llvm-project/llvm/lib/Transforms/IPO/FunctionImport.cpp
Shilei Tian b0fede358f
[ThinLTO] Don't convert functions to declarations if force-import-all is enabled (#134541)
On one hand, we intend to force import all functions when the option is
enabled.
On the other hand, we currently drop definitions of some functions and
convert
them to declarations, which contradicts this intent.

With this PR, functions will no longer be converted to declarations when
`force-import-all` is enabled.
2025-04-12 18:22:22 -04:00

2113 lines
89 KiB
C++

//===- FunctionImport.cpp - ThinLTO Summary-based Function Import ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements Function import based on summaries.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO/FunctionImport.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Bitcode/BitcodeReader.h"
#include "llvm/IR/AutoUpgrade.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalObject.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSummaryIndex.h"
#include "llvm/IRReader/IRReader.h"
#include "llvm/Linker/IRMover.h"
#include "llvm/ProfileData/PGOCtxProfReader.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/JSON.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/IPO/Internalize.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/FunctionImportUtils.h"
#include "llvm/Transforms/Utils/ValueMapper.h"
#include <cassert>
#include <memory>
#include <string>
#include <system_error>
#include <tuple>
#include <utility>
using namespace llvm;
#define DEBUG_TYPE "function-import"
STATISTIC(NumImportedFunctionsThinLink,
"Number of functions thin link decided to import");
STATISTIC(NumImportedHotFunctionsThinLink,
"Number of hot functions thin link decided to import");
STATISTIC(NumImportedCriticalFunctionsThinLink,
"Number of critical functions thin link decided to import");
STATISTIC(NumImportedGlobalVarsThinLink,
"Number of global variables thin link decided to import");
STATISTIC(NumImportedFunctions, "Number of functions imported in backend");
STATISTIC(NumImportedGlobalVars,
"Number of global variables imported in backend");
STATISTIC(NumImportedModules, "Number of modules imported from");
STATISTIC(NumDeadSymbols, "Number of dead stripped symbols in index");
STATISTIC(NumLiveSymbols, "Number of live symbols in index");
cl::opt<bool>
ForceImportAll("force-import-all", cl::init(false), cl::Hidden,
cl::desc("Import functions with noinline attribute"));
/// Limit on instruction count of imported functions.
static cl::opt<unsigned> ImportInstrLimit(
"import-instr-limit", cl::init(100), cl::Hidden, cl::value_desc("N"),
cl::desc("Only import functions with less than N instructions"));
static cl::opt<int> ImportCutoff(
"import-cutoff", cl::init(-1), cl::Hidden, cl::value_desc("N"),
cl::desc("Only import first N functions if N>=0 (default -1)"));
static cl::opt<float>
ImportInstrFactor("import-instr-evolution-factor", cl::init(0.7),
cl::Hidden, cl::value_desc("x"),
cl::desc("As we import functions, multiply the "
"`import-instr-limit` threshold by this factor "
"before processing newly imported functions"));
static cl::opt<float> ImportHotInstrFactor(
"import-hot-evolution-factor", cl::init(1.0), cl::Hidden,
cl::value_desc("x"),
cl::desc("As we import functions called from hot callsite, multiply the "
"`import-instr-limit` threshold by this factor "
"before processing newly imported functions"));
static cl::opt<float> ImportHotMultiplier(
"import-hot-multiplier", cl::init(10.0), cl::Hidden, cl::value_desc("x"),
cl::desc("Multiply the `import-instr-limit` threshold for hot callsites"));
static cl::opt<float> ImportCriticalMultiplier(
"import-critical-multiplier", cl::init(100.0), cl::Hidden,
cl::value_desc("x"),
cl::desc(
"Multiply the `import-instr-limit` threshold for critical callsites"));
// FIXME: This multiplier was not really tuned up.
static cl::opt<float> ImportColdMultiplier(
"import-cold-multiplier", cl::init(0), cl::Hidden, cl::value_desc("N"),
cl::desc("Multiply the `import-instr-limit` threshold for cold callsites"));
static cl::opt<bool> PrintImports("print-imports", cl::init(false), cl::Hidden,
cl::desc("Print imported functions"));
static cl::opt<bool> PrintImportFailures(
"print-import-failures", cl::init(false), cl::Hidden,
cl::desc("Print information for functions rejected for importing"));
static cl::opt<bool> ComputeDead("compute-dead", cl::init(true), cl::Hidden,
cl::desc("Compute dead symbols"));
static cl::opt<bool> EnableImportMetadata(
"enable-import-metadata", cl::init(false), cl::Hidden,
cl::desc("Enable import metadata like 'thinlto_src_module' and "
"'thinlto_src_file'"));
/// Summary file to use for function importing when using -function-import from
/// the command line.
static cl::opt<std::string>
SummaryFile("summary-file",
cl::desc("The summary file to use for function importing."));
/// Used when testing importing from distributed indexes via opt
// -function-import.
static cl::opt<bool>
ImportAllIndex("import-all-index",
cl::desc("Import all external functions in index."));
/// This is a test-only option.
/// If this option is enabled, the ThinLTO indexing step will import each
/// function declaration as a fallback. In a real build this may increase ram
/// usage of the indexing step unnecessarily.
/// TODO: Implement selective import (based on combined summary analysis) to
/// ensure the imported function has a use case in the postlink pipeline.
static cl::opt<bool> ImportDeclaration(
"import-declaration", cl::init(false), cl::Hidden,
cl::desc("If true, import function declaration as fallback if the function "
"definition is not imported."));
/// Pass a workload description file - an example of workload would be the
/// functions executed to satisfy a RPC request. A workload is defined by a root
/// function and the list of functions that are (frequently) needed to satisfy
/// it. The module that defines the root will have all those functions imported.
/// The file contains a JSON dictionary. The keys are root functions, the values
/// are lists of functions to import in the module defining the root. It is
/// assumed -funique-internal-linkage-names was used, thus ensuring function
/// names are unique even for local linkage ones.
static cl::opt<std::string> WorkloadDefinitions(
"thinlto-workload-def",
cl::desc("Pass a workload definition. This is a file containing a JSON "
"dictionary. The keys are root functions, the values are lists of "
"functions to import in the module defining the root. It is "
"assumed -funique-internal-linkage-names was used, to ensure "
"local linkage functions have unique names. For example: \n"
"{\n"
" \"rootFunction_1\": [\"function_to_import_1\", "
"\"function_to_import_2\"], \n"
" \"rootFunction_2\": [\"function_to_import_3\", "
"\"function_to_import_4\"] \n"
"}"),
cl::Hidden);
extern cl::opt<std::string> UseCtxProfile;
static cl::opt<bool> CtxprofMoveRootsToOwnModule(
"thinlto-move-ctxprof-trees",
cl::desc("Move contextual profiling roots and the graphs under them in "
"their own module."),
cl::Hidden, cl::init(false));
extern cl::list<GlobalValue::GUID> MoveSymbolGUID;
namespace llvm {
extern cl::opt<bool> EnableMemProfContextDisambiguation;
}
// Load lazily a module from \p FileName in \p Context.
static std::unique_ptr<Module> loadFile(const std::string &FileName,
LLVMContext &Context) {
SMDiagnostic Err;
LLVM_DEBUG(dbgs() << "Loading '" << FileName << "'\n");
// Metadata isn't loaded until functions are imported, to minimize
// the memory overhead.
