Fangrui Song ad31a2dcad Change -fsanitize=function to place two words before the function entry
The current implementation of -fsanitize=function places two words (the prolog
signature and the RTTI proxy) at the function entry, which makes the feature
incompatible with Intel Indirect Branch Tracking (IBT) that needs an ENDBR instruction
at the function entry. To allow the combination, move the two words before the
function entry, similar to -fsanitize=kcfi.

Armv8.5 Branch Target Identification (BTI) has a similar requirement.

Note: for IBT and BTI, whether a function gets a marker instruction at the entry
generally cannot be assumed (it can be disabled by a function attribute or
stronger LTO optimizations).

It is extremely unlikely for two words preceding a function entry to be
inaccessible. One way to achieve this is by ensuring that a function is
aligned at a page boundary and making the preceding page unmapped or
unreadable. This is not reasonable for application or library code.
(Think: the first text section has crt* code not instrumented by
-fsanitize=function.)

We use 0xc105cafe for all targets. .long 0xc105cafe disassembles to invalid
instructions on all architectures I have tested, except Power where it is
`lfs 8, -13570(5)` (Load Floating-Point with a weird offset, unlikely to be used in real code).

---

For the removed function in AsmPrinter.cpp, remove an assert: `mdconst::extract`
already asserts non-nullness.

For compiler-rt/test/ubsan/TestCases/TypeCheck/Function/function.cpp,
when the function doesn't have prolog/epilog (-O1 and above), after moving the two words,
the address of the function equals the address of ret instruction,
so symbolizing the function will additionally get a non-zero column number.
Adjust the test to allow an optional column number.
```
  .long   3238382334
  .long   .L__llvm_rtti_proxy-_Z1fv
_Z1fv:   // symbolizing here retrieves the line table entry from the second .loc
  .file   0 ...
  .loc    0 1 0
  .cfi_startproc
  .loc    0 2 1 prologue_end
  retq
```

Reviewed By: peter.smith

Differential Revision: https://reviews.llvm.org/D148665
2023-05-19 07:50:29 -07:00

4149 lines
153 KiB
C++

//===- AsmPrinter.cpp - Common AsmPrinter code ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the AsmPrinter class.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/AsmPrinter.h"
#include "CodeViewDebug.h"
#include "DwarfDebug.h"
#include "DwarfException.h"
#include "PseudoProbePrinter.h"
#include "WasmException.h"
#include "WinCFGuard.h"
#include "WinException.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/BinaryFormat/COFF.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/CodeGen/GCMetadata.h"
#include "llvm/CodeGen/GCMetadataPrinter.h"
#include "llvm/CodeGen/LazyMachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineModuleInfoImpls.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/Config/config.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Comdat.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/EHPersonalities.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GCStrategy.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalIFunc.h"
#include "llvm/IR/GlobalObject.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PseudoProbe.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDirectives.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCSectionCOFF.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCSymbolELF.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/MC/MCValue.h"
#include "llvm/MC/SectionKind.h"
#include "llvm/Object/ELFTypes.h"
#include "llvm/Pass.h"
#include "llvm/Remarks/RemarkStreamer.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/Timer.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/TargetParser/Triple.h"
#include <algorithm>
#include <cassert>
#include <cinttypes>
#include <cstdint>
#include <iterator>
#include <memory>
#include <optional>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
#define DEBUG_TYPE "asm-printer"
static cl::opt<std::string> BasicBlockProfileDump(
"mbb-profile-dump", cl::Hidden,
cl::desc("Basic block profile dump for external cost modelling. If "
"matching up BBs with afterwards, the compilation must be "
"performed with -basic-block-sections=labels. Enabling this "
"flag during in-process ThinLTO is not supported."));
const char DWARFGroupName[] = "dwarf";
const char DWARFGroupDescription[] = "DWARF Emission";
const char DbgTimerName[] = "emit";
const char DbgTimerDescription[] = "Debug Info Emission";
const char EHTimerName[] = "write_exception";
const char EHTimerDescription[] = "DWARF Exception Writer";
const char CFGuardName[] = "Control Flow Guard";
const char CFGuardDescription[] = "Control Flow Guard";
const char CodeViewLineTablesGroupName[] = "linetables";
const char CodeViewLineTablesGroupDescription[] = "CodeView Line Tables";
const char PPTimerName[] = "emit";
const char PPTimerDescription[] = "Pseudo Probe Emission";
const char PPGroupName[] = "pseudo probe";
const char PPGroupDescription[] = "Pseudo Probe Emission";
STATISTIC(EmittedInsts, "Number of machine instrs printed");
char AsmPrinter::ID = 0;
namespace {
class AddrLabelMapCallbackPtr final : CallbackVH {
AddrLabelMap *Map = nullptr;
public:
AddrLabelMapCallbackPtr() = default;
AddrLabelMapCallbackPtr(Value *V) : CallbackVH(V) {}
void setPtr(BasicBlock *BB) {
ValueHandleBase::operator=(BB);
}
void setMap(AddrLabelMap *map) { Map = map; }
void deleted() override;
void allUsesReplacedWith(Value *V2) override;
};
} // namespace
class llvm::AddrLabelMap {
MCContext &Context;
struct AddrLabelSymEntry {
/// The symbols for the label.
TinyPtrVector<MCSymbol *> Symbols;
Function *Fn; // The containing function of the BasicBlock.
unsigned Index; // The index in BBCallbacks for the BasicBlock.
};
DenseMap<AssertingVH<BasicBlock>, AddrLabelSymEntry> AddrLabelSymbols;
/// Callbacks for the BasicBlock's that we have entries for. We use this so
/// we get notified if a block is deleted or RAUWd.
std::vector<AddrLabelMapCallbackPtr> BBCallbacks;
/// This is a per-function list of symbols whose corresponding BasicBlock got
/// deleted. These symbols need to be emitted at some point in the file, so
/// AsmPrinter emits them after the function body.
DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>>
DeletedAddrLabelsNeedingEmission;
public:
AddrLabelMap(MCContext &context) : Context(context) {}
~AddrLabelMap() {
assert(DeletedAddrLabelsNeedingEmission.empty() &&
"Some labels for deleted blocks never got emitted");
}
ArrayRef<MCSymbol *> getAddrLabelSymbolToEmit(BasicBlock *BB);
void takeDeletedSymbolsForFunction(Function *F,
std::vector<MCSymbol *> &Result);
void UpdateForDeletedBlock(BasicBlock *BB);
void UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New);
};
ArrayRef<MCSymbol *> AddrLabelMap::getAddrLabelSymbolToEmit(BasicBlock *BB) {
assert(BB->hasAddressTaken() &&
"Shouldn't get label for block without address taken");
AddrLabelSymEntry &Entry = AddrLabelSymbols[BB];
// If we already had an entry for this block, just return it.
if (!Entry.Symbols.empty()) {
assert(BB->getParent() == Entry.Fn && "Parent changed");
return Entry.Symbols;
}
// Otherwise, this is a new entry, create a new symbol for it and add an
// entry to BBCallbacks so we can be notified if the BB is deleted or RAUWd.
BBCallbacks.emplace_back(BB);
BBCallbacks.back().setMap(this);
Entry.Index = BBCallbacks.size() - 1;
Entry.Fn = BB->getParent();
MCSymbol *Sym = BB->hasAddressTaken() ? Context.createNamedTempSymbol()
: Context.createTempSymbol();
Entry.Symbols.push_back(Sym);
return Entry.Symbols;
}
/// If we have any deleted symbols for F, return them.
void AddrLabelMap::takeDeletedSymbolsForFunction(
Function *F, std::vector<MCSymbol *> &Result) {
DenseMap<AssertingVH<Function>, std::vector<MCSymbol *>>::iterator I =
DeletedAddrLabelsNeedingEmission.find(F);
// If there are no entries for the function, just return.
if (I == DeletedAddrLabelsNeedingEmission.end())
return;
// Otherwise, take the list.
std::swap(Result, I->second);
DeletedAddrLabelsNeedingEmission.erase(I);
}
//===- Address of Block Management ----------------------------------------===//
ArrayRef<MCSymbol *>
AsmPrinter::getAddrLabelSymbolToEmit(const BasicBlock *BB) {
// Lazily create AddrLabelSymbols.
if (!AddrLabelSymbols)
AddrLabelSymbols = std::make_unique<AddrLabelMap>(OutContext);
return AddrLabelSymbols->getAddrLabelSymbolToEmit(
const_cast<BasicBlock *>(BB));
}
void AsmPrinter::takeDeletedSymbolsForFunction(
const Function *F, std::vector<MCSymbol *> &Result) {
// If no blocks have had their addresses taken, we're done.
if (!AddrLabelSymbols)
return;
return AddrLabelSymbols->takeDeletedSymbolsForFunction(
const_cast<Function *>(F), Result);
}
void AddrLabelMap::UpdateForDeletedBlock(BasicBlock *BB) {
// If the block got deleted, there is no need for the symbol. If the symbol
// was already emitted, we can just forget about it, otherwise we need to
// queue it up for later emission when the function is output.
AddrLabelSymEntry Entry = std::move(AddrLabelSymbols[BB]);
AddrLabelSymbols.erase(BB);
assert(!Entry.Symbols.empty() && "Didn't have a symbol, why a callback?");
BBCallbacks[Entry.Index] = nullptr; // Clear the callback.
#if !LLVM_MEMORY_SANITIZER_BUILD
// BasicBlock is destroyed already, so this access is UB detectable by msan.
assert((BB->getParent() == nullptr || BB->getParent() == Entry.Fn) &&
"Block/parent mismatch");
#endif
for (MCSymbol *Sym : Entry.Symbols) {
if (Sym->isDefined())
return;
// If the block is not yet defined, we need to emit it at the end of the
// function. Add the symbol to the DeletedAddrLabelsNeedingEmission list
// for the containing Function. Since the block is being deleted, its
// parent may already be removed, we have to get the function from 'Entry'.
DeletedAddrLabelsNeedingEmission[Entry.Fn].push_back(Sym);
}
}
void AddrLabelMap::UpdateForRAUWBlock(BasicBlock *Old, BasicBlock *New) {
// Get the entry for the RAUW'd block and remove it from our map.
AddrLabelSymEntry OldEntry = std::move(AddrLabelSymbols[Old]);
AddrLabelSymbols.erase(Old);
assert(!OldEntry.Symbols.empty() && "Didn't have a symbol, why a callback?");
AddrLabelSymEntry &NewEntry = AddrLabelSymbols[New];
// If New is not address taken, just move our symbol over to it.
if (NewEntry.Symbols.empty()) {
BBCallbacks[OldEntry.Index].setPtr(New); // Update the callback.
NewEntry = std::move(OldEntry); // Set New's entry.
return;
}
BBCallbacks[OldEntry.Index] = nullptr; // Update the callback.
// Otherwise, we need to add the old symbols to the new block's set.
llvm::append_range(NewEntry.Symbols, OldEntry.Symbols);
}
void AddrLabelMapCallbackPtr::deleted() {
Map->UpdateForDeletedBlock(cast<BasicBlock>(getValPtr()));
}
void AddrLabelMapCallbackPtr::allUsesReplacedWith(Value *V2) {
Map->UpdateForRAUWBlock(cast<BasicBlock>(getValPtr()), cast<BasicBlock>(V2));
}
/// getGVAlignment - Return the alignment to use for the specified global
/// value. This rounds up to the preferred alignment if possible and legal.
Align AsmPrinter::getGVAlignment(const GlobalObject *GV, const DataLayout &DL,
Align InAlign) {
Align Alignment;
if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
Alignment = DL.getPreferredAlign(GVar);
// If InAlign is specified, round it to it.
if (InAlign > Alignment)
Alignment = InAlign;
// If the GV has a specified alignment, take it into account.
const MaybeAlign GVAlign(GV->getAlign());
if (!GVAlign)
return Alignment;
assert(GVAlign && "GVAlign must be set");
// If the GVAlign is larger than NumBits, or if we are required to obey
// NumBits because the GV has an assigned section, obey it.
if (*GVAlign > Alignment || GV->hasSection())
Alignment = *GVAlign;
return Alignment;
}
AsmPrinter::AsmPrinter(TargetMachine &tm, std::unique_ptr<MCStreamer> Streamer)
: MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()),
OutContext(Streamer->getContext()), OutStreamer(std::move(Streamer)),
SM(*this) {
VerboseAsm = OutStreamer->isVerboseAsm();
DwarfUsesRelocationsAcrossSections =
MAI->doesDwarfUseRelocationsAcrossSections();
}
AsmPrinter::~AsmPrinter() {
assert(!DD && Handlers.size() == NumUserHandlers &&
"Debug/EH info didn't get finalized");
}
bool AsmPrinter::isPositionIndependent() const {
return TM.isPositionIndependent();
}
/// getFunctionNumber - Return a unique ID for the current function.
unsigned AsmPrinter::getFunctionNumber() const {
return MF->getFunctionNumber();
}
const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
return *TM.getObjFileLowering();
}
const DataLayout &AsmPrinter::getDataLayout() const {
return MMI->getModule()->getDataLayout();
}
// Do not use the cached DataLayout because some client use it without a Module
// (dsymutil, llvm-dwarfdump).
unsigned AsmPrinter::getPointerSize() const {
return TM.getPointerSize(0); // FIXME: Default address space
}
const MCSubtargetInfo &AsmPrinter::getSubtargetInfo() const {
assert(MF && "getSubtargetInfo requires a valid MachineFunction!");
return MF->getSubtarget<MCSubtargetInfo>();
}
void AsmPrinter::EmitToStreamer(MCStreamer &S, const MCInst &Inst) {
S.emitInstruction(Inst, getSubtargetInfo());
}
void AsmPrinter::emitInitialRawDwarfLocDirective(const MachineFunction &MF) {
if (DD) {
assert(OutStreamer->hasRawTextSupport() &&
"Expected assembly output mode.");
// This is NVPTX specific and it's unclear why.
// PR51079: If we have code without debug information we need to give up.
DISubprogram *MFSP = MF.getFunction().getSubprogram();
if (!MFSP)
return;
(void)DD->emitInitialLocDirective(MF, /*CUID=*/0);
}
}
/// getCurrentSection() - Return the current section we are emitting to.
const MCSection *AsmPrinter::getCurrentSection() const {
return OutStreamer->getCurrentSectionOnly();
}
void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
AU.addRequired<MachineOptimizationRemarkEmitterPass>();
AU.addRequired<GCModuleInfo>();
AU.addRequired<LazyMachineBlockFrequencyInfoPass>();
}
bool AsmPrinter::doInitialization(Module &M) {
auto *MMIWP = getAnalysisIfAvailable<MachineModuleInfoWrapperPass>();
MMI = MMIWP ? &MMIWP->getMMI() : nullptr;
HasSplitStack = false;
HasNoSplitStack = false;
AddrLabelSymbols = nullptr;
// Initialize TargetLoweringObjectFile.
const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
.Initialize(OutContext, TM);
const_cast<TargetLoweringObjectFile &>(getObjFileLowering())
.getModuleMetadata(M);
OutStreamer->initSections(false, *TM.getMCSubtargetInfo());
// Emit the version-min deployment target directive if needed.
//
// FIXME: If we end up with a collection of these sorts of Darwin-specific
// or ELF-specific things, it may make sense to have a platform helper class
// that will work with the target helper class. For now keep it here, as the
// alternative is duplicated code in each of the target asm printers that
// use the directive, where it would need the same conditionalization
// anyway.
const Triple &Target = TM.getTargetTriple();
Triple TVT(M.getDarwinTargetVariantTriple());
OutStreamer->emitVersionForTarget(
Target, M.getSDKVersion(),
M.getDarwinTargetVariantTriple().empty() ? nullptr : &TVT,
M.getDarwinTargetVariantSDKVersion());
// Allow the target to emit any magic that it wants at the start of the file.
emitStartOfAsmFile(M);
// Very minimal debug info. It is ignored if we emit actual debug info. If we
// don't, this at least helps the user find where a global came from.
if (MAI->hasSingleParameterDotFile()) {
// .file "foo.c"
SmallString<128> FileName;
if (MAI->hasBasenameOnlyForFileDirective())
FileName = llvm::sys::path::filename(M.getSourceFileName());
else
FileName = M.getSourceFileName();
if (MAI->hasFourStringsDotFile()) {
#ifdef PACKAGE_VENDOR
const char VerStr[] =
PACKAGE_VENDOR " " PACKAGE_NAME " version " PACKAGE_VERSION;
#else
const char VerStr[] = PACKAGE_NAME " version " PACKAGE_VERSION;
#endif
// TODO: Add timestamp and description.
OutStreamer->emitFileDirective(FileName, VerStr, "", "");
} else {
OutStreamer->emitFileDirective(FileName);
}
}
GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
assert(MI && "AsmPrinter didn't require GCModuleInfo?");
for (const auto &I : *MI)
if (GCMetadataPrinter *MP = getOrCreateGCPrinter(*I))
MP->beginAssembly(M, *MI, *this);
// Emit module-level inline asm if it exists.
if (!M.getModuleInlineAsm().empty()) {
OutStreamer->AddComment("Start of file scope inline assembly");
OutStreamer->addBlankLine();
emitInlineAsm(M.getModuleInlineAsm() + "\n", *TM.getMCSubtargetInfo(),
TM.Options.MCOptions);
OutStreamer->AddComment("End of file scope inline assembly");
OutStreamer->addBlankLine();
}
if (MAI->doesSupportDebugInformation()) {
bool EmitCodeView = M.getCodeViewFlag();
if (EmitCodeView && TM.getTargetTriple().isOSWindows()) {
Handlers.emplace_back(std::make_unique<CodeViewDebug>(this),
DbgTimerName, DbgTimerDescription,
CodeViewLineTablesGroupName,
CodeViewLineTablesGroupDescription);
}
if (!EmitCodeView || M.getDwarfVersion()) {
if (MMI->hasDebugInfo()) {
DD = new DwarfDebug(this);
Handlers.emplace_back(std::unique_ptr<DwarfDebug>(DD), DbgTimerName,
DbgTimerDescription, DWARFGroupName,
DWARFGroupDescription);
}
}
}
if (M.getNamedMetadata(PseudoProbeDescMetadataName)) {
PP = new PseudoProbeHandler(this);
Handlers.emplace_back(std::unique_ptr<PseudoProbeHandler>(PP), PPTimerName,
PPTimerDescription, PPGroupName, PPGroupDescription);
}
switch (MAI->getExceptionHandlingType()) {
case ExceptionHandling::None:
// We may want to emit CFI for debug.
