGOpenMPRuntime::TargetDataInfo Info;
MappableExprsHandler MEHandler(D, CGF);
genMapInfo(MEHandler, CGF, CombinedInfo, OMPBuilder);
emitOffloadingArraysAndArgs(CGF, CombinedInfo, Info, OMPBuilder,
/*IsNonContiguous=*/true, /*ForEndCall=*/false);
bool RequiresOuterTask = D.hasClausesOfKind<OMPDependClause>() ||
D.hasClausesOfKind<OMPNowaitClause>();
InputInfo.NumberOfTargetItems = Info.NumberOfPtrs;
InputInfo.BasePointersArray = Address(Info.RTArgs.BasePointersArray,
CGF.VoidPtrTy, CGM.getPointerAlign());
InputInfo.PointersArray = Address(Info.RTArgs.PointersArray, CGF.VoidPtrTy,
CGM.getPointerAlign());
InputInfo.SizesArray =
Address(Info.RTArgs.SizesArray, CGF.Int64Ty, CGM.getPointerAlign());
InputInfo.MappersArray =
Address(Info.RTArgs.MappersArray, CGF.VoidPtrTy, CGM.getPointerAlign());
MapTypesArray = Info.RTArgs.MapTypesArray;
MapNamesArray = Info.RTArgs.MapNamesArray;
if (RequiresOuterTask)
CGF.EmitOMPTargetTaskBasedDirective(D, ThenGen, InputInfo);
else
emitInlinedDirective(CGF, D.getDirectiveKind(), ThenGen);
};
if (IfCond) {
emitIfClause(CGF, IfCond, TargetThenGen,
[](CodeGenFunction &CGF, PrePostActionTy &) {});
} else {
RegionCodeGenTy ThenRCG(TargetThenGen);
ThenRCG(CGF);
}
}
namespace {
/// Kind of parameter in a function with 'declare simd' directive.
enum ParamKindTy {
Linear,
LinearRef,
LinearUVal,
LinearVal,
Uniform,
Vector,
};
/// Attribute set of the parameter.
struct ParamAttrTy {
ParamKindTy Kind = Vector;
llvm::APSInt StrideOrArg;
llvm::APSInt Alignment;
bool HasVarStride = false;
};
} // namespace
static unsigned evaluateCDTSize(const FunctionDecl *FD,
ArrayRef<ParamAttrTy> ParamAttrs) {
// Every vector variant of a SIMD-enabled function has a vector length (VLEN).
// If OpenMP clause "simdlen" is used, the VLEN is the value of the argument
// of that clause. The VLEN value must be power of 2.
// In other case the notion of the function`s "characteristic data type" (CDT)
// is used to compute the vector length.
// CDT is defined in the following order:
// a) For non-void function, the CDT is the return type.
// b) If the function has any non-uniform, non-linear parameters, then the
// CDT is the type of the first such parameter.
// c) If the CDT determined by a) or b) above is struct, union, or class
// type which is pass-by-value (except for the type that maps to the
// built-in complex data type), the characteristic data type is int.
// d) If none of the above three cases is applicable, the CDT is int.
// The VLEN is then determined based on the CDT and the size of vector
// register of that ISA for which current vector version is generated. The
// VLEN is computed using the formula below:
// VLEN = sizeof(vector_register) / sizeof(CDT),
// where vector register size specified in section 3.2.1 Registers and the
// Stack Frame of original AMD64 ABI document.
QualType RetType = FD->getReturnType();
if (RetType.isNull())
return 0;
ASTContext &C = FD->getASTContext();
QualType CDT;
if (!RetType.isNull() && !RetType->isVoidType()) {
CDT = RetType;
} else {
unsigned Offset = 0;
if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
if (ParamAttrs[Offset].Kind == Vector)
CDT = C.getPointerType(C.getRecordType(MD->getParent()));
++Offset;
}
if (CDT.isNull()) {
for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) {
if (ParamAttrs[I + Offset].Kind == Vector) {
CDT = FD->getParamDecl(I)->getType();
break;
}
}
}
}
if (CDT.isNull())
CDT = C.IntTy;
CDT = CDT->getCanonicalTypeUnqualified();
if (CDT->isRecordType() || CDT->isUnionType())
CDT = C.IntTy;
return C.getTypeSize(CDT);
}
/// Mangle the parameter part of the vector function name according to
/// their OpenMP classification. The mangling function is defined in
/// section 4.5 of the AAVFABI(2021Q1).
static std::string mangleVectorParameters(ArrayRef<ParamAttrTy> ParamAttrs) {
SmallString<256> Buffer;
llvm::raw_svector_ostream Out(Buffer);
for (const auto &ParamAttr : ParamAttrs) {
switch (ParamAttr.Kind) {
case Linear:
Out << 'l';
break;
case LinearRef:
Out << 'R';
break;
case LinearUVal:
Out << 'U';
break;
case LinearVal:
Out << 'L';
break;
case Uniform:
Out << 'u';
break;
case Vector:
Out << 'v';
break;
}
if (ParamAttr.HasVarStride)
Out << "s" << ParamAttr.StrideOrArg;
else if (ParamAttr.Kind == Linear || ParamAttr.Kind == LinearRef ||
ParamAttr.Kind == LinearUVal || ParamAttr.Kind == LinearVal) {
// Don't print the step value if it is not present or if it is
// equal to 1.
if (ParamAttr.StrideOrArg < 0)
Out << 'n' << -ParamAttr.StrideOrArg;
else if (ParamAttr.StrideOrArg != 1)
Out << ParamAttr.StrideOrArg;
}
if (!!ParamAttr.Alignment)
Out << 'a' << ParamAttr.Alignment;
}
return std::string(Out.str());
}
static void
emitX86DeclareSimdFunction(const FunctionDecl *FD, llvm::Function *Fn,
const llvm::APSInt &VLENVal,
ArrayRef<ParamAttrTy> ParamAttrs,
OMPDeclareSimdDeclAttr::BranchStateTy State) {
struct ISADataTy {
char ISA;
unsigned VecRegSize;
};
ISADataTy ISAData[] = {
{
'b', 128
}, // SSE
{
'c', 256
}, // AVX
{
'd', 256
}, // AVX2
{
'e', 512
}, // AVX512
};
llvm::SmallVector<char, 2> Masked;
switch (State) {
case OMPDeclareSimdDeclAttr::BS_Undefined:
Masked.push_back('N');
Masked.push_back('M');
break;
case OMPDeclareSimdDeclAttr::BS_Notinbranch:
Masked.push_back('N');
break;
case OMPDeclareSimdDeclAttr::BS_Inbranch:
Masked.push_back('M');
break;
}
for (char Mask : Masked) {
for (const ISADataTy &Data : ISAData) {
SmallString<256> Buffer;
llvm::raw_svector_ostream Out(Buffer);
Out << "_ZGV" << Data.ISA << Mask;
if (!VLENVal) {
unsigned NumElts = evaluateCDTSize(FD, ParamAttrs);
assert(NumElts && "Non-zero simdlen/cdtsize expected");
Out << llvm::APSInt::getUnsigned(Data.VecRegSize / NumElts);
} else {
Out << VLENVal;
}
Out << mangleVectorParameters(ParamAttrs);
Out << '_' << Fn->getName();
Fn->addFnAttr(Out.str());
}
}
}
// This are the Functions that are needed to mangle the name of the
// vector functions generated by the compiler, according to the rules
// defined in the "Vector Function ABI specifications for AArch64",
// available at
// https://developer.arm.com/products/software-development-tools/hpc/arm-compiler-for-hpc/vector-function-abi.
/// Maps To Vector (MTV), as defined in 4.1.1 of the AAVFABI (2021Q1).
static bool getAArch64MTV(QualType QT, ParamKindTy Kind) {
QT = QT.getCanonicalType();
if (QT->isVoidType())
return false;
if (Kind == ParamKindTy::Uniform)
return false;
if (Kind == ParamKindTy::LinearUVal || Kind == ParamKindTy::LinearRef)
return false;
if ((Kind == ParamKindTy::Linear || Kind == ParamKindTy::LinearVal) &&
!QT->isReferenceType())
return false;
return true;
}
/// Pass By Value (PBV), as defined in 3.1.2 of the AAVFABI.
static bool getAArch64PBV(QualType QT, ASTContext &C) {
QT = QT.getCanonicalType();
unsigned Size = C.getTypeSize(QT);
// Only scalars and complex within 16 bytes wide set PVB to true.
if (Size != 8 && Size != 16 && Size != 32 && Size != 64 && Size != 128)
return false;
if (QT->isFloatingType())
return true;
if (QT->isIntegerType())
return true;
if (QT->isPointerType())
return true;
// TODO: Add support for complex types (section 3.1.2, item 2).
return false;
}
/// Computes the lane size (LS) of a return type or of an input parameter,
/// as defined by `LS(P)` in 3.2.1 of the AAVFABI.