std::unique_ptr<Module> Result =
getLazyIRFileModule(FileName, Err, Context,
/* ShouldLazyLoadMetadata = */ true);
if (!Result) {
Err.print("function-import", errs());
report_fatal_error("Abort");
}
return Result;
}
static bool shouldSkipLocalInAnotherModule(const GlobalValueSummary *RefSummary,
size_t NumDefs,
StringRef ImporterModule) {
// We can import a local when there is one definition.
if (NumDefs == 1)
return false;
// In other cases, make sure we import the copy in the caller's module if the
// referenced value has local linkage. The only time a local variable can
// share an entry in the index is if there is a local with the same name in
// another module that had the same source file name (in a different
// directory), where each was compiled in their own directory so there was not
// distinguishing path.
return GlobalValue::isLocalLinkage(RefSummary->linkage()) &&
RefSummary->modulePath() != ImporterModule;
}
/// Given a list of possible callee implementation for a call site, qualify the
/// legality of importing each. The return is a range of pairs. Each pair
/// corresponds to a candidate. The first value is the ImportFailureReason for
/// that candidate, the second is the candidate.
static auto qualifyCalleeCandidates(
const ModuleSummaryIndex &Index,
ArrayRef<std::unique_ptr<GlobalValueSummary>> CalleeSummaryList,
StringRef CallerModulePath) {
return llvm::map_range(
CalleeSummaryList,
[&Index, CalleeSummaryList,
CallerModulePath](const std::unique_ptr<GlobalValueSummary> &SummaryPtr)
-> std::pair<FunctionImporter::ImportFailureReason,
const GlobalValueSummary *> {
auto *GVSummary = SummaryPtr.get();
if (!Index.isGlobalValueLive(GVSummary))
return {FunctionImporter::ImportFailureReason::NotLive, GVSummary};
if (GlobalValue::isInterposableLinkage(GVSummary->linkage()))
return {FunctionImporter::ImportFailureReason::InterposableLinkage,
GVSummary};
auto *Summary = dyn_cast<FunctionSummary>(GVSummary->getBaseObject());
// Ignore any callees that aren't actually functions. This could happen
// in the case of GUID hash collisions. It could also happen in theory
// for SamplePGO profiles collected on old versions of the code after
// renaming, since we synthesize edges to any inlined callees appearing
// in the profile.
if (!Summary)
return {FunctionImporter::ImportFailureReason::GlobalVar, GVSummary};
// If this is a local function, make sure we import the copy in the
// caller's module. The only time a local function can share an entry in
// the index is if there is a local with the same name in another module
// that had the same source file name (in a different directory), where
// each was compiled in their own directory so there was not
// distinguishing path.
// If the local function is from another module, it must be a reference
// due to indirect call profile data since a function pointer can point
// to a local in another module. Do the import from another module if
// there is only one entry in the list or when all files in the program
// are compiled with full path - in both cases the local function has
// unique PGO name and GUID.
if (shouldSkipLocalInAnotherModule(Summary, CalleeSummaryList.size(),
CallerModulePath))
return {
FunctionImporter::ImportFailureReason::LocalLinkageNotInModule,
GVSummary};
// Skip if it isn't legal to import (e.g. may reference unpromotable
// locals).
if (Summary->notEligibleToImport())
return {FunctionImporter::ImportFailureReason::NotEligible,
GVSummary};
return {FunctionImporter::ImportFailureReason::None, GVSummary};
});
}
/// Given a list of possible callee implementation for a call site, select one
/// that fits the \p Threshold for function definition import. If none are
/// found, the Reason will give the last reason for the failure (last, in the
/// order of CalleeSummaryList entries). While looking for a callee definition,
/// sets \p TooLargeOrNoInlineSummary to the last seen too-large or noinline
/// candidate; other modules may want to know the function summary or
/// declaration even if a definition is not needed.
///
/// FIXME: select "best" instead of first that fits. But what is "best"?
/// - The smallest: more likely to be inlined.
/// - The one with the least outgoing edges (already well optimized).
/// - One from a module already being imported from in order to reduce the
/// number of source modules parsed/linked.
/// - One that has PGO data attached.
/// - [insert you fancy metric here]
static const GlobalValueSummary *
selectCallee(const ModuleSummaryIndex &Index,
ArrayRef<std::unique_ptr<GlobalValueSummary>> CalleeSummaryList,
unsigned Threshold, StringRef CallerModulePath,
const GlobalValueSummary *&TooLargeOrNoInlineSummary,
FunctionImporter::ImportFailureReason &Reason) {
// Records the last summary with reason noinline or too-large.
TooLargeOrNoInlineSummary = nullptr;
auto QualifiedCandidates =
qualifyCalleeCandidates(Index, CalleeSummaryList, CallerModulePath);
for (auto QualifiedValue : QualifiedCandidates) {
Reason = QualifiedValue.first;
// Skip a summary if its import is not (proved to be) legal.
if (Reason != FunctionImporter::ImportFailureReason::None)
continue;
auto *Summary =
cast<FunctionSummary>(QualifiedValue.second->getBaseObject());
// Don't bother importing the definition if the chance of inlining it is
// not high enough (except under `--force-import-all`).
if ((Summary->instCount() > Threshold) && !Summary->fflags().AlwaysInline &&
!ForceImportAll) {
TooLargeOrNoInlineSummary = Summary;
Reason = FunctionImporter::ImportFailureReason::TooLarge;
continue;
}
// Don't bother importing the definition if we can't inline it anyway.
if (Summary->fflags().NoInline && !ForceImportAll) {
TooLargeOrNoInlineSummary = Summary;
Reason = FunctionImporter::ImportFailureReason::NoInline;
continue;
}
return Summary;
}
return nullptr;
}
namespace {
using EdgeInfo = std::tuple<const FunctionSummary *, unsigned /* Threshold */>;
} // anonymous namespace
FunctionImporter::ImportMapTy::AddDefinitionStatus
FunctionImporter::ImportMapTy::addDefinition(StringRef FromModule,
GlobalValue::GUID GUID) {
auto [Def, Decl] = IDs.createImportIDs(FromModule, GUID);
if (!Imports.insert(Def).second)
// Already there.
return AddDefinitionStatus::NoChange;
// Remove Decl in case it's there. Note that a definition takes precedence
// over a declaration for a given GUID.
return Imports.erase(Decl) ? AddDefinitionStatus::ChangedToDefinition
: AddDefinitionStatus::Inserted;
}
void FunctionImporter::ImportMapTy::maybeAddDeclaration(
StringRef FromModule, GlobalValue::GUID GUID) {
auto [Def, Decl] = IDs.createImportIDs(FromModule, GUID);
// Insert Decl only if Def is not present. Note that a definition takes
// precedence over a declaration for a given GUID.
if (!Imports.contains(Def))
Imports.insert(Decl);
}
SmallVector<StringRef, 0>
FunctionImporter::ImportMapTy::getSourceModules() const {
SetVector<StringRef> ModuleSet;
for (const auto &[SrcMod, GUID, ImportType] : *this)
ModuleSet.insert(SrcMod);
SmallVector<StringRef, 0> Modules = ModuleSet.takeVector();
llvm::sort(Modules);
return Modules;
}
std::optional<GlobalValueSummary::ImportKind>
FunctionImporter::ImportMapTy::getImportType(StringRef FromModule,
GlobalValue::GUID GUID) const {
if (auto IDPair = IDs.getImportIDs(FromModule, GUID)) {
auto [Def, Decl] = *IDPair;
if (Imports.contains(Def))
return GlobalValueSummary::Definition;
if (Imports.contains(Decl))
return GlobalValueSummary::Declaration;
}
return std::nullopt;
}
/// Import globals referenced by a function or other globals that are being
/// imported, if importing such global is possible.
class GlobalsImporter final {
const ModuleSummaryIndex &Index;
const GVSummaryMapTy &DefinedGVSummaries;
function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
IsPrevailing;
FunctionImporter::ImportMapTy &ImportList;
DenseMap<StringRef, FunctionImporter::ExportSetTy> *const ExportLists;
bool shouldImportGlobal(const ValueInfo &VI) {
const auto &GVS = DefinedGVSummaries.find(VI.getGUID());
if (GVS == DefinedGVSummaries.end())
return true;
// We should not skip import if the module contains a non-prevailing
// definition with interposable linkage type. This is required for
// correctness in the situation where there is a prevailing def available
// for import and marked read-only. In this case, the non-prevailing def
// will be converted to a declaration, while the prevailing one becomes
// internal, thus no definitions will be available for linking. In order to
// prevent undefined symbol link error, the prevailing definition must be
// imported.