[[fallthrough]];
case ExceptionHandling::SjLj:
case ExceptionHandling::DwarfCFI:
case ExceptionHandling::ARM:
for (auto &F : M.getFunctionList()) {
if (getFunctionCFISectionType(F) != CFISection::None)
ModuleCFISection = getFunctionCFISectionType(F);
// If any function needsUnwindTableEntry(), it needs .eh_frame and hence
// the module needs .eh_frame. If we have found that case, we are done.
if (ModuleCFISection == CFISection::EH)
break;
}
assert(MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI ||
ModuleCFISection != CFISection::EH);
break;
default:
break;
}
EHStreamer *ES = nullptr;
switch (MAI->getExceptionHandlingType()) {
case ExceptionHandling::None:
if (!needsCFIForDebug())
break;
[[fallthrough]];
case ExceptionHandling::SjLj:
case ExceptionHandling::DwarfCFI:
ES = new DwarfCFIException(this);
break;
case ExceptionHandling::ARM:
ES = new ARMException(this);
break;
case ExceptionHandling::WinEH:
switch (MAI->getWinEHEncodingType()) {
default: llvm_unreachable("unsupported unwinding information encoding");
case WinEH::EncodingType::Invalid:
break;
case WinEH::EncodingType::X86:
case WinEH::EncodingType::Itanium:
ES = new WinException(this);
break;
}
break;
case ExceptionHandling::Wasm:
ES = new WasmException(this);
break;
case ExceptionHandling::AIX:
ES = new AIXException(this);
break;
}
if (ES)
Handlers.emplace_back(std::unique_ptr<EHStreamer>(ES), EHTimerName,
EHTimerDescription, DWARFGroupName,
DWARFGroupDescription);
// Emit tables for any value of cfguard flag (i.e. cfguard=1 or cfguard=2).
if (mdconst::extract_or_null<ConstantInt>(M.getModuleFlag("cfguard")))
Handlers.emplace_back(std::make_unique<WinCFGuard>(this), CFGuardName,
CFGuardDescription, DWARFGroupName,
DWARFGroupDescription);
for (const HandlerInfo &HI : Handlers) {
NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
HI.TimerGroupDescription, TimePassesIsEnabled);
HI.Handler->beginModule(&M);
}
if (!BasicBlockProfileDump.empty()) {
std::error_code PossibleFileError;
MBBProfileDumpFileOutput = std::make_unique<raw_fd_ostream>(
BasicBlockProfileDump, PossibleFileError);
if (PossibleFileError) {
M.getContext().emitError("Failed to open file for MBB Profile Dump: " +
PossibleFileError.message() + "\n");
}
}
return false;
}
static bool canBeHidden(const GlobalValue *GV, const MCAsmInfo &MAI) {
if (!MAI.hasWeakDefCanBeHiddenDirective())
return false;
return GV->canBeOmittedFromSymbolTable();
}
void AsmPrinter::emitLinkage(const GlobalValue *GV, MCSymbol *GVSym) const {
GlobalValue::LinkageTypes Linkage = GV->getLinkage();
switch (Linkage) {
case GlobalValue::CommonLinkage:
case GlobalValue::LinkOnceAnyLinkage:
case GlobalValue::LinkOnceODRLinkage:
case GlobalValue::WeakAnyLinkage:
case GlobalValue::WeakODRLinkage:
if (MAI->hasWeakDefDirective()) {
// .globl _foo
OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
if (!canBeHidden(GV, *MAI))
// .weak_definition _foo
OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefinition);
else
OutStreamer->emitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
} else if (MAI->avoidWeakIfComdat() && GV->hasComdat()) {
// .globl _foo
OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
//NOTE: linkonce is handled by the section the symbol was assigned to.
} else {
// .weak _foo
OutStreamer->emitSymbolAttribute(GVSym, MCSA_Weak);
}
return;
case GlobalValue::ExternalLinkage:
OutStreamer->emitSymbolAttribute(GVSym, MCSA_Global);
return;
case GlobalValue::PrivateLinkage:
case GlobalValue::InternalLinkage:
return;
case GlobalValue::ExternalWeakLinkage:
case GlobalValue::AvailableExternallyLinkage:
case GlobalValue::AppendingLinkage:
llvm_unreachable("Should never emit this");
}
llvm_unreachable("Unknown linkage type!");
}
void AsmPrinter::getNameWithPrefix(SmallVectorImpl<char> &Name,
const GlobalValue *GV) const {
TM.getNameWithPrefix(Name, GV, getObjFileLowering().getMangler());
}
MCSymbol *AsmPrinter::getSymbol(const GlobalValue *GV) const {
return TM.getSymbol(GV);
}
MCSymbol *AsmPrinter::getSymbolPreferLocal(const GlobalValue &GV) const {
// On ELF, use .Lfoo$local if GV is a non-interposable GlobalObject with an
// exact definion (intersection of GlobalValue::hasExactDefinition() and
// !isInterposable()). These linkages include: external, appending, internal,
// private. It may be profitable to use a local alias for external. The
// assembler would otherwise be conservative and assume a global default
// visibility symbol can be interposable, even if the code generator already
// assumed it.
if (TM.getTargetTriple().isOSBinFormatELF() && GV.canBenefitFromLocalAlias()) {
const Module &M = *GV.getParent();
if (TM.getRelocationModel() != Reloc::Static &&
M.getPIELevel() == PIELevel::Default && GV.isDSOLocal())
return getSymbolWithGlobalValueBase(&GV, "$local");
}
return TM.getSymbol(&GV);
}
/// EmitGlobalVariable - Emit the specified global variable to the .s file.
void AsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
bool IsEmuTLSVar = TM.useEmulatedTLS() && GV->isThreadLocal();
assert(!(IsEmuTLSVar && GV->hasCommonLinkage()) &&
"No emulated TLS variables in the common section");
// Never emit TLS variable xyz in emulated TLS model.
// The initialization value is in __emutls_t.xyz instead of xyz.
if (IsEmuTLSVar)
return;
if (GV->hasInitializer()) {
// Check to see if this is a special global used by LLVM, if so, emit it.
if (emitSpecialLLVMGlobal(GV))
return;
// Skip the emission of global equivalents. The symbol can be emitted later
// on by emitGlobalGOTEquivs in case it turns out to be needed.
if (GlobalGOTEquivs.count(getSymbol(GV)))
return;
if (isVerbose()) {
// When printing the control variable __emutls_v.*,
// we don't need to print the original TLS variable name.
GV->printAsOperand(OutStreamer->getCommentOS(),
/*PrintType=*/false, GV->getParent());
OutStreamer->getCommentOS() << '\n';
}
}
MCSymbol *GVSym = getSymbol(GV);
MCSymbol *EmittedSym = GVSym;
// getOrCreateEmuTLSControlSym only creates the symbol with name and default
// attributes.
// GV's or GVSym's attributes will be used for the EmittedSym.
emitVisibility(EmittedSym, GV->getVisibility(), !GV->isDeclaration());
if (GV->isTagged()) {
Triple T = TM.getTargetTriple();
if (T.getArch() != Triple::aarch64 || !T.isAndroid())
OutContext.reportError(SMLoc(),
"Tagged symbols (-fsanitize=memtag-globals) are "
"only supported on aarch64 + Android.");
OutStreamer->emitSymbolAttribute(EmittedSym, MAI->getMemtagAttr());
}
if (!GV->hasInitializer()) // External globals require no extra code.
return;
GVSym->redefineIfPossible();
if (GVSym->isDefined() || GVSym->isVariable())
OutContext.reportError(SMLoc(), "symbol '" + Twine(GVSym->getName()) +
"' is already defined");
if (MAI->hasDotTypeDotSizeDirective())
OutStreamer->emitSymbolAttribute(EmittedSym, MCSA_ELF_TypeObject);
SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
const DataLayout &DL = GV->getParent()->getDataLayout();
uint64_t Size = DL.getTypeAllocSize(GV->getValueType());
// If the alignment is specified, we *must* obey it. Overaligning a global
// with a specified alignment is a prompt way to break globals emitted to
// sections and expected to be contiguous (e.g. ObjC metadata).
const Align Alignment = getGVAlignment(GV, DL);
for (const HandlerInfo &HI : Handlers) {
NamedRegionTimer T(HI.TimerName, HI.TimerDescription,
HI.TimerGroupName, HI.TimerGroupDescription,
TimePassesIsEnabled);
HI.Handler->setSymbolSize(GVSym, Size);
}
// Handle common symbols
if (GVKind.isCommon()) {
if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
// .comm _foo, 42, 4
OutStreamer->emitCommonSymbol(GVSym, Size, Alignment);
return;
}
// Determine to which section this global should be emitted.
MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
// If we have a bss global going to a section that supports the
// zerofill directive, do so here.
if (GVKind.isBSS() && MAI->hasMachoZeroFillDirective() &&
TheSection->isVirtualSection()) {
if (Size == 0)
Size = 1; // zerofill of 0 bytes is undefined.
emitLinkage(GV, GVSym);
// .zerofill __DATA, __bss, _foo, 400, 5
OutStreamer->emitZerofill(TheSection, GVSym, Size, Alignment);
return;
}
// If this is a BSS local symbol and we are emitting in the BSS
// section use .lcomm/.comm directive.
if (GVKind.isBSSLocal() &&
getObjFileLowering().getBSSSection() == TheSection) {
if (Size == 0)
Size = 1; // .comm Foo, 0 is undefined, avoid it.
// Use .lcomm only if it supports user-specified alignment.
// Otherwise, while it would still be correct to use .lcomm in some
// cases (e.g. when Align == 1), the external assembler might enfore
// some -unknown- default alignment behavior, which could cause
// spurious differences between external and integrated assembler.
// Prefer to simply fall back to .local / .comm in this case.
if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
// .lcomm _foo, 42
OutStreamer->emitLocalCommonSymbol(GVSym, Size, Alignment);
return;
}
// .local _foo
OutStreamer->emitSymbolAttribute(GVSym, MCSA_Local);
// .comm _foo, 42, 4
OutStreamer->emitCommonSymbol(GVSym, Size, Alignment);
return;
}
// Handle thread local data for mach-o which requires us to output an
// additional structure of data and mangle the original symbol so that we
// can reference it later.
//
// TODO: This should become an "emit thread local global" method on TLOF.
// All of this macho specific stuff should be sunk down into TLOFMachO and
// stuff like "TLSExtraDataSection" should no longer be part of the parent
// TLOF class. This will also make it more obvious that stuff like
// MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
// specific code.
if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
// Emit the .tbss symbol
MCSymbol *MangSym =
OutContext.getOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
if (GVKind.isThreadBSS()) {
TheSection = getObjFileLowering().getTLSBSSSection();
OutStreamer->emitTBSSSymbol(TheSection, MangSym, Size, Alignment);
} else if (GVKind.isThreadData()) {
OutStreamer->switchSection(TheSection);
emitAlignment(Alignment, GV);
OutStreamer->emitLabel(MangSym);
emitGlobalConstant(GV->getParent()->getDataLayout(),
GV->getInitializer());
}
OutStreamer->addBlankLine();
// Emit the variable struct for the runtime.
MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection();
OutStreamer->switchSection(TLVSect);
// Emit the linkage here.
emitLinkage(GV, GVSym);
OutStreamer->emitLabel(GVSym);
// Three pointers in size:
// - __tlv_bootstrap - used to make sure support exists
// - spare pointer, used when mapped by the runtime
// - pointer to mangled symbol above with initializer
unsigned PtrSize = DL.getPointerTypeSize(GV->getType());
OutStreamer->emitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
PtrSize);
OutStreamer->emitIntValue(0, PtrSize);
OutStreamer->emitSymbolValue(MangSym, PtrSize);
OutStreamer->addBlankLine();
return;
}
MCSymbol *EmittedInitSym = GVSym;
OutStreamer->switchSection(TheSection);
emitLinkage(GV, EmittedInitSym);
emitAlignment(Alignment, GV);
OutStreamer->emitLabel(EmittedInitSym);
MCSymbol *LocalAlias = getSymbolPreferLocal(*GV);
if (LocalAlias != EmittedInitSym)
OutStreamer->emitLabel(LocalAlias);
emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
if (MAI->hasDotTypeDotSizeDirective())
// .size foo, 42
OutStreamer->emitELFSize(EmittedInitSym,
MCConstantExpr::create(Size, OutContext));
OutStreamer->addBlankLine();
}
/// Emit the directive and value for debug thread local expression
///
/// \p Value - The value to emit.
/// \p Size - The size of the integer (in bytes) to emit.
void AsmPrinter::emitDebugValue(const MCExpr *Value, unsigned Size) const {
OutStreamer->emitValue(Value, Size);
}
void AsmPrinter::emitFunctionHeaderComment() {}
/// EmitFunctionHeader - This method emits the header for the current
/// function.
void AsmPrinter::emitFunctionHeader() {
const Function &F = MF->getFunction();
if (isVerbose())
OutStreamer->getCommentOS()
<< "-- Begin function "
<< GlobalValue::dropLLVMManglingEscape(F.getName()) << '\n';
// Print out constants referenced by the function
emitConstantPool();
// Print the 'header' of function.
// If basic block sections are desired, explicitly request a unique section
// for this function's entry block.
if (MF->front().isBeginSection())
MF->setSection(getObjFileLowering().getUniqueSectionForFunction(F, TM));
else
MF->setSection(getObjFileLowering().SectionForGlobal(&F, TM));
OutStreamer->switchSection(MF->getSection());
if (!MAI->hasVisibilityOnlyWithLinkage())
emitVisibility(CurrentFnSym, F.getVisibility());
if (MAI->needsFunctionDescriptors())
emitLinkage(&F, CurrentFnDescSym);
emitLinkage(&F, CurrentFnSym);
if (MAI->hasFunctionAlignment())
emitAlignment(MF->getAlignment(), &F);
if (MAI->hasDotTypeDotSizeDirective())
OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
if (F.hasFnAttribute(Attribute::Cold))
OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_Cold);
// Emit the prefix data.
if (F.hasPrefixData()) {
if (MAI->hasSubsectionsViaSymbols()) {
// Preserving prefix data on platforms which use subsections-via-symbols
// is a bit tricky. Here we introduce a symbol for the prefix data
// and use the .alt_entry attribute to mark the function's real entry point
// as an alternative entry point to the prefix-data symbol.
MCSymbol *PrefixSym = OutContext.createLinkerPrivateTempSymbol();
OutStreamer->emitLabel(PrefixSym);
emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
// Emit an .alt_entry directive for the actual function symbol.
OutStreamer->emitSymbolAttribute(CurrentFnSym, MCSA_AltEntry);
} else {
emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrefixData());
}
}
// Emit KCFI type information before patchable-function-prefix nops.
emitKCFITypeId(*MF);
// Emit M NOPs for -fpatchable-function-entry=N,M where M>0. We arbitrarily
// place prefix data before NOPs.
unsigned PatchableFunctionPrefix = 0;
unsigned PatchableFunctionEntry = 0;
(void)F.getFnAttribute("patchable-function-prefix")
.getValueAsString()
.getAsInteger(10, PatchableFunctionPrefix);
(void)F.getFnAttribute("patchable-function-entry")
.getValueAsString()
.getAsInteger(10, PatchableFunctionEntry);
if (PatchableFunctionPrefix) {
CurrentPatchableFunctionEntrySym =
OutContext.createLinkerPrivateTempSymbol();
OutStreamer->emitLabel(CurrentPatchableFunctionEntrySym);
emitNops(PatchableFunctionPrefix);
} else if (PatchableFunctionEntry) {
// May be reassigned when emitting the body, to reference the label after
// the initial BTI (AArch64) or endbr32/endbr64 (x86).
CurrentPatchableFunctionEntrySym = CurrentFnBegin;
}
// Emit the function prologue data for the indirect call sanitizer.
if (const MDNode *MD = F.getMetadata(LLVMContext::MD_func_sanitize)) {
assert(MD->getNumOperands() == 2);
auto *PrologueSig = mdconst::extract<Constant>(MD->getOperand(0));
auto *FTRTTIProxy = mdconst::extract<Constant>(MD->getOperand(1));
emitGlobalConstant(F.getParent()->getDataLayout(), PrologueSig);
const MCExpr *Proxy = lowerConstant(FTRTTIProxy);
const MCExpr *FnExp = MCSymbolRefExpr::create(CurrentFnSym, OutContext);
const MCExpr *PCRel = MCBinaryExpr::createSub(Proxy, FnExp, OutContext);
// Use 32 bit since only small code model is supported.
OutStreamer->emitValue(PCRel, 4u);
}
if (isVerbose()) {
F.printAsOperand(OutStreamer->getCommentOS(),
/*PrintType=*/false, F.getParent());
emitFunctionHeaderComment();
OutStreamer->getCommentOS() << '\n';
}
// Emit the function descriptor. This is a virtual function to allow targets
// to emit their specific function descriptor. Right now it is only used by
// the AIX target. The PowerPC 64-bit V1 ELF target also uses function
// descriptors and should be converted to use this hook as well.
if (MAI->needsFunctionDescriptors())
emitFunctionDescriptor();
// Emit the CurrentFnSym. This is a virtual function to allow targets to do
// their wild and crazy things as required.
emitFunctionEntryLabel();
// If the function had address-taken blocks that got deleted, then we have
// references to the dangling symbols. Emit them at the start of the function
// so that we don't get references to undefined symbols.
std::vector<MCSymbol*> DeadBlockSyms;
takeDeletedSymbolsForFunction(&F, DeadBlockSyms);
for (MCSymbol *DeadBlockSym : DeadBlockSyms) {
OutStreamer->AddComment("Address taken block that was later removed");
OutStreamer->emitLabel(DeadBlockSym);
}
if (CurrentFnBegin) {
if (MAI->useAssignmentForEHBegin()) {
MCSymbol *CurPos = OutContext.createTempSymbol();
OutStreamer->emitLabel(CurPos);
OutStreamer->emitAssignment(CurrentFnBegin,
MCSymbolRefExpr::create(CurPos, OutContext));
} else {
OutStreamer->emitLabel(CurrentFnBegin);
}
}
// Emit pre-function debug and/or EH information.
for (const HandlerInfo &HI : Handlers) {
NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
HI.TimerGroupDescription, TimePassesIsEnabled);
HI.Handler->beginFunction(MF);
}
for (const HandlerInfo &HI : Handlers) {
NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
HI.TimerGroupDescription, TimePassesIsEnabled);
HI.Handler->beginBasicBlockSection(MF->front());
}
// Emit the prologue data.
if (F.hasPrologueData())
emitGlobalConstant(F.getParent()->getDataLayout(), F.getPrologueData());
}
/// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
/// function. This can be overridden by targets as required to do custom stuff.
void AsmPrinter::emitFunctionEntryLabel() {
CurrentFnSym->redefineIfPossible();
// The function label could have already been emitted if two symbols end up
// conflicting due to asm renaming. Detect this and emit an error.
if (CurrentFnSym->isVariable())
report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
"' is a protected alias");
OutStreamer->emitLabel(CurrentFnSym);
if (TM.getTargetTriple().isOSBinFormatELF()) {
MCSymbol *Sym = getSymbolPreferLocal(MF->getFunction());
if (Sym != CurrentFnSym) {
cast<MCSymbolELF>(Sym)->setType(ELF::STT_FUNC);
CurrentFnBeginLocal = Sym;
OutStreamer->emitLabel(Sym);
if (MAI->hasDotTypeDotSizeDirective())
OutStreamer->emitSymbolAttribute(Sym, MCSA_ELF_TypeFunction);
}
}
}
/// emitComments - Pretty-print comments for instructions.
