llvm-project/llvm/lib/CodeGen/SelectionDAG/FunctionLoweringInfo.cpp
Craig Topper add08c8741 [SelectionDAGBuilder] Compute and cache PreferredExtendType on demand.
Previously we pre-calculated this and cached it for every
instruction in the function. Most of the calculated results will
never be used. So instead calculate it only on the first use, and
then cache it.

The cache was originally added to fix a compile time issue which
caused r216066 to be reverted.

This change exposed that we weren't pre-computing the Value for
Arguments. I've explicitly disabled that for now as it seemed to
regress some tests on AArch64 which has sext built into its compare
instructions.

Spotted while investigating how to improve heuristics to work better
with RISCV preferring sign extend for unsigned compares for i32 on RV64.

Reviewed By: RKSimon

Differential Revision: https://reviews.llvm.org/D107976
2021-08-19 07:18:33 -07:00

544 lines
21 KiB
C++

//===-- FunctionLoweringInfo.cpp ------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements routines for translating functions from LLVM IR into
// Machine IR.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/ADT/APInt.h"
#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/WasmEHFuncInfo.h"
#include "llvm/CodeGen/WinEHFuncInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
using namespace llvm;
#define DEBUG_TYPE "function-lowering-info"
/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
/// PHI nodes or outside of the basic block that defines it, or used by a
/// switch or atomic instruction, which may expand to multiple basic blocks.
static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
if (I->use_empty()) return false;
if (isa<PHINode>(I)) return true;
const BasicBlock *BB = I->getParent();
for (const User *U : I->users())
if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
return true;
return false;
}
void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
SelectionDAG *DAG) {
Fn = &fn;
MF = &mf;
TLI = MF->getSubtarget().getTargetLowering();
RegInfo = &MF->getRegInfo();
const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
DA = DAG->getDivergenceAnalysis();
// Check whether the function can return without sret-demotion.
SmallVector<ISD::OutputArg, 4> Outs;
CallingConv::ID CC = Fn->getCallingConv();
GetReturnInfo(CC, Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI,
mf.getDataLayout());
CanLowerReturn =
TLI->CanLowerReturn(CC, *MF, Fn->isVarArg(), Outs, Fn->getContext());
// If this personality uses funclets, we need to do a bit more work.
DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects;
EHPersonality Personality = classifyEHPersonality(
Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr);
if (isFuncletEHPersonality(Personality)) {
// Calculate state numbers if we haven't already.
WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
if (Personality == EHPersonality::MSVC_CXX)
calculateWinCXXEHStateNumbers(&fn, EHInfo);
else if (isAsynchronousEHPersonality(Personality))
calculateSEHStateNumbers(&fn, EHInfo);
else if (Personality == EHPersonality::CoreCLR)
calculateClrEHStateNumbers(&fn, EHInfo);
// Map all BB references in the WinEH data to MBBs.
for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
for (WinEHHandlerType &H : TBME.HandlerArray) {
if (const AllocaInst *AI = H.CatchObj.Alloca)
CatchObjects.insert({AI, {}}).first->second.push_back(
&H.CatchObj.FrameIndex);
else
H.CatchObj.FrameIndex = INT_MAX;
}
}
}
if (Personality == EHPersonality::Wasm_CXX) {
WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
calculateWasmEHInfo(&fn, EHInfo);
}
// Initialize the mapping of values to registers. This is only set up for
// instruction values that are used outside of the block that defines
// them.
const Align StackAlign = TFI->getStackAlign();
for (const BasicBlock &BB : *Fn) {
for (const Instruction &I : BB) {
if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
Type *Ty = AI->getAllocatedType();
Align TyPrefAlign = MF->getDataLayout().getPrefTypeAlign(Ty);
// The "specified" alignment is the alignment written on the alloca,
// or the preferred alignment of the type if none is specified.
//
// (Unspecified alignment on allocas will be going away soon.)
Align SpecifiedAlign = AI->getAlign();
// If the preferred alignment of the type is higher than the specified
// alignment of the alloca, promote the alignment, as long as it doesn't
// require realigning the stack.
//
// FIXME: Do we really want to second-guess the IR in isel?