// FIXME: Consider adding a check that the suitable prevailing definition
// exists and marked read-only.
if (VI.getSummaryList().size() > 1 &&
GlobalValue::isInterposableLinkage(GVS->second->linkage()) &&
!IsPrevailing(VI.getGUID(), GVS->second))
return true;
return false;
}
void
onImportingSummaryImpl(const GlobalValueSummary &Summary,
SmallVectorImpl<const GlobalVarSummary *> &Worklist) {
for (const auto &VI : Summary.refs()) {
if (!shouldImportGlobal(VI)) {
LLVM_DEBUG(
dbgs() << "Ref ignored! Target already in destination module.\n");
continue;
}
LLVM_DEBUG(dbgs() << " ref -> " << VI << "\n");
for (const auto &RefSummary : VI.getSummaryList()) {
const auto *GVS = dyn_cast<GlobalVarSummary>(RefSummary.get());
// Functions could be referenced by global vars - e.g. a vtable; but we
// don't currently imagine a reason those would be imported here, rather
// than as part of the logic deciding which functions to import (i.e.
// based on profile information). Should we decide to handle them here,
// we can refactor accordingly at that time.
bool CanImportDecl = false;
if (!GVS ||
shouldSkipLocalInAnotherModule(GVS, VI.getSummaryList().size(),
Summary.modulePath()) ||
!Index.canImportGlobalVar(GVS, /* AnalyzeRefs */ true,
CanImportDecl)) {
if (ImportDeclaration && CanImportDecl)
ImportList.maybeAddDeclaration(RefSummary->modulePath(),
VI.getGUID());
continue;
}
// If there isn't an entry for GUID, insert <GUID, Definition> pair.
// Otherwise, definition should take precedence over declaration.
if (ImportList.addDefinition(RefSummary->modulePath(), VI.getGUID()) !=
FunctionImporter::ImportMapTy::AddDefinitionStatus::Inserted)
break;
// Only update stat and exports if we haven't already imported this
// variable.
NumImportedGlobalVarsThinLink++;
// Any references made by this variable will be marked exported
// later, in ComputeCrossModuleImport, after import decisions are
// complete, which is more efficient than adding them here.
if (ExportLists)
(*ExportLists)[RefSummary->modulePath()].insert(VI);
// If variable is not writeonly we attempt to recursively analyze
// its references in order to import referenced constants.
if (!Index.isWriteOnly(GVS))
Worklist.emplace_back(GVS);
break;
}
}
}
public:
GlobalsImporter(
const ModuleSummaryIndex &Index, const GVSummaryMapTy &DefinedGVSummaries,
function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
IsPrevailing,
FunctionImporter::ImportMapTy &ImportList,
DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists)
: Index(Index), DefinedGVSummaries(DefinedGVSummaries),
IsPrevailing(IsPrevailing), ImportList(ImportList),
ExportLists(ExportLists) {}
void onImportingSummary(const GlobalValueSummary &Summary) {
SmallVector<const GlobalVarSummary *, 128> Worklist;
onImportingSummaryImpl(Summary, Worklist);
while (!Worklist.empty())
onImportingSummaryImpl(*Worklist.pop_back_val(), Worklist);
}
};
static const char *getFailureName(FunctionImporter::ImportFailureReason Reason);
/// Determine the list of imports and exports for each module.
class ModuleImportsManager {
void computeImportForFunction(
const FunctionSummary &Summary, unsigned Threshold,
const GVSummaryMapTy &DefinedGVSummaries,
SmallVectorImpl<EdgeInfo> &Worklist, GlobalsImporter &GVImporter,
FunctionImporter::ImportMapTy &ImportList,
FunctionImporter::ImportThresholdsTy &ImportThresholds);
protected:
function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
IsPrevailing;
const ModuleSummaryIndex &Index;
DenseMap<StringRef, FunctionImporter::ExportSetTy> *const ExportLists;
ModuleImportsManager(
function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
IsPrevailing,
const ModuleSummaryIndex &Index,
DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists = nullptr)
: IsPrevailing(IsPrevailing), Index(Index), ExportLists(ExportLists) {}
virtual bool canImport(ValueInfo VI) { return true; }
public:
virtual ~ModuleImportsManager() = default;
/// Given the list of globals defined in a module, compute the list of imports
/// as well as the list of "exports", i.e. the list of symbols referenced from
/// another module (that may require promotion).
virtual void
computeImportForModule(const GVSummaryMapTy &DefinedGVSummaries,
StringRef ModName,
FunctionImporter::ImportMapTy &ImportList);
static std::unique_ptr<ModuleImportsManager>
create(function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
IsPrevailing,
const ModuleSummaryIndex &Index,
DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists =
nullptr);
};
/// A ModuleImportsManager that operates based on a workload definition (see
/// -thinlto-workload-def). For modules that do not define workload roots, it
/// applies the base ModuleImportsManager import policy.
class WorkloadImportsManager : public ModuleImportsManager {
// Keep a module name -> value infos to import association. We use it to
// determine if a module's import list should be done by the base
// ModuleImportsManager or by us.
StringMap<DenseSet<ValueInfo>> Workloads;
// Track the roots to avoid importing them due to other callers. We want there
// to be only one variant), for which we optimize according to the contextual
// profile. "Variants" refers to copies due to importing - we want there to be
// just one instance of this function.
DenseSet<ValueInfo> Roots;
void
computeImportForModule(const GVSummaryMapTy &DefinedGVSummaries,
StringRef ModName,
FunctionImporter::ImportMapTy &ImportList) override {
StringRef Filename = ModName;
if (CtxprofMoveRootsToOwnModule) {
Filename = sys::path::filename(ModName);
// Drop the file extension.