static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
const MachineFunction *MF = MI.getMF();
const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
// Check for spills and reloads
// We assume a single instruction only has a spill or reload, not
// both.
std::optional<unsigned> Size;
if ((Size = MI.getRestoreSize(TII))) {
CommentOS << *Size << "-byte Reload\n";
} else if ((Size = MI.getFoldedRestoreSize(TII))) {
if (*Size) {
if (*Size == unsigned(MemoryLocation::UnknownSize))
CommentOS << "Unknown-size Folded Reload\n";
else
CommentOS << *Size << "-byte Folded Reload\n";
}
} else if ((Size = MI.getSpillSize(TII))) {
CommentOS << *Size << "-byte Spill\n";
} else if ((Size = MI.getFoldedSpillSize(TII))) {
if (*Size) {
if (*Size == unsigned(MemoryLocation::UnknownSize))
CommentOS << "Unknown-size Folded Spill\n";
else
CommentOS << *Size << "-byte Folded Spill\n";
}
}
// Check for spill-induced copies
if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
CommentOS << " Reload Reuse\n";
}
/// emitImplicitDef - This method emits the specified machine instruction
/// that is an implicit def.
void AsmPrinter::emitImplicitDef(const MachineInstr *MI) const {
Register RegNo = MI->getOperand(0).getReg();
SmallString<128> Str;
raw_svector_ostream OS(Str);
OS << "implicit-def: "
<< printReg(RegNo, MF->getSubtarget().getRegisterInfo());
OutStreamer->AddComment(OS.str());
OutStreamer->addBlankLine();
}
static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
std::string Str;
raw_string_ostream OS(Str);
OS << "kill:";
for (const MachineOperand &Op : MI->operands()) {
assert(Op.isReg() && "KILL instruction must have only register operands");
OS << ' ' << (Op.isDef() ? "def " : "killed ")
<< printReg(Op.getReg(), AP.MF->getSubtarget().getRegisterInfo());
}
AP.OutStreamer->AddComment(OS.str());
AP.OutStreamer->addBlankLine();
}
/// emitDebugValueComment - This method handles the target-independent form
/// of DBG_VALUE, returning true if it was able to do so. A false return
/// means the target will need to handle MI in EmitInstruction.
static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
// This code handles only the 4-operand target-independent form.
if (MI->isNonListDebugValue() && MI->getNumOperands() != 4)
return false;
SmallString<128> Str;
raw_svector_ostream OS(Str);
OS << "DEBUG_VALUE: ";
const DILocalVariable *V = MI->getDebugVariable();
if (auto *SP = dyn_cast<DISubprogram>(V->getScope())) {
StringRef Name = SP->getName();
if (!Name.empty())
OS << Name << ":";
}
OS << V->getName();
OS << " <- ";
const DIExpression *Expr = MI->getDebugExpression();
// First convert this to a non-variadic expression if possible, to simplify
// the output.
if (auto NonVariadicExpr = DIExpression::convertToNonVariadicExpression(Expr))
Expr = *NonVariadicExpr;
// Then, output the possibly-simplified expression.
if (Expr->getNumElements()) {
OS << '[';
ListSeparator LS;
for (auto &Op : Expr->expr_ops()) {
OS << LS << dwarf::OperationEncodingString(Op.getOp());
for (unsigned I = 0; I < Op.getNumArgs(); ++I)
OS << ' ' << Op.getArg(I);
}
OS << "] ";
}
// Register or immediate value. Register 0 means undef.
for (const MachineOperand &Op : MI->debug_operands()) {
if (&Op != MI->debug_operands().begin())
OS << ", ";
switch (Op.getType()) {
case MachineOperand::MO_FPImmediate: {
APFloat APF = APFloat(Op.getFPImm()->getValueAPF());
Type *ImmTy = Op.getFPImm()->getType();
if (ImmTy->isBFloatTy() || ImmTy->isHalfTy() || ImmTy->isFloatTy() ||
ImmTy->isDoubleTy()) {
OS << APF.convertToDouble();
} else {
// There is no good way to print long double. Convert a copy to
// double. Ah well, it's only a comment.
bool ignored;
APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
&ignored);
OS << "(long double) " << APF.convertToDouble();
}
break;
}
case MachineOperand::MO_Immediate: {
OS << Op.getImm();
break;
}
case MachineOperand::MO_CImmediate: {
Op.getCImm()->getValue().print(OS, false /*isSigned*/);
break;
}
case MachineOperand::MO_TargetIndex: {
OS << "!target-index(" << Op.getIndex() << "," << Op.getOffset() << ")";
break;
}
case MachineOperand::MO_Register:
case MachineOperand::MO_FrameIndex: {
Register Reg;
std::optional<StackOffset> Offset;
if (Op.isReg()) {
Reg = Op.getReg();
} else {
const TargetFrameLowering *TFI =
AP.MF->getSubtarget().getFrameLowering();
Offset = TFI->getFrameIndexReference(*AP.MF, Op.getIndex(), Reg);
}
if (!Reg) {
// Suppress offset, it is not meaningful here.
OS << "undef";
break;
}
// The second operand is only an offset if it's an immediate.
if (MI->isIndirectDebugValue())
Offset = StackOffset::getFixed(MI->getDebugOffset().getImm());
if (Offset)
OS << '[';
OS << printReg(Reg, AP.MF->getSubtarget().getRegisterInfo());
if (Offset)
OS << '+' << Offset->getFixed() << ']';
break;
}
default:
llvm_unreachable("Unknown operand type");
}
}
// NOTE: Want this comment at start of line, don't emit with AddComment.
AP.OutStreamer->emitRawComment(OS.str());
return true;
}
/// This method handles the target-independent form of DBG_LABEL, returning
/// true if it was able to do so. A false return means the target will need
/// to handle MI in EmitInstruction.
static bool emitDebugLabelComment(const MachineInstr *MI, AsmPrinter &AP) {
if (MI->getNumOperands() != 1)
return false;
SmallString<128> Str;
raw_svector_ostream OS(Str);
OS << "DEBUG_LABEL: ";
const DILabel *V = MI->getDebugLabel();
if (auto *SP = dyn_cast<DISubprogram>(
V->getScope()->getNonLexicalBlockFileScope())) {
StringRef Name = SP->getName();
if (!Name.empty())
OS << Name << ":";
}
OS << V->getName();
// NOTE: Want this comment at start of line, don't emit with AddComment.
AP.OutStreamer->emitRawComment(OS.str());
return true;
}
AsmPrinter::CFISection
AsmPrinter::getFunctionCFISectionType(const Function &F) const {
// Ignore functions that won't get emitted.
if (F.isDeclarationForLinker())
return CFISection::None;
if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
F.needsUnwindTableEntry())
return CFISection::EH;
assert(MMI != nullptr && "Invalid machine module info");
if (MMI->hasDebugInfo() || TM.Options.ForceDwarfFrameSection)
return CFISection::Debug;
return CFISection::None;
}
AsmPrinter::CFISection
AsmPrinter::getFunctionCFISectionType(const MachineFunction &MF) const {
return getFunctionCFISectionType(MF.getFunction());
}
bool AsmPrinter::needsSEHMoves() {
return MAI->usesWindowsCFI() && MF->getFunction().needsUnwindTableEntry();
}
bool AsmPrinter::needsCFIForDebug() const {
return MAI->getExceptionHandlingType() == ExceptionHandling::None &&
MAI->doesUseCFIForDebug() && ModuleCFISection == CFISection::Debug;
}
void AsmPrinter::emitCFIInstruction(const MachineInstr &MI) {
ExceptionHandling ExceptionHandlingType = MAI->getExceptionHandlingType();
if (!needsCFIForDebug() &&
ExceptionHandlingType != ExceptionHandling::DwarfCFI &&
ExceptionHandlingType != ExceptionHandling::ARM)
return;
if (getFunctionCFISectionType(*MF) == CFISection::None)
return;
// If there is no "real" instruction following this CFI instruction, skip
// emitting it; it would be beyond the end of the function's FDE range.
auto *MBB = MI.getParent();
auto I = std::next(MI.getIterator());
while (I != MBB->end() && I->isTransient())
++I;
if (I == MBB->instr_end() &&
MBB->getReverseIterator() == MBB->getParent()->rbegin())
return;
const std::vector<MCCFIInstruction> &Instrs = MF->getFrameInstructions();
unsigned CFIIndex = MI.getOperand(0).getCFIIndex();
const MCCFIInstruction &CFI = Instrs[CFIIndex];
emitCFIInstruction(CFI);
}
void AsmPrinter::emitFrameAlloc(const MachineInstr &MI) {
// The operands are the MCSymbol and the frame offset of the allocation.
MCSymbol *FrameAllocSym = MI.getOperand(0).getMCSymbol();
int FrameOffset = MI.getOperand(1).getImm();
// Emit a symbol assignment.
OutStreamer->emitAssignment(FrameAllocSym,
MCConstantExpr::create(FrameOffset, OutContext));
}
/// Returns the BB metadata to be emitted in the SHT_LLVM_BB_ADDR_MAP section
/// for a given basic block. This can be used to capture more precise profile
/// information.
static uint32_t getBBAddrMapMetadata(const MachineBasicBlock &MBB) {
const TargetInstrInfo *TII = MBB.getParent()->getSubtarget().getInstrInfo();
return object::BBAddrMap::BBEntry::Metadata{
MBB.isReturnBlock(), !MBB.empty() && TII->isTailCall(MBB.back()),
MBB.isEHPad(), const_cast<MachineBasicBlock &>(MBB).canFallThrough()}
.encode();
}
void AsmPrinter::emitBBAddrMapSection(const MachineFunction &MF) {
MCSection *BBAddrMapSection =
getObjFileLowering().getBBAddrMapSection(*MF.getSection());
assert(BBAddrMapSection && ".llvm_bb_addr_map section is not initialized.");
const MCSymbol *FunctionSymbol = getFunctionBegin();
OutStreamer->pushSection();
OutStreamer->switchSection(BBAddrMapSection);
OutStreamer->AddComment("version");
uint8_t BBAddrMapVersion = OutStreamer->getContext().getBBAddrMapVersion();
OutStreamer->emitInt8(BBAddrMapVersion);
OutStreamer->AddComment("feature");
OutStreamer->emitInt8(0);
OutStreamer->AddComment("function address");
OutStreamer->emitSymbolValue(FunctionSymbol, getPointerSize());
OutStreamer->AddComment("number of basic blocks");
OutStreamer->emitULEB128IntValue(MF.size());
const MCSymbol *PrevMBBEndSymbol = FunctionSymbol;
// Emit BB Information for each basic block in the function.
for (const MachineBasicBlock &MBB : MF) {
const MCSymbol *MBBSymbol =
MBB.isEntryBlock() ? FunctionSymbol : MBB.getSymbol();
// TODO: Remove this check when version 1 is deprecated.
if (BBAddrMapVersion > 1) {
OutStreamer->AddComment("BB id");
// Emit the BB ID for this basic block.
OutStreamer->emitULEB128IntValue(*MBB.getBBID());
}
// Emit the basic block offset relative to the end of the previous block.
// This is zero unless the block is padded due to alignment.
emitLabelDifferenceAsULEB128(MBBSymbol, PrevMBBEndSymbol);
// Emit the basic block size. When BBs have alignments, their size cannot
// always be computed from their offsets.
emitLabelDifferenceAsULEB128(MBB.getEndSymbol(), MBBSymbol);
// Emit the Metadata.
OutStreamer->emitULEB128IntValue(getBBAddrMapMetadata(MBB));
PrevMBBEndSymbol = MBB.getEndSymbol();
}
OutStreamer->popSection();
}
void AsmPrinter::emitKCFITrapEntry(const MachineFunction &MF,
const MCSymbol *Symbol) {
MCSection *Section =
getObjFileLowering().getKCFITrapSection(*MF.getSection());
if (!Section)
return;
OutStreamer->pushSection();
OutStreamer->switchSection(Section);
MCSymbol *Loc = OutContext.createLinkerPrivateTempSymbol();
OutStreamer->emitLabel(Loc);
OutStreamer->emitAbsoluteSymbolDiff(Symbol, Loc, 4);
OutStreamer->popSection();
}
void AsmPrinter::emitKCFITypeId(const MachineFunction &MF) {
const Function &F = MF.getFunction();
if (const MDNode *MD = F.getMetadata(LLVMContext::MD_kcfi_type))
emitGlobalConstant(F.getParent()->getDataLayout(),
mdconst::extract<ConstantInt>(MD->getOperand(0)));
}
void AsmPrinter::emitPseudoProbe(const MachineInstr &MI) {
if (PP) {
auto GUID = MI.getOperand(0).getImm();
auto Index = MI.getOperand(1).getImm();
auto Type = MI.getOperand(2).getImm();
auto Attr = MI.getOperand(3).getImm();
DILocation *DebugLoc = MI.getDebugLoc();
PP->emitPseudoProbe(GUID, Index, Type, Attr, DebugLoc);
}
}
void AsmPrinter::emitStackSizeSection(const MachineFunction &MF) {
if (!MF.getTarget().Options.EmitStackSizeSection)
return;
MCSection *StackSizeSection =
getObjFileLowering().getStackSizesSection(*getCurrentSection());
if (!StackSizeSection)
return;
const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
// Don't emit functions with dynamic stack allocations.
if (FrameInfo.hasVarSizedObjects())
return;
OutStreamer->pushSection();
OutStreamer->switchSection(StackSizeSection);
const MCSymbol *FunctionSymbol = getFunctionBegin();
uint64_t StackSize =
FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize();
OutStreamer->emitSymbolValue(FunctionSymbol, TM.getProgramPointerSize());
OutStreamer->emitULEB128IntValue(StackSize);
OutStreamer->popSection();
}
void AsmPrinter::emitStackUsage(const MachineFunction &MF) {
const std::string &OutputFilename = MF.getTarget().Options.StackUsageOutput;
// OutputFilename empty implies -fstack-usage is not passed.
if (OutputFilename.empty())
return;
const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
uint64_t StackSize =
FrameInfo.getStackSize() + FrameInfo.getUnsafeStackSize();
if (StackUsageStream == nullptr) {
std::error_code EC;
StackUsageStream =
std::make_unique<raw_fd_ostream>(OutputFilename, EC, sys::fs::OF_Text);
if (EC) {
errs() << "Could not open file: " << EC.message();
return;
}
}
*StackUsageStream << MF.getFunction().getParent()->getName();
if (const DISubprogram *DSP = MF.getFunction().getSubprogram())
*StackUsageStream << ':' << DSP->getLine();
*StackUsageStream << ':' << MF.getName() << '\t' << StackSize << '\t';
if (FrameInfo.hasVarSizedObjects())
*StackUsageStream << "dynamic\n";
else
*StackUsageStream << "static\n";
}
void AsmPrinter::emitPCSectionsLabel(const MachineFunction &MF,
const MDNode &MD) {
MCSymbol *S = MF.getContext().createTempSymbol("pcsection");
OutStreamer->emitLabel(S);
PCSectionsSymbols[&MD].emplace_back(S);
}
void AsmPrinter::emitPCSections(const MachineFunction &MF) {
const Function &F = MF.getFunction();
if (PCSectionsSymbols.empty() && !F.hasMetadata(LLVMContext::MD_pcsections))
return;
const CodeModel::Model CM = MF.getTarget().getCodeModel();
const unsigned RelativeRelocSize =
(CM == CodeModel::Medium || CM == CodeModel::Large) ? getPointerSize()
: 4;
// Switch to PCSection, short-circuiting the common case where the current
// section is still valid (assume most MD_pcsections contain just 1 section).
auto SwitchSection = [&, Prev = StringRef()](const StringRef &Sec) mutable {
if (Sec == Prev)
return;
MCSection *S = getObjFileLowering().getPCSection(Sec, MF.getSection());
assert(S && "PC section is not initialized");
OutStreamer->switchSection(S);
Prev = Sec;
};
// Emit symbols into sections and data as specified in the pcsections MDNode.
auto EmitForMD = [&](const MDNode &MD, ArrayRef<const MCSymbol *> Syms,
bool Deltas) {
// Expect the first operand to be a section name. After that, a tuple of
// constants may appear, which will simply be emitted into the current
// section (the user of MD_pcsections decides the format of encoded data).
assert(isa<MDString>(MD.getOperand(0)) && "first operand not a string");
bool ConstULEB128 = false;
for (const MDOperand &MDO : MD.operands()) {
if (auto *S = dyn_cast<MDString>(MDO)) {
// Found string, start of new section!
// Find options for this section "<section>!<opts>" - supported options:
// C = Compress constant integers of size 2-8 bytes as ULEB128.
const StringRef SecWithOpt = S->getString();
const size_t OptStart = SecWithOpt.find('!'); // likely npos
const StringRef Sec = SecWithOpt.substr(0, OptStart);
const StringRef Opts = SecWithOpt.substr(OptStart); // likely empty
ConstULEB128 = Opts.find('C') != StringRef::npos;
#ifndef NDEBUG
for (char O : Opts)
assert((O == '!' || O == 'C') && "Invalid !pcsections options");
#endif
SwitchSection(Sec);
const MCSymbol *Prev = Syms.front();
for (const MCSymbol *Sym : Syms) {
if (Sym == Prev || !Deltas) {
// Use the entry itself as the base of the relative offset.