Align Alignment =
std::max(std::min(TyPrefAlign, StackAlign), SpecifiedAlign);
// Static allocas can be folded into the initial stack frame
// adjustment. For targets that don't realign the stack, don't
// do this if there is an extra alignment requirement.
if (AI->isStaticAlloca() &&
(TFI->isStackRealignable() || (Alignment <= StackAlign))) {
const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
uint64_t TySize =
MF->getDataLayout().getTypeAllocSize(Ty).getKnownMinSize();
TySize *= CUI->getZExtValue(); // Get total allocated size.
if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
int FrameIndex = INT_MAX;
auto Iter = CatchObjects.find(AI);
if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) {
FrameIndex = MF->getFrameInfo().CreateFixedObject(
TySize, 0, /*IsImmutable=*/false, /*isAliased=*/true);
MF->getFrameInfo().setObjectAlignment(FrameIndex, Alignment);
} else {
FrameIndex = MF->getFrameInfo().CreateStackObject(TySize, Alignment,
false, AI);
}
// Scalable vectors may need a special StackID to distinguish
// them from other (fixed size) stack objects.
if (isa<ScalableVectorType>(Ty))
MF->getFrameInfo().setStackID(FrameIndex,
TFI->getStackIDForScalableVectors());
StaticAllocaMap[AI] = FrameIndex;
// Update the catch handler information.
if (Iter != CatchObjects.end()) {
for (int *CatchObjPtr : Iter->second)
*CatchObjPtr = FrameIndex;
}
} else {
// FIXME: Overaligned static allocas should be grouped into
// a single dynamic allocation instead of using a separate
// stack allocation for each one.
// Inform the Frame Information that we have variable-sized objects.
MF->getFrameInfo().CreateVariableSizedObject(
Alignment <= StackAlign ? Align(1) : Alignment, AI);
}
} else if (auto *Call = dyn_cast<CallBase>(&I)) {
// Look for inline asm that clobbers the SP register.
if (Call->isInlineAsm()) {
Register SP = TLI->getStackPointerRegisterToSaveRestore();
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
std::vector<TargetLowering::AsmOperandInfo> Ops =
TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI,
*Call);
for (TargetLowering::AsmOperandInfo &Op : Ops) {
if (Op.Type == InlineAsm::isClobber) {
// Clobbers don't have SDValue operands, hence SDValue().
TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
std::pair<unsigned, const TargetRegisterClass *> PhysReg =
TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
Op.ConstraintVT);
if (PhysReg.first == SP)
MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
}
}
}
// Look for calls to the @llvm.va_start intrinsic. We can omit some
// prologue boilerplate for variadic functions that don't examine their
// arguments.
if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
if (II->getIntrinsicID() == Intrinsic::vastart)
MF->getFrameInfo().setHasVAStart(true);
}
// If we have a musttail call in a variadic function, we need to ensure
// we forward implicit register parameters.
if (const auto *CI = dyn_cast<CallInst>(&I)) {
if (CI->isMustTailCall() && Fn->isVarArg())
MF->getFrameInfo().setHasMustTailInVarArgFunc(true);
}
}
// Mark values used outside their block as exported, by allocating
// a virtual register for them.
if (isUsedOutsideOfDefiningBlock(&I))
if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(&I)))
InitializeRegForValue(&I);
}
}
// Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
// also creates the initial PHI MachineInstrs, though none of the input
// operands are populated.
for (const BasicBlock &BB : *Fn) {
// Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks
// are really data, and no instructions can live here.
if (BB.isEHPad()) {
const Instruction *PadInst = BB.getFirstNonPHI();
// If this is a non-landingpad EH pad, mark this function as using
// funclets.
// FIXME: SEH catchpads do not create EH scope/funclets, so we could avoid
// setting this in such cases in order to improve frame layout.
if (!isa<LandingPadInst>(PadInst)) {
MF->setHasEHScopes(true);
MF->setHasEHFunclets(true);
MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
}
if (isa<CatchSwitchInst>(PadInst)) {
assert(&*BB.begin() == PadInst &&
"WinEHPrepare failed to remove PHIs from imaginary BBs");
continue;
}
if (isa<FuncletPadInst>(PadInst))
assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs");
}
MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB);
MBBMap[&BB] = MBB;
MF->push_back(MBB);
// Transfer the address-taken flag. This is necessary because there could
// be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