Filename = Filename.substr(0, Filename.find_last_of('.'));
}
auto SetIter = Workloads.find(Filename);
if (SetIter == Workloads.end()) {
LLVM_DEBUG(dbgs() << "[Workload] " << ModName
<< " does not contain the root of any context.\n");
return ModuleImportsManager::computeImportForModule(DefinedGVSummaries,
ModName, ImportList);
}
LLVM_DEBUG(dbgs() << "[Workload] " << ModName
<< " contains the root(s) of context(s).\n");
GlobalsImporter GVI(Index, DefinedGVSummaries, IsPrevailing, ImportList,
ExportLists);
auto &ValueInfos = SetIter->second;
SmallVector<EdgeInfo, 128> GlobWorklist;
for (auto &VI : llvm::make_early_inc_range(ValueInfos)) {
auto It = DefinedGVSummaries.find(VI.getGUID());
if (It != DefinedGVSummaries.end() &&
IsPrevailing(VI.getGUID(), It->second)) {
LLVM_DEBUG(
dbgs() << "[Workload] " << VI.name()
<< " has the prevailing variant already in the module "
<< ModName << ". No need to import\n");
continue;
}
auto Candidates =
qualifyCalleeCandidates(Index, VI.getSummaryList(), ModName);
const GlobalValueSummary *GVS = nullptr;
auto PotentialCandidates = llvm::map_range(
llvm::make_filter_range(
Candidates,
[&](const auto &Candidate) {
LLVM_DEBUG(dbgs() << "[Workflow] Candidate for " << VI.name()
<< " from " << Candidate.second->modulePath()
<< " ImportFailureReason: "
<< getFailureName(Candidate.first) << "\n");
return Candidate.first ==
FunctionImporter::ImportFailureReason::None;
}),
[](const auto &Candidate) { return Candidate.second; });
if (PotentialCandidates.empty()) {
LLVM_DEBUG(dbgs() << "[Workload] Not importing " << VI.name()
<< " because can't find eligible Callee. Guid is: "
<< Function::getGUID(VI.name()) << "\n");
continue;
}
/// We will prefer importing the prevailing candidate, if not, we'll
/// still pick the first available candidate. The reason we want to make
/// sure we do import the prevailing candidate is because the goal of
/// workload-awareness is to enable optimizations specializing the call
/// graph of that workload. Suppose a function is already defined in the
/// module, but it's not the prevailing variant. Suppose also we do not
/// inline it (in fact, if it were interposable, we can't inline it),
/// but we could specialize it to the workload in other ways. However,
/// the linker would drop it in the favor of the prevailing copy.
/// Instead, by importing the prevailing variant (assuming also the use
/// of `-avail-extern-to-local`), we keep the specialization. We could
/// alteranatively make the non-prevailing variant local, but the
/// prevailing one is also the one for which we would have previously
/// collected profiles, making it preferrable.
auto PrevailingCandidates = llvm::make_filter_range(
PotentialCandidates, [&](const auto *Candidate) {
return IsPrevailing(VI.getGUID(), Candidate);
});
if (PrevailingCandidates.empty()) {
GVS = *PotentialCandidates.begin();
if (!llvm::hasSingleElement(PotentialCandidates) &&
GlobalValue::isLocalLinkage(GVS->linkage()))
LLVM_DEBUG(
dbgs()
<< "[Workload] Found multiple non-prevailing candidates for "
<< VI.name()
<< ". This is unexpected. Are module paths passed to the "
"compiler unique for the modules passed to the linker?");
// We could in theory have multiple (interposable) copies of a symbol
// when there is no prevailing candidate, if say the prevailing copy was
// in a native object being linked in. However, we should in theory be
// marking all of these non-prevailing IR copies dead in that case, in
// which case they won't be candidates.
assert(GVS->isLive());
} else {
assert(llvm::hasSingleElement(PrevailingCandidates));
GVS = *PrevailingCandidates.begin();
}
auto ExportingModule = GVS->modulePath();
// We checked that for the prevailing case, but if we happen to have for
// example an internal that's defined in this module, it'd have no
// PrevailingCandidates.
if (ExportingModule == ModName) {
LLVM_DEBUG(dbgs() << "[Workload] Not importing " << VI.name()
<< " because its defining module is the same as the "
"current module\n");
continue;
}
LLVM_DEBUG(dbgs() << "[Workload][Including]" << VI.name() << " from "
<< ExportingModule << " : "
<< Function::getGUID(VI.name()) << "\n");
ImportList.addDefinition(ExportingModule, VI.getGUID());
GVI.onImportingSummary(*GVS);
if (ExportLists)
(*ExportLists)[ExportingModule].insert(VI);
}
LLVM_DEBUG(dbgs() << "[Workload] Done\n");
}
void loadFromJson() {
// Since the workload def uses names, we need a quick lookup
// name->ValueInfo.
StringMap<ValueInfo> NameToValueInfo;
StringSet<> AmbiguousNames;
for (auto &I : Index) {
ValueInfo VI = Index.getValueInfo(I);
if (!NameToValueInfo.insert(std::make_pair(VI.name(), VI)).second)
LLVM_DEBUG(AmbiguousNames.insert(VI.name()));
}
auto DbgReportIfAmbiguous = [&](StringRef Name) {
LLVM_DEBUG(if (AmbiguousNames.count(Name) > 0) {
dbgs() << "[Workload] Function name " << Name
<< " present in the workload definition is ambiguous. Consider "
"compiling with -funique-internal-linkage-names.";
});
};
std::error_code EC;
auto BufferOrErr = MemoryBuffer::getFileOrSTDIN(WorkloadDefinitions);
if (std::error_code EC = BufferOrErr.getError()) {
report_fatal_error("Failed to open context file");
return;
}
auto Buffer = std::move(BufferOrErr.get());
std::map<std::string, std::vector<std::string>> WorkloadDefs;
json::Path::Root NullRoot;
// The JSON is supposed to contain a dictionary matching the type of
// WorkloadDefs. For example:
// {
// "rootFunction_1": ["function_to_import_1", "function_to_import_2"],
// "rootFunction_2": ["function_to_import_3", "function_to_import_4"]
// }
auto Parsed = json::parse(Buffer->getBuffer());
if (!Parsed)
report_fatal_error(Parsed.takeError());
if (!json::fromJSON(*Parsed, WorkloadDefs, NullRoot))
report_fatal_error("Invalid thinlto contextual profile format.");
for (const auto &Workload : WorkloadDefs) {
const auto &Root = Workload.first;
DbgReportIfAmbiguous(Root);
LLVM_DEBUG(dbgs() << "[Workload] Root: " << Root << "\n");
const auto &AllCallees = Workload.second;
auto RootIt = NameToValueInfo.find(Root);
if (RootIt == NameToValueInfo.end()) {
LLVM_DEBUG(dbgs() << "[Workload] Root " << Root
<< " not found in this linkage unit.\n");
continue;
}
auto RootVI = RootIt->second;
if (RootVI.getSummaryList().size() != 1) {
LLVM_DEBUG(dbgs() << "[Workload] Root " << Root
<< " should have exactly one summary, but has "
<< RootVI.getSummaryList().size() << ". Skipping.\n");
continue;
}
StringRef RootDefiningModule =
RootVI.getSummaryList().front()->modulePath();
LLVM_DEBUG(dbgs() << "[Workload] Root defining module for " << Root
<< " is : " << RootDefiningModule << "\n");
auto &Set = Workloads[RootDefiningModule];
for (const auto &Callee : AllCallees) {
LLVM_DEBUG(dbgs() << "[Workload] " << Callee << "\n");
DbgReportIfAmbiguous(Callee);
auto ElemIt = NameToValueInfo.find(Callee);
if (ElemIt == NameToValueInfo.end()) {
LLVM_DEBUG(dbgs() << "[Workload] " << Callee << " not found\n");
continue;
}
Set.insert(ElemIt->second);
}
}
}
void loadFromCtxProf() {
std::error_code EC;
auto BufferOrErr = MemoryBuffer::getFileOrSTDIN(UseCtxProfile);
if (std::error_code EC = BufferOrErr.getError()) {
report_fatal_error("Failed to open contextual profile file");
return;
}
auto Buffer = std::move(BufferOrErr.get());
PGOCtxProfileReader Reader(Buffer->getBuffer());
auto Ctx = Reader.loadProfiles();
if (!Ctx) {
report_fatal_error("Failed to parse contextual profiles");
return;
}
const auto &CtxMap = Ctx->Contexts;
SetVector<GlobalValue::GUID> ContainedGUIDs;
for (const auto &[RootGuid, Root] : CtxMap) {
// Avoid ContainedGUIDs to get in/out of scope. Reuse its memory for
// subsequent roots, but clear its contents.