/// TODO: Add support for references, section 3.2.1, item 1.
static unsigned getAArch64LS(QualType QT, ParamKindTy Kind, ASTContext &C) {
if (!getAArch64MTV(QT, Kind) && QT.getCanonicalType()->isPointerType()) {
QualType PTy = QT.getCanonicalType()->getPointeeType();
if (getAArch64PBV(PTy, C))
return C.getTypeSize(PTy);
}
if (getAArch64PBV(QT, C))
return C.getTypeSize(QT);
return C.getTypeSize(C.getUIntPtrType());
}
// Get Narrowest Data Size (NDS) and Widest Data Size (WDS) from the
// signature of the scalar function, as defined in 3.2.2 of the
// AAVFABI.
static std::tuple<unsigned, unsigned, bool>
getNDSWDS(const FunctionDecl *FD, ArrayRef<ParamAttrTy> ParamAttrs) {
QualType RetType = FD->getReturnType().getCanonicalType();
ASTContext &C = FD->getASTContext();
bool OutputBecomesInput = false;
llvm::SmallVector<unsigned, 8> Sizes;
if (!RetType->isVoidType()) {
Sizes.push_back(getAArch64LS(RetType, ParamKindTy::Vector, C));
if (!getAArch64PBV(RetType, C) && getAArch64MTV(RetType, {}))
OutputBecomesInput = true;
}
for (unsigned I = 0, E = FD->getNumParams(); I < E; ++I) {
QualType QT = FD->getParamDecl(I)->getType().getCanonicalType();
Sizes.push_back(getAArch64LS(QT, ParamAttrs[I].Kind, C));
}
assert(!Sizes.empty() && "Unable to determine NDS and WDS.");
// The LS of a function parameter / return value can only be a power
// of 2, starting from 8 bits, up to 128.
assert(llvm::all_of(Sizes,
[](unsigned Size) {
return Size == 8 || Size == 16 || Size == 32 ||
Size == 64 || Size == 128;
}) &&
"Invalid size");
return std::make_tuple(*std::min_element(std::begin(Sizes), std::end(Sizes)),
*std::max_element(std::begin(Sizes), std::end(Sizes)),
OutputBecomesInput);
}
// Function used to add the attribute. The parameter `VLEN` is
// templated to allow the use of "x" when targeting scalable functions
// for SVE.
template <typename T>
static void addAArch64VectorName(T VLEN, StringRef LMask, StringRef Prefix,
char ISA, StringRef ParSeq,
StringRef MangledName, bool OutputBecomesInput,
llvm::Function *Fn) {
SmallString<256> Buffer;
llvm::raw_svector_ostream Out(Buffer);
Out << Prefix << ISA << LMask << VLEN;
if (OutputBecomesInput)
Out << "v";
Out << ParSeq << "_" << MangledName;
Fn->addFnAttr(Out.str());
}
// Helper function to generate the Advanced SIMD names depending on
// the value of the NDS when simdlen is not present.
static void addAArch64AdvSIMDNDSNames(unsigned NDS, StringRef Mask,
StringRef Prefix, char ISA,
StringRef ParSeq, StringRef MangledName,
bool OutputBecomesInput,
llvm::Function *Fn) {
switch (NDS) {
case 8:
addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
addAArch64VectorName(16, Mask, Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
break;
case 16:
addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
addAArch64VectorName(8, Mask, Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
break;
case 32:
addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
addAArch64VectorName(4, Mask, Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
break;
case 64:
case 128:
addAArch64VectorName(2, Mask, Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
break;
default:
llvm_unreachable("Scalar type is too wide.");
}
}
/// Emit vector function attributes for AArch64, as defined in the AAVFABI.
static void emitAArch64DeclareSimdFunction(
CodeGenModule &CGM, const FunctionDecl *FD, unsigned UserVLEN,
ArrayRef<ParamAttrTy> ParamAttrs,
OMPDeclareSimdDeclAttr::BranchStateTy State, StringRef MangledName,
char ISA, unsigned VecRegSize, llvm::Function *Fn, SourceLocation SLoc) {
// Get basic data for building the vector signature.
const auto Data = getNDSWDS(FD, ParamAttrs);
const unsigned NDS = std::get<0>(Data);
const unsigned WDS = std::get<1>(Data);
const bool OutputBecomesInput = std::get<2>(Data);
// Check the values provided via `simdlen` by the user.
// 1. A `simdlen(1)` doesn't produce vector signatures,
if (UserVLEN == 1) {
unsigned DiagID = CGM.getDiags().getCustomDiagID(
DiagnosticsEngine::Warning,
"The clause simdlen(1) has no effect when targeting aarch64.");
CGM.getDiags().Report(SLoc, DiagID);
return;
}
// 2. Section 3.3.1, item 1: user input must be a power of 2 for
// Advanced SIMD output.
if (ISA == 'n' && UserVLEN && !llvm::isPowerOf2_32(UserVLEN)) {
unsigned DiagID = CGM.getDiags().getCustomDiagID(
DiagnosticsEngine::Warning, "The value specified in simdlen must be a "
"power of 2 when targeting Advanced SIMD.");
CGM.getDiags().Report(SLoc, DiagID);
return;
}
// 3. Section 3.4.1. SVE fixed lengh must obey the architectural
// limits.
if (ISA == 's' && UserVLEN != 0) {
if ((UserVLEN * WDS > 2048) || (UserVLEN * WDS % 128 != 0)) {
unsigned DiagID = CGM.getDiags().getCustomDiagID(
DiagnosticsEngine::Warning, "The clause simdlen must fit the %0-bit "
"lanes in the architectural constraints "
"for SVE (min is 128-bit, max is "
"2048-bit, by steps of 128-bit)");
CGM.getDiags().Report(SLoc, DiagID) << WDS;
return;
}
}
// Sort out parameter sequence.
const std::string ParSeq = mangleVectorParameters(ParamAttrs);
StringRef Prefix = "_ZGV";
// Generate simdlen from user input (if any).
if (UserVLEN) {
if (ISA == 's') {
// SVE generates only a masked function.
addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
} else {
assert(ISA == 'n' && "Expected ISA either 's' or 'n'.");
// Advanced SIMD generates one or two functions, depending on
// the `[not]inbranch` clause.
switch (State) {
case OMPDeclareSimdDeclAttr::BS_Undefined:
addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
break;
case OMPDeclareSimdDeclAttr::BS_Notinbranch:
addAArch64VectorName(UserVLEN, "N", Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
break;
case OMPDeclareSimdDeclAttr::BS_Inbranch:
addAArch64VectorName(UserVLEN, "M", Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
break;
}
}
} else {
// If no user simdlen is provided, follow the AAVFABI rules for
// generating the vector length.
if (ISA == 's') {
// SVE, section 3.4.1, item 1.
addAArch64VectorName("x", "M", Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
} else {
assert(ISA == 'n' && "Expected ISA either 's' or 'n'.");
// Advanced SIMD, Section 3.3.1 of the AAVFABI, generates one or
// two vector names depending on the use of the clause
// `[not]inbranch`.
switch (State) {
case OMPDeclareSimdDeclAttr::BS_Undefined:
addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
break;
case OMPDeclareSimdDeclAttr::BS_Notinbranch:
addAArch64AdvSIMDNDSNames(NDS, "N", Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
break;
case OMPDeclareSimdDeclAttr::BS_Inbranch:
addAArch64AdvSIMDNDSNames(NDS, "M", Prefix, ISA, ParSeq, MangledName,
OutputBecomesInput, Fn);
break;
}
}
}
}
void CGOpenMPRuntime::emitDeclareSimdFunction(const FunctionDecl *FD,
llvm::Function *Fn) {
ASTContext &C = CGM.getContext();
FD = FD->getMostRecentDecl();
while (FD) {
// Map params to their positions in function decl.
llvm::DenseMap<const Decl *, unsigned> ParamPositions;
if (isa<CXXMethodDecl>(FD))
ParamPositions.try_emplace(FD, 0);
unsigned ParamPos = ParamPositions.size();
for (const ParmVarDecl *P : FD->parameters()) {
ParamPositions.try_emplace(P->getCanonicalDecl(), ParamPos);
++ParamPos;
}
for (const auto *Attr : FD->specific_attrs<OMPDeclareSimdDeclAttr>()) {
llvm::SmallVector<ParamAttrTy, 8> ParamAttrs(ParamPositions.size());
// Mark uniform parameters.
