mirror of
https://github.com/llvm/llvm-project.git
synced 2025-05-05 02:56:08 +00:00

Today `-split-machine-functions` and `-fbasic-block-sections={all,list}` cannot be combined with `-basic-block-sections=labels` (the labels option will be ignored). The inconsistency comes from the way basic block address map -- the underlying mechanism for basic block labels -- encodes basic block addresses (https://lists.llvm.org/pipermail/llvm-dev/2020-July/143512.html). Specifically, basic block offsets are computed relative to the function begin symbol. This relies on functions being contiguous which is not the case for MFS and basic block section binaries. This means Propeller cannot use binary profiles collected from these binaries, which limits the applicability of Propeller for iterative optimization. To make the `SHT_LLVM_BB_ADDR_MAP` feature work with basic block section binaries, we propose modifying the encoding of this section as follows. First let us review the current encoding which emits the address of each function and its number of basic blocks, followed by basic block entries for each basic block. | | | |--|--| | Address of the function | Function Address | | Number of basic blocks in this function | NumBlocks | | BB entry 1 | BB entry 2 | ... | BB entry #NumBlocks To make this work for basic block sections, we treat each basic block section similar to a function, except that basic block sections of the same function must be encapsulated in the same structure so we can map all of them to their single function. We modify the encoding to first emit the number of basic block sections (BB ranges) in the function. Then we emit the address map of each basic block section section as before: the base address of the section, its number of blocks, and BB entries for its basic block. The first section in the BB address map is always the function entry section. | | | |--|--| | Number of sections for this function | NumBBRanges | | Section 1 begin address | BaseAddress[1] | | Number of basic blocks in section 1 | NumBlocks[1] | | BB entries for Section 1 |..................| | Section #NumBBRanges begin address | BaseAddress[NumBBRanges] | | Number of basic blocks in section #NumBBRanges | NumBlocks[NumBBRanges] | | BB entries for Section #NumBBRanges The encoding of basic block entries remains as before with the minor change that each basic block offset is now computed relative to the begin symbol of its containing BB section. This patch adds a new boolean codegen option `-basic-block-address-map`. Correspondingly, the front-end flag `-fbasic-block-address-map` and LLD flag `--lto-basic-block-address-map` are introduced. Analogously, we add a new TargetOption field `BBAddrMap`. This means BB address maps are either generated for all functions in the compiling unit, or for none (depending on `TargetOptions::BBAddrMap`). This patch keeps the functionality of the old `-fbasic-block-sections=labels` option but does not remove it. A subsequent patch will remove the obsolete option. We refactor the `BasicBlockSections` pass by separating the BB address map and BB sections handing to their own functions (named `handleBBAddrMap` and `handleBBSections`). `handleBBSections` renumbers basic blocks and places them in their assigned sections. `handleBBAddrMap` is invoked after `handleBBSections` (if requested) and only renumbers the blocks. - New tests added: - Two tests basic-block-address-map-with-basic-block-sections.ll and basic-block-address-map-with-mfs.ll to exercise the combination of `-basic-block-address-map` with `-basic-block-sections=list` and '-split-machine-functions`. - A driver sanity test for the `-fbasic-block-address-map` option (basic-block-address-map.c). - An LLD test for testing the `--lto-basic-block-address-map` option. This reuses the LLVM IR from `lld/test/ELF/lto/basic-block-sections.ll`. - Renamed and modified the two existing codegen tests for basic block address map (`basic-block-sections-labels-functions-sections.ll` and `basic-block-sections-labels.ll`) - Removed `SHT_LLVM_BB_ADDR_MAP_V0` tests. Full deprecation of `SHT_LLVM_BB_ADDR_MAP_V0` and `SHT_LLVM_BB_ADDR_MAP` version less than 2 will happen in a separate PR in a few months.
403 lines
17 KiB
C++
403 lines
17 KiB
C++
//===-- BasicBlockSections.cpp ---=========--------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// BasicBlockSections implementation.
|
|
//
|
|
// The purpose of this pass is to assign sections to basic blocks when
|
|
// -fbasic-block-sections= option is used. Further, with profile information
|
|
// only the subset of basic blocks with profiles are placed in separate sections
|
|
// and the rest are grouped in a cold section. The exception handling blocks are
|
|
// treated specially to ensure they are all in one seciton.