ContainedGUIDs.clear();
auto RootVI = Index.getValueInfo(RootGuid);
if (!RootVI) {
LLVM_DEBUG(dbgs() << "[Workload] Root " << RootGuid
<< " not found in this linkage unit.\n");
continue;
}
if (RootVI.getSummaryList().size() != 1) {
LLVM_DEBUG(dbgs() << "[Workload] Root " << RootGuid
<< " should have exactly one summary, but has "
<< RootVI.getSummaryList().size() << ". Skipping.\n");
continue;
}
std::string RootDefiningModule =
RootVI.getSummaryList().front()->modulePath().str();
if (CtxprofMoveRootsToOwnModule) {
RootDefiningModule = std::to_string(RootGuid);
LLVM_DEBUG(
dbgs() << "[Workload] Moving " << RootGuid
<< " to a module with the filename without extension : "
<< RootDefiningModule << "\n");
} else {
LLVM_DEBUG(dbgs() << "[Workload] Root defining module for " << RootGuid
<< " is : " << RootDefiningModule << "\n");
}
auto &Set = Workloads[RootDefiningModule];
Root.getContainedGuids(ContainedGUIDs);
Roots.insert(RootVI);
for (auto Guid : ContainedGUIDs)
if (auto VI = Index.getValueInfo(Guid))
Set.insert(VI);
}
}
bool canImport(ValueInfo VI) override { return !Roots.contains(VI); }
public:
WorkloadImportsManager(
function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
IsPrevailing,
const ModuleSummaryIndex &Index,
DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists)
: ModuleImportsManager(IsPrevailing, Index, ExportLists) {
if (UseCtxProfile.empty() == WorkloadDefinitions.empty()) {
report_fatal_error(
"Pass only one of: -thinlto-pgo-ctx-prof or -thinlto-workload-def");
return;
}
if (!UseCtxProfile.empty())
loadFromCtxProf();
else
loadFromJson();
LLVM_DEBUG({
for (const auto &[Root, Set] : Workloads) {
dbgs() << "[Workload] Root: " << Root << " we have " << Set.size()
<< " distinct callees.\n";
for (const auto &VI : Set) {
dbgs() << "[Workload] Root: " << Root
<< " Would include: " << VI.getGUID() << "\n";
}
}
});
}
};
std::unique_ptr<ModuleImportsManager> ModuleImportsManager::create(
function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
IsPrevailing,
const ModuleSummaryIndex &Index,
DenseMap<StringRef, FunctionImporter::ExportSetTy> *ExportLists) {
if (WorkloadDefinitions.empty() && UseCtxProfile.empty()) {
LLVM_DEBUG(dbgs() << "[Workload] Using the regular imports manager.\n");
return std::unique_ptr<ModuleImportsManager>(
new ModuleImportsManager(IsPrevailing, Index, ExportLists));
}
LLVM_DEBUG(dbgs() << "[Workload] Using the contextual imports manager.\n");
return std::make_unique<WorkloadImportsManager>(IsPrevailing, Index,
ExportLists);
}
static const char *
getFailureName(FunctionImporter::ImportFailureReason Reason) {
switch (Reason) {
case FunctionImporter::ImportFailureReason::None:
return "None";
case FunctionImporter::ImportFailureReason::GlobalVar:
return "GlobalVar";
case FunctionImporter::ImportFailureReason::NotLive:
return "NotLive";
case FunctionImporter::ImportFailureReason::TooLarge:
return "TooLarge";
case FunctionImporter::ImportFailureReason::InterposableLinkage:
return "InterposableLinkage";
case FunctionImporter::ImportFailureReason::LocalLinkageNotInModule:
return "LocalLinkageNotInModule";
case FunctionImporter::ImportFailureReason::NotEligible:
return "NotEligible";
case FunctionImporter::ImportFailureReason::NoInline:
return "NoInline";
}
llvm_unreachable("invalid reason");
}
/// Compute the list of functions to import for a given caller. Mark these
/// imported functions and the symbols they reference in their source module as
/// exported from their source module.
void ModuleImportsManager::computeImportForFunction(
const FunctionSummary &Summary, const unsigned Threshold,
const GVSummaryMapTy &DefinedGVSummaries,
SmallVectorImpl<EdgeInfo> &Worklist, GlobalsImporter &GVImporter,
FunctionImporter::ImportMapTy &ImportList,
FunctionImporter::ImportThresholdsTy &ImportThresholds) {
GVImporter.onImportingSummary(Summary);
static int ImportCount = 0;
for (const auto &Edge : Summary.calls()) {
ValueInfo VI = Edge.first;
LLVM_DEBUG(dbgs() << " edge -> " << VI << " Threshold:" << Threshold
<< "\n");
if (ImportCutoff >= 0 && ImportCount >= ImportCutoff) {
LLVM_DEBUG(dbgs() << "ignored! import-cutoff value of " << ImportCutoff
<< " reached.\n");
continue;
}
if (DefinedGVSummaries.count(VI.getGUID())) {
// FIXME: Consider not skipping import if the module contains
// a non-prevailing def with interposable linkage. The prevailing copy
// can safely be imported (see shouldImportGlobal()).
LLVM_DEBUG(dbgs() << "ignored! Target already in destination module.\n");
continue;
}
if (!canImport(VI)) {
LLVM_DEBUG(
dbgs() << "Skipping over " << VI.getGUID()
<< " because its import is handled in a different module.");
assert(VI.getSummaryList().size() == 1 &&
"The root was expected to be an external symbol");
continue;
}
auto GetBonusMultiplier = [](CalleeInfo::HotnessType Hotness) -> float {
if (Hotness == CalleeInfo::HotnessType::Hot)
return ImportHotMultiplier;
if (Hotness == CalleeInfo::HotnessType::Cold)
return ImportColdMultiplier;
if (Hotness == CalleeInfo::HotnessType::Critical)
return ImportCriticalMultiplier;
return 1.0;
};
const auto NewThreshold =
Threshold * GetBonusMultiplier(Edge.second.getHotness());
auto IT = ImportThresholds.insert(std::make_pair(
VI.getGUID(), std::make_tuple(NewThreshold, nullptr, nullptr)));
bool PreviouslyVisited = !IT.second;
auto &ProcessedThreshold = std::get<0>(IT.first->second);
auto &CalleeSummary = std::get<1>(IT.first->second);
auto &FailureInfo = std::get<2>(IT.first->second);
bool IsHotCallsite =
Edge.second.getHotness() == CalleeInfo::HotnessType::Hot;
bool IsCriticalCallsite =
Edge.second.getHotness() == CalleeInfo::HotnessType::Critical;
const FunctionSummary *ResolvedCalleeSummary = nullptr;
if (CalleeSummary) {
assert(PreviouslyVisited);
// Since the traversal of the call graph is DFS, we can revisit a function
// a second time with a higher threshold. In this case, it is added back
// to the worklist with the new threshold (so that its own callee chains
// can be considered with the higher threshold).
if (NewThreshold <= ProcessedThreshold) {
LLVM_DEBUG(
dbgs() << "ignored! Target was already imported with Threshold "
<< ProcessedThreshold << "\n");
continue;
}
// Update with new larger threshold.