for (const Expr *E : Attr->uniforms()) {
E = E->IgnoreParenImpCasts();
unsigned Pos;
if (isa<CXXThisExpr>(E)) {
Pos = ParamPositions[FD];
} else {
const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
->getCanonicalDecl();
auto It = ParamPositions.find(PVD);
assert(It != ParamPositions.end() && "Function parameter not found");
Pos = It->second;
}
ParamAttrs[Pos].Kind = Uniform;
}
// Get alignment info.
auto *NI = Attr->alignments_begin();
for (const Expr *E : Attr->aligneds()) {
E = E->IgnoreParenImpCasts();
unsigned Pos;
QualType ParmTy;
if (isa<CXXThisExpr>(E)) {
Pos = ParamPositions[FD];
ParmTy = E->getType();
} else {
const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
->getCanonicalDecl();
auto It = ParamPositions.find(PVD);
assert(It != ParamPositions.end() && "Function parameter not found");
Pos = It->second;
ParmTy = PVD->getType();
}
ParamAttrs[Pos].Alignment =
(*NI)
? (*NI)->EvaluateKnownConstInt(C)
: llvm::APSInt::getUnsigned(
C.toCharUnitsFromBits(C.getOpenMPDefaultSimdAlign(ParmTy))
.getQuantity());
++NI;
}
// Mark linear parameters.
auto *SI = Attr->steps_begin();
auto *MI = Attr->modifiers_begin();
for (const Expr *E : Attr->linears()) {
E = E->IgnoreParenImpCasts();
unsigned Pos;
bool IsReferenceType = false;
// Rescaling factor needed to compute the linear parameter
// value in the mangled name.
unsigned PtrRescalingFactor = 1;
if (isa<CXXThisExpr>(E)) {
Pos = ParamPositions[FD];
auto *P = cast<PointerType>(E->getType());
PtrRescalingFactor = CGM.getContext()
.getTypeSizeInChars(P->getPointeeType())
.getQuantity();
} else {
const auto *PVD = cast<ParmVarDecl>(cast<DeclRefExpr>(E)->getDecl())
->getCanonicalDecl();
auto It = ParamPositions.find(PVD);
assert(It != ParamPositions.end() && "Function parameter not found");
Pos = It->second;
if (auto *P = dyn_cast<PointerType>(PVD->getType()))
PtrRescalingFactor = CGM.getContext()
.getTypeSizeInChars(P->getPointeeType())
.getQuantity();
else if (PVD->getType()->isReferenceType()) {
IsReferenceType = true;
PtrRescalingFactor =
CGM.getContext()
.getTypeSizeInChars(PVD->getType().getNonReferenceType())
.getQuantity();
}
}
ParamAttrTy &ParamAttr = ParamAttrs[Pos];
if (*MI == OMPC_LINEAR_ref)
ParamAttr.Kind = LinearRef;
else if (*MI == OMPC_LINEAR_uval)
ParamAttr.Kind = LinearUVal;
else if (IsReferenceType)
ParamAttr.Kind = LinearVal;
else
ParamAttr.Kind = Linear;
// Assuming a stride of 1, for `linear` without modifiers.
ParamAttr.StrideOrArg = llvm::APSInt::getUnsigned(1);
if (*SI) {
Expr::EvalResult Result;
if (!(*SI)->EvaluateAsInt(Result, C, Expr::SE_AllowSideEffects)) {
if (const auto *DRE =
cast<DeclRefExpr>((*SI)->IgnoreParenImpCasts())) {
if (const auto *StridePVD =
dyn_cast<ParmVarDecl>(DRE->getDecl())) {
ParamAttr.HasVarStride = true;
auto It = ParamPositions.find(StridePVD->getCanonicalDecl());
assert(It != ParamPositions.end() &&
"Function parameter not found");
ParamAttr.StrideOrArg = llvm::APSInt::getUnsigned(It->second);
}
}
} else {
ParamAttr.StrideOrArg = Result.Val.getInt();
}
}
// If we are using a linear clause on a pointer, we need to
// rescale the value of linear_step with the byte size of the
// pointee type.
if (!ParamAttr.HasVarStride &&
(ParamAttr.Kind == Linear || ParamAttr.Kind == LinearRef))
ParamAttr.StrideOrArg = ParamAttr.StrideOrArg * PtrRescalingFactor;
++SI;
++MI;
}
llvm::APSInt VLENVal;
SourceLocation ExprLoc;
const Expr *VLENExpr = Attr->getSimdlen();
if (VLENExpr) {
VLENVal = VLENExpr->EvaluateKnownConstInt(C);
ExprLoc = VLENExpr->getExprLoc();
}
OMPDeclareSimdDeclAttr::BranchStateTy State = Attr->getBranchState();
if (CGM.getTriple().isX86()) {
emitX86DeclareSimdFunction(FD, Fn, VLENVal, ParamAttrs, State);
} else if (CGM.getTriple().getArch() == llvm::Triple::aarch64) {
unsigned VLEN = VLENVal.getExtValue();
StringRef MangledName = Fn->getName();
if (CGM.getTarget().hasFeature("sve"))
emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State,
MangledName, 's', 128, Fn, ExprLoc);
else if (CGM.getTarget().hasFeature("neon"))
emitAArch64DeclareSimdFunction(CGM, FD, VLEN, ParamAttrs, State,
MangledName, 'n', 128, Fn, ExprLoc);
}
}
FD = FD->getPreviousDecl();
}
}
namespace {
/// Cleanup action for doacross support.
class DoacrossCleanupTy final : public EHScopeStack::Cleanup {
public:
static const int DoacrossFinArgs = 2;
private:
llvm::FunctionCallee RTLFn;
llvm::Value *Args[DoacrossFinArgs];
public:
DoacrossCleanupTy(llvm::FunctionCallee RTLFn,
ArrayRef<llvm::Value *> CallArgs)
: RTLFn(RTLFn) {
assert(CallArgs.size() == DoacrossFinArgs);
std::copy(CallArgs.begin(), CallArgs.end(), std::begin(Args));
}
void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
if (!CGF.HaveInsertPoint())
return;
CGF.EmitRuntimeCall(RTLFn, Args);
}
};
} // namespace
void CGOpenMPRuntime::emitDoacrossInit(CodeGenFunction &CGF,
const OMPLoopDirective &D,
ArrayRef<Expr *> NumIterations) {
if (!CGF.HaveInsertPoint())
return;
ASTContext &C = CGM.getContext();
QualType Int64Ty = C.getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/true);
RecordDecl *RD;
if (KmpDimTy.isNull()) {
// Build struct kmp_dim { // loop bounds info casted to kmp_int64
// kmp_int64 lo; // lower
// kmp_int64 up; // upper
// kmp_int64 st; // stride
// };
RD = C.buildImplicitRecord("kmp_dim");
RD->startDefinition();
addFieldToRecordDecl(C, RD, Int64Ty);
addFieldToRecordDecl(C, RD, Int64Ty);
addFieldToRecordDecl(C, RD, Int64Ty);
RD->completeDefinition();
KmpDimTy = C.getRecordType(RD);
} else {
RD = cast<RecordDecl>(KmpDimTy->getAsTagDecl());
}
llvm::APInt Size(/*numBits=*/32, NumIterations.size());
QualType ArrayTy = C.getConstantArrayType(KmpDimTy, Size, nullptr,
ArraySizeModifier::Normal, 0);
Address DimsAddr = CGF.CreateMemTemp(ArrayTy, "dims");
CGF.EmitNullInitialization(DimsAddr, ArrayTy);
enum { LowerFD = 0, UpperFD, StrideFD };
// Fill dims with data.