|
|
//
|
|
// Basic Block Sections
|
|
// ====================
|
|
//
|
|
// With option, -fbasic-block-sections=list, every function may be split into
|
|
// clusters of basic blocks. Every cluster will be emitted into a separate
|
|
// section with its basic blocks sequenced in the given order. To get the
|
|
// optimized performance, the clusters must form an optimal BB layout for the
|
|
// function. We insert a symbol at the beginning of every cluster's section to
|
|
// allow the linker to reorder the sections in any arbitrary sequence. A global
|
|
// order of these sections would encapsulate the function layout.
|
|
// For example, consider the following clusters for a function foo (consisting
|
|
// of 6 basic blocks 0, 1, ..., 5).
|
|
//
|
|
// 0 2
|
|
// 1 3 5
|
|
//
|
|
// * Basic blocks 0 and 2 are placed in one section with symbol `foo`
|
|
// referencing the beginning of this section.
|
|
// * Basic blocks 1, 3, 5 are placed in a separate section. A new symbol
|
|
// `foo.__part.1` will reference the beginning of this section.
|
|
// * Basic block 4 (note that it is not referenced in the list) is placed in
|
|
// one section, and a new symbol `foo.cold` will point to it.
|
|
//
|
|
// There are a couple of challenges to be addressed:
|
|
//
|
|
// 1. The last basic block of every cluster should not have any implicit
|
|
// fallthrough to its next basic block, as it can be reordered by the linker.
|
|
// The compiler should make these fallthroughs explicit by adding
|
|
// unconditional jumps..
|
|
//
|
|
// 2. All inter-cluster branch targets would now need to be resolved by the
|
|
// linker as they cannot be calculated during compile time. This is done
|
|
// using static relocations. Further, the compiler tries to use short branch
|
|
// instructions on some ISAs for small branch offsets. This is not possible
|
|
// for inter-cluster branches as the offset is not determined at compile
|
|
// time, and therefore, long branch instructions have to be used for those.
|
|
//
|
|
// 3. Debug Information (DebugInfo) and Call Frame Information (CFI) emission
|
|
// needs special handling with basic block sections. DebugInfo needs to be
|
|
// emitted with more relocations as basic block sections can break a
|
|
// function into potentially several disjoint pieces, and CFI needs to be
|
|
// emitted per cluster. This also bloats the object file and binary sizes.
|
|
//
|
|
// Basic Block Address Map
|
|
// ==================
|
|
//
|
|
// With -fbasic-block-address-map, we emit the offsets of BB addresses of
|
|
// every function into the .llvm_bb_addr_map section. Along with the function
|
|
// symbols, this allows for mapping of virtual addresses in PMU profiles back to
|
|
// the corresponding basic blocks. This logic is implemented in AsmPrinter. This
|
|
// pass only assigns the BBSectionType of every function to ``labels``.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/CodeGen/BasicBlockSectionUtils.h"
|
|
#include "llvm/CodeGen/BasicBlockSectionsProfileReader.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include <optional>
|
|
|
|
using namespace llvm;
|
|
|
|
// Placing the cold clusters in a separate section mitigates against poor
|
|
// profiles and allows optimizations such as hugepage mapping to be applied at a
|
|
// section granularity. Defaults to ".text.split." which is recognized by lld
|
|
// via the `-z keep-text-section-prefix` flag.
|
|
cl::opt<std::string> llvm::BBSectionsColdTextPrefix(
|
|
"bbsections-cold-text-prefix",
|
|
cl::desc("The text prefix to use for cold basic block clusters"),
|
|
cl::init(".text.split."), cl::Hidden);
|
|
|
|
static cl::opt<bool> BBSectionsDetectSourceDrift(
|
|
"bbsections-detect-source-drift",
|
|
cl::desc("This checks if there is a fdo instr. profile hash "
|
|
"mismatch for this function"),
|
|
cl::init(true), cl::Hidden);
|
|
|
|
namespace {
|
|
|
|
class BasicBlockSections : public MachineFunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
BasicBlockSectionsProfileReaderWrapperPass *BBSectionsProfileReader = nullptr;
|
|
|
|
BasicBlockSections() : MachineFunctionPass(ID) {
|
|
initializeBasicBlockSectionsPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
StringRef getPassName() const override {
|
|
return "Basic Block Sections Analysis";
|
|
}
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override;
|
|
|
|
/// Identify basic blocks that need separate sections and prepare to emit them
|
|
/// accordingly.