// the first one should be marked.
if (BB.hasAddressTaken())
MBB->setHasAddressTaken();
// Mark landing pad blocks.
if (BB.isEHPad())
MBB->setIsEHPad();
// Create Machine PHI nodes for LLVM PHI nodes, lowering them as
// appropriate.
for (const PHINode &PN : BB.phis()) {
if (PN.use_empty())
continue;
// Skip empty types
if (PN.getType()->isEmptyTy())
continue;
DebugLoc DL = PN.getDebugLoc();
unsigned PHIReg = ValueMap[&PN];
assert(PHIReg && "PHI node does not have an assigned virtual register!");
SmallVector<EVT, 4> ValueVTs;
ComputeValueVTs(*TLI, MF->getDataLayout(), PN.getType(), ValueVTs);
for (EVT VT : ValueVTs) {
unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
for (unsigned i = 0; i != NumRegisters; ++i)
BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
PHIReg += NumRegisters;
}
}
}
if (isFuncletEHPersonality(Personality)) {
WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
// Map all BB references in the WinEH data to MBBs.
for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
for (WinEHHandlerType &H : TBME.HandlerArray) {
if (H.Handler)
H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()];
}
}
for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap)
if (UME.Cleanup)
UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()];
for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) {
const auto *BB = UME.Handler.get<const BasicBlock *>();
UME.Handler = MBBMap[BB];
}
for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) {
const auto *BB = CME.Handler.get<const BasicBlock *>();
CME.Handler = MBBMap[BB];
}
}
else if (Personality == EHPersonality::Wasm_CXX) {
WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
// Map all BB references in the Wasm EH data to MBBs.
DenseMap<BBOrMBB, BBOrMBB> SrcToUnwindDest;
for (auto &KV : EHInfo.SrcToUnwindDest) {
const auto *Src = KV.first.get<const BasicBlock *>();
const auto *Dest = KV.second.get<const BasicBlock *>();
SrcToUnwindDest[MBBMap[Src]] = MBBMap[Dest];
}
EHInfo.SrcToUnwindDest = std::move(SrcToUnwindDest);
DenseMap<BBOrMBB, SmallPtrSet<BBOrMBB, 4>> UnwindDestToSrcs;
for (auto &KV : EHInfo.UnwindDestToSrcs) {
const auto *Dest = KV.first.get<const BasicBlock *>();
UnwindDestToSrcs[MBBMap[Dest]] = SmallPtrSet<BBOrMBB, 4>();
for (const auto P : KV.second)
UnwindDestToSrcs[MBBMap[Dest]].insert(
MBBMap[P.get<const BasicBlock *>()]);
}
EHInfo.UnwindDestToSrcs = std::move(UnwindDestToSrcs);
}
}
/// clear - Clear out all the function-specific state. This returns this
/// FunctionLoweringInfo to an empty state, ready to be used for a
/// different function.
void FunctionLoweringInfo::clear() {
MBBMap.clear();
ValueMap.clear();
VirtReg2Value.clear();
StaticAllocaMap.clear();
LiveOutRegInfo.clear();
VisitedBBs.clear();
ArgDbgValues.clear();
DescribedArgs.clear();
ByValArgFrameIndexMap.clear();
RegFixups.clear();
RegsWithFixups.clear();
StatepointStackSlots.clear();
StatepointRelocationMaps.clear();
PreferredExtendType.clear();
}
/// CreateReg - Allocate a single virtual register for the given type.
Register FunctionLoweringInfo::CreateReg(MVT VT, bool isDivergent) {
return RegInfo->createVirtualRegister(
MF->getSubtarget().getTargetLowering()->getRegClassFor(VT, isDivergent));
}
/// CreateRegs - Allocate the appropriate number of virtual registers of
/// the correctly promoted or expanded types. Assign these registers
/// consecutive vreg numbers and return the first assigned number.
///
/// In the case that the given value has struct or array type, this function
/// will assign registers for each member or element.
///
Register FunctionLoweringInfo::CreateRegs(Type *Ty, bool isDivergent) {
const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
SmallVector<EVT, 4> ValueVTs;
ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
Register FirstReg;
for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
EVT ValueVT = ValueVTs[Value];
MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
for (unsigned i = 0; i != NumRegs; ++i) {
Register R = CreateReg(RegisterVT, isDivergent);
if (!FirstReg) FirstReg = R;
}
}
return FirstReg;
}
Register FunctionLoweringInfo::CreateRegs(const Value *V) {
return CreateRegs(V->getType(), DA && DA->isDivergent(V) &&
!TLI->requiresUniformRegister(*MF, V));
}
/// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
/// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
/// the register's LiveOutInfo is for a smaller bit width, it is extended to