for (unsigned I = 0, E = NumIterations.size(); I < E; ++I) {
LValue DimsLVal = CGF.MakeAddrLValue(
CGF.Builder.CreateConstArrayGEP(DimsAddr, I), KmpDimTy);
// dims.upper = num_iterations;
LValue UpperLVal = CGF.EmitLValueForField(
DimsLVal, *std::next(RD->field_begin(), UpperFD));
llvm::Value *NumIterVal = CGF.EmitScalarConversion(
CGF.EmitScalarExpr(NumIterations[I]), NumIterations[I]->getType(),
Int64Ty, NumIterations[I]->getExprLoc());
CGF.EmitStoreOfScalar(NumIterVal, UpperLVal);
// dims.stride = 1;
LValue StrideLVal = CGF.EmitLValueForField(
DimsLVal, *std::next(RD->field_begin(), StrideFD));
CGF.EmitStoreOfScalar(llvm::ConstantInt::getSigned(CGM.Int64Ty, /*V=*/1),
StrideLVal);
}
// Build call void __kmpc_doacross_init(ident_t *loc, kmp_int32 gtid,
// kmp_int32 num_dims, struct kmp_dim * dims);
llvm::Value *Args[] = {
emitUpdateLocation(CGF, D.getBeginLoc()),
getThreadID(CGF, D.getBeginLoc()),
llvm::ConstantInt::getSigned(CGM.Int32Ty, NumIterations.size()),
CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
CGF.Builder.CreateConstArrayGEP(DimsAddr, 0).emitRawPointer(CGF),
CGM.VoidPtrTy)};
llvm::FunctionCallee RTLFn = OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_doacross_init);
CGF.EmitRuntimeCall(RTLFn, Args);
llvm::Value *FiniArgs[DoacrossCleanupTy::DoacrossFinArgs] = {
emitUpdateLocation(CGF, D.getEndLoc()), getThreadID(CGF, D.getEndLoc())};
llvm::FunctionCallee FiniRTLFn = OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_doacross_fini);
CGF.EHStack.pushCleanup<DoacrossCleanupTy>(NormalAndEHCleanup, FiniRTLFn,
llvm::ArrayRef(FiniArgs));
}
template <typename T>
static void EmitDoacrossOrdered(CodeGenFunction &CGF, CodeGenModule &CGM,
const T *C, llvm::Value *ULoc,
llvm::Value *ThreadID) {
QualType Int64Ty =
CGM.getContext().getIntTypeForBitwidth(/*DestWidth=*/64, /*Signed=*/1);
llvm::APInt Size(/*numBits=*/32, C->getNumLoops());
QualType ArrayTy = CGM.getContext().getConstantArrayType(
Int64Ty, Size, nullptr, ArraySizeModifier::Normal, 0);
Address CntAddr = CGF.CreateMemTemp(ArrayTy, ".cnt.addr");
for (unsigned I = 0, E = C->getNumLoops(); I < E; ++I) {
const Expr *CounterVal = C->getLoopData(I);
assert(CounterVal);
llvm::Value *CntVal = CGF.EmitScalarConversion(
CGF.EmitScalarExpr(CounterVal), CounterVal->getType(), Int64Ty,
CounterVal->getExprLoc());
CGF.EmitStoreOfScalar(CntVal, CGF.Builder.CreateConstArrayGEP(CntAddr, I),
/*Volatile=*/false, Int64Ty);
}
llvm::Value *Args[] = {
ULoc, ThreadID,
CGF.Builder.CreateConstArrayGEP(CntAddr, 0).emitRawPointer(CGF)};
llvm::FunctionCallee RTLFn;
llvm::OpenMPIRBuilder &OMPBuilder = CGM.getOpenMPRuntime().getOMPBuilder();
OMPDoacrossKind<T> ODK;
if (ODK.isSource(C)) {
RTLFn = OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
OMPRTL___kmpc_doacross_post);
} else {
assert(ODK.isSink(C) && "Expect sink modifier.");
RTLFn = OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(),
OMPRTL___kmpc_doacross_wait);
}
CGF.EmitRuntimeCall(RTLFn, Args);
}
void CGOpenMPRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
const OMPDependClause *C) {
return EmitDoacrossOrdered<OMPDependClause>(
CGF, CGM, C, emitUpdateLocation(CGF, C->getBeginLoc()),
getThreadID(CGF, C->getBeginLoc()));
}
void CGOpenMPRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
const OMPDoacrossClause *C) {
return EmitDoacrossOrdered<OMPDoacrossClause>(
CGF, CGM, C, emitUpdateLocation(CGF, C->getBeginLoc()),
getThreadID(CGF, C->getBeginLoc()));
}
void CGOpenMPRuntime::emitCall(CodeGenFunction &CGF, SourceLocation Loc,
llvm::FunctionCallee Callee,
ArrayRef<llvm::Value *> Args) const {
assert(Loc.isValid() && "Outlined function call location must be valid.");
auto DL = ApplyDebugLocation::CreateDefaultArtificial(CGF, Loc);
if (auto *Fn = dyn_cast<llvm::Function>(Callee.getCallee())) {
if (Fn->doesNotThrow()) {
CGF.EmitNounwindRuntimeCall(Fn, Args);
return;
}
}
CGF.EmitRuntimeCall(Callee, Args);
}
void CGOpenMPRuntime::emitOutlinedFunctionCall(
CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
ArrayRef<llvm::Value *> Args) const {
emitCall(CGF, Loc, OutlinedFn, Args);
}
void CGOpenMPRuntime::emitFunctionProlog(CodeGenFunction &CGF, const Decl *D) {
if (const auto *FD = dyn_cast<FunctionDecl>(D))
if (OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(FD))
HasEmittedDeclareTargetRegion = true;
}
Address CGOpenMPRuntime::getParameterAddress(CodeGenFunction &CGF,
const VarDecl *NativeParam,
const VarDecl *TargetParam) const {
return CGF.GetAddrOfLocalVar(NativeParam);
}
/// Return allocator value from expression, or return a null allocator (default
/// when no allocator specified).
static llvm::Value *getAllocatorVal(CodeGenFunction &CGF,
const Expr *Allocator) {
llvm::Value *AllocVal;
if (Allocator) {
AllocVal = CGF.EmitScalarExpr(Allocator);
// According to the standard, the original allocator type is a enum
// (integer). Convert to pointer type, if required.
AllocVal = CGF.EmitScalarConversion(AllocVal, Allocator->getType(),
CGF.getContext().VoidPtrTy,
Allocator->getExprLoc());
} else {
// If no allocator specified, it defaults to the null allocator.
AllocVal = llvm::Constant::getNullValue(
CGF.CGM.getTypes().ConvertType(CGF.getContext().VoidPtrTy));
}
return AllocVal;
}
/// Return the alignment from an allocate directive if present.
static llvm::Value *getAlignmentValue(CodeGenModule &CGM, const VarDecl *VD) {
std::optional<CharUnits> AllocateAlignment = CGM.getOMPAllocateAlignment(VD);
if (!AllocateAlignment)
return nullptr;
return llvm::ConstantInt::get(CGM.SizeTy, AllocateAlignment->getQuantity());
}
Address CGOpenMPRuntime::getAddressOfLocalVariable(CodeGenFunction &CGF,
const VarDecl *VD) {
if (!VD)
return Address::invalid();
Address UntiedAddr = Address::invalid();
Address UntiedRealAddr = Address::invalid();
auto It = FunctionToUntiedTaskStackMap.find(CGF.CurFn);
if (It != FunctionToUntiedTaskStackMap.end()) {
const UntiedLocalVarsAddressesMap &UntiedData =
UntiedLocalVarsStack[It->second];
auto I = UntiedData.find(VD);
if (I != UntiedData.end()) {
UntiedAddr = I->second.first;
UntiedRealAddr = I->second.second;
}
}
const VarDecl *CVD = VD->getCanonicalDecl();
if (CVD->hasAttr<OMPAllocateDeclAttr>()) {
// Use the default allocation.
if (!isAllocatableDecl(VD))
return UntiedAddr;
llvm::Value *Size;
CharUnits Align = CGM.getContext().getDeclAlign(CVD);
if (CVD->getType()->isVariablyModifiedType()) {
Size = CGF.getTypeSize(CVD->getType());
// Align the size: ((size + align - 1) / align) * align
Size = CGF.Builder.CreateNUWAdd(
Size, CGM.getSize(Align - CharUnits::fromQuantity(1)));
Size = CGF.Builder.CreateUDiv(Size, CGM.getSize(Align));
Size = CGF.Builder.CreateNUWMul(Size, CGM.getSize(Align));
} else {
CharUnits Sz = CGM.getContext().getTypeSizeInChars(CVD->getType());
Size = CGM.getSize(Sz.alignTo(Align));
}
llvm::Value *ThreadID = getThreadID(CGF, CVD->getBeginLoc());
const auto *AA = CVD->getAttr<OMPAllocateDeclAttr>();
const Expr *Allocator = AA->getAllocator();
llvm::Value *AllocVal = getAllocatorVal(CGF, Allocator);
llvm::Value *Alignment = getAlignmentValue(CGM, CVD);
SmallVector<llvm::Value *, 4> Args;
Args.push_back(ThreadID);
if (Alignment)
Args.push_back(Alignment);
Args.push_back(Size);
Args.push_back(AllocVal);
llvm::omp::RuntimeFunction FnID =
Alignment ? OMPRTL___kmpc_aligned_alloc : OMPRTL___kmpc_alloc;
llvm::Value *Addr = CGF.EmitRuntimeCall(
OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), FnID), Args,
getName({CVD->getName(), ".void.addr"}));
llvm::FunctionCallee FiniRTLFn = OMPBuilder.getOrCreateRuntimeFunction(
CGM.getModule(), OMPRTL___kmpc_free);
QualType Ty = CGM.getContext().getPointerType(CVD->getType());
Addr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
Addr, CGF.ConvertTypeForMem(Ty), getName({CVD->getName(), ".addr"}));
if (UntiedAddr.isValid())
CGF.EmitStoreOfScalar(Addr, UntiedAddr, /*Volatile=*/false, Ty);
// Cleanup action for allocate support.