ProcessedThreshold = NewThreshold;
ResolvedCalleeSummary = cast<FunctionSummary>(CalleeSummary);
} else {
// If we already rejected importing a callee at the same or higher
// threshold, don't waste time calling selectCallee.
if (PreviouslyVisited && NewThreshold <= ProcessedThreshold) {
LLVM_DEBUG(
dbgs() << "ignored! Target was already rejected with Threshold "
<< ProcessedThreshold << "\n");
if (PrintImportFailures) {
assert(FailureInfo &&
"Expected FailureInfo for previously rejected candidate");
FailureInfo->Attempts++;
}
continue;
}
FunctionImporter::ImportFailureReason Reason{};
// `SummaryForDeclImport` is an summary eligible for declaration import.
const GlobalValueSummary *SummaryForDeclImport = nullptr;
CalleeSummary =
selectCallee(Index, VI.getSummaryList(), NewThreshold,
Summary.modulePath(), SummaryForDeclImport, Reason);
if (!CalleeSummary) {
// There isn't a callee for definition import but one for declaration
// import.
if (ImportDeclaration && SummaryForDeclImport) {
StringRef DeclSourceModule = SummaryForDeclImport->modulePath();
// Note `ExportLists` only keeps track of exports due to imported
// definitions.
ImportList.maybeAddDeclaration(DeclSourceModule, VI.getGUID());
}
// Update with new larger threshold if this was a retry (otherwise
// we would have already inserted with NewThreshold above). Also
// update failure info if requested.
if (PreviouslyVisited) {
ProcessedThreshold = NewThreshold;
if (PrintImportFailures) {
assert(FailureInfo &&
"Expected FailureInfo for previously rejected candidate");
FailureInfo->Reason = Reason;
FailureInfo->Attempts++;
FailureInfo->MaxHotness =
std::max(FailureInfo->MaxHotness, Edge.second.getHotness());
}
} else if (PrintImportFailures) {
assert(!FailureInfo &&
"Expected no FailureInfo for newly rejected candidate");
FailureInfo = std::make_unique<FunctionImporter::ImportFailureInfo>(
VI, Edge.second.getHotness(), Reason, 1);
}
if (ForceImportAll) {
std::string Msg = std::string("Failed to import function ") +
VI.name().str() + " due to " +
getFailureName(Reason);
auto Error = make_error<StringError>(
Msg, make_error_code(errc::not_supported));
logAllUnhandledErrors(std::move(Error), errs(),
"Error importing module: ");
break;
} else {
LLVM_DEBUG(dbgs()
<< "ignored! No qualifying callee with summary found.\n");
continue;
}
}
// "Resolve" the summary
CalleeSummary = CalleeSummary->getBaseObject();
ResolvedCalleeSummary = cast<FunctionSummary>(CalleeSummary);
assert((ResolvedCalleeSummary->fflags().AlwaysInline || ForceImportAll ||
(ResolvedCalleeSummary->instCount() <= NewThreshold)) &&
"selectCallee() didn't honor the threshold");
auto ExportModulePath = ResolvedCalleeSummary->modulePath();
// Try emplace the definition entry, and update stats based on insertion
// status.
if (ImportList.addDefinition(ExportModulePath, VI.getGUID()) !=
FunctionImporter::ImportMapTy::AddDefinitionStatus::NoChange) {
NumImportedFunctionsThinLink++;
if (IsHotCallsite)
NumImportedHotFunctionsThinLink++;
if (IsCriticalCallsite)
NumImportedCriticalFunctionsThinLink++;
}
// Any calls/references made by this function will be marked exported
// later, in ComputeCrossModuleImport, after import decisions are
// complete, which is more efficient than adding them here.
if (ExportLists)
(*ExportLists)[ExportModulePath].insert(VI);
}
auto GetAdjustedThreshold = [](unsigned Threshold, bool IsHotCallsite) {
// Adjust the threshold for next level of imported functions.
// The threshold is different for hot callsites because we can then
// inline chains of hot calls.
if (IsHotCallsite)
return Threshold * ImportHotInstrFactor;
return Threshold * ImportInstrFactor;
};
const auto AdjThreshold = GetAdjustedThreshold(Threshold, IsHotCallsite);
ImportCount++;
// Insert the newly imported function to the worklist.
Worklist.emplace_back(ResolvedCalleeSummary, AdjThreshold);
}
}
void ModuleImportsManager::computeImportForModule(
const GVSummaryMapTy &DefinedGVSummaries, StringRef ModName,
FunctionImporter::ImportMapTy &ImportList) {
// Worklist contains the list of function imported in this module, for which
// we will analyse the callees and may import further down the callgraph.
SmallVector<EdgeInfo, 128> Worklist;
GlobalsImporter GVI(Index, DefinedGVSummaries, IsPrevailing, ImportList,
ExportLists);
FunctionImporter::ImportThresholdsTy ImportThresholds;
// Populate the worklist with the import for the functions in the current
// module
for (const auto &GVSummary : DefinedGVSummaries) {
#ifndef NDEBUG
// FIXME: Change the GVSummaryMapTy to hold ValueInfo instead of GUID
// so this map look up (and possibly others) can be avoided.
auto VI = Index.getValueInfo(GVSummary.first);
#endif
if (!Index.isGlobalValueLive(GVSummary.second)) {
LLVM_DEBUG(dbgs() << "Ignores Dead GUID: " << VI << "\n");
continue;
}
auto *FuncSummary =
dyn_cast<FunctionSummary>(GVSummary.second->getBaseObject());
if (!FuncSummary)
// Skip import for global variables
continue;
LLVM_DEBUG(dbgs() << "Initialize import for " << VI << "\n");
computeImportForFunction(*FuncSummary, ImportInstrLimit, DefinedGVSummaries,
Worklist, GVI, ImportList, ImportThresholds);
}
// Process the newly imported functions and add callees to the worklist.
while (!Worklist.empty()) {
auto GVInfo = Worklist.pop_back_val();
auto *Summary = std::get<0>(GVInfo);
auto Threshold = std::get<1>(GVInfo);
if (auto *FS = dyn_cast<FunctionSummary>(Summary))
computeImportForFunction(*FS, Threshold, DefinedGVSummaries, Worklist,
GVI, ImportList, ImportThresholds);
}
// Print stats about functions considered but rejected for importing
// when requested.
if (PrintImportFailures) {
dbgs() << "Missed imports into module " << ModName << "\n";
for (auto &I : ImportThresholds) {
auto &ProcessedThreshold = std::get<0>(I.second);
auto &CalleeSummary = std::get<1>(I.second);
auto &FailureInfo = std::get<2>(I.second);
if (CalleeSummary)
continue; // We are going to import.