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
private:
|
|
bool handleBBSections(MachineFunction &MF);
|
|
bool handleBBAddrMap(MachineFunction &MF);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char BasicBlockSections::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(
|
|
BasicBlockSections, "bbsections-prepare",
|
|
"Prepares for basic block sections, by splitting functions "
|
|
"into clusters of basic blocks.",
|
|
false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(BasicBlockSectionsProfileReaderWrapperPass)
|
|
INITIALIZE_PASS_END(BasicBlockSections, "bbsections-prepare",
|
|
"Prepares for basic block sections, by splitting functions "
|
|
"into clusters of basic blocks.",
|
|
false, false)
|
|
|
|
// This function updates and optimizes the branching instructions of every basic
|
|
// block in a given function to account for changes in the layout.
|
|
static void
|
|
updateBranches(MachineFunction &MF,
|
|
const SmallVector<MachineBasicBlock *> &PreLayoutFallThroughs) {
|
|
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
|
|
SmallVector<MachineOperand, 4> Cond;
|
|
for (auto &MBB : MF) {
|
|
auto NextMBBI = std::next(MBB.getIterator());
|
|
auto *FTMBB = PreLayoutFallThroughs[MBB.getNumber()];
|
|
// If this block had a fallthrough before we need an explicit unconditional
|
|
// branch to that block if either
|
|
// 1- the block ends a section, which means its next block may be
|
|
// reorderd by the linker, or
|
|
// 2- the fallthrough block is not adjacent to the block in the new
|
|
// order.
|
|
if (FTMBB && (MBB.isEndSection() || &*NextMBBI != FTMBB))
|
|
TII->insertUnconditionalBranch(MBB, FTMBB, MBB.findBranchDebugLoc());
|
|
|
|
// We do not optimize branches for machine basic blocks ending sections, as
|
|
// their adjacent block might be reordered by the linker.
|
|
if (MBB.isEndSection())
|
|
continue;
|
|
|
|
// It might be possible to optimize branches by flipping the branch
|
|
// condition.
|
|
Cond.clear();
|
|
MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
|
|
if (TII->analyzeBranch(MBB, TBB, FBB, Cond))
|
|
continue;
|
|
MBB.updateTerminator(FTMBB);
|
|
}
|
|
}
|
|
|
|
// This function sorts basic blocks according to the cluster's information.
|
|
// All explicitly specified clusters of basic blocks will be ordered
|
|
// accordingly. All non-specified BBs go into a separate "Cold" section.
|
|
// Additionally, if exception handling landing pads end up in more than one
|
|
// clusters, they are moved into a single "Exception" section. Eventually,
|
|
// clusters are ordered in increasing order of their IDs, with the "Exception"
|
|
// and "Cold" succeeding all other clusters.
|
|
// FuncClusterInfo represents the cluster information for basic blocks. It
|
|
// maps from BBID of basic blocks to their cluster information. If this is
|
|
// empty, it means unique sections for all basic blocks in the function.
|
|
static void
|
|
assignSections(MachineFunction &MF,
|
|
const DenseMap<UniqueBBID, BBClusterInfo> &FuncClusterInfo) {
|
|
assert(MF.hasBBSections() && "BB Sections is not set for function.");
|
|
// This variable stores the section ID of the cluster containing eh_pads (if
|
|
// all eh_pads are one cluster). If more than one cluster contain eh_pads, we
|
|
// set it equal to ExceptionSectionID.
|
|
std::optional<MBBSectionID> EHPadsSectionID;
|
|
|
|
for (auto &MBB : MF) {
|
|
// With the 'all' option, every basic block is placed in a unique section.
|
|
// With the 'list' option, every basic block is placed in a section
|
|
// associated with its cluster, unless we want individual unique sections
|
|
// for every basic block in this function (if FuncClusterInfo is empty).
|
|
if (MF.getTarget().getBBSectionsType() == llvm::BasicBlockSection::All ||
|
|
FuncClusterInfo.empty()) {
|
|
// If unique sections are desired for all basic blocks of the function, we
|
|
// set every basic block's section ID equal to its original position in
|
|
// the layout (which is equal to its number). This ensures that basic
|
|
// blocks are ordered canonically.
|
|
MBB.setSectionID(MBB.getNumber());
|
|
} else {
|
|
auto I = FuncClusterInfo.find(*MBB.getBBID());
|
|
if (I != FuncClusterInfo.end()) {
|
|
MBB.setSectionID(I->second.ClusterID);
|
|
} else {
|
|
// BB goes into the special cold section if it is not specified in the
|
|
// cluster info map.