/// the larger bit width by zero extension. The bit width must be no smaller
/// than the LiveOutInfo's existing bit width.
const FunctionLoweringInfo::LiveOutInfo *
FunctionLoweringInfo::GetLiveOutRegInfo(Register Reg, unsigned BitWidth) {
if (!LiveOutRegInfo.inBounds(Reg))
return nullptr;
LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
if (!LOI->IsValid)
return nullptr;
if (BitWidth > LOI->Known.getBitWidth()) {
LOI->NumSignBits = 1;
LOI->Known = LOI->Known.anyext(BitWidth);
}
return LOI;
}
/// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
/// register based on the LiveOutInfo of its operands.
void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
Type *Ty = PN->getType();
if (!Ty->isIntegerTy() || Ty->isVectorTy())
return;
SmallVector<EVT, 1> ValueVTs;
ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
assert(ValueVTs.size() == 1 &&
"PHIs with non-vector integer types should have a single VT.");
EVT IntVT = ValueVTs[0];
if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
return;
IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
unsigned BitWidth = IntVT.getSizeInBits();
Register DestReg = ValueMap[PN];
if (!Register::isVirtualRegister(DestReg))
return;
LiveOutRegInfo.grow(DestReg);
LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
Value *V = PN->getIncomingValue(0);
if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
DestLOI.NumSignBits = 1;
DestLOI.Known = KnownBits(BitWidth);
return;
}
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
APInt Val = CI->getValue().zextOrTrunc(BitWidth);
DestLOI.NumSignBits = Val.getNumSignBits();
DestLOI.Known = KnownBits::makeConstant(Val);
} else {
assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
"CopyToReg node was created.");
Register SrcReg = ValueMap[V];
if (!Register::isVirtualRegister(SrcReg)) {
DestLOI.IsValid = false;
return;
}
const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
if (!SrcLOI) {
DestLOI.IsValid = false;
return;
}
DestLOI = *SrcLOI;
}
assert(DestLOI.Known.Zero.getBitWidth() == BitWidth &&
DestLOI.Known.One.getBitWidth() == BitWidth &&
"Masks should have the same bit width as the type.");
for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
Value *V = PN->getIncomingValue(i);
if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
DestLOI.NumSignBits = 1;
DestLOI.Known = KnownBits(BitWidth);
return;
}
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
APInt Val = CI->getValue().zextOrTrunc(BitWidth);
DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
DestLOI.Known.Zero &= ~Val;
DestLOI.Known.One &= Val;
continue;
}
assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
"its CopyToReg node was created.");
Register SrcReg = ValueMap[V];
if (!SrcReg.isVirtual()) {
DestLOI.IsValid = false;
return;
}
const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
if (!SrcLOI) {
DestLOI.IsValid = false;
return;
}
DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
DestLOI.Known = KnownBits::commonBits(DestLOI.Known, SrcLOI->Known);
}
}
/// setArgumentFrameIndex - Record frame index for the byval
/// argument. This overrides previous frame index entry for this argument,
/// if any.
void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
int FI) {
ByValArgFrameIndexMap[A] = FI;
}
/// getArgumentFrameIndex - Get frame index for the byval argument.
/// If the argument does not have any assigned frame index then 0 is
/// returned.
int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
auto I = ByValArgFrameIndexMap.find(A);
if (I != ByValArgFrameIndexMap.end())
return I->second;
LLVM_DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
return INT_MAX;
}
Register FunctionLoweringInfo::getCatchPadExceptionPointerVReg(
const Value *CPI, const TargetRegisterClass *RC) {
MachineRegisterInfo &MRI = MF->getRegInfo();
auto I = CatchPadExceptionPointers.insert({CPI, 0});
Register &VReg = I.first->second;
if (I.second)
VReg = MRI.createVirtualRegister(RC);
assert(VReg && "null vreg in exception pointer table!");
return VReg;
}
const Value *
FunctionLoweringInfo::getValueFromVirtualReg(Register Vreg) {
if (VirtReg2Value.empty()) {
SmallVector<EVT, 4> ValueVTs;
for (auto &P : ValueMap) {
ValueVTs.clear();
ComputeValueVTs(*TLI, Fn->getParent()->getDataLayout(),
P.first->getType(), ValueVTs);
unsigned Reg = P.second;
for (EVT VT : ValueVTs) {
unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
for (unsigned i = 0, e = NumRegisters; i != e; ++i)
VirtReg2Value[Reg++] = P.first;
}
}
}
return VirtReg2Value.lookup(Vreg);
}