assert(FailureInfo);
FunctionSummary *FS = nullptr;
if (!FailureInfo->VI.getSummaryList().empty())
FS = dyn_cast<FunctionSummary>(
FailureInfo->VI.getSummaryList()[0]->getBaseObject());
dbgs() << FailureInfo->VI
<< ": Reason = " << getFailureName(FailureInfo->Reason)
<< ", Threshold = " << ProcessedThreshold
<< ", Size = " << (FS ? (int)FS->instCount() : -1)
<< ", MaxHotness = " << getHotnessName(FailureInfo->MaxHotness)
<< ", Attempts = " << FailureInfo->Attempts << "\n";
}
}
}
#ifndef NDEBUG
static bool isGlobalVarSummary(const ModuleSummaryIndex &Index, ValueInfo VI) {
auto SL = VI.getSummaryList();
return SL.empty()
? false
: SL[0]->getSummaryKind() == GlobalValueSummary::GlobalVarKind;
}
static bool isGlobalVarSummary(const ModuleSummaryIndex &Index,
GlobalValue::GUID G) {
if (const auto &VI = Index.getValueInfo(G))
return isGlobalVarSummary(Index, VI);
return false;
}
// Return the number of global variable summaries in ExportSet.
static unsigned
numGlobalVarSummaries(const ModuleSummaryIndex &Index,
FunctionImporter::ExportSetTy &ExportSet) {
unsigned NumGVS = 0;
for (auto &VI : ExportSet)
if (isGlobalVarSummary(Index, VI.getGUID()))
++NumGVS;
return NumGVS;
}
struct ImportStatistics {
unsigned NumGVS = 0;
unsigned DefinedFS = 0;
unsigned Count = 0;
};
// Compute import statistics for each source module in ImportList.
static DenseMap<StringRef, ImportStatistics>
collectImportStatistics(const ModuleSummaryIndex &Index,
const FunctionImporter::ImportMapTy &ImportList) {
DenseMap<StringRef, ImportStatistics> Histogram;
for (const auto &[FromModule, GUID, Type] : ImportList) {
ImportStatistics &Entry = Histogram[FromModule];
++Entry.Count;
if (isGlobalVarSummary(Index, GUID))
++Entry.NumGVS;
else if (Type == GlobalValueSummary::Definition)
++Entry.DefinedFS;
}
return Histogram;
}
#endif
#ifndef NDEBUG
static bool checkVariableImport(
const ModuleSummaryIndex &Index,
FunctionImporter::ImportListsTy &ImportLists,
DenseMap<StringRef, FunctionImporter::ExportSetTy> &ExportLists) {
DenseSet<GlobalValue::GUID> FlattenedImports;
for (const auto &ImportPerModule : ImportLists)
for (const auto &[FromModule, GUID, ImportType] : ImportPerModule.second)
FlattenedImports.insert(GUID);
// Checks that all GUIDs of read/writeonly vars we see in export lists
// are also in the import lists. Otherwise we my face linker undefs,
// because readonly and writeonly vars are internalized in their
// source modules. The exception would be if it has a linkage type indicating
// that there may have been a copy existing in the importing module (e.g.
// linkonce_odr). In that case we cannot accurately do this checking.
auto IsReadOrWriteOnlyVarNeedingImporting = [&](StringRef ModulePath,
const ValueInfo &VI) {
auto *GVS = dyn_cast_or_null<GlobalVarSummary>(
Index.findSummaryInModule(VI, ModulePath));
return GVS && (Index.isReadOnly(GVS) || Index.isWriteOnly(GVS)) &&
!(GVS->linkage() == GlobalValue::AvailableExternallyLinkage ||
GVS->linkage() == GlobalValue::WeakODRLinkage ||
GVS->linkage() == GlobalValue::LinkOnceODRLinkage);
};
for (auto &ExportPerModule : ExportLists)
for (auto &VI : ExportPerModule.second)
if (!FlattenedImports.count(VI.getGUID()) &&
IsReadOrWriteOnlyVarNeedingImporting(ExportPerModule.first, VI))
return false;
return true;
}
#endif
/// Compute all the import and export for every module using the Index.
void llvm::ComputeCrossModuleImport(
const ModuleSummaryIndex &Index,
const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries,
function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
isPrevailing,
FunctionImporter::ImportListsTy &ImportLists,
DenseMap<StringRef, FunctionImporter::ExportSetTy> &ExportLists) {
auto MIS = ModuleImportsManager::create(isPrevailing, Index, &ExportLists);
// For each module that has function defined, compute the import/export lists.
for (const auto &DefinedGVSummaries : ModuleToDefinedGVSummaries) {
auto &ImportList = ImportLists[DefinedGVSummaries.first];
LLVM_DEBUG(dbgs() << "Computing import for Module '"
<< DefinedGVSummaries.first << "'\n");
MIS->computeImportForModule(DefinedGVSummaries.second,
DefinedGVSummaries.first, ImportList);
}
// When computing imports we only added the variables and functions being
// imported to the export list. We also need to mark any references and calls
// they make as exported as well. We do this here, as it is more efficient
// since we may import the same values multiple times into different modules
// during the import computation.
for (auto &ELI : ExportLists) {
// `NewExports` tracks the VI that gets exported because the full definition
// of its user/referencer gets exported.
FunctionImporter::ExportSetTy NewExports;
const auto &DefinedGVSummaries =
ModuleToDefinedGVSummaries.lookup(ELI.first);
for (auto &EI : ELI.second) {
// Find the copy defined in the exporting module so that we can mark the
// values it references in that specific definition as exported.
// Below we will add all references and called values, without regard to
// whether they are also defined in this module. We subsequently prune the
// list to only include those defined in the exporting module, see comment
// there as to why.
auto DS = DefinedGVSummaries.find(EI.getGUID());
// Anything marked exported during the import computation must have been
// defined in the exporting module.
assert(DS != DefinedGVSummaries.end());
auto *S = DS->getSecond();
S = S->getBaseObject();
if (auto *GVS = dyn_cast<GlobalVarSummary>(S)) {
// Export referenced functions and variables. We don't export/promote
// objects referenced by writeonly variable initializer, because
// we convert such variables initializers to "zeroinitializer".
// See processGlobalForThinLTO.
if (!Index.isWriteOnly(GVS))
NewExports.insert_range(GVS->refs());
} else {
auto *FS = cast<FunctionSummary>(S);
NewExports.insert_range(llvm::make_first_range(FS->calls()));
NewExports.insert_range(FS->refs());
}
}
// Prune list computed above to only include values defined in the
// exporting module. We do this after the above insertion since we may hit
// the same ref/call target multiple times in above loop, and it is more
// efficient to avoid a set lookup each time.
for (auto EI = NewExports.begin(); EI != NewExports.end();) {
if (!DefinedGVSummaries.count(EI->getGUID()))
NewExports.erase(EI++);
else
++EI;
}
ELI.second.insert_range(NewExports);
}
assert(checkVariableImport(Index, ImportLists, ExportLists));
#ifndef NDEBUG
LLVM_DEBUG(dbgs() << "Import/Export lists for " << ImportLists.size()
<< " modules:\n");
for (const auto &ModuleImports : ImportLists) {
auto ModName = ModuleImports.first;
auto &Exports = ExportLists[ModName];
unsigned NumGVS = numGlobalVarSummaries(Index, Exports);
DenseMap<StringRef, ImportStatistics> Histogram =
collectImportStatistics(Index, ModuleImports.second);
LLVM_DEBUG(dbgs() << "* Module " << ModName << " exports "
<< Exports.size() - NumGVS << " functions and " << NumGVS
<< " vars. Imports from " << Histogram.size()
<< " modules.\n");
for (const auto &[SrcModName, Stats] : Histogram) {
LLVM_DEBUG(dbgs() << " - " << Stats.DefinedFS
<< " function definitions and "
<< Stats.Count - Stats.NumGVS - Stats.DefinedFS
<< " function declarations imported from " << SrcModName
<< "\n");
LLVM_DEBUG(dbgs() << " - " << Stats.NumGVS
<< " global vars imported from " << SrcModName << "\n");
}
}
#endif
}
#ifndef NDEBUG
static void dumpImportListForModule(const ModuleSummaryIndex &Index,
StringRef ModulePath,
FunctionImporter::ImportMapTy &ImportList) {
DenseMap<StringRef, ImportStatistics> Histogram =
collectImportStatistics(Index, ImportList);
LLVM_DEBUG(dbgs() << "* Module " << ModulePath << " imports from "
<< Histogram.size() << " modules.\n");
for (const auto &[SrcModName, Stats] : Histogram) {
LLVM_DEBUG(dbgs() << " - " << Stats.DefinedFS
<< " function definitions and "
<< Stats.Count - Stats.DefinedFS - Stats.NumGVS
<< " function declarations imported from " << SrcModName
<< "\n");
LLVM_DEBUG(dbgs() << " - " << Stats.NumGVS << " vars imported from "
<< SrcModName << "\n");
}
}
#endif
/// Compute all the imports for the given module using the Index.