MCSymbol *Base = MF.getContext().createTempSymbol("pcsection_base");
OutStreamer->emitLabel(Base);
// Emit relative relocation `addr - base`, which avoids a dynamic
// relocation in the final binary. User will get the address with
// `base + addr`.
emitLabelDifference(Sym, Base, RelativeRelocSize);
} else {
// Emit delta between symbol and previous symbol.
if (ConstULEB128)
emitLabelDifferenceAsULEB128(Sym, Prev);
else
emitLabelDifference(Sym, Prev, 4);
}
Prev = Sym;
}
} else {
// Emit auxiliary data after PC.
assert(isa<MDNode>(MDO) && "expecting either string or tuple");
const auto *AuxMDs = cast<MDNode>(MDO);
for (const MDOperand &AuxMDO : AuxMDs->operands()) {
assert(isa<ConstantAsMetadata>(AuxMDO) && "expecting a constant");
const Constant *C = cast<ConstantAsMetadata>(AuxMDO)->getValue();
const DataLayout &DL = F.getParent()->getDataLayout();
const uint64_t Size = DL.getTypeStoreSize(C->getType());
if (auto *CI = dyn_cast<ConstantInt>(C);
CI && ConstULEB128 && Size > 1 && Size <= 8) {
emitULEB128(CI->getZExtValue());
} else {
emitGlobalConstant(DL, C);
}
}
}
}
};
OutStreamer->pushSection();
// Emit PCs for function start and function size.
if (const MDNode *MD = F.getMetadata(LLVMContext::MD_pcsections))
EmitForMD(*MD, {getFunctionBegin(), getFunctionEnd()}, true);
// Emit PCs for instructions collected.
for (const auto &MS : PCSectionsSymbols)
EmitForMD(*MS.first, MS.second, false);
OutStreamer->popSection();
PCSectionsSymbols.clear();
}
/// Returns true if function begin and end labels should be emitted.
static bool needFuncLabels(const MachineFunction &MF) {
MachineModuleInfo &MMI = MF.getMMI();
if (!MF.getLandingPads().empty() || MF.hasEHFunclets() ||
MMI.hasDebugInfo() ||
MF.getFunction().hasMetadata(LLVMContext::MD_pcsections))
return true;
// We might emit an EH table that uses function begin and end labels even if
// we don't have any landingpads.
if (!MF.getFunction().hasPersonalityFn())
return false;
return !isNoOpWithoutInvoke(
classifyEHPersonality(MF.getFunction().getPersonalityFn()));
}
/// EmitFunctionBody - This method emits the body and trailer for a
/// function.
void AsmPrinter::emitFunctionBody() {
emitFunctionHeader();
// Emit target-specific gunk before the function body.
emitFunctionBodyStart();
if (isVerbose()) {
// Get MachineDominatorTree or compute it on the fly if it's unavailable
MDT = getAnalysisIfAvailable<MachineDominatorTree>();
if (!MDT) {
OwnedMDT = std::make_unique<MachineDominatorTree>();
OwnedMDT->getBase().recalculate(*MF);
MDT = OwnedMDT.get();
}
// Get MachineLoopInfo or compute it on the fly if it's unavailable
MLI = getAnalysisIfAvailable<MachineLoopInfo>();
if (!MLI) {
OwnedMLI = std::make_unique<MachineLoopInfo>();
OwnedMLI->getBase().analyze(MDT->getBase());
MLI = OwnedMLI.get();
}
}
// Print out code for the function.
bool HasAnyRealCode = false;
int NumInstsInFunction = 0;
bool IsEHa = MMI->getModule()->getModuleFlag("eh-asynch");
bool CanDoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
for (auto &MBB : *MF) {
// Print a label for the basic block.
emitBasicBlockStart(MBB);
DenseMap<StringRef, unsigned> MnemonicCounts;
for (auto &MI : MBB) {
// Print the assembly for the instruction.
if (!MI.isPosition() && !MI.isImplicitDef() && !MI.isKill() &&
!MI.isDebugInstr()) {
HasAnyRealCode = true;
++NumInstsInFunction;
}
// If there is a pre-instruction symbol, emit a label for it here.
if (MCSymbol *S = MI.getPreInstrSymbol())
OutStreamer->emitLabel(S);
if (MDNode *MD = MI.getPCSections())
emitPCSectionsLabel(*MF, *MD);
for (const HandlerInfo &HI : Handlers) {
NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
HI.TimerGroupDescription, TimePassesIsEnabled);
HI.Handler->beginInstruction(&MI);
}
if (isVerbose())
emitComments(MI, OutStreamer->getCommentOS());
switch (MI.getOpcode()) {
case TargetOpcode::CFI_INSTRUCTION:
emitCFIInstruction(MI);
break;
case TargetOpcode::LOCAL_ESCAPE:
emitFrameAlloc(MI);
break;
case TargetOpcode::ANNOTATION_LABEL:
case TargetOpcode::GC_LABEL:
OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol());
break;
case TargetOpcode::EH_LABEL:
OutStreamer->emitLabel(MI.getOperand(0).getMCSymbol());
// For AsynchEH, insert a Nop if followed by a trap inst
// Or the exception won't be caught.
// (see MCConstantExpr::create(1,..) in WinException.cpp)
// Ignore SDiv/UDiv because a DIV with Const-0 divisor
// must have being turned into an UndefValue.
// Div with variable opnds won't be the first instruction in
// an EH region as it must be led by at least a Load
{
auto MI2 = std::next(MI.getIterator());
if (IsEHa && MI2 != MBB.end() &&
(MI2->mayLoadOrStore() || MI2->mayRaiseFPException()))
emitNops(1);
}
break;
case TargetOpcode::INLINEASM:
case TargetOpcode::INLINEASM_BR:
emitInlineAsm(&MI);
break;
case TargetOpcode::DBG_VALUE:
case TargetOpcode::DBG_VALUE_LIST:
if (isVerbose()) {
if (!emitDebugValueComment(&MI, *this))
emitInstruction(&MI);
}
break;
case TargetOpcode::DBG_INSTR_REF:
// This instruction reference will have been resolved to a machine
// location, and a nearby DBG_VALUE created. We can safely ignore
// the instruction reference.
break;
case TargetOpcode::DBG_PHI:
// This instruction is only used to label a program point, it's purely
// meta information.
break;
case TargetOpcode::DBG_LABEL:
if (isVerbose()) {
if (!emitDebugLabelComment(&MI, *this))
emitInstruction(&MI);
}
break;
case TargetOpcode::IMPLICIT_DEF:
if (isVerbose()) emitImplicitDef(&MI);
break;
case TargetOpcode::KILL:
if (isVerbose()) emitKill(&MI, *this);
break;
case TargetOpcode::PSEUDO_PROBE:
emitPseudoProbe(MI);
break;
case TargetOpcode::ARITH_FENCE:
if (isVerbose())
OutStreamer->emitRawComment("ARITH_FENCE");
break;
case TargetOpcode::MEMBARRIER:
OutStreamer->emitRawComment("MEMBARRIER");
break;
default:
emitInstruction(&MI);
if (CanDoExtraAnalysis) {
MCInst MCI;
MCI.setOpcode(MI.getOpcode());
auto Name = OutStreamer->getMnemonic(MCI);
auto I = MnemonicCounts.insert({Name, 0u});
I.first->second++;
}
break;
}
// If there is a post-instruction symbol, emit a label for it here.
if (MCSymbol *S = MI.getPostInstrSymbol())
OutStreamer->emitLabel(S);
for (const HandlerInfo &HI : Handlers) {
NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
HI.TimerGroupDescription, TimePassesIsEnabled);
HI.Handler->endInstruction();
}
}
// We must emit temporary symbol for the end of this basic block, if either
// we have BBLabels enabled or if this basic blocks marks the end of a
// section.
if (MF->hasBBLabels() ||
(MAI->hasDotTypeDotSizeDirective() && MBB.isEndSection()))
OutStreamer->emitLabel(MBB.getEndSymbol());
if (MBB.isEndSection()) {
// The size directive for the section containing the entry block is
// handled separately by the function section.
if (!MBB.sameSection(&MF->front())) {
if (MAI->hasDotTypeDotSizeDirective()) {
// Emit the size directive for the basic block section.
const MCExpr *SizeExp = MCBinaryExpr::createSub(
MCSymbolRefExpr::create(MBB.getEndSymbol(), OutContext),
MCSymbolRefExpr::create(CurrentSectionBeginSym, OutContext),
OutContext);
OutStreamer->emitELFSize(CurrentSectionBeginSym, SizeExp);
}
MBBSectionRanges[MBB.getSectionIDNum()] =
MBBSectionRange{CurrentSectionBeginSym, MBB.getEndSymbol()};
}
}
emitBasicBlockEnd(MBB);
if (CanDoExtraAnalysis) {
// Skip empty blocks.
if (MBB.empty())
continue;
MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionMix",
MBB.begin()->getDebugLoc(), &MBB);
// Generate instruction mix remark. First, sort counts in descending order
// by count and name.
SmallVector<std::pair<StringRef, unsigned>, 128> MnemonicVec;
for (auto &KV : MnemonicCounts)
MnemonicVec.emplace_back(KV.first, KV.second);
sort(MnemonicVec, [](const std::pair<StringRef, unsigned> &A,
const std::pair<StringRef, unsigned> &B) {
if (A.second > B.second)
return true;
if (A.second == B.second)
return StringRef(A.first) < StringRef(B.first);
return false;
});
R << "BasicBlock: " << ore::NV("BasicBlock", MBB.getName()) << "\n";
for (auto &KV : MnemonicVec) {
auto Name = (Twine("INST_") + getToken(KV.first.trim()).first).str();
R << KV.first << ": " << ore::NV(Name, KV.second) << "\n";
}
ORE->emit(R);
}
}
EmittedInsts += NumInstsInFunction;
MachineOptimizationRemarkAnalysis R(DEBUG_TYPE, "InstructionCount",
MF->getFunction().getSubprogram(),
&MF->front());
R << ore::NV("NumInstructions", NumInstsInFunction)
<< " instructions in function";
ORE->emit(R);
// If the function is empty and the object file uses .subsections_via_symbols,
// then we need to emit *something* to the function body to prevent the
// labels from collapsing together. Just emit a noop.
// Similarly, don't emit empty functions on Windows either. It can lead to
// duplicate entries (two functions with the same RVA) in the Guard CF Table
// after linking, causing the kernel not to load the binary:
// https://developercommunity.visualstudio.com/content/problem/45366/vc-linker-creates-invalid-dll-with-clang-cl.html
// FIXME: Hide this behind some API in e.g. MCAsmInfo or MCTargetStreamer.
const Triple &TT = TM.getTargetTriple();
if (!HasAnyRealCode && (MAI->hasSubsectionsViaSymbols() ||
(TT.isOSWindows() && TT.isOSBinFormatCOFF()))) {
MCInst Noop = MF->getSubtarget().getInstrInfo()->getNop();
// Targets can opt-out of emitting the noop here by leaving the opcode
// unspecified.
if (Noop.getOpcode()) {
OutStreamer->AddComment("avoids zero-length function");
emitNops(1);
}
}
// Switch to the original section in case basic block sections was used.
OutStreamer->switchSection(MF->getSection());
const Function &F = MF->getFunction();
for (const auto &BB : F) {
if (!BB.hasAddressTaken())
continue;
MCSymbol *Sym = GetBlockAddressSymbol(&BB);
if (Sym->isDefined())
continue;
OutStreamer->AddComment("Address of block that was removed by CodeGen");
OutStreamer->emitLabel(Sym);
}
// Emit target-specific gunk after the function body.
emitFunctionBodyEnd();
// Even though wasm supports .type and .size in general, function symbols
// are automatically sized.
bool EmitFunctionSize = MAI->hasDotTypeDotSizeDirective() && !TT.isWasm();
if (needFuncLabels(*MF) || EmitFunctionSize) {
// Create a symbol for the end of function.
CurrentFnEnd = createTempSymbol("func_end");
OutStreamer->emitLabel(CurrentFnEnd);
}
// If the target wants a .size directive for the size of the function, emit
// it.
if (EmitFunctionSize) {
// We can get the size as difference between the function label and the
// temp label.
const MCExpr *SizeExp = MCBinaryExpr::createSub(
MCSymbolRefExpr::create(CurrentFnEnd, OutContext),
MCSymbolRefExpr::create(CurrentFnSymForSize, OutContext), OutContext);
OutStreamer->emitELFSize(CurrentFnSym, SizeExp);
if (CurrentFnBeginLocal)
OutStreamer->emitELFSize(CurrentFnBeginLocal, SizeExp);
}
// Call endBasicBlockSection on the last block now, if it wasn't already
// called.
if (!MF->back().isEndSection()) {
for (const HandlerInfo &HI : Handlers) {
NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
HI.TimerGroupDescription, TimePassesIsEnabled);
HI.Handler->endBasicBlockSection(MF->back());
}
}
for (const HandlerInfo &HI : Handlers) {
NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
HI.TimerGroupDescription, TimePassesIsEnabled);
HI.Handler->markFunctionEnd();
}
MBBSectionRanges[MF->front().getSectionIDNum()] =
MBBSectionRange{CurrentFnBegin, CurrentFnEnd};
// Print out jump tables referenced by the function.
emitJumpTableInfo();
// Emit post-function debug and/or EH information.
for (const HandlerInfo &HI : Handlers) {
NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
HI.TimerGroupDescription, TimePassesIsEnabled);
HI.Handler->endFunction(MF);
}
// Emit section containing BB address offsets and their metadata, when
// BB labels are requested for this function. Skip empty functions.
if (MF->hasBBLabels() && HasAnyRealCode)
emitBBAddrMapSection(*MF);
// Emit sections containing instruction and function PCs.
emitPCSections(*MF);
// Emit section containing stack size metadata.
emitStackSizeSection(*MF);
// Emit .su file containing function stack size information.
emitStackUsage(*MF);
emitPatchableFunctionEntries();
if (isVerbose())
OutStreamer->getCommentOS() << "-- End function\n";
OutStreamer->addBlankLine();
// Output MBB ids, function names, and frequencies if the flag to dump
// MBB profile information has been set
if (MBBProfileDumpFileOutput) {
if (!MF->hasBBLabels())
MF->getContext().reportError(
SMLoc(),
"Unable to find BB labels for MBB profile dump. -mbb-profile-dump "
"must be called with -basic-block-sections=labels");
MachineBlockFrequencyInfo &MBFI =
getAnalysis<LazyMachineBlockFrequencyInfoPass>().getBFI();
for (const auto &MBB : *MF) {
*MBBProfileDumpFileOutput.get()
<< MF->getName() << "," << MBB.getBBID() << ","
<< MBFI.getBlockFreqRelativeToEntryBlock(&MBB) << "\n";
}
}
}
/// Compute the number of Global Variables that uses a Constant.
static unsigned getNumGlobalVariableUses(const Constant *C) {
if (!C)
return 0;
if (isa<GlobalVariable>(C))
return 1;
unsigned NumUses = 0;
for (const auto *CU : C->users())
NumUses += getNumGlobalVariableUses(dyn_cast<Constant>(CU));
return NumUses;
}
/// Only consider global GOT equivalents if at least one user is a
/// cstexpr inside an initializer of another global variables. Also, don't
/// handle cstexpr inside instructions. During global variable emission,
/// candidates are skipped and are emitted later in case at least one cstexpr
/// isn't replaced by a PC relative GOT entry access.
static bool isGOTEquivalentCandidate(const GlobalVariable *GV,
unsigned &NumGOTEquivUsers) {
// Global GOT equivalents are unnamed private globals with a constant
// pointer initializer to another global symbol. They must point to a
// GlobalVariable or Function, i.e., as GlobalValue.
if (!GV->hasGlobalUnnamedAddr() || !GV->hasInitializer() ||
!GV->isConstant() || !GV->isDiscardableIfUnused() ||
!isa<GlobalValue>(GV->getOperand(0)))
return false;
// To be a got equivalent, at least one of its users need to be a constant
// expression used by another global variable.
for (const auto *U : GV->users())
NumGOTEquivUsers += getNumGlobalVariableUses(dyn_cast<Constant>(U));
return NumGOTEquivUsers > 0;
}
/// Unnamed constant global variables solely contaning a pointer to
/// another globals variable is equivalent to a GOT table entry; it contains the
/// the address of another symbol. Optimize it and replace accesses to these
/// "GOT equivalents" by using the GOT entry for the final global instead.
/// Compute GOT equivalent candidates among all global variables to avoid
/// emitting them if possible later on, after it use is replaced by a GOT entry
/// access.
void AsmPrinter::computeGlobalGOTEquivs(Module &M) {
if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
return;
for (const auto &G : M.globals()) {
unsigned NumGOTEquivUsers = 0;
if (!isGOTEquivalentCandidate(&G, NumGOTEquivUsers))
continue;
const MCSymbol *GOTEquivSym = getSymbol(&G);
GlobalGOTEquivs[GOTEquivSym] = std::make_pair(&G, NumGOTEquivUsers);
}
}
/// Constant expressions using GOT equivalent globals may not be eligible
/// for PC relative GOT entry conversion, in such cases we need to emit such
/// globals we previously omitted in EmitGlobalVariable.
void AsmPrinter::emitGlobalGOTEquivs() {
if (!getObjFileLowering().supportIndirectSymViaGOTPCRel())
return;
SmallVector<const GlobalVariable *, 8> FailedCandidates;
for (auto &I : GlobalGOTEquivs) {
const GlobalVariable *GV = I.second.first;
unsigned Cnt = I.second.second;
if (Cnt)
FailedCandidates.push_back(GV);
}
GlobalGOTEquivs.clear();
for (const auto *GV : FailedCandidates)
emitGlobalVariable(GV);
}
void AsmPrinter::emitGlobalAlias(Module &M, const GlobalAlias &GA) {
MCSymbol *Name = getSymbol(&GA);
bool IsFunction = GA.getValueType()->isFunctionTy();
// Treat bitcasts of functions as functions also. This is important at least
// on WebAssembly where object and function addresses can't alias each other.
if (!IsFunction)
IsFunction = isa<Function>(GA.getAliasee()->stripPointerCasts());
// AIX's assembly directive `.set` is not usable for aliasing purpose,
// so AIX has to use the extra-label-at-definition strategy. At this
// point, all the extra label is emitted, we just have to emit linkage for
// those labels.
if (TM.getTargetTriple().isOSBinFormatXCOFF()) {
assert(MAI->hasVisibilityOnlyWithLinkage() &&
"Visibility should be handled with emitLinkage() on AIX.");
// Linkage for alias of global variable has been emitted.
if (isa<GlobalVariable>(GA.getAliaseeObject()))
return;
emitLinkage(&GA, Name);
// If it's a function, also emit linkage for aliases of function entry
// point.
if (IsFunction)
emitLinkage(&GA,
getObjFileLowering().getFunctionEntryPointSymbol(&GA, TM));
return;
}
if (GA.hasExternalLinkage() || !MAI->getWeakRefDirective())
OutStreamer->emitSymbolAttribute(Name, MCSA_Global);
else if (GA.hasWeakLinkage() || GA.hasLinkOnceLinkage())
OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference);
else
assert(GA.hasLocalLinkage() && "Invalid alias linkage");
// Set the symbol type to function if the alias has a function type.