|
|
MBB.setSectionID(MBBSectionID::ColdSectionID);
|
|
}
|
|
}
|
|
|
|
if (MBB.isEHPad() && EHPadsSectionID != MBB.getSectionID() &&
|
|
EHPadsSectionID != MBBSectionID::ExceptionSectionID) {
|
|
// If we already have one cluster containing eh_pads, this must be updated
|
|
// to ExceptionSectionID. Otherwise, we set it equal to the current
|
|
// section ID.
|
|
EHPadsSectionID = EHPadsSectionID ? MBBSectionID::ExceptionSectionID
|
|
: MBB.getSectionID();
|
|
}
|
|
}
|
|
|
|
// If EHPads are in more than one section, this places all of them in the
|
|
// special exception section.
|
|
if (EHPadsSectionID == MBBSectionID::ExceptionSectionID)
|
|
for (auto &MBB : MF)
|
|
if (MBB.isEHPad())
|
|
MBB.setSectionID(*EHPadsSectionID);
|
|
}
|
|
|
|
void llvm::sortBasicBlocksAndUpdateBranches(
|
|
MachineFunction &MF, MachineBasicBlockComparator MBBCmp) {
|
|
[[maybe_unused]] const MachineBasicBlock *EntryBlock = &MF.front();
|
|
SmallVector<MachineBasicBlock *> PreLayoutFallThroughs(MF.getNumBlockIDs());
|
|
for (auto &MBB : MF)
|
|
PreLayoutFallThroughs[MBB.getNumber()] =
|
|
MBB.getFallThrough(/*JumpToFallThrough=*/false);
|
|
|
|
MF.sort(MBBCmp);
|
|
assert(&MF.front() == EntryBlock &&
|
|
"Entry block should not be displaced by basic block sections");
|
|
|
|
// Set IsBeginSection and IsEndSection according to the assigned section IDs.
|
|
MF.assignBeginEndSections();
|
|
|
|
// After reordering basic blocks, we must update basic block branches to
|
|
// insert explicit fallthrough branches when required and optimize branches
|
|
// when possible.
|
|
updateBranches(MF, PreLayoutFallThroughs);
|
|
}
|
|
|
|
// If the exception section begins with a landing pad, that landing pad will
|
|
// assume a zero offset (relative to @LPStart) in the LSDA. However, a value of
|
|
// zero implies "no landing pad." This function inserts a NOP just before the EH
|
|
// pad label to ensure a nonzero offset.
|
|
void llvm::avoidZeroOffsetLandingPad(MachineFunction &MF) {
|
|
for (auto &MBB : MF) {
|
|
if (MBB.isBeginSection() && MBB.isEHPad()) {
|
|
MachineBasicBlock::iterator MI = MBB.begin();
|
|
while (!MI->isEHLabel())
|
|
++MI;
|
|
MF.getSubtarget().getInstrInfo()->insertNoop(MBB, MI);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool llvm::hasInstrProfHashMismatch(MachineFunction &MF) {
|
|
if (!BBSectionsDetectSourceDrift)
|
|
return false;
|
|
|
|
const char MetadataName[] = "instr_prof_hash_mismatch";
|
|
auto *Existing = MF.getFunction().getMetadata(LLVMContext::MD_annotation);
|
|
if (Existing) {
|
|
MDTuple *Tuple = cast<MDTuple>(Existing);
|
|
for (const auto &N : Tuple->operands())
|
|
if (N.equalsStr(MetadataName))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Identify, arrange, and modify basic blocks which need separate sections
|
|
// according to the specification provided by the -fbasic-block-sections flag.
|
|
bool BasicBlockSections::handleBBSections(MachineFunction &MF) {
|
|
auto BBSectionsType = MF.getTarget().getBBSectionsType();
|
|
if (BBSectionsType == BasicBlockSection::None)
|
|
return false;
|
|
|
|
// Check for source drift. If the source has changed since the profiles
|
|
// were obtained, optimizing basic blocks might be sub-optimal.
|
|
// This only applies to BasicBlockSection::List as it creates
|
|
// clusters of basic blocks using basic block ids. Source drift can
|
|
// invalidate these groupings leading to sub-optimal code generation with
|
|
// regards to performance.
|
|
if (BBSectionsType == BasicBlockSection::List &&
|
|
hasInstrProfHashMismatch(MF))
|
|
return false;
|
|
// Renumber blocks before sorting them. This is useful for accessing the
|
|
// original layout positions and finding the original fallthroughs.