class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
llvm::FunctionCallee RTLFn;
SourceLocation::UIntTy LocEncoding;
Address Addr;
const Expr *AllocExpr;
public:
OMPAllocateCleanupTy(llvm::FunctionCallee RTLFn,
SourceLocation::UIntTy LocEncoding, Address Addr,
const Expr *AllocExpr)
: RTLFn(RTLFn), LocEncoding(LocEncoding), Addr(Addr),
AllocExpr(AllocExpr) {}
void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
if (!CGF.HaveInsertPoint())
return;
llvm::Value *Args[3];
Args[0] = CGF.CGM.getOpenMPRuntime().getThreadID(
CGF, SourceLocation::getFromRawEncoding(LocEncoding));
Args[1] = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
Addr.emitRawPointer(CGF), CGF.VoidPtrTy);
llvm::Value *AllocVal = getAllocatorVal(CGF, AllocExpr);
Args[2] = AllocVal;
CGF.EmitRuntimeCall(RTLFn, Args);
}
};
Address VDAddr =
UntiedRealAddr.isValid()
? UntiedRealAddr
: Address(Addr, CGF.ConvertTypeForMem(CVD->getType()), Align);
CGF.EHStack.pushCleanup<OMPAllocateCleanupTy>(
NormalAndEHCleanup, FiniRTLFn, CVD->getLocation().getRawEncoding(),
VDAddr, Allocator);
if (UntiedRealAddr.isValid())
if (auto *Region =
dyn_cast_or_null<CGOpenMPRegionInfo>(CGF.CapturedStmtInfo))
Region->emitUntiedSwitch(CGF);
return VDAddr;
}
return UntiedAddr;
}
bool CGOpenMPRuntime::isLocalVarInUntiedTask(CodeGenFunction &CGF,
const VarDecl *VD) const {
auto It = FunctionToUntiedTaskStackMap.find(CGF.CurFn);
if (It == FunctionToUntiedTaskStackMap.end())
return false;
return UntiedLocalVarsStack[It->second].count(VD) > 0;
}
CGOpenMPRuntime::NontemporalDeclsRAII::NontemporalDeclsRAII(
CodeGenModule &CGM, const OMPLoopDirective &S)
: CGM(CGM), NeedToPush(S.hasClausesOfKind<OMPNontemporalClause>()) {
assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.");
if (!NeedToPush)
return;
NontemporalDeclsSet &DS =
CGM.getOpenMPRuntime().NontemporalDeclsStack.emplace_back();
for (const auto *C : S.getClausesOfKind<OMPNontemporalClause>()) {
for (const Stmt *Ref : C->private_refs()) {
const auto *SimpleRefExpr = cast<Expr>(Ref)->IgnoreParenImpCasts();
const ValueDecl *VD;
if (const auto *DRE = dyn_cast<DeclRefExpr>(SimpleRefExpr)) {
VD = DRE->getDecl();
} else {
const auto *ME = cast<MemberExpr>(SimpleRefExpr);
assert((ME->isImplicitCXXThis() ||
isa<CXXThisExpr>(ME->getBase()->IgnoreParenImpCasts())) &&
"Expected member of current class.");
VD = ME->getMemberDecl();
}
DS.insert(VD);
}
}
}
CGOpenMPRuntime::NontemporalDeclsRAII::~NontemporalDeclsRAII() {
if (!NeedToPush)
return;
CGM.getOpenMPRuntime().NontemporalDeclsStack.pop_back();
}
CGOpenMPRuntime::UntiedTaskLocalDeclsRAII::UntiedTaskLocalDeclsRAII(
CodeGenFunction &CGF,
const llvm::MapVector<CanonicalDeclPtr<const VarDecl>,
std::pair<Address, Address>> &LocalVars)
: CGM(CGF.CGM), NeedToPush(!LocalVars.empty()) {
if (!NeedToPush)
return;
CGM.getOpenMPRuntime().FunctionToUntiedTaskStackMap.try_emplace(
CGF.CurFn, CGM.getOpenMPRuntime().UntiedLocalVarsStack.size());
CGM.getOpenMPRuntime().UntiedLocalVarsStack.push_back(LocalVars);
}
CGOpenMPRuntime::UntiedTaskLocalDeclsRAII::~UntiedTaskLocalDeclsRAII() {
if (!NeedToPush)
return;
CGM.getOpenMPRuntime().UntiedLocalVarsStack.pop_back();
}
bool CGOpenMPRuntime::isNontemporalDecl(const ValueDecl *VD) const {
assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.");
return llvm::any_of(
CGM.getOpenMPRuntime().NontemporalDeclsStack,
[VD](const NontemporalDeclsSet &Set) { return Set.contains(VD); });
}
void CGOpenMPRuntime::LastprivateConditionalRAII::tryToDisableInnerAnalysis(
const OMPExecutableDirective &S,
llvm::DenseSet<CanonicalDeclPtr<const Decl>> &NeedToAddForLPCsAsDisabled)
const {
llvm::DenseSet<CanonicalDeclPtr<const Decl>> NeedToCheckForLPCs;
// Vars in target/task regions must be excluded completely.
if (isOpenMPTargetExecutionDirective(S.getDirectiveKind()) ||
isOpenMPTaskingDirective(S.getDirectiveKind())) {
SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
getOpenMPCaptureRegions(CaptureRegions, S.getDirectiveKind());
const CapturedStmt *CS = S.getCapturedStmt(CaptureRegions.front());
for (const CapturedStmt::Capture &Cap : CS->captures()) {
if (Cap.capturesVariable() || Cap.capturesVariableByCopy())
NeedToCheckForLPCs.insert(Cap.getCapturedVar());
}
}
// Exclude vars in private clauses.
for (const auto *C : S.getClausesOfKind<OMPPrivateClause>()) {
for (const Expr *Ref : C->varlist()) {
if (!Ref->getType()->isScalarType())
continue;
const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
if (!DRE)
continue;
NeedToCheckForLPCs.insert(DRE->getDecl());
}
}
for (const auto *C : S.getClausesOfKind<OMPFirstprivateClause>()) {
for (const Expr *Ref : C->varlist()) {
if (!Ref->getType()->isScalarType())
continue;
const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
if (!DRE)
continue;
NeedToCheckForLPCs.insert(DRE->getDecl());
}
}
for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
for (const Expr *Ref : C->varlist()) {
if (!Ref->getType()->isScalarType())
continue;
const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
if (!DRE)
continue;
NeedToCheckForLPCs.insert(DRE->getDecl());
}
}
for (const auto *C : S.getClausesOfKind<OMPReductionClause>()) {
for (const Expr *Ref : C->varlist()) {
if (!Ref->getType()->isScalarType())
continue;
const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
if (!DRE)
continue;
NeedToCheckForLPCs.insert(DRE->getDecl());
}
}
for (const auto *C : S.getClausesOfKind<OMPLinearClause>()) {
for (const Expr *Ref : C->varlist()) {
if (!Ref->getType()->isScalarType())
continue;
const auto *DRE = dyn_cast<DeclRefExpr>(Ref->IgnoreParenImpCasts());
if (!DRE)
continue;
NeedToCheckForLPCs.insert(DRE->getDecl());
}
}
for (const Decl *VD : NeedToCheckForLPCs) {
for (const LastprivateConditionalData &Data :
llvm::reverse(CGM.getOpenMPRuntime().LastprivateConditionalStack)) {
if (Data.DeclToUniqueName.count(VD) > 0) {
if (!Data.Disabled)
NeedToAddForLPCsAsDisabled.insert(VD);
break;
}
}
}
}
CGOpenMPRuntime::LastprivateConditionalRAII::LastprivateConditionalRAII(
CodeGenFunction &CGF, const OMPExecutableDirective &S, LValue IVLVal)
: CGM(CGF.CGM),
Action((CGM.getLangOpts().OpenMP >= 50 &&
llvm::any_of(S.getClausesOfKind<OMPLastprivateClause>(),
[](const OMPLastprivateClause *C) {
return C->getKind() ==
OMPC_LASTPRIVATE_conditional;
}))
? ActionToDo::PushAsLastprivateConditional
: ActionToDo::DoNotPush) {
assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.");