// This affects codegen when the aliasee is not a function.
if (IsFunction) {
OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeFunction);
if (TM.getTargetTriple().isOSBinFormatCOFF()) {
OutStreamer->beginCOFFSymbolDef(Name);
OutStreamer->emitCOFFSymbolStorageClass(
GA.hasLocalLinkage() ? COFF::IMAGE_SYM_CLASS_STATIC
: COFF::IMAGE_SYM_CLASS_EXTERNAL);
OutStreamer->emitCOFFSymbolType(COFF::IMAGE_SYM_DTYPE_FUNCTION
<< COFF::SCT_COMPLEX_TYPE_SHIFT);
OutStreamer->endCOFFSymbolDef();
}
}
emitVisibility(Name, GA.getVisibility());
const MCExpr *Expr = lowerConstant(GA.getAliasee());
if (MAI->hasAltEntry() && isa<MCBinaryExpr>(Expr))
OutStreamer->emitSymbolAttribute(Name, MCSA_AltEntry);
// Emit the directives as assignments aka .set:
OutStreamer->emitAssignment(Name, Expr);
MCSymbol *LocalAlias = getSymbolPreferLocal(GA);
if (LocalAlias != Name)
OutStreamer->emitAssignment(LocalAlias, Expr);
// If the aliasee does not correspond to a symbol in the output, i.e. the
// alias is not of an object or the aliased object is private, then set the
// size of the alias symbol from the type of the alias. We don't do this in
// other situations as the alias and aliasee having differing types but same
// size may be intentional.
const GlobalObject *BaseObject = GA.getAliaseeObject();
if (MAI->hasDotTypeDotSizeDirective() && GA.getValueType()->isSized() &&
(!BaseObject || BaseObject->hasPrivateLinkage())) {
const DataLayout &DL = M.getDataLayout();
uint64_t Size = DL.getTypeAllocSize(GA.getValueType());
OutStreamer->emitELFSize(Name, MCConstantExpr::create(Size, OutContext));
}
}
void AsmPrinter::emitGlobalIFunc(Module &M, const GlobalIFunc &GI) {
assert(!TM.getTargetTriple().isOSBinFormatXCOFF() &&
"IFunc is not supported on AIX.");
MCSymbol *Name = getSymbol(&GI);
if (GI.hasExternalLinkage() || !MAI->getWeakRefDirective())
OutStreamer->emitSymbolAttribute(Name, MCSA_Global);
else if (GI.hasWeakLinkage() || GI.hasLinkOnceLinkage())
OutStreamer->emitSymbolAttribute(Name, MCSA_WeakReference);
else
assert(GI.hasLocalLinkage() && "Invalid ifunc linkage");
OutStreamer->emitSymbolAttribute(Name, MCSA_ELF_TypeIndFunction);
emitVisibility(Name, GI.getVisibility());
// Emit the directives as assignments aka .set:
const MCExpr *Expr = lowerConstant(GI.getResolver());
OutStreamer->emitAssignment(Name, Expr);
MCSymbol *LocalAlias = getSymbolPreferLocal(GI);
if (LocalAlias != Name)
OutStreamer->emitAssignment(LocalAlias, Expr);
}
void AsmPrinter::emitRemarksSection(remarks::RemarkStreamer &RS) {
if (!RS.needsSection())
return;
remarks::RemarkSerializer &RemarkSerializer = RS.getSerializer();
std::optional<SmallString<128>> Filename;
if (std::optional<StringRef> FilenameRef = RS.getFilename()) {
Filename = *FilenameRef;
sys::fs::make_absolute(*Filename);
assert(!Filename->empty() && "The filename can't be empty.");
}
std::string Buf;
raw_string_ostream OS(Buf);
std::unique_ptr<remarks::MetaSerializer> MetaSerializer =
Filename ? RemarkSerializer.metaSerializer(OS, Filename->str())
: RemarkSerializer.metaSerializer(OS);
MetaSerializer->emit();
// Switch to the remarks section.
MCSection *RemarksSection =
OutContext.getObjectFileInfo()->getRemarksSection();
OutStreamer->switchSection(RemarksSection);
OutStreamer->emitBinaryData(OS.str());
}
bool AsmPrinter::doFinalization(Module &M) {
// Set the MachineFunction to nullptr so that we can catch attempted
// accesses to MF specific features at the module level and so that
// we can conditionalize accesses based on whether or not it is nullptr.
MF = nullptr;
// Gather all GOT equivalent globals in the module. We really need two
// passes over the globals: one to compute and another to avoid its emission
// in EmitGlobalVariable, otherwise we would not be able to handle cases
// where the got equivalent shows up before its use.
computeGlobalGOTEquivs(M);
// Emit global variables.
for (const auto &G : M.globals())
emitGlobalVariable(&G);
// Emit remaining GOT equivalent globals.
emitGlobalGOTEquivs();
const TargetLoweringObjectFile &TLOF = getObjFileLowering();
// Emit linkage(XCOFF) and visibility info for declarations
for (const Function &F : M) {
if (!F.isDeclarationForLinker())
continue;
MCSymbol *Name = getSymbol(&F);
// Function getSymbol gives us the function descriptor symbol for XCOFF.
if (!TM.getTargetTriple().isOSBinFormatXCOFF()) {
GlobalValue::VisibilityTypes V = F.getVisibility();
if (V == GlobalValue::DefaultVisibility)
continue;
emitVisibility(Name, V, false);
continue;
}
if (F.isIntrinsic())
continue;
// Handle the XCOFF case.
// Variable `Name` is the function descriptor symbol (see above). Get the
// function entry point symbol.
MCSymbol *FnEntryPointSym = TLOF.getFunctionEntryPointSymbol(&F, TM);
// Emit linkage for the function entry point.
emitLinkage(&F, FnEntryPointSym);
// Emit linkage for the function descriptor.
emitLinkage(&F, Name);
}
// Emit the remarks section contents.
// FIXME: Figure out when is the safest time to emit this section. It should
// not come after debug info.
if (remarks::RemarkStreamer *RS = M.getContext().getMainRemarkStreamer())
emitRemarksSection(*RS);
TLOF.emitModuleMetadata(*OutStreamer, M);
if (TM.getTargetTriple().isOSBinFormatELF()) {
MachineModuleInfoELF &MMIELF = MMI->getObjFileInfo<MachineModuleInfoELF>();
// Output stubs for external and common global variables.
MachineModuleInfoELF::SymbolListTy Stubs = MMIELF.GetGVStubList();
if (!Stubs.empty()) {
OutStreamer->switchSection(TLOF.getDataSection());
const DataLayout &DL = M.getDataLayout();
emitAlignment(Align(DL.getPointerSize()));
for (const auto &Stub : Stubs) {
OutStreamer->emitLabel(Stub.first);
OutStreamer->emitSymbolValue(Stub.second.getPointer(),
DL.getPointerSize());
}
}
}
if (TM.getTargetTriple().isOSBinFormatCOFF()) {
MachineModuleInfoCOFF &MMICOFF =
MMI->getObjFileInfo<MachineModuleInfoCOFF>();
// Output stubs for external and common global variables.
MachineModuleInfoCOFF::SymbolListTy Stubs = MMICOFF.GetGVStubList();
if (!Stubs.empty()) {
const DataLayout &DL = M.getDataLayout();
for (const auto &Stub : Stubs) {
SmallString<256> SectionName = StringRef(".rdata$");
SectionName += Stub.first->getName();
OutStreamer->switchSection(OutContext.getCOFFSection(
SectionName,
COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ |
COFF::IMAGE_SCN_LNK_COMDAT,
SectionKind::getReadOnly(), Stub.first->getName(),
COFF::IMAGE_COMDAT_SELECT_ANY));
emitAlignment(Align(DL.getPointerSize()));
OutStreamer->emitSymbolAttribute(Stub.first, MCSA_Global);
OutStreamer->emitLabel(Stub.first);
OutStreamer->emitSymbolValue(Stub.second.getPointer(),
DL.getPointerSize());
}
}
}
// This needs to happen before emitting debug information since that can end
// arbitrary sections.
if (auto *TS = OutStreamer->getTargetStreamer())
TS->emitConstantPools();
// Emit Stack maps before any debug info. Mach-O requires that no data or
// text sections come after debug info has been emitted. This matters for
// stack maps as they are arbitrary data, and may even have a custom format
// through user plugins.
emitStackMaps();
// Finalize debug and EH information.
for (const HandlerInfo &HI : Handlers) {
NamedRegionTimer T(HI.TimerName, HI.TimerDescription, HI.TimerGroupName,
HI.TimerGroupDescription, TimePassesIsEnabled);
HI.Handler->endModule();
}
// This deletes all the ephemeral handlers that AsmPrinter added, while
// keeping all the user-added handlers alive until the AsmPrinter is
// destroyed.
Handlers.erase(Handlers.begin() + NumUserHandlers, Handlers.end());
DD = nullptr;
// If the target wants to know about weak references, print them all.
if (MAI->getWeakRefDirective()) {
// FIXME: This is not lazy, it would be nice to only print weak references
// to stuff that is actually used. Note that doing so would require targets
// to notice uses in operands (due to constant exprs etc). This should
// happen with the MC stuff eventually.
// Print out module-level global objects here.
for (const auto &GO : M.global_objects()) {
if (!GO.hasExternalWeakLinkage())
continue;
OutStreamer->emitSymbolAttribute(getSymbol(&GO), MCSA_WeakReference);
}
if (shouldEmitWeakSwiftAsyncExtendedFramePointerFlags()) {
auto SymbolName = "swift_async_extendedFramePointerFlags";
auto Global = M.getGlobalVariable(SymbolName);
if (!Global) {
auto Int8PtrTy = Type::getInt8PtrTy(M.getContext());
Global = new GlobalVariable(M, Int8PtrTy, false,
GlobalValue::ExternalWeakLinkage, nullptr,
SymbolName);
OutStreamer->emitSymbolAttribute(getSymbol(Global), MCSA_WeakReference);
}
}
}
// Print aliases in topological order, that is, for each alias a = b,
// b must be printed before a.
// This is because on some targets (e.g. PowerPC) linker expects aliases in
// such an order to generate correct TOC information.
SmallVector<const GlobalAlias *, 16> AliasStack;
SmallPtrSet<const GlobalAlias *, 16> AliasVisited;
for (const auto &Alias : M.aliases()) {
if (Alias.hasAvailableExternallyLinkage())
continue;
for (const GlobalAlias *Cur = &Alias; Cur;
Cur = dyn_cast<GlobalAlias>(Cur->getAliasee())) {
if (!AliasVisited.insert(Cur).second)
break;
AliasStack.push_back(Cur);
}
for (const GlobalAlias *AncestorAlias : llvm::reverse(AliasStack))
emitGlobalAlias(M, *AncestorAlias);
AliasStack.clear();
}
for (const auto &IFunc : M.ifuncs())
emitGlobalIFunc(M, IFunc);
GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
assert(MI && "AsmPrinter didn't require GCModuleInfo?");
for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
if (GCMetadataPrinter *MP = getOrCreateGCPrinter(**--I))
MP->finishAssembly(M, *MI, *this);
// Emit llvm.ident metadata in an '.ident' directive.
emitModuleIdents(M);
// Emit bytes for llvm.commandline metadata.
emitModuleCommandLines(M);
// Emit .note.GNU-split-stack and .note.GNU-no-split-stack sections if
// split-stack is used.
if (TM.getTargetTriple().isOSBinFormatELF() && HasSplitStack) {
OutStreamer->switchSection(OutContext.getELFSection(".note.GNU-split-stack",
ELF::SHT_PROGBITS, 0));
if (HasNoSplitStack)
OutStreamer->switchSection(OutContext.getELFSection(
".note.GNU-no-split-stack", ELF::SHT_PROGBITS, 0));
}
// If we don't have any trampolines, then we don't require stack memory
// to be executable. Some targets have a directive to declare this.
Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
if (MCSection *S = MAI->getNonexecutableStackSection(OutContext))
OutStreamer->switchSection(S);
if (TM.Options.EmitAddrsig) {
// Emit address-significance attributes for all globals.
OutStreamer->emitAddrsig();
for (const GlobalValue &GV : M.global_values()) {
if (!GV.use_empty() && !GV.isThreadLocal() &&
!GV.hasDLLImportStorageClass() && !GV.getName().startswith("llvm.") &&
!GV.hasAtLeastLocalUnnamedAddr())
OutStreamer->emitAddrsigSym(getSymbol(&GV));
}
}
// Emit symbol partition specifications (ELF only).
if (TM.getTargetTriple().isOSBinFormatELF()) {
unsigned UniqueID = 0;
for (const GlobalValue &GV : M.global_values()) {
if (!GV.hasPartition() || GV.isDeclarationForLinker() ||
GV.getVisibility() != GlobalValue::DefaultVisibility)
continue;
OutStreamer->switchSection(
OutContext.getELFSection(".llvm_sympart", ELF::SHT_LLVM_SYMPART, 0, 0,
"", false, ++UniqueID, nullptr));
OutStreamer->emitBytes(GV.getPartition());
OutStreamer->emitZeros(1);
OutStreamer->emitValue(
MCSymbolRefExpr::create(getSymbol(&GV), OutContext),
MAI->getCodePointerSize());
}
}
// Allow the target to emit any magic that it wants at the end of the file,
// after everything else has gone out.
emitEndOfAsmFile(M);
MMI = nullptr;
AddrLabelSymbols = nullptr;
OutStreamer->finish();
OutStreamer->reset();
OwnedMLI.reset();
OwnedMDT.reset();
return false;
}
MCSymbol *AsmPrinter::getMBBExceptionSym(const MachineBasicBlock &MBB) {
auto Res = MBBSectionExceptionSyms.try_emplace(MBB.getSectionIDNum());
if (Res.second)
Res.first->second = createTempSymbol("exception");
return Res.first->second;
}
void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
this->MF = &MF;
const Function &F = MF.getFunction();
// Record that there are split-stack functions, so we will emit a special
// section to tell the linker.
if (MF.shouldSplitStack()) {
HasSplitStack = true;
if (!MF.getFrameInfo().needsSplitStackProlog())
HasNoSplitStack = true;
} else
HasNoSplitStack = true;
// Get the function symbol.
if (!MAI->needsFunctionDescriptors()) {
CurrentFnSym = getSymbol(&MF.getFunction());
} else {
assert(TM.getTargetTriple().isOSAIX() &&
"Only AIX uses the function descriptor hooks.");
// AIX is unique here in that the name of the symbol emitted for the
// function body does not have the same name as the source function's
// C-linkage name.
assert(CurrentFnDescSym && "The function descriptor symbol needs to be"
" initalized first.");
// Get the function entry point symbol.
CurrentFnSym = getObjFileLowering().getFunctionEntryPointSymbol(&F, TM);
}
CurrentFnSymForSize = CurrentFnSym;
CurrentFnBegin = nullptr;
CurrentFnBeginLocal = nullptr;
CurrentSectionBeginSym = nullptr;
MBBSectionRanges.clear();
MBBSectionExceptionSyms.clear();
bool NeedsLocalForSize = MAI->needsLocalForSize();
if (F.hasFnAttribute("patchable-function-entry") ||
F.hasFnAttribute("function-instrument") ||
F.hasFnAttribute("xray-instruction-threshold") ||
needFuncLabels(MF) || NeedsLocalForSize ||
MF.getTarget().Options.EmitStackSizeSection || MF.hasBBLabels()) {
CurrentFnBegin = createTempSymbol("func_begin");
if (NeedsLocalForSize)
CurrentFnSymForSize = CurrentFnBegin;
}
ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
}
namespace {
// Keep track the alignment, constpool entries per Section.
struct SectionCPs {
MCSection *S;
Align Alignment;
SmallVector<unsigned, 4> CPEs;
SectionCPs(MCSection *s, Align a) : S(s), Alignment(a) {}
};
} // end anonymous namespace
/// EmitConstantPool - Print to the current output stream assembly
/// representations of the constants in the constant pool MCP. This is
/// used to print out constants which have been "spilled to memory" by
/// the code generator.
void AsmPrinter::emitConstantPool() {
const MachineConstantPool *MCP = MF->getConstantPool();
const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
if (CP.empty()) return;
// Calculate sections for constant pool entries. We collect entries to go into
// the same section together to reduce amount of section switch statements.
SmallVector<SectionCPs, 4> CPSections;
for (unsigned i = 0, e = CP.size(); i != e; ++i) {
const MachineConstantPoolEntry &CPE = CP[i];
Align Alignment = CPE.getAlign();
SectionKind Kind = CPE.getSectionKind(&getDataLayout());
const Constant *C = nullptr;
if (!CPE.isMachineConstantPoolEntry())
C = CPE.Val.ConstVal;
MCSection *S = getObjFileLowering().getSectionForConstant(
getDataLayout(), Kind, C, Alignment);
// The number of sections are small, just do a linear search from the
// last section to the first.
bool Found = false;
unsigned SecIdx = CPSections.size();
while (SecIdx != 0) {
if (CPSections[--SecIdx].S == S) {
Found = true;
break;
}
}
if (!Found) {
SecIdx = CPSections.size();
CPSections.push_back(SectionCPs(S, Alignment));
}
if (Alignment > CPSections[SecIdx].Alignment)
CPSections[SecIdx].Alignment = Alignment;
CPSections[SecIdx].CPEs.push_back(i);
}
// Now print stuff into the calculated sections.
const MCSection *CurSection = nullptr;
unsigned Offset = 0;
for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
unsigned CPI = CPSections[i].CPEs[j];
MCSymbol *Sym = GetCPISymbol(CPI);
if (!Sym->isUndefined())
continue;
if (CurSection != CPSections[i].S) {
OutStreamer->switchSection(CPSections[i].S);
emitAlignment(Align(CPSections[i].Alignment));
CurSection = CPSections[i].S;
Offset = 0;
}
MachineConstantPoolEntry CPE = CP[CPI];
// Emit inter-object padding for alignment.
unsigned NewOffset = alignTo(Offset, CPE.getAlign());
OutStreamer->emitZeros(NewOffset - Offset);
Offset = NewOffset + CPE.getSizeInBytes(getDataLayout());
OutStreamer->emitLabel(Sym);
if (CPE.isMachineConstantPoolEntry())
emitMachineConstantPoolValue(CPE.Val.MachineCPVal);
else
emitGlobalConstant(getDataLayout(), CPE.Val.ConstVal);
}
}
}
// Print assembly representations of the jump tables used by the current
// function.
void AsmPrinter::emitJumpTableInfo() {
const DataLayout &DL = MF->getDataLayout();
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
if (!MJTI) return;
if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
if (JT.empty()) return;
// Pick the directive to use to print the jump table entries, and switch to
// the appropriate section.
const Function &F = MF->getFunction();
const TargetLoweringObjectFile &TLOF = getObjFileLowering();
bool JTInDiffSection = !TLOF.shouldPutJumpTableInFunctionSection(
MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32,
F);
if (JTInDiffSection) {
// Drop it in the readonly section.
MCSection *ReadOnlySection = TLOF.getSectionForJumpTable(F, TM);
OutStreamer->switchSection(ReadOnlySection);
}
emitAlignment(Align(MJTI->getEntryAlignment(DL)));
// Jump tables in code sections are marked with a data_region directive
// where that's supported.
if (!JTInDiffSection)
OutStreamer->emitDataRegion(MCDR_DataRegionJT32);
for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
// If this jump table was deleted, ignore it.
if (JTBBs.empty()) continue;
// For the EK_LabelDifference32 entry, if using .set avoids a relocation,
/// emit a .set directive for each unique entry.
if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
MAI->doesSetDirectiveSuppressReloc()) {
SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
for (const MachineBasicBlock *MBB : JTBBs) {
if (!EmittedSets.insert(MBB).second)
continue;
// .set LJTSet, LBB32-base
const MCExpr *LHS =
MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
OutStreamer->emitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
MCBinaryExpr::createSub(LHS, Base,
OutContext));
}
}
// On some targets (e.g. Darwin) we want to emit two consecutive labels
// before each jump table. The first label is never referenced, but tells
// the assembler and linker the extents of the jump table object. The
// second label is actually referenced by the code.
if (JTInDiffSection && DL.hasLinkerPrivateGlobalPrefix())
// FIXME: This doesn't have to have any specific name, just any randomly
// named and numbered local label started with 'l' would work. Simplify
// GetJTISymbol.
