Fangrui Song ad31a2dcad Change -fsanitize=function to place two words before the function entry
The current implementation of -fsanitize=function places two words (the prolog
signature and the RTTI proxy) at the function entry, which makes the feature
incompatible with Intel Indirect Branch Tracking (IBT) that needs an ENDBR instruction
at the function entry. To allow the combination, move the two words before the
function entry, similar to -fsanitize=kcfi.

Armv8.5 Branch Target Identification (BTI) has a similar requirement.

Note: for IBT and BTI, whether a function gets a marker instruction at the entry
generally cannot be assumed (it can be disabled by a function attribute or
stronger LTO optimizations).

It is extremely unlikely for two words preceding a function entry to be
inaccessible. One way to achieve this is by ensuring that a function is
aligned at a page boundary and making the preceding page unmapped or
unreadable. This is not reasonable for application or library code.
(Think: the first text section has crt* code not instrumented by
-fsanitize=function.)

We use 0xc105cafe for all targets. .long 0xc105cafe disassembles to invalid
instructions on all architectures I have tested, except Power where it is
`lfs 8, -13570(5)` (Load Floating-Point with a weird offset, unlikely to be used in real code).

---

For the removed function in AsmPrinter.cpp, remove an assert: `mdconst::extract`
already asserts non-nullness.

For compiler-rt/test/ubsan/TestCases/TypeCheck/Function/function.cpp,
when the function doesn't have prolog/epilog (-O1 and above), after moving the two words,
the address of the function equals the address of ret instruction,
so symbolizing the function will additionally get a non-zero column number.
Adjust the test to allow an optional column number.
```
  .long   3238382334
  .long   .L__llvm_rtti_proxy-_Z1fv
_Z1fv:   // symbolizing here retrieves the line table entry from the second .loc
  .file   0 ...
  .loc    0 1 0
  .cfi_startproc
  .loc    0 2 1 prologue_end
  retq
```

Reviewed By: peter.smith

Differential Revision: https://reviews.llvm.org/D148665
2023-05-19 07:50:29 -07:00
2023-04-25 23:15:07 -07:00

The LLVM Compiler Infrastructure

Welcome to the LLVM project!

This repository contains the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.

The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer.

C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.

Other components include: the libc++ C++ standard library, the LLD linker, and more.

Getting the Source Code and Building LLVM

Consult the Getting Started with LLVM page for information on building and running LLVM.

For information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.

Getting in touch

Join the LLVM Discourse forums, Discord chat, or #llvm IRC channel on OFTC.

The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.

Description
The LLVM Project is a collection of modular and reusable compiler and toolchain technologies.
Readme 5 GiB
Languages
LLVM 39.9%
C++ 32.5%
C 13.5%
Assembly 9.4%
MLIR 1.4%
Other 2.8%