|
|
MF.RenumberBlocks();
|
|
|
|
if (BBSectionsType == BasicBlockSection::Labels) {
|
|
MF.setBBSectionsType(BBSectionsType);
|
|
return true;
|
|
}
|
|
|
|
DenseMap<UniqueBBID, BBClusterInfo> FuncClusterInfo;
|
|
if (BBSectionsType == BasicBlockSection::List) {
|
|
auto [HasProfile, ClusterInfo] =
|
|
getAnalysis<BasicBlockSectionsProfileReaderWrapperPass>()
|
|
.getClusterInfoForFunction(MF.getName());
|
|
if (!HasProfile)
|
|
return false;
|
|
for (auto &BBClusterInfo : ClusterInfo) {
|
|
FuncClusterInfo.try_emplace(BBClusterInfo.BBID, BBClusterInfo);
|
|
}
|
|
}
|
|
|
|
MF.setBBSectionsType(BBSectionsType);
|
|
assignSections(MF, FuncClusterInfo);
|
|
|
|
const MachineBasicBlock &EntryBB = MF.front();
|
|
auto EntryBBSectionID = EntryBB.getSectionID();
|
|
|
|
// Helper function for ordering BB sections as follows:
|
|
// * Entry section (section including the entry block).
|
|
// * Regular sections (in increasing order of their Number).
|
|
// ...
|
|
// * Exception section
|
|
// * Cold section
|
|
auto MBBSectionOrder = [EntryBBSectionID](const MBBSectionID &LHS,
|
|
const MBBSectionID &RHS) {
|
|
// We make sure that the section containing the entry block precedes all the
|
|
// other sections.
|
|
if (LHS == EntryBBSectionID || RHS == EntryBBSectionID)
|
|
return LHS == EntryBBSectionID;
|
|
return LHS.Type == RHS.Type ? LHS.Number < RHS.Number : LHS.Type < RHS.Type;
|
|
};
|
|
|
|
// We sort all basic blocks to make sure the basic blocks of every cluster are
|
|
// contiguous and ordered accordingly. Furthermore, clusters are ordered in
|
|
// increasing order of their section IDs, with the exception and the
|
|
// cold section placed at the end of the function.
|
|
// Also, we force the entry block of the function to be placed at the
|
|
// beginning of the function, regardless of the requested order.
|
|
auto Comparator = [&](const MachineBasicBlock &X,
|
|
const MachineBasicBlock &Y) {
|
|
auto XSectionID = X.getSectionID();
|
|
auto YSectionID = Y.getSectionID();
|
|
if (XSectionID != YSectionID)
|
|
return MBBSectionOrder(XSectionID, YSectionID);
|
|
// Make sure that the entry block is placed at the beginning.
|
|
if (&X == &EntryBB || &Y == &EntryBB)
|
|
return &X == &EntryBB;
|
|
// If the two basic block are in the same section, the order is decided by
|
|
// their position within the section.
|
|
if (XSectionID.Type == MBBSectionID::SectionType::Default)
|
|
return FuncClusterInfo.lookup(*X.getBBID()).PositionInCluster <
|
|
FuncClusterInfo.lookup(*Y.getBBID()).PositionInCluster;
|
|
return X.getNumber() < Y.getNumber();
|
|
};
|
|
|
|
sortBasicBlocksAndUpdateBranches(MF, Comparator);
|
|
avoidZeroOffsetLandingPad(MF);
|
|
return true;
|
|
}
|
|
|
|
// When the BB address map needs to be generated, this renumbers basic blocks to
|
|
// make them appear in increasing order of their IDs in the function. This
|
|
// avoids the need to store basic block IDs in the BB address map section, since
|
|
// they can be determined implicitly.
|
|
bool BasicBlockSections::handleBBAddrMap(MachineFunction &MF) {
|
|
if (MF.getTarget().getBBSectionsType() == BasicBlockSection::Labels)
|
|
return false;
|
|
if (!MF.getTarget().Options.BBAddrMap)
|
|
return false;
|
|
MF.RenumberBlocks();
|
|
return true;
|
|
}
|
|
|
|
bool BasicBlockSections::runOnMachineFunction(MachineFunction &MF) {
|
|
// First handle the basic block sections.
|
|
auto R1 = handleBBSections(MF);
|
|
// Handle basic block address map after basic block sections are finalized.
|
|
auto R2 = handleBBAddrMap(MF);
|
|
return R1 || R2;
|
|
}
|
|
|
|
void BasicBlockSections::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
AU.addRequired<BasicBlockSectionsProfileReaderWrapperPass>();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
MachineFunctionPass *llvm::createBasicBlockSectionsPass() {
|
|
return new BasicBlockSections();
|
|
}
|