if (CGM.getLangOpts().OpenMP < 50 || Action == ActionToDo::DoNotPush)
return;
assert(Action == ActionToDo::PushAsLastprivateConditional &&
"Expected a push action.");
LastprivateConditionalData &Data =
CGM.getOpenMPRuntime().LastprivateConditionalStack.emplace_back();
for (const auto *C : S.getClausesOfKind<OMPLastprivateClause>()) {
if (C->getKind() != OMPC_LASTPRIVATE_conditional)
continue;
for (const Expr *Ref : C->varlist()) {
Data.DeclToUniqueName.insert(std::make_pair(
cast<DeclRefExpr>(Ref->IgnoreParenImpCasts())->getDecl(),
SmallString<16>(generateUniqueName(CGM, "pl_cond", Ref))));
}
}
Data.IVLVal = IVLVal;
Data.Fn = CGF.CurFn;
}
CGOpenMPRuntime::LastprivateConditionalRAII::LastprivateConditionalRAII(
CodeGenFunction &CGF, const OMPExecutableDirective &S)
: CGM(CGF.CGM), Action(ActionToDo::DoNotPush) {
assert(CGM.getLangOpts().OpenMP && "Not in OpenMP mode.");
if (CGM.getLangOpts().OpenMP < 50)
return;
llvm::DenseSet<CanonicalDeclPtr<const Decl>> NeedToAddForLPCsAsDisabled;
tryToDisableInnerAnalysis(S, NeedToAddForLPCsAsDisabled);
if (!NeedToAddForLPCsAsDisabled.empty()) {
Action = ActionToDo::DisableLastprivateConditional;
LastprivateConditionalData &Data =
CGM.getOpenMPRuntime().LastprivateConditionalStack.emplace_back();
for (const Decl *VD : NeedToAddForLPCsAsDisabled)
Data.DeclToUniqueName.insert(std::make_pair(VD, SmallString<16>()));
Data.Fn = CGF.CurFn;
Data.Disabled = true;
}
}
CGOpenMPRuntime::LastprivateConditionalRAII
CGOpenMPRuntime::LastprivateConditionalRAII::disable(
CodeGenFunction &CGF, const OMPExecutableDirective &S) {
return LastprivateConditionalRAII(CGF, S);
}
CGOpenMPRuntime::LastprivateConditionalRAII::~LastprivateConditionalRAII() {
if (CGM.getLangOpts().OpenMP < 50)
return;
if (Action == ActionToDo::DisableLastprivateConditional) {
assert(CGM.getOpenMPRuntime().LastprivateConditionalStack.back().Disabled &&
"Expected list of disabled private vars.");
CGM.getOpenMPRuntime().LastprivateConditionalStack.pop_back();
}
if (Action == ActionToDo::PushAsLastprivateConditional) {
assert(
!CGM.getOpenMPRuntime().LastprivateConditionalStack.back().Disabled &&
"Expected list of lastprivate conditional vars.");
CGM.getOpenMPRuntime().LastprivateConditionalStack.pop_back();
}
}
Address CGOpenMPRuntime::emitLastprivateConditionalInit(CodeGenFunction &CGF,
const VarDecl *VD) {
ASTContext &C = CGM.getContext();
auto I = LastprivateConditionalToTypes.try_emplace(CGF.CurFn).first;
QualType NewType;
const FieldDecl *VDField;
const FieldDecl *FiredField;
LValue BaseLVal;
auto VI = I->getSecond().find(VD);
if (VI == I->getSecond().end()) {
RecordDecl *RD = C.buildImplicitRecord("lasprivate.conditional");
RD->startDefinition();
VDField = addFieldToRecordDecl(C, RD, VD->getType().getNonReferenceType());
FiredField = addFieldToRecordDecl(C, RD, C.CharTy);
RD->completeDefinition();
NewType = C.getRecordType(RD);
Address Addr = CGF.CreateMemTemp(NewType, C.getDeclAlign(VD), VD->getName());
BaseLVal = CGF.MakeAddrLValue(Addr, NewType, AlignmentSource::Decl);
I->getSecond().try_emplace(VD, NewType, VDField, FiredField, BaseLVal);
} else {
NewType = std::get<0>(VI->getSecond());
VDField = std::get<1>(VI->getSecond());
FiredField = std::get<2>(VI->getSecond());
BaseLVal = std::get<3>(VI->getSecond());
}
LValue FiredLVal =
CGF.EmitLValueForField(BaseLVal, FiredField);
CGF.EmitStoreOfScalar(
llvm::ConstantInt::getNullValue(CGF.ConvertTypeForMem(C.CharTy)),
FiredLVal);
return CGF.EmitLValueForField(BaseLVal, VDField).getAddress();
}
namespace {
/// Checks if the lastprivate conditional variable is referenced in LHS.
class LastprivateConditionalRefChecker final
: public ConstStmtVisitor<LastprivateConditionalRefChecker, bool> {
ArrayRef<CGOpenMPRuntime::LastprivateConditionalData> LPM;
const Expr *FoundE = nullptr;
const Decl *FoundD = nullptr;
StringRef UniqueDeclName;
LValue IVLVal;
llvm::Function *FoundFn = nullptr;
SourceLocation Loc;
public:
bool VisitDeclRefExpr(const DeclRefExpr *E) {
for (const CGOpenMPRuntime::LastprivateConditionalData &D :
llvm::reverse(LPM)) {
auto It = D.DeclToUniqueName.find(E->getDecl());
if (It == D.DeclToUniqueName.end())
continue;
if (D.Disabled)
return false;
FoundE = E;
FoundD = E->getDecl()->getCanonicalDecl();
UniqueDeclName = It->second;
IVLVal = D.IVLVal;
FoundFn = D.Fn;
break;
}
return FoundE == E;
}
bool VisitMemberExpr(const MemberExpr *E) {
if (!CodeGenFunction::IsWrappedCXXThis(E->getBase()))
return false;
for (const CGOpenMPRuntime::LastprivateConditionalData &D :
llvm::reverse(LPM)) {
auto It = D.DeclToUniqueName.find(E->getMemberDecl());
if (It == D.DeclToUniqueName.end())
continue;
if (D.Disabled)
return false;
FoundE = E;
FoundD = E->getMemberDecl()->getCanonicalDecl();
UniqueDeclName = It->second;
IVLVal = D.IVLVal;
FoundFn = D.Fn;
break;
}
return FoundE == E;
}
bool VisitStmt(const Stmt *S) {
for (const Stmt *Child : S->children()) {
if (!Child)
continue;
if (const auto *E = dyn_cast<Expr>(Child))
if (!E->isGLValue())
continue;
if (Visit(Child))
return true;
}
return false;
}
explicit LastprivateConditionalRefChecker(
ArrayRef<CGOpenMPRuntime::LastprivateConditionalData> LPM)
: LPM(LPM) {}
std::tuple<const Expr *, const Decl *, StringRef, LValue, llvm::Function *>
getFoundData() const {
return std::make_tuple(FoundE, FoundD, UniqueDeclName, IVLVal, FoundFn);
}
};
} // namespace
void CGOpenMPRuntime::emitLastprivateConditionalUpdate(CodeGenFunction &CGF,
LValue IVLVal,
StringRef UniqueDeclName,
LValue LVal,
SourceLocation Loc) {
// Last updated loop counter for the lastprivate conditional var.
// int<xx> last_iv = 0;
llvm::Type *LLIVTy = CGF.ConvertTypeForMem(IVLVal.getType());
llvm::Constant *LastIV = OMPBuilder.getOrCreateInternalVariable(
LLIVTy, getName({UniqueDeclName, "iv"}));
cast<llvm::GlobalVariable>(LastIV)->setAlignment(
IVLVal.getAlignment().getAsAlign());
LValue LastIVLVal =
CGF.MakeNaturalAlignRawAddrLValue(LastIV, IVLVal.getType());
// Last value of the lastprivate conditional.
// decltype(priv_a) last_a;
llvm::GlobalVariable *Last = OMPBuilder.getOrCreateInternalVariable(
CGF.ConvertTypeForMem(LVal.getType()), UniqueDeclName);
cast<llvm::GlobalVariable>(Last)->setAlignment(
LVal.getAlignment().getAsAlign());
LValue LastLVal =
CGF.MakeRawAddrLValue(Last, LVal.getType(), LVal.getAlignment());
// Global loop counter. Required to handle inner parallel-for regions.