OutStreamer->emitLabel(GetJTISymbol(JTI, true));
MCSymbol* JTISymbol = GetJTISymbol(JTI);
OutStreamer->emitLabel(JTISymbol);
for (const MachineBasicBlock *MBB : JTBBs)
emitJumpTableEntry(MJTI, MBB, JTI);
}
if (!JTInDiffSection)
OutStreamer->emitDataRegion(MCDR_DataRegionEnd);
}
/// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
/// current stream.
void AsmPrinter::emitJumpTableEntry(const MachineJumpTableInfo *MJTI,
const MachineBasicBlock *MBB,
unsigned UID) const {
assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
const MCExpr *Value = nullptr;
switch (MJTI->getEntryKind()) {
case MachineJumpTableInfo::EK_Inline:
llvm_unreachable("Cannot emit EK_Inline jump table entry");
case MachineJumpTableInfo::EK_Custom32:
Value = MF->getSubtarget().getTargetLowering()->LowerCustomJumpTableEntry(
MJTI, MBB, UID, OutContext);
break;
case MachineJumpTableInfo::EK_BlockAddress:
// EK_BlockAddress - Each entry is a plain address of block, e.g.:
// .word LBB123
Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
break;
case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
// EK_GPRel32BlockAddress - Each entry is an address of block, encoded
// with a relocation as gp-relative, e.g.:
// .gprel32 LBB123
MCSymbol *MBBSym = MBB->getSymbol();
OutStreamer->emitGPRel32Value(MCSymbolRefExpr::create(MBBSym, OutContext));
return;
}
case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
// EK_GPRel64BlockAddress - Each entry is an address of block, encoded
// with a relocation as gp-relative, e.g.:
// .gpdword LBB123
MCSymbol *MBBSym = MBB->getSymbol();
OutStreamer->emitGPRel64Value(MCSymbolRefExpr::create(MBBSym, OutContext));
return;
}
case MachineJumpTableInfo::EK_LabelDifference32: {
// Each entry is the address of the block minus the address of the jump
// table. This is used for PIC jump tables where gprel32 is not supported.
// e.g.:
// .word LBB123 - LJTI1_2
// If the .set directive avoids relocations, this is emitted as:
// .set L4_5_set_123, LBB123 - LJTI1_2
// .word L4_5_set_123
if (MAI->doesSetDirectiveSuppressReloc()) {
Value = MCSymbolRefExpr::create(GetJTSetSymbol(UID, MBB->getNumber()),
OutContext);
break;
}
Value = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF, UID, OutContext);
Value = MCBinaryExpr::createSub(Value, Base, OutContext);
break;
}
}
assert(Value && "Unknown entry kind!");
unsigned EntrySize = MJTI->getEntrySize(getDataLayout());
OutStreamer->emitValue(Value, EntrySize);
}
/// EmitSpecialLLVMGlobal - Check to see if the specified global is a
/// special global used by LLVM. If so, emit it and return true, otherwise
/// do nothing and return false.
bool AsmPrinter::emitSpecialLLVMGlobal(const GlobalVariable *GV) {
if (GV->getName() == "llvm.used") {
if (MAI->hasNoDeadStrip()) // No need to emit this at all.
emitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
return true;
}
// Ignore debug and non-emitted data. This handles llvm.compiler.used.
if (GV->getSection() == "llvm.metadata" ||
GV->hasAvailableExternallyLinkage())
return true;
if (!GV->hasAppendingLinkage()) return false;
assert(GV->hasInitializer() && "Not a special LLVM global!");
if (GV->getName() == "llvm.global_ctors") {
emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
/* isCtor */ true);
return true;
}
if (GV->getName() == "llvm.global_dtors") {
emitXXStructorList(GV->getParent()->getDataLayout(), GV->getInitializer(),
/* isCtor */ false);
return true;
}
report_fatal_error("unknown special variable");
}
/// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
/// global in the specified llvm.used list.
void AsmPrinter::emitLLVMUsedList(const ConstantArray *InitList) {
// Should be an array of 'i8*'.
for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
const GlobalValue *GV =
dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
if (GV)
OutStreamer->emitSymbolAttribute(getSymbol(GV), MCSA_NoDeadStrip);
}
}
void AsmPrinter::preprocessXXStructorList(const DataLayout &DL,
const Constant *List,
SmallVector<Structor, 8> &Structors) {
// Should be an array of '{ i32, void ()*, i8* }' structs. The first value is
// the init priority.
if (!isa<ConstantArray>(List))
return;
// Gather the structors in a form that's convenient for sorting by priority.
for (Value *O : cast<ConstantArray>(List)->operands()) {
auto *CS = cast<ConstantStruct>(O);
if (CS->getOperand(1)->isNullValue())
break; // Found a null terminator, skip the rest.
ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
if (!Priority)
continue; // Malformed.
Structors.push_back(Structor());
Structor &S = Structors.back();
S.Priority = Priority->getLimitedValue(65535);
S.Func = CS->getOperand(1);
if (!CS->getOperand(2)->isNullValue()) {
if (TM.getTargetTriple().isOSAIX())
llvm::report_fatal_error(
"associated data of XXStructor list is not yet supported on AIX");
S.ComdatKey =
dyn_cast<GlobalValue>(CS->getOperand(2)->stripPointerCasts());
}
}
// Emit the function pointers in the target-specific order
llvm::stable_sort(Structors, [](const Structor &L, const Structor &R) {
return L.Priority < R.Priority;
});
}
/// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
/// priority.
void AsmPrinter::emitXXStructorList(const DataLayout &DL, const Constant *List,
bool IsCtor) {
SmallVector<Structor, 8> Structors;
preprocessXXStructorList(DL, List, Structors);
if (Structors.empty())
return;
// Emit the structors in reverse order if we are using the .ctor/.dtor
// initialization scheme.
if (!TM.Options.UseInitArray)
std::reverse(Structors.begin(), Structors.end());
const Align Align = DL.getPointerPrefAlignment();
for (Structor &S : Structors) {
const TargetLoweringObjectFile &Obj = getObjFileLowering();
const MCSymbol *KeySym = nullptr;
if (GlobalValue *GV = S.ComdatKey) {
if (GV->isDeclarationForLinker())
// If the associated variable is not defined in this module
// (it might be available_externally, or have been an
// available_externally definition that was dropped by the
// EliminateAvailableExternally pass), some other TU
// will provide its dynamic initializer.
continue;
KeySym = getSymbol(GV);
}
MCSection *OutputSection =
(IsCtor ? Obj.getStaticCtorSection(S.Priority, KeySym)
: Obj.getStaticDtorSection(S.Priority, KeySym));
OutStreamer->switchSection(OutputSection);
if (OutStreamer->getCurrentSection() != OutStreamer->getPreviousSection())
emitAlignment(Align);
emitXXStructor(DL, S.Func);
}
}
void AsmPrinter::emitModuleIdents(Module &M) {
if (!MAI->hasIdentDirective())
return;
if (const NamedMDNode *NMD = M.getNamedMetadata("llvm.ident")) {
for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
const MDNode *N = NMD->getOperand(i);
assert(N->getNumOperands() == 1 &&
"llvm.ident metadata entry can have only one operand");
const MDString *S = cast<MDString>(N->getOperand(0));
OutStreamer->emitIdent(S->getString());
}
}
}
void AsmPrinter::emitModuleCommandLines(Module &M) {
MCSection *CommandLine = getObjFileLowering().getSectionForCommandLines();
if (!CommandLine)
return;
const NamedMDNode *NMD = M.getNamedMetadata("llvm.commandline");
if (!NMD || !NMD->getNumOperands())
return;
OutStreamer->pushSection();
OutStreamer->switchSection(CommandLine);
OutStreamer->emitZeros(1);
for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
const MDNode *N = NMD->getOperand(i);
assert(N->getNumOperands() == 1 &&
"llvm.commandline metadata entry can have only one operand");
const MDString *S = cast<MDString>(N->getOperand(0));
OutStreamer->emitBytes(S->getString());
OutStreamer->emitZeros(1);
}
OutStreamer->popSection();
}
//===--------------------------------------------------------------------===//
// Emission and print routines
//
/// Emit a byte directive and value.
///
void AsmPrinter::emitInt8(int Value) const { OutStreamer->emitInt8(Value); }
/// Emit a short directive and value.
void AsmPrinter::emitInt16(int Value) const { OutStreamer->emitInt16(Value); }
/// Emit a long directive and value.
void AsmPrinter::emitInt32(int Value) const { OutStreamer->emitInt32(Value); }
/// EmitSLEB128 - emit the specified signed leb128 value.
void AsmPrinter::emitSLEB128(int64_t Value, const char *Desc) const {
if (isVerbose() && Desc)
OutStreamer->AddComment(Desc);
OutStreamer->emitSLEB128IntValue(Value);
}
void AsmPrinter::emitULEB128(uint64_t Value, const char *Desc,
unsigned PadTo) const {
if (isVerbose() && Desc)
OutStreamer->AddComment(Desc);
OutStreamer->emitULEB128IntValue(Value, PadTo);
}
/// Emit a long long directive and value.
void AsmPrinter::emitInt64(uint64_t Value) const {
OutStreamer->emitInt64(Value);
}
/// Emit something like ".long Hi-Lo" where the size in bytes of the directive
/// is specified by Size and Hi/Lo specify the labels. This implicitly uses
/// .set if it avoids relocations.
void AsmPrinter::emitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
unsigned Size) const {
OutStreamer->emitAbsoluteSymbolDiff(Hi, Lo, Size);
}
/// Emit something like ".uleb128 Hi-Lo".
void AsmPrinter::emitLabelDifferenceAsULEB128(const MCSymbol *Hi,
const MCSymbol *Lo) const {
OutStreamer->emitAbsoluteSymbolDiffAsULEB128(Hi, Lo);
}
/// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
/// where the size in bytes of the directive is specified by Size and Label
/// specifies the label. This implicitly uses .set if it is available.
void AsmPrinter::emitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
unsigned Size,
bool IsSectionRelative) const {
if (MAI->needsDwarfSectionOffsetDirective() && IsSectionRelative) {
OutStreamer->emitCOFFSecRel32(Label, Offset);
if (Size > 4)
OutStreamer->emitZeros(Size - 4);
return;
}
// Emit Label+Offset (or just Label if Offset is zero)
const MCExpr *Expr = MCSymbolRefExpr::create(Label, OutContext);
if (Offset)
Expr = MCBinaryExpr::createAdd(
Expr, MCConstantExpr::create(Offset, OutContext), OutContext);
OutStreamer->emitValue(Expr, Size);
}
//===----------------------------------------------------------------------===//
// EmitAlignment - Emit an alignment directive to the specified power of
// two boundary. If a global value is specified, and if that global has
// an explicit alignment requested, it will override the alignment request
// if required for correctness.
void AsmPrinter::emitAlignment(Align Alignment, const GlobalObject *GV,
unsigned MaxBytesToEmit) const {
if (GV)
Alignment = getGVAlignment(GV, GV->getParent()->getDataLayout(), Alignment);
if (Alignment == Align(1))
return; // 1-byte aligned: no need to emit alignment.
if (getCurrentSection()->getKind().isText()) {
const MCSubtargetInfo *STI = nullptr;
if (this->MF)
STI = &getSubtargetInfo();
else
STI = TM.getMCSubtargetInfo();
OutStreamer->emitCodeAlignment(Alignment, STI, MaxBytesToEmit);
} else
OutStreamer->emitValueToAlignment(Alignment, 0, 1, MaxBytesToEmit);
}
//===----------------------------------------------------------------------===//
// Constant emission.
//===----------------------------------------------------------------------===//
const MCExpr *AsmPrinter::lowerConstant(const Constant *CV) {
MCContext &Ctx = OutContext;
if (CV->isNullValue() || isa<UndefValue>(CV))
return MCConstantExpr::create(0, Ctx);
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
return MCConstantExpr::create(CI->getZExtValue(), Ctx);
if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
return MCSymbolRefExpr::create(getSymbol(GV), Ctx);
if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
return MCSymbolRefExpr::create(GetBlockAddressSymbol(BA), Ctx);
if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(CV))
return getObjFileLowering().lowerDSOLocalEquivalent(Equiv, TM);
if (const NoCFIValue *NC = dyn_cast<NoCFIValue>(CV))
return MCSymbolRefExpr::create(getSymbol(NC->getGlobalValue()), Ctx);
const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
if (!CE) {
llvm_unreachable("Unknown constant value to lower!");
}
// The constant expression opcodes are limited to those that are necessary
// to represent relocations on supported targets. Expressions involving only
// constant addresses are constant folded instead.
switch (CE->getOpcode()) {
default:
break; // Error
case Instruction::AddrSpaceCast: {
const Constant *Op = CE->getOperand(0);
unsigned DstAS = CE->getType()->getPointerAddressSpace();
unsigned SrcAS = Op->getType()->getPointerAddressSpace();
if (TM.isNoopAddrSpaceCast(SrcAS, DstAS))
return lowerConstant(Op);
break; // Error
}
case Instruction::GetElementPtr: {
// Generate a symbolic expression for the byte address
APInt OffsetAI(getDataLayout().getPointerTypeSizeInBits(CE->getType()), 0);
cast<GEPOperator>(CE)->accumulateConstantOffset(getDataLayout(), OffsetAI);
const MCExpr *Base = lowerConstant(CE->getOperand(0));
if (!OffsetAI)
return Base;
int64_t Offset = OffsetAI.getSExtValue();
return MCBinaryExpr::createAdd(Base, MCConstantExpr::create(Offset, Ctx),
Ctx);
}
case Instruction::Trunc:
// We emit the value and depend on the assembler to truncate the generated
// expression properly. This is important for differences between
// blockaddress labels. Since the two labels are in the same function, it
// is reasonable to treat their delta as a 32-bit value.
[[fallthrough]];
case Instruction::BitCast:
return lowerConstant(CE->getOperand(0));
case Instruction::IntToPtr: {
const DataLayout &DL = getDataLayout();
// Handle casts to pointers by changing them into casts to the appropriate
// integer type. This promotes constant folding and simplifies this code.
Constant *Op = CE->getOperand(0);
Op = ConstantExpr::getIntegerCast(Op, DL.getIntPtrType(CV->getType()),
false/*ZExt*/);
return lowerConstant(Op);
}
case Instruction::PtrToInt: {
const DataLayout &DL = getDataLayout();
// Support only foldable casts to/from pointers that can be eliminated by
// changing the pointer to the appropriately sized integer type.
Constant *Op = CE->getOperand(0);
Type *Ty = CE->getType();
const MCExpr *OpExpr = lowerConstant(Op);
// We can emit the pointer value into this slot if the slot is an
// integer slot equal to the size of the pointer.
//
// If the pointer is larger than the resultant integer, then
// as with Trunc just depend on the assembler to truncate it.
if (DL.getTypeAllocSize(Ty).getFixedValue() <=
DL.getTypeAllocSize(Op->getType()).getFixedValue())
return OpExpr;
break; // Error
}
case Instruction::Sub: {
GlobalValue *LHSGV;
APInt LHSOffset;
DSOLocalEquivalent *DSOEquiv;
if (IsConstantOffsetFromGlobal(CE->getOperand(0), LHSGV, LHSOffset,
getDataLayout(), &DSOEquiv)) {
GlobalValue *RHSGV;
APInt RHSOffset;
if (IsConstantOffsetFromGlobal(CE->getOperand(1), RHSGV, RHSOffset,
getDataLayout())) {
const MCExpr *RelocExpr =
getObjFileLowering().lowerRelativeReference(LHSGV, RHSGV, TM);
if (!RelocExpr) {
const MCExpr *LHSExpr =
MCSymbolRefExpr::create(getSymbol(LHSGV), Ctx);
if (DSOEquiv &&
getObjFileLowering().supportDSOLocalEquivalentLowering())
LHSExpr =
getObjFileLowering().lowerDSOLocalEquivalent(DSOEquiv, TM);
RelocExpr = MCBinaryExpr::createSub(
LHSExpr, MCSymbolRefExpr::create(getSymbol(RHSGV), Ctx), Ctx);
}
int64_t Addend = (LHSOffset - RHSOffset).getSExtValue();
if (Addend != 0)
RelocExpr = MCBinaryExpr::createAdd(
RelocExpr, MCConstantExpr::create(Addend, Ctx), Ctx);
return RelocExpr;
}
}
const MCExpr *LHS = lowerConstant(CE->getOperand(0));
const MCExpr *RHS = lowerConstant(CE->getOperand(1));
return MCBinaryExpr::createSub(LHS, RHS, Ctx);
break;
}
case Instruction::Add: {
const MCExpr *LHS = lowerConstant(CE->getOperand(0));
const MCExpr *RHS = lowerConstant(CE->getOperand(1));
return MCBinaryExpr::createAdd(LHS, RHS, Ctx);
}
}
// If the code isn't optimized, there may be outstanding folding
// opportunities. Attempt to fold the expression using DataLayout as a
// last resort before giving up.
Constant *C = ConstantFoldConstant(CE, getDataLayout());
if (C != CE)
return lowerConstant(C);
// Otherwise report the problem to the user.
std::string S;
raw_string_ostream OS(S);
OS << "Unsupported expression in static initializer: ";
CE->printAsOperand(OS, /*PrintType=*/false,
!MF ? nullptr : MF->getFunction().getParent());
report_fatal_error(Twine(OS.str()));
}
static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *C,
AsmPrinter &AP,
const Constant *BaseCV = nullptr,
uint64_t Offset = 0,
AsmPrinter::AliasMapTy *AliasList = nullptr);
static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP);
static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP);
/// isRepeatedByteSequence - Determine whether the given value is
/// composed of a repeated sequence of identical bytes and return the
/// byte value. If it is not a repeated sequence, return -1.
static int isRepeatedByteSequence(const ConstantDataSequential *V) {
StringRef Data = V->getRawDataValues();
assert(!Data.empty() && "Empty aggregates should be CAZ node");
char C = Data[0];
for (unsigned i = 1, e = Data.size(); i != e; ++i)
if (Data[i] != C) return -1;
return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
}
/// isRepeatedByteSequence - Determine whether the given value is
/// composed of a repeated sequence of identical bytes and return the
/// byte value. If it is not a repeated sequence, return -1.
static int isRepeatedByteSequence(const Value *V, const DataLayout &DL) {
if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
uint64_t Size = DL.getTypeAllocSizeInBits(V->getType());
assert(Size % 8 == 0);
// Extend the element to take zero padding into account.