// iv
llvm::Value *IVVal = CGF.EmitLoadOfScalar(IVLVal, Loc);
// #pragma omp critical(a)
// if (last_iv <= iv) {
// last_iv = iv;
// last_a = priv_a;
// }
auto &&CodeGen = [&LastIVLVal, &IVLVal, IVVal, &LVal, &LastLVal,
Loc](CodeGenFunction &CGF, PrePostActionTy &Action) {
Action.Enter(CGF);
llvm::Value *LastIVVal = CGF.EmitLoadOfScalar(LastIVLVal, Loc);
// (last_iv <= iv) ? Check if the variable is updated and store new
// value in global var.
llvm::Value *CmpRes;
if (IVLVal.getType()->isSignedIntegerType()) {
CmpRes = CGF.Builder.CreateICmpSLE(LastIVVal, IVVal);
} else {
assert(IVLVal.getType()->isUnsignedIntegerType() &&
"Loop iteration variable must be integer.");
CmpRes = CGF.Builder.CreateICmpULE(LastIVVal, IVVal);
}
llvm::BasicBlock *ThenBB = CGF.createBasicBlock("lp_cond_then");
llvm::BasicBlock *ExitBB = CGF.createBasicBlock("lp_cond_exit");
CGF.Builder.CreateCondBr(CmpRes, ThenBB, ExitBB);
// {
CGF.EmitBlock(ThenBB);
// last_iv = iv;
CGF.EmitStoreOfScalar(IVVal, LastIVLVal);
// last_a = priv_a;
switch (CGF.getEvaluationKind(LVal.getType())) {
case TEK_Scalar: {
llvm::Value *PrivVal = CGF.EmitLoadOfScalar(LVal, Loc);
CGF.EmitStoreOfScalar(PrivVal, LastLVal);
break;
}
case TEK_Complex: {
CodeGenFunction::ComplexPairTy PrivVal = CGF.EmitLoadOfComplex(LVal, Loc);
CGF.EmitStoreOfComplex(PrivVal, LastLVal, /*isInit=*/false);
break;
}
case TEK_Aggregate:
llvm_unreachable(
"Aggregates are not supported in lastprivate conditional.");
}
// }
CGF.EmitBranch(ExitBB);
// There is no need to emit line number for unconditional branch.
(void)ApplyDebugLocation::CreateEmpty(CGF);
CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
};
if (CGM.getLangOpts().OpenMPSimd) {
// Do not emit as a critical region as no parallel region could be emitted.
RegionCodeGenTy ThenRCG(CodeGen);
ThenRCG(CGF);
} else {
emitCriticalRegion(CGF, UniqueDeclName, CodeGen, Loc);
}
}
void CGOpenMPRuntime::checkAndEmitLastprivateConditional(CodeGenFunction &CGF,
const Expr *LHS) {
if (CGF.getLangOpts().OpenMP < 50 || LastprivateConditionalStack.empty())
return;
LastprivateConditionalRefChecker Checker(LastprivateConditionalStack);
if (!Checker.Visit(LHS))
return;
const Expr *FoundE;
const Decl *FoundD;
StringRef UniqueDeclName;
LValue IVLVal;
llvm::Function *FoundFn;
std::tie(FoundE, FoundD, UniqueDeclName, IVLVal, FoundFn) =
Checker.getFoundData();
if (FoundFn != CGF.CurFn) {
// Special codegen for inner parallel regions.
// ((struct.lastprivate.conditional*)&priv_a)->Fired = 1;
auto It = LastprivateConditionalToTypes[FoundFn].find(FoundD);
assert(It != LastprivateConditionalToTypes[FoundFn].end() &&
"Lastprivate conditional is not found in outer region.");
QualType StructTy = std::get<0>(It->getSecond());
const FieldDecl* FiredDecl = std::get<2>(It->getSecond());
LValue PrivLVal = CGF.EmitLValue(FoundE);
Address StructAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
PrivLVal.getAddress(),
CGF.ConvertTypeForMem(CGF.getContext().getPointerType(StructTy)),
CGF.ConvertTypeForMem(StructTy));
LValue BaseLVal =
CGF.MakeAddrLValue(StructAddr, StructTy, AlignmentSource::Decl);
LValue FiredLVal = CGF.EmitLValueForField(BaseLVal, FiredDecl);
CGF.EmitAtomicStore(RValue::get(llvm::ConstantInt::get(
CGF.ConvertTypeForMem(FiredDecl->getType()), 1)),
FiredLVal, llvm::AtomicOrdering::Unordered,
/*IsVolatile=*/true, /*isInit=*/false);
return;
}
// Private address of the lastprivate conditional in the current context.
// priv_a
LValue LVal = CGF.EmitLValue(FoundE);
emitLastprivateConditionalUpdate(CGF, IVLVal, UniqueDeclName, LVal,
FoundE->getExprLoc());
}
void CGOpenMPRuntime::checkAndEmitSharedLastprivateConditional(
CodeGenFunction &CGF, const OMPExecutableDirective &D,
const llvm::DenseSet<CanonicalDeclPtr<const VarDecl>> &IgnoredDecls) {
if (CGF.getLangOpts().OpenMP < 50 || LastprivateConditionalStack.empty())
return;
auto Range = llvm::reverse(LastprivateConditionalStack);
auto It = llvm::find_if(
Range, [](const LastprivateConditionalData &D) { return !D.Disabled; });
if (It == Range.end() || It->Fn != CGF.CurFn)
return;
auto LPCI = LastprivateConditionalToTypes.find(It->Fn);
assert(LPCI != LastprivateConditionalToTypes.end() &&
"Lastprivates must be registered already.");
SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
getOpenMPCaptureRegions(CaptureRegions, D.getDirectiveKind());
const CapturedStmt *CS = D.getCapturedStmt(CaptureRegions.back());
for (const auto &Pair : It->DeclToUniqueName) {
const auto *VD = cast<VarDecl>(Pair.first->getCanonicalDecl());
if (!CS->capturesVariable(VD) || IgnoredDecls.contains(VD))
continue;
auto I = LPCI->getSecond().find(Pair.first);
assert(I != LPCI->getSecond().end() &&
"Lastprivate must be rehistered already.");
// bool Cmp = priv_a.Fired != 0;
LValue BaseLVal = std::get<3>(I->getSecond());
LValue FiredLVal =
CGF.EmitLValueForField(BaseLVal, std::get<2>(I->getSecond()));
llvm::Value *Res = CGF.EmitLoadOfScalar(FiredLVal, D.getBeginLoc());
llvm::Value *Cmp = CGF.Builder.CreateIsNotNull(Res);
llvm::BasicBlock *ThenBB = CGF.createBasicBlock("lpc.then");
llvm::BasicBlock *DoneBB = CGF.createBasicBlock("lpc.done");
// if (Cmp) {
CGF.Builder.CreateCondBr(Cmp, ThenBB, DoneBB);
CGF.EmitBlock(ThenBB);
Address Addr = CGF.GetAddrOfLocalVar(VD);
LValue LVal;
if (VD->getType()->isReferenceType())
LVal = CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
AlignmentSource::Decl);
else
LVal = CGF.MakeAddrLValue(Addr, VD->getType().getNonReferenceType(),
AlignmentSource::Decl);
emitLastprivateConditionalUpdate(CGF, It->IVLVal, Pair.second, LVal,
D.getBeginLoc());
auto AL = ApplyDebugLocation::CreateArtificial(CGF);
CGF.EmitBlock(DoneBB, /*IsFinal=*/true);
// }
}
}
void CGOpenMPRuntime::emitLastprivateConditionalFinalUpdate(
CodeGenFunction &CGF, LValue PrivLVal, const VarDecl *VD,
SourceLocation Loc) {
if (CGF.getLangOpts().OpenMP < 50)
return;
auto It = LastprivateConditionalStack.back().DeclToUniqueName.find(VD);
assert(It != LastprivateConditionalStack.back().DeclToUniqueName.end() &&
"Unknown lastprivate conditional variable.");
StringRef UniqueName = It->second;
llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(UniqueName);
// The variable was not updated in the region - exit.