APInt Value = CI->getValue().zext(Size);
if (!Value.isSplat(8))
return -1;
return Value.zextOrTrunc(8).getZExtValue();
}
if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
// Make sure all array elements are sequences of the same repeated
// byte.
assert(CA->getNumOperands() != 0 && "Should be a CAZ");
Constant *Op0 = CA->getOperand(0);
int Byte = isRepeatedByteSequence(Op0, DL);
if (Byte == -1)
return -1;
// All array elements must be equal.
for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i)
if (CA->getOperand(i) != Op0)
return -1;
return Byte;
}
if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
return isRepeatedByteSequence(CDS);
return -1;
}
static void emitGlobalAliasInline(AsmPrinter &AP, uint64_t Offset,
AsmPrinter::AliasMapTy *AliasList) {
if (AliasList) {
auto AliasIt = AliasList->find(Offset);
if (AliasIt != AliasList->end()) {
for (const GlobalAlias *GA : AliasIt->second)
AP.OutStreamer->emitLabel(AP.getSymbol(GA));
AliasList->erase(Offset);
}
}
}
static void emitGlobalConstantDataSequential(
const DataLayout &DL, const ConstantDataSequential *CDS, AsmPrinter &AP,
AsmPrinter::AliasMapTy *AliasList) {
// See if we can aggregate this into a .fill, if so, emit it as such.
int Value = isRepeatedByteSequence(CDS, DL);
if (Value != -1) {
uint64_t Bytes = DL.getTypeAllocSize(CDS->getType());
// Don't emit a 1-byte object as a .fill.
if (Bytes > 1)
return AP.OutStreamer->emitFill(Bytes, Value);
}
// If this can be emitted with .ascii/.asciz, emit it as such.
if (CDS->isString())
return AP.OutStreamer->emitBytes(CDS->getAsString());
// Otherwise, emit the values in successive locations.
unsigned ElementByteSize = CDS->getElementByteSize();
if (isa<IntegerType>(CDS->getElementType())) {
for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
emitGlobalAliasInline(AP, ElementByteSize * I, AliasList);
if (AP.isVerbose())
AP.OutStreamer->getCommentOS()
<< format("0x%" PRIx64 "\n", CDS->getElementAsInteger(I));
AP.OutStreamer->emitIntValue(CDS->getElementAsInteger(I),
ElementByteSize);
}
} else {
Type *ET = CDS->getElementType();
for (unsigned I = 0, E = CDS->getNumElements(); I != E; ++I) {
emitGlobalAliasInline(AP, ElementByteSize * I, AliasList);
emitGlobalConstantFP(CDS->getElementAsAPFloat(I), ET, AP);
}
}
unsigned Size = DL.getTypeAllocSize(CDS->getType());
unsigned EmittedSize =
DL.getTypeAllocSize(CDS->getElementType()) * CDS->getNumElements();
assert(EmittedSize <= Size && "Size cannot be less than EmittedSize!");
if (unsigned Padding = Size - EmittedSize)
AP.OutStreamer->emitZeros(Padding);
}
static void emitGlobalConstantArray(const DataLayout &DL,
const ConstantArray *CA, AsmPrinter &AP,
const Constant *BaseCV, uint64_t Offset,
AsmPrinter::AliasMapTy *AliasList) {
// See if we can aggregate some values. Make sure it can be
// represented as a series of bytes of the constant value.
int Value = isRepeatedByteSequence(CA, DL);
if (Value != -1) {
uint64_t Bytes = DL.getTypeAllocSize(CA->getType());
AP.OutStreamer->emitFill(Bytes, Value);
} else {
for (unsigned I = 0, E = CA->getNumOperands(); I != E; ++I) {
emitGlobalConstantImpl(DL, CA->getOperand(I), AP, BaseCV, Offset,
AliasList);
Offset += DL.getTypeAllocSize(CA->getOperand(I)->getType());
}
}
}
static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP);
static void emitGlobalConstantVector(const DataLayout &DL,
const ConstantVector *CV, AsmPrinter &AP,
AsmPrinter::AliasMapTy *AliasList) {
Type *ElementType = CV->getType()->getElementType();
uint64_t ElementSizeInBits = DL.getTypeSizeInBits(ElementType);
uint64_t ElementAllocSizeInBits = DL.getTypeAllocSizeInBits(ElementType);
uint64_t EmittedSize;
if (ElementSizeInBits != ElementAllocSizeInBits) {
// If the allocation size of an element is different from the size in bits,
// printing each element separately will insert incorrect padding.
//
// The general algorithm here is complicated; instead of writing it out
// here, just use the existing code in ConstantFolding.
Type *IntT =
IntegerType::get(CV->getContext(), DL.getTypeSizeInBits(CV->getType()));
ConstantInt *CI = dyn_cast_or_null<ConstantInt>(ConstantFoldConstant(
ConstantExpr::getBitCast(const_cast<ConstantVector *>(CV), IntT), DL));
if (!CI) {
report_fatal_error(
"Cannot lower vector global with unusual element type");
}
emitGlobalAliasInline(AP, 0, AliasList);
emitGlobalConstantLargeInt(CI, AP);
EmittedSize = DL.getTypeStoreSize(CV->getType());
} else {
for (unsigned I = 0, E = CV->getType()->getNumElements(); I != E; ++I) {
emitGlobalAliasInline(AP, DL.getTypeAllocSize(CV->getType()) * I, AliasList);
emitGlobalConstantImpl(DL, CV->getOperand(I), AP);
}
EmittedSize =
DL.getTypeAllocSize(ElementType) * CV->getType()->getNumElements();
}
unsigned Size = DL.getTypeAllocSize(CV->getType());
if (unsigned Padding = Size - EmittedSize)
AP.OutStreamer->emitZeros(Padding);
}
static void emitGlobalConstantStruct(const DataLayout &DL,
const ConstantStruct *CS, AsmPrinter &AP,
const Constant *BaseCV, uint64_t Offset,
AsmPrinter::AliasMapTy *AliasList) {
// Print the fields in successive locations. Pad to align if needed!
unsigned Size = DL.getTypeAllocSize(CS->getType());
const StructLayout *Layout = DL.getStructLayout(CS->getType());
uint64_t SizeSoFar = 0;
for (unsigned I = 0, E = CS->getNumOperands(); I != E; ++I) {
const Constant *Field = CS->getOperand(I);
// Print the actual field value.
emitGlobalConstantImpl(DL, Field, AP, BaseCV, Offset + SizeSoFar,
AliasList);
// Check if padding is needed and insert one or more 0s.
uint64_t FieldSize = DL.getTypeAllocSize(Field->getType());
uint64_t PadSize = ((I == E - 1 ? Size : Layout->getElementOffset(I + 1)) -
Layout->getElementOffset(I)) -
FieldSize;
SizeSoFar += FieldSize + PadSize;
// Insert padding - this may include padding to increase the size of the
// current field up to the ABI size (if the struct is not packed) as well
// as padding to ensure that the next field starts at the right offset.
AP.OutStreamer->emitZeros(PadSize);
}
assert(SizeSoFar == Layout->getSizeInBytes() &&
"Layout of constant struct may be incorrect!");
}
static void emitGlobalConstantFP(APFloat APF, Type *ET, AsmPrinter &AP) {
assert(ET && "Unknown float type");
APInt API = APF.bitcastToAPInt();
// First print a comment with what we think the original floating-point value
// should have been.
if (AP.isVerbose()) {
SmallString<8> StrVal;
APF.toString(StrVal);
ET->print(AP.OutStreamer->getCommentOS());
AP.OutStreamer->getCommentOS() << ' ' << StrVal << '\n';
}
// Now iterate through the APInt chunks, emitting them in endian-correct
// order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
// floats).
unsigned NumBytes = API.getBitWidth() / 8;
unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
const uint64_t *p = API.getRawData();
// PPC's long double has odd notions of endianness compared to how LLVM
// handles it: p[0] goes first for *big* endian on PPC.
if (AP.getDataLayout().isBigEndian() && !ET->isPPC_FP128Ty()) {
int Chunk = API.getNumWords() - 1;
if (TrailingBytes)
AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk--], TrailingBytes);
for (; Chunk >= 0; --Chunk)
AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
} else {
unsigned Chunk;
for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], sizeof(uint64_t));
if (TrailingBytes)
AP.OutStreamer->emitIntValueInHexWithPadding(p[Chunk], TrailingBytes);
}
// Emit the tail padding for the long double.
const DataLayout &DL = AP.getDataLayout();
AP.OutStreamer->emitZeros(DL.getTypeAllocSize(ET) - DL.getTypeStoreSize(ET));
}
static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
emitGlobalConstantFP(CFP->getValueAPF(), CFP->getType(), AP);
}
static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
const DataLayout &DL = AP.getDataLayout();
unsigned BitWidth = CI->getBitWidth();
// Copy the value as we may massage the layout for constants whose bit width
// is not a multiple of 64-bits.
APInt Realigned(CI->getValue());
uint64_t ExtraBits = 0;
unsigned ExtraBitsSize = BitWidth & 63;
if (ExtraBitsSize) {
// The bit width of the data is not a multiple of 64-bits.
// The extra bits are expected to be at the end of the chunk of the memory.
// Little endian:
// * Nothing to be done, just record the extra bits to emit.
// Big endian:
// * Record the extra bits to emit.
// * Realign the raw data to emit the chunks of 64-bits.
if (DL.isBigEndian()) {
// Basically the structure of the raw data is a chunk of 64-bits cells:
// 0 1 BitWidth / 64
// [chunk1][chunk2] ... [chunkN].
// The most significant chunk is chunkN and it should be emitted first.
// However, due to the alignment issue chunkN contains useless bits.
// Realign the chunks so that they contain only useful information:
// ExtraBits 0 1 (BitWidth / 64) - 1
// chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
ExtraBitsSize = alignTo(ExtraBitsSize, 8);
ExtraBits = Realigned.getRawData()[0] &
(((uint64_t)-1) >> (64 - ExtraBitsSize));
if (BitWidth >= 64)
Realigned.lshrInPlace(ExtraBitsSize);
} else
ExtraBits = Realigned.getRawData()[BitWidth / 64];
}
// We don't expect assemblers to support integer data directives
// for more than 64 bits, so we emit the data in at most 64-bit
// quantities at a time.
const uint64_t *RawData = Realigned.getRawData();
for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
uint64_t Val = DL.isBigEndian() ? RawData[e - i - 1] : RawData[i];
AP.OutStreamer->emitIntValue(Val, 8);
}
if (ExtraBitsSize) {
// Emit the extra bits after the 64-bits chunks.
// Emit a directive that fills the expected size.
uint64_t Size = AP.getDataLayout().getTypeStoreSize(CI->getType());
Size -= (BitWidth / 64) * 8;
assert(Size && Size * 8 >= ExtraBitsSize &&
(ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
== ExtraBits && "Directive too small for extra bits.");
AP.OutStreamer->emitIntValue(ExtraBits, Size);
}
}
/// Transform a not absolute MCExpr containing a reference to a GOT
/// equivalent global, by a target specific GOT pc relative access to the
/// final symbol.
static void handleIndirectSymViaGOTPCRel(AsmPrinter &AP, const MCExpr **ME,
const Constant *BaseCst,
uint64_t Offset) {
// The global @foo below illustrates a global that uses a got equivalent.
//
// @bar = global i32 42
// @gotequiv = private unnamed_addr constant i32* @bar
// @foo = i32 trunc (i64 sub (i64 ptrtoint (i32** @gotequiv to i64),
// i64 ptrtoint (i32* @foo to i64))
// to i32)
//
// The cstexpr in @foo is converted into the MCExpr `ME`, where we actually
// check whether @foo is suitable to use a GOTPCREL. `ME` is usually in the
// form:
//
// foo = cstexpr, where
// cstexpr := <gotequiv> - "." + <cst>
// cstexpr := <gotequiv> - (<foo> - <offset from @foo base>) + <cst>
//
// After canonicalization by evaluateAsRelocatable `ME` turns into:
//
// cstexpr := <gotequiv> - <foo> + gotpcrelcst, where
// gotpcrelcst := <offset from @foo base> + <cst>
MCValue MV;
if (!(*ME)->evaluateAsRelocatable(MV, nullptr, nullptr) || MV.isAbsolute())
return;
const MCSymbolRefExpr *SymA = MV.getSymA();
if (!SymA)
return;
// Check that GOT equivalent symbol is cached.
const MCSymbol *GOTEquivSym = &SymA->getSymbol();
if (!AP.GlobalGOTEquivs.count(GOTEquivSym))
return;
const GlobalValue *BaseGV = dyn_cast_or_null<GlobalValue>(BaseCst);
if (!BaseGV)
return;
// Check for a valid base symbol
const MCSymbol *BaseSym = AP.getSymbol(BaseGV);
const MCSymbolRefExpr *SymB = MV.getSymB();
if (!SymB || BaseSym != &SymB->getSymbol())
return;
// Make sure to match:
//
// gotpcrelcst := <offset from @foo base> + <cst>
//
// If gotpcrelcst is positive it means that we can safely fold the pc rel
// displacement into the GOTPCREL. We can also can have an extra offset <cst>
// if the target knows how to encode it.
int64_t GOTPCRelCst = Offset + MV.getConstant();
if (GOTPCRelCst < 0)
return;
if (!AP.getObjFileLowering().supportGOTPCRelWithOffset() && GOTPCRelCst != 0)
return;
// Emit the GOT PC relative to replace the got equivalent global, i.e.:
//
// bar:
// .long 42
// gotequiv:
// .quad bar
// foo:
// .long gotequiv - "." + <cst>
//
// is replaced by the target specific equivalent to:
//
// bar:
// .long 42
// foo:
// .long bar@GOTPCREL+<gotpcrelcst>
AsmPrinter::GOTEquivUsePair Result = AP.GlobalGOTEquivs[GOTEquivSym];
const GlobalVariable *GV = Result.first;
int NumUses = (int)Result.second;
const GlobalValue *FinalGV = dyn_cast<GlobalValue>(GV->getOperand(0));
const MCSymbol *FinalSym = AP.getSymbol(FinalGV);
*ME = AP.getObjFileLowering().getIndirectSymViaGOTPCRel(
FinalGV, FinalSym, MV, Offset, AP.MMI, *AP.OutStreamer);
// Update GOT equivalent usage information
--NumUses;
if (NumUses >= 0)
AP.GlobalGOTEquivs[GOTEquivSym] = std::make_pair(GV, NumUses);
}
static void emitGlobalConstantImpl(const DataLayout &DL, const Constant *CV,
AsmPrinter &AP, const Constant *BaseCV,
uint64_t Offset,
AsmPrinter::AliasMapTy *AliasList) {
emitGlobalAliasInline(AP, Offset, AliasList);
uint64_t Size = DL.getTypeAllocSize(CV->getType());
// Globals with sub-elements such as combinations of arrays and structs
// are handled recursively by emitGlobalConstantImpl. Keep track of the
// constant symbol base and the current position with BaseCV and Offset.
if (!BaseCV && CV->hasOneUse())
BaseCV = dyn_cast<Constant>(CV->user_back());
if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
return AP.OutStreamer->emitZeros(Size);
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
const uint64_t StoreSize = DL.getTypeStoreSize(CV->getType());
if (StoreSize <= 8) {
if (AP.isVerbose())
AP.OutStreamer->getCommentOS()
<< format("0x%" PRIx64 "\n", CI->getZExtValue());
AP.OutStreamer->emitIntValue(CI->getZExtValue(), StoreSize);
} else {
emitGlobalConstantLargeInt(CI, AP);
}
// Emit tail padding if needed
if (Size != StoreSize)
AP.OutStreamer->emitZeros(Size - StoreSize);
return;
}
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
return emitGlobalConstantFP(CFP, AP);
if (isa<ConstantPointerNull>(CV)) {
AP.OutStreamer->emitIntValue(0, Size);
return;
}
if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
return emitGlobalConstantDataSequential(DL, CDS, AP, AliasList);
if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
return emitGlobalConstantArray(DL, CVA, AP, BaseCV, Offset, AliasList);
if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
return emitGlobalConstantStruct(DL, CVS, AP, BaseCV, Offset, AliasList);
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
// Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
// vectors).
if (CE->getOpcode() == Instruction::BitCast)
return emitGlobalConstantImpl(DL, CE->getOperand(0), AP);
if (Size > 8) {
// If the constant expression's size is greater than 64-bits, then we have
// to emit the value in chunks. Try to constant fold the value and emit it
// that way.
Constant *New = ConstantFoldConstant(CE, DL);
if (New != CE)
return emitGlobalConstantImpl(DL, New, AP);
}
}
if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
return emitGlobalConstantVector(DL, V, AP, AliasList);
// Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it
// thread the streamer with EmitValue.
const MCExpr *ME = AP.lowerConstant(CV);
// Since lowerConstant already folded and got rid of all IR pointer and
// integer casts, detect GOT equivalent accesses by looking into the MCExpr
// directly.
if (AP.getObjFileLowering().supportIndirectSymViaGOTPCRel())
handleIndirectSymViaGOTPCRel(AP, &ME, BaseCV, Offset);
AP.OutStreamer->emitValue(ME, Size);
}
/// EmitGlobalConstant - Print a general LLVM constant to the .s file.
void AsmPrinter::emitGlobalConstant(const DataLayout &DL, const Constant *CV,
AliasMapTy *AliasList) {
uint64_t Size = DL.getTypeAllocSize(CV->getType());
if (Size)
emitGlobalConstantImpl(DL, CV, *this, nullptr, 0, AliasList);
else if (MAI->hasSubsectionsViaSymbols()) {
// If the global has zero size, emit a single byte so that two labels don't
// look like they are at the same location.
OutStreamer->emitIntValue(0, 1);
}
if (!AliasList)
return;
// TODO: These remaining aliases are not emitted in the correct location. Need
// to handle the case where the alias offset doesn't refer to any sub-element.
for (auto &AliasPair : *AliasList) {
for (const GlobalAlias *GA : AliasPair.second)
OutStreamer->emitLabel(getSymbol(GA));
}
}
void AsmPrinter::emitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
// Target doesn't support this yet!
llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
}
void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
if (Offset > 0)
OS << '+' << Offset;
else if (Offset < 0)
OS << Offset;
}
void AsmPrinter::emitNops(unsigned N) {
MCInst Nop = MF->getSubtarget().getInstrInfo()->getNop();
for (; N; --N)
EmitToStreamer(*OutStreamer, Nop);
}
//===----------------------------------------------------------------------===//
// Symbol Lowering Routines.
//===----------------------------------------------------------------------===//
MCSymbol *AsmPrinter::createTempSymbol(const Twine &Name) const {
return OutContext.createTempSymbol(Name, true);
}
MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol(
BA->getBasicBlock());
}
MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
return const_cast<AsmPrinter *>(this)->getAddrLabelSymbol(BB);
}
/// GetCPISymbol - Return the symbol for the specified constant pool entry.
MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
if (getSubtargetInfo().getTargetTriple().isWindowsMSVCEnvironment()) {
const MachineConstantPoolEntry &CPE =
MF->getConstantPool()->getConstants()[CPID];
if (!CPE.isMachineConstantPoolEntry()) {
const DataLayout &DL = MF->getDataLayout();
SectionKind Kind = CPE.getSectionKind(&DL);
const Constant *C = CPE.Val.ConstVal;
Align Alignment = CPE.Alignment;
if (const MCSectionCOFF *S = dyn_cast<MCSectionCOFF>(
getObjFileLowering().getSectionForConstant(DL, Kind, C,
Alignment))) {
if (MCSymbol *Sym = S->getCOMDATSymbol()) {
if (Sym->isUndefined())
OutStreamer->emitSymbolAttribute(Sym, MCSA_Global);
return Sym;
}
}
}
}
const DataLayout &DL = getDataLayout();
return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
"CPI" + Twine(getFunctionNumber()) + "_" +
Twine(CPID));
}
/// GetJTISymbol - Return the symbol for the specified jump table entry.
MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
}
/// GetJTSetSymbol - Return the symbol for the specified jump table .set
/// FIXME: privatize to AsmPrinter.
MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
const DataLayout &DL = getDataLayout();
return OutContext.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
Twine(getFunctionNumber()) + "_" +
Twine(UID) + "_set_" + Twine(MBBID));
}
MCSymbol *AsmPrinter::getSymbolWithGlobalValueBase(const GlobalValue *GV,
StringRef Suffix) const {
return getObjFileLowering().getSymbolWithGlobalValueBase(GV, Suffix, TM);
}
/// Return the MCSymbol for the specified ExternalSymbol.
MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
SmallString<60> NameStr;
Mangler::getNameWithPrefix(NameStr, Sym, getDataLayout());
return OutContext.getOrCreateSymbol(NameStr);
}
/// PrintParentLoopComment - Print comments about parent loops of this one.
static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
unsigned FunctionNumber) {
if (!Loop) return;
PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
OS.indent(Loop->getLoopDepth()*2)
<< "Parent Loop BB" << FunctionNumber << "_"
<< Loop->getHeader()->getNumber()
<< " Depth=" << Loop->getLoopDepth() << '\n';
}
/// PrintChildLoopComment - Print comments about child loops within
/// the loop for this basic block, with nesting.
static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
unsigned FunctionNumber) {
// Add child loop information
for (const MachineLoop *CL : *Loop) {
OS.indent(CL->getLoopDepth()*2)
<< "Child Loop BB" << FunctionNumber << "_"
<< CL->getHeader()->getNumber() << " Depth " << CL->getLoopDepth()
<< '\n';
PrintChildLoopComment(OS, CL, FunctionNumber);
}
}
/// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
const MachineLoopInfo *LI,
const AsmPrinter &AP) {
// Add loop depth information
const MachineLoop *Loop = LI->getLoopFor(&MBB);
if (!Loop) return;
MachineBasicBlock *Header = Loop->getHeader();
assert(Header && "No header for loop");
// If this block is not a loop header, just print out what is the loop header
// and return.
if (Header != &MBB) {
AP.OutStreamer->AddComment(" in Loop: Header=BB" +
Twine(AP.getFunctionNumber())+"_" +
Twine(Loop->getHeader()->getNumber())+
" Depth="+Twine(Loop->getLoopDepth()));
return;
}
// Otherwise, it is a loop header. Print out information about child and
// parent loops.
raw_ostream &OS = AP.OutStreamer->getCommentOS();
PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
OS << "=>";
OS.indent(Loop->getLoopDepth()*2-2);
OS << "This ";
if (Loop->isInnermost())
OS << "Inner ";
OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
}
/// emitBasicBlockStart - This method prints the label for the specified
/// MachineBasicBlock, an alignment (if present) and a comment describing
/// it if appropriate.
void AsmPrinter::emitBasicBlockStart(const MachineBasicBlock &MBB) {
// End the previous funclet and start a new one.
if (MBB.isEHFuncletEntry()) {
for (const HandlerInfo &HI : Handlers) {
HI.Handler->endFunclet();
HI.Handler->beginFunclet(MBB);
}
}
// Switch to a new section if this basic block must begin a section. The
// entry block is always placed in the function section and is handled
// separately.
if (MBB.isBeginSection() && !MBB.isEntryBlock()) {
OutStreamer->switchSection(
getObjFileLowering().getSectionForMachineBasicBlock(MF->getFunction(),
MBB, TM));
CurrentSectionBeginSym = MBB.getSymbol();
}
// Emit an alignment directive for this block, if needed.
const Align Alignment = MBB.getAlignment();
if (Alignment != Align(1))
emitAlignment(Alignment, nullptr, MBB.getMaxBytesForAlignment());
// If the block has its address taken, emit any labels that were used to
// reference the block. It is possible that there is more than one label
// here, because multiple LLVM BB's may have been RAUW'd to this block after
// the references were generated.
if (MBB.isIRBlockAddressTaken()) {
if (isVerbose())
OutStreamer->AddComment("Block address taken");
BasicBlock *BB = MBB.getAddressTakenIRBlock();
assert(BB && BB->hasAddressTaken() && "Missing BB");
for (MCSymbol *Sym : getAddrLabelSymbolToEmit(BB))
OutStreamer->emitLabel(Sym);
} else if (isVerbose() && MBB.isMachineBlockAddressTaken()) {
OutStreamer->AddComment("Block address taken");
}
// Print some verbose block comments.
if (isVerbose()) {
if (const BasicBlock *BB = MBB.getBasicBlock()) {
if (BB->hasName()) {
BB->printAsOperand(OutStreamer->getCommentOS(),
/*PrintType=*/false, BB->getModule());
OutStreamer->getCommentOS() << '\n';
}
}
assert(MLI != nullptr && "MachineLoopInfo should has been computed");
emitBasicBlockLoopComments(MBB, MLI, *this);
}
// Print the main label for the block.
if (shouldEmitLabelForBasicBlock(MBB)) {
if (isVerbose() && MBB.hasLabelMustBeEmitted())
OutStreamer->AddComment("Label of block must be emitted");
OutStreamer->emitLabel(MBB.getSymbol());
} else {
if (isVerbose()) {
// NOTE: Want this comment at start of line, don't emit with AddComment.
OutStreamer->emitRawComment(" %bb." + Twine(MBB.getNumber()) + ":",
false);
}
}
if (MBB.isEHCatchretTarget() &&
MAI->getExceptionHandlingType() == ExceptionHandling::WinEH) {
OutStreamer->emitLabel(MBB.getEHCatchretSymbol());
}
// With BB sections, each basic block must handle CFI information on its own
// if it begins a section (Entry block call is handled separately, next to
// beginFunction).
if (MBB.isBeginSection() && !MBB.isEntryBlock())
for (const HandlerInfo &HI : Handlers)
HI.Handler->beginBasicBlockSection(MBB);
}
void AsmPrinter::emitBasicBlockEnd(const MachineBasicBlock &MBB) {
// Check if CFI information needs to be updated for this MBB with basic block
// sections.
if (MBB.isEndSection())
for (const HandlerInfo &HI : Handlers)
HI.Handler->endBasicBlockSection(MBB);
}
void AsmPrinter::emitVisibility(MCSymbol *Sym, unsigned Visibility,
bool IsDefinition) const {
MCSymbolAttr Attr = MCSA_Invalid;
switch (Visibility) {
default: break;
case GlobalValue::HiddenVisibility:
if (IsDefinition)
Attr = MAI->getHiddenVisibilityAttr();
else
Attr = MAI->getHiddenDeclarationVisibilityAttr();
break;
case GlobalValue::ProtectedVisibility:
Attr = MAI->getProtectedVisibilityAttr();
break;
}
if (Attr != MCSA_Invalid)
OutStreamer->emitSymbolAttribute(Sym, Attr);
}
bool AsmPrinter::shouldEmitLabelForBasicBlock(
const MachineBasicBlock &MBB) const {
// With `-fbasic-block-sections=`, a label is needed for every non-entry block
// in the labels mode (option `=labels`) and every section beginning in the
// sections mode (`=all` and `=list=`).
if ((MF->hasBBLabels() || MBB.isBeginSection()) && !MBB.isEntryBlock())
return true;
// A label is needed for any block with at least one predecessor (when that
// predecessor is not the fallthrough predecessor, or if it is an EH funclet
// entry, or if a label is forced).
return !MBB.pred_empty() &&
(!isBlockOnlyReachableByFallthrough(&MBB) || MBB.isEHFuncletEntry() ||
MBB.hasLabelMustBeEmitted());
}
/// isBlockOnlyReachableByFallthough - Return true if the basic block has
/// exactly one predecessor and the control transfer mechanism between
/// the predecessor and this block is a fall-through.
bool AsmPrinter::
isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
// If this is a landing pad, it isn't a fall through. If it has no preds,
// then nothing falls through to it.
if (MBB->isEHPad() || MBB->pred_empty())
return false;
// If there isn't exactly one predecessor, it can't be a fall through.
if (MBB->pred_size() > 1)
return false;
// The predecessor has to be immediately before this block.
MachineBasicBlock *Pred = *MBB->pred_begin();
if (!Pred->isLayoutSuccessor(MBB))
return false;
// If the block is completely empty, then it definitely does fall through.
if (Pred->empty())
return true;
// Check the terminators in the previous blocks
for (const auto &MI : Pred->terminators()) {
// If it is not a simple branch, we are in a table somewhere.
if (!MI.isBranch() || MI.isIndirectBranch())
return false;
// If we are the operands of one of the branches, this is not a fall
// through. Note that targets with delay slots will usually bundle
// terminators with the delay slot instruction.
for (ConstMIBundleOperands OP(MI); OP.isValid(); ++OP) {
if (OP->isJTI())
return false;
if (OP->isMBB() && OP->getMBB() == MBB)
return false;
}
}
return true;
}
GCMetadataPrinter *AsmPrinter::getOrCreateGCPrinter(GCStrategy &S) {
if (!S.usesMetadata())
return nullptr;
auto [GCPI, Inserted] = GCMetadataPrinters.insert({&S, nullptr});
if (!Inserted)
return GCPI->second.get();
auto Name = S.getName();
for (const GCMetadataPrinterRegistry::entry &GCMetaPrinter :
GCMetadataPrinterRegistry::entries())
if (Name == GCMetaPrinter.getName()) {
std::unique_ptr<GCMetadataPrinter> GMP = GCMetaPrinter.instantiate();
GMP->S = &S;
GCPI->second = std::move(GMP);
return GCPI->second.get();
}
report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
}
void AsmPrinter::emitStackMaps() {
GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
assert(MI && "AsmPrinter didn't require GCModuleInfo?");
bool NeedsDefault = false;
if (MI->begin() == MI->end())
// No GC strategy, use the default format.
NeedsDefault = true;
else
for (const auto &I : *MI) {
if (GCMetadataPrinter *MP = getOrCreateGCPrinter(*I))
if (MP->emitStackMaps(SM, *this))
continue;
// The strategy doesn't have printer or doesn't emit custom stack maps.
// Use the default format.
NeedsDefault = true;
}
if (NeedsDefault)
SM.serializeToStackMapSection();
}
/// Pin vtable to this file.
AsmPrinterHandler::~AsmPrinterHandler() = default;
void AsmPrinterHandler::markFunctionEnd() {}
// In the binary's "xray_instr_map" section, an array of these function entries
// describes each instrumentation point. When XRay patches your code, the index
// into this table will be given to your handler as a patch point identifier.
void AsmPrinter::XRayFunctionEntry::emit(int Bytes, MCStreamer *Out) const {
auto Kind8 = static_cast<uint8_t>(Kind);
Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Kind8), 1));
Out->emitBinaryData(
StringRef(reinterpret_cast<const char *>(&AlwaysInstrument), 1));
Out->emitBinaryData(StringRef(reinterpret_cast<const char *>(&Version), 1));
auto Padding = (4 * Bytes) - ((2 * Bytes) + 3);
assert(Padding >= 0 && "Instrumentation map entry > 4 * Word Size");
Out->emitZeros(Padding);
}
void AsmPrinter::emitXRayTable() {
if (Sleds.empty())
return;
auto PrevSection = OutStreamer->getCurrentSectionOnly();
const Function &F = MF->getFunction();
MCSection *InstMap = nullptr;
MCSection *FnSledIndex = nullptr;
const Triple &TT = TM.getTargetTriple();
// Use PC-relative addresses on all targets.
if (TT.isOSBinFormatELF()) {
auto LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
auto Flags = ELF::SHF_ALLOC | ELF::SHF_LINK_ORDER;
StringRef GroupName;
if (F.hasComdat()) {
Flags |= ELF::SHF_GROUP;
GroupName = F.getComdat()->getName();
}
InstMap = OutContext.getELFSection("xray_instr_map", ELF::SHT_PROGBITS,
Flags, 0, GroupName, F.hasComdat(),
MCSection::NonUniqueID, LinkedToSym);
if (!TM.Options.XRayOmitFunctionIndex)
FnSledIndex = OutContext.getELFSection(
"xray_fn_idx", ELF::SHT_PROGBITS, Flags | ELF::SHF_WRITE, 0,
GroupName, F.hasComdat(), MCSection::NonUniqueID, LinkedToSym);
} else if (MF->getSubtarget().getTargetTriple().isOSBinFormatMachO()) {
InstMap = OutContext.getMachOSection("__DATA", "xray_instr_map", 0,
SectionKind::getReadOnlyWithRel());
if (!TM.Options.XRayOmitFunctionIndex)
FnSledIndex = OutContext.getMachOSection(
"__DATA", "xray_fn_idx", 0, SectionKind::getReadOnlyWithRel());
} else {
llvm_unreachable("Unsupported target");
}
auto WordSizeBytes = MAI->getCodePointerSize();
// Now we switch to the instrumentation map section. Because this is done
// per-function, we are able to create an index entry that will represent the
// range of sleds associated with a function.
auto &Ctx = OutContext;
MCSymbol *SledsStart = OutContext.createTempSymbol("xray_sleds_start", true);
OutStreamer->switchSection(InstMap);
OutStreamer->emitLabel(SledsStart);
for (const auto &Sled : Sleds) {
MCSymbol *Dot = Ctx.createTempSymbol();
OutStreamer->emitLabel(Dot);
OutStreamer->emitValueImpl(
MCBinaryExpr::createSub(MCSymbolRefExpr::create(Sled.Sled, Ctx),
MCSymbolRefExpr::create(Dot, Ctx), Ctx),
WordSizeBytes);
OutStreamer->emitValueImpl(
MCBinaryExpr::createSub(
MCSymbolRefExpr::create(CurrentFnBegin, Ctx),
MCBinaryExpr::createAdd(MCSymbolRefExpr::create(Dot, Ctx),
MCConstantExpr::create(WordSizeBytes, Ctx),
Ctx),
Ctx),
WordSizeBytes);
Sled.emit(WordSizeBytes, OutStreamer.get());
}
MCSymbol *SledsEnd = OutContext.createTempSymbol("xray_sleds_end", true);
OutStreamer->emitLabel(SledsEnd);
// We then emit a single entry in the index per function. We use the symbols
// that bound the instrumentation map as the range for a specific function.
// Each entry here will be 2 * word size aligned, as we're writing down two
// pointers. This should work for both 32-bit and 64-bit platforms.
if (FnSledIndex) {
OutStreamer->switchSection(FnSledIndex);
OutStreamer->emitCodeAlignment(Align(2 * WordSizeBytes),
&getSubtargetInfo());
OutStreamer->emitSymbolValue(SledsStart, WordSizeBytes, false);
OutStreamer->emitSymbolValue(SledsEnd, WordSizeBytes, false);
OutStreamer->switchSection(PrevSection);
}
Sleds.clear();
}
void AsmPrinter::recordSled(MCSymbol *Sled, const MachineInstr &MI,
SledKind Kind, uint8_t Version) {
const Function &F = MI.getMF()->getFunction();
auto Attr = F.getFnAttribute("function-instrument");
bool LogArgs = F.hasFnAttribute("xray-log-args");
bool AlwaysInstrument =
Attr.isStringAttribute() && Attr.getValueAsString() == "xray-always";
if (Kind == SledKind::FUNCTION_ENTER && LogArgs)
Kind = SledKind::LOG_ARGS_ENTER;
Sleds.emplace_back(XRayFunctionEntry{Sled, CurrentFnSym, Kind,
AlwaysInstrument, &F, Version});
}
void AsmPrinter::emitPatchableFunctionEntries() {
const Function &F = MF->getFunction();
unsigned PatchableFunctionPrefix = 0, PatchableFunctionEntry = 0;
(void)F.getFnAttribute("patchable-function-prefix")
.getValueAsString()
.getAsInteger(10, PatchableFunctionPrefix);
(void)F.getFnAttribute("patchable-function-entry")
.getValueAsString()
.getAsInteger(10, PatchableFunctionEntry);
if (!PatchableFunctionPrefix && !PatchableFunctionEntry)
return;
const unsigned PointerSize = getPointerSize();
if (TM.getTargetTriple().isOSBinFormatELF()) {
auto Flags = ELF::SHF_WRITE | ELF::SHF_ALLOC;
const MCSymbolELF *LinkedToSym = nullptr;
StringRef GroupName;
// GNU as < 2.35 did not support section flag 'o'. GNU ld < 2.36 did not
// support mixed SHF_LINK_ORDER and non-SHF_LINK_ORDER sections.
if (MAI->useIntegratedAssembler() || MAI->binutilsIsAtLeast(2, 36)) {
Flags |= ELF::SHF_LINK_ORDER;
if (F.hasComdat()) {
Flags |= ELF::SHF_GROUP;
GroupName = F.getComdat()->getName();
}
LinkedToSym = cast<MCSymbolELF>(CurrentFnSym);
}
OutStreamer->switchSection(OutContext.getELFSection(
"__patchable_function_entries", ELF::SHT_PROGBITS, Flags, 0, GroupName,
F.hasComdat(), MCSection::NonUniqueID, LinkedToSym));
emitAlignment(Align(PointerSize));
OutStreamer->emitSymbolValue(CurrentPatchableFunctionEntrySym, PointerSize);
}
}
uint16_t AsmPrinter::getDwarfVersion() const {
return OutStreamer->getContext().getDwarfVersion();
}
void AsmPrinter::setDwarfVersion(uint16_t Version) {
OutStreamer->getContext().setDwarfVersion(Version);
}
bool AsmPrinter::isDwarf64() const {
return OutStreamer->getContext().getDwarfFormat() == dwarf::DWARF64;
}
unsigned int AsmPrinter::getDwarfOffsetByteSize() const {
return dwarf::getDwarfOffsetByteSize(
OutStreamer->getContext().getDwarfFormat());
}
dwarf::FormParams AsmPrinter::getDwarfFormParams() const {
return {getDwarfVersion(), uint8_t(MAI->getCodePointerSize()),
OutStreamer->getContext().getDwarfFormat(),
doesDwarfUseRelocationsAcrossSections()};
}
unsigned int AsmPrinter::getUnitLengthFieldByteSize() const {
return dwarf::getUnitLengthFieldByteSize(
OutStreamer->getContext().getDwarfFormat());
}