if (!GV)
return;
LValue LPLVal = CGF.MakeRawAddrLValue(
GV, PrivLVal.getType().getNonReferenceType(), PrivLVal.getAlignment());
llvm::Value *Res = CGF.EmitLoadOfScalar(LPLVal, Loc);
CGF.EmitStoreOfScalar(Res, PrivLVal);
}
llvm::Function *CGOpenMPSIMDRuntime::emitParallelOutlinedFunction(
CodeGenFunction &CGF, const OMPExecutableDirective &D,
const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind,
const RegionCodeGenTy &CodeGen) {
llvm_unreachable("Not supported in SIMD-only mode");
}
llvm::Function *CGOpenMPSIMDRuntime::emitTeamsOutlinedFunction(
CodeGenFunction &CGF, const OMPExecutableDirective &D,
const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind,
const RegionCodeGenTy &CodeGen) {
llvm_unreachable("Not supported in SIMD-only mode");
}
llvm::Function *CGOpenMPSIMDRuntime::emitTaskOutlinedFunction(
const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
const VarDecl *PartIDVar, const VarDecl *TaskTVar,
OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen,
bool Tied, unsigned &NumberOfParts) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitParallelCall(CodeGenFunction &CGF,
SourceLocation Loc,
llvm::Function *OutlinedFn,
ArrayRef<llvm::Value *> CapturedVars,
const Expr *IfCond,
llvm::Value *NumThreads) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitCriticalRegion(
CodeGenFunction &CGF, StringRef CriticalName,
const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
const Expr *Hint) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitMasterRegion(CodeGenFunction &CGF,
const RegionCodeGenTy &MasterOpGen,
SourceLocation Loc) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitMaskedRegion(CodeGenFunction &CGF,
const RegionCodeGenTy &MasterOpGen,
SourceLocation Loc,
const Expr *Filter) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitTaskyieldCall(CodeGenFunction &CGF,
SourceLocation Loc) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitTaskgroupRegion(
CodeGenFunction &CGF, const RegionCodeGenTy &TaskgroupOpGen,
SourceLocation Loc) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitSingleRegion(
CodeGenFunction &CGF, const RegionCodeGenTy &SingleOpGen,
SourceLocation Loc, ArrayRef<const Expr *> CopyprivateVars,
ArrayRef<const Expr *> DestExprs, ArrayRef<const Expr *> SrcExprs,
ArrayRef<const Expr *> AssignmentOps) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitOrderedRegion(CodeGenFunction &CGF,
const RegionCodeGenTy &OrderedOpGen,
SourceLocation Loc,
bool IsThreads) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitBarrierCall(CodeGenFunction &CGF,
SourceLocation Loc,
OpenMPDirectiveKind Kind,
bool EmitChecks,
bool ForceSimpleCall) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitForDispatchInit(
CodeGenFunction &CGF, SourceLocation Loc,
const OpenMPScheduleTy &ScheduleKind, unsigned IVSize, bool IVSigned,
bool Ordered, const DispatchRTInput &DispatchValues) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitForDispatchDeinit(CodeGenFunction &CGF,
SourceLocation Loc) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitForStaticInit(
CodeGenFunction &CGF, SourceLocation Loc, OpenMPDirectiveKind DKind,
const OpenMPScheduleTy &ScheduleKind, const StaticRTInput &Values) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitDistributeStaticInit(
CodeGenFunction &CGF, SourceLocation Loc,
OpenMPDistScheduleClauseKind SchedKind, const StaticRTInput &Values) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitForOrderedIterationEnd(CodeGenFunction &CGF,
SourceLocation Loc,
unsigned IVSize,
bool IVSigned) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitForStaticFinish(CodeGenFunction &CGF,
SourceLocation Loc,
OpenMPDirectiveKind DKind) {
llvm_unreachable("Not supported in SIMD-only mode");
}
llvm::Value *CGOpenMPSIMDRuntime::emitForNext(CodeGenFunction &CGF,
SourceLocation Loc,
unsigned IVSize, bool IVSigned,
Address IL, Address LB,
Address UB, Address ST) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitNumThreadsClause(CodeGenFunction &CGF,
llvm::Value *NumThreads,
SourceLocation Loc) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitProcBindClause(CodeGenFunction &CGF,
ProcBindKind ProcBind,
SourceLocation Loc) {
llvm_unreachable("Not supported in SIMD-only mode");
}
Address CGOpenMPSIMDRuntime::getAddrOfThreadPrivate(CodeGenFunction &CGF,
const VarDecl *VD,
Address VDAddr,
SourceLocation Loc) {
llvm_unreachable("Not supported in SIMD-only mode");
}
llvm::Function *CGOpenMPSIMDRuntime::emitThreadPrivateVarDefinition(
const VarDecl *VD, Address VDAddr, SourceLocation Loc, bool PerformInit,
CodeGenFunction *CGF) {
llvm_unreachable("Not supported in SIMD-only mode");
}
Address CGOpenMPSIMDRuntime::getAddrOfArtificialThreadPrivate(
CodeGenFunction &CGF, QualType VarType, StringRef Name) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitFlush(CodeGenFunction &CGF,
ArrayRef<const Expr *> Vars,
SourceLocation Loc,
llvm::AtomicOrdering AO) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitTaskCall(CodeGenFunction &CGF, SourceLocation Loc,
const OMPExecutableDirective &D,
llvm::Function *TaskFunction,
QualType SharedsTy, Address Shareds,
const Expr *IfCond,
const OMPTaskDataTy &Data) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitTaskLoopCall(
CodeGenFunction &CGF, SourceLocation Loc, const OMPLoopDirective &D,
llvm::Function *TaskFunction, QualType SharedsTy, Address Shareds,
const Expr *IfCond, const OMPTaskDataTy &Data) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitReduction(
CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
assert(Options.SimpleReduction && "Only simple reduction is expected.");
CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
ReductionOps, Options);
}
llvm::Value *CGOpenMPSIMDRuntime::emitTaskReductionInit(
CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> LHSExprs,
ArrayRef<const Expr *> RHSExprs, const OMPTaskDataTy &Data) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitTaskReductionFini(CodeGenFunction &CGF,
SourceLocation Loc,
bool IsWorksharingReduction) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitTaskReductionFixups(CodeGenFunction &CGF,
SourceLocation Loc,
ReductionCodeGen &RCG,
unsigned N) {
llvm_unreachable("Not supported in SIMD-only mode");
}
Address CGOpenMPSIMDRuntime::getTaskReductionItem(CodeGenFunction &CGF,
SourceLocation Loc,
llvm::Value *ReductionsPtr,
LValue SharedLVal) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitTaskwaitCall(CodeGenFunction &CGF,
SourceLocation Loc,
const OMPTaskDataTy &Data) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitCancellationPointCall(
CodeGenFunction &CGF, SourceLocation Loc,
OpenMPDirectiveKind CancelRegion) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitCancelCall(CodeGenFunction &CGF,
SourceLocation Loc, const Expr *IfCond,
OpenMPDirectiveKind CancelRegion) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitTargetOutlinedFunction(
const OMPExecutableDirective &D, StringRef ParentName,
llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitTargetCall(
CodeGenFunction &CGF, const OMPExecutableDirective &D,
llvm::Function *OutlinedFn, llvm::Value *OutlinedFnID, const Expr *IfCond,
llvm::PointerIntPair<const Expr *, 2, OpenMPDeviceClauseModifier> Device,
llvm::function_ref<llvm::Value *(CodeGenFunction &CGF,
const OMPLoopDirective &D)>
SizeEmitter) {
llvm_unreachable("Not supported in SIMD-only mode");
}
bool CGOpenMPSIMDRuntime::emitTargetFunctions(GlobalDecl GD) {
llvm_unreachable("Not supported in SIMD-only mode");
}
bool CGOpenMPSIMDRuntime::emitTargetGlobalVariable(GlobalDecl GD) {
llvm_unreachable("Not supported in SIMD-only mode");
}
bool CGOpenMPSIMDRuntime::emitTargetGlobal(GlobalDecl GD) {
return false;
}
void CGOpenMPSIMDRuntime::emitTeamsCall(CodeGenFunction &CGF,
const OMPExecutableDirective &D,
SourceLocation Loc,
llvm::Function *OutlinedFn,
ArrayRef<llvm::Value *> CapturedVars) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitNumTeamsClause(CodeGenFunction &CGF,
const Expr *NumTeams,
const Expr *ThreadLimit,
SourceLocation Loc) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitTargetDataCalls(
CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
const Expr *Device, const RegionCodeGenTy &CodeGen,
CGOpenMPRuntime::TargetDataInfo &Info) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitTargetDataStandAloneCall(
CodeGenFunction &CGF, const OMPExecutableDirective &D, const Expr *IfCond,
const Expr *Device) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitDoacrossInit(CodeGenFunction &CGF,
const OMPLoopDirective &D,
ArrayRef<Expr *> NumIterations) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
const OMPDependClause *C) {
llvm_unreachable("Not supported in SIMD-only mode");
}
void CGOpenMPSIMDRuntime::emitDoacrossOrdered(CodeGenFunction &CGF,
const OMPDoacrossClause *C) {
llvm_unreachable("Not supported in SIMD-only mode");
}
const VarDecl *
CGOpenMPSIMDRuntime::translateParameter(const FieldDecl *FD,
const VarDecl *NativeParam) const {
llvm_unreachable("Not supported in SIMD-only mode");
}
Address
CGOpenMPSIMDRuntime::getParameterAddress(CodeGenFunction &CGF,
const VarDecl *NativeParam,
const VarDecl *TargetParam) const {
llvm_unreachable("Not supported in SIMD-only mode");
}