///
/// \p isPrevailing is a callback that will be called with a global value's GUID
/// and summary and should return whether the module corresponding to the
/// summary contains the linker-prevailing copy of that value.
///
/// \p ImportList will be populated with a map that can be passed to
/// FunctionImporter::importFunctions() above (see description there).
static void ComputeCrossModuleImportForModuleForTest(
StringRef ModulePath,
function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
isPrevailing,
const ModuleSummaryIndex &Index,
FunctionImporter::ImportMapTy &ImportList) {
// Collect the list of functions this module defines.
// GUID -> Summary
GVSummaryMapTy FunctionSummaryMap;
Index.collectDefinedFunctionsForModule(ModulePath, FunctionSummaryMap);
// Compute the import list for this module.
LLVM_DEBUG(dbgs() << "Computing import for Module '" << ModulePath << "'\n");
auto MIS = ModuleImportsManager::create(isPrevailing, Index);
MIS->computeImportForModule(FunctionSummaryMap, ModulePath, ImportList);
#ifndef NDEBUG
dumpImportListForModule(Index, ModulePath, ImportList);
#endif
}
/// Mark all external summaries in \p Index for import into the given module.
/// Used for testing the case of distributed builds using a distributed index.
///
/// \p ImportList will be populated with a map that can be passed to
/// FunctionImporter::importFunctions() above (see description there).
static void ComputeCrossModuleImportForModuleFromIndexForTest(
StringRef ModulePath, const ModuleSummaryIndex &Index,
FunctionImporter::ImportMapTy &ImportList) {
for (const auto &GlobalList : Index) {
// Ignore entries for undefined references.
if (GlobalList.second.SummaryList.empty())
continue;
auto GUID = GlobalList.first;
assert(GlobalList.second.SummaryList.size() == 1 &&
"Expected individual combined index to have one summary per GUID");
auto &Summary = GlobalList.second.SummaryList[0];
// Skip the summaries for the importing module. These are included to
// e.g. record required linkage changes.
if (Summary->modulePath() == ModulePath)
continue;
// Add an entry to provoke importing by thinBackend.
ImportList.addGUID(Summary->modulePath(), GUID, Summary->importType());
}
#ifndef NDEBUG
dumpImportListForModule(Index, ModulePath, ImportList);
#endif
}
// For SamplePGO, the indirect call targets for local functions will
// have its original name annotated in profile. We try to find the
// corresponding PGOFuncName as the GUID, and fix up the edges
// accordingly.
void updateValueInfoForIndirectCalls(ModuleSummaryIndex &Index,
FunctionSummary *FS) {
for (auto &EI : FS->mutableCalls()) {
if (!EI.first.getSummaryList().empty())
continue;
auto GUID = Index.getGUIDFromOriginalID(EI.first.getGUID());
if (GUID == 0)
continue;
// Update the edge to point directly to the correct GUID.
auto VI = Index.getValueInfo(GUID);
if (llvm::any_of(
VI.getSummaryList(),
[&](const std::unique_ptr<GlobalValueSummary> &SummaryPtr) {
// The mapping from OriginalId to GUID may return a GUID
// that corresponds to a static variable. Filter it out here.
// This can happen when
// 1) There is a call to a library function which is not defined
// in the index.
// 2) There is a static variable with the OriginalGUID identical
// to the GUID of the library function in 1);
// When this happens the static variable in 2) will be found,
// which needs to be filtered out.
return SummaryPtr->getSummaryKind() ==
GlobalValueSummary::GlobalVarKind;
}))
continue;
EI.first = VI;
}
}
void llvm::updateIndirectCalls(ModuleSummaryIndex &Index) {
for (const auto &Entry : Index) {
for (const auto &S : Entry.second.SummaryList) {
if (auto *FS = dyn_cast<FunctionSummary>(S.get()))
updateValueInfoForIndirectCalls(Index, FS);
}
}
}
void llvm::computeDeadSymbolsAndUpdateIndirectCalls(
ModuleSummaryIndex &Index,
const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols,
function_ref<PrevailingType(GlobalValue::GUID)> isPrevailing) {
assert(!Index.withGlobalValueDeadStripping());
if (!ComputeDead ||
// Don't do anything when nothing is live, this is friendly with tests.
GUIDPreservedSymbols.empty()) {
// Still need to update indirect calls.
updateIndirectCalls(Index);
return;
}
unsigned LiveSymbols = 0;
SmallVector<ValueInfo, 128> Worklist;
Worklist.reserve(GUIDPreservedSymbols.size() * 2);
for (auto GUID : GUIDPreservedSymbols) {
ValueInfo VI = Index.getValueInfo(GUID);
if (!VI)
continue;
for (const auto &S : VI.getSummaryList())
S->setLive(true);
}
// Add values flagged in the index as live roots to the worklist.
for (const auto &Entry : Index) {
auto VI = Index.getValueInfo(Entry);
for (const auto &S : Entry.second.SummaryList) {
if (auto *FS = dyn_cast<FunctionSummary>(S.get()))
updateValueInfoForIndirectCalls(Index, FS);
if (S->isLive()) {
LLVM_DEBUG(dbgs() << "Live root: " << VI << "\n");
Worklist.push_back(VI);
++LiveSymbols;
break;
}
}
}
// Make value live and add it to the worklist if it was not live before.
auto visit = [&](ValueInfo VI, bool IsAliasee) {
// FIXME: If we knew which edges were created for indirect call profiles,
// we could skip them here. Any that are live should be reached via
// other edges, e.g. reference edges. Otherwise, using a profile collected
// on a slightly different binary might provoke preserving, importing
// and ultimately promoting calls to functions not linked into this
// binary, which increases the binary size unnecessarily. Note that
// if this code changes, the importer needs to change so that edges
// to functions marked dead are skipped.
if (llvm::any_of(VI.getSummaryList(),
[](const std::unique_ptr<llvm::GlobalValueSummary> &S) {
return S->isLive();
}))
return;
// We only keep live symbols that are known to be non-prevailing if any are
// available_externally, linkonceodr, weakodr. Those symbols are discarded
// later in the EliminateAvailableExternally pass and setting them to
// not-live could break downstreams users of liveness information (PR36483)
// or limit optimization opportunities.
if (isPrevailing(VI.getGUID()) == PrevailingType::No) {
bool KeepAliveLinkage = false;
bool Interposable = false;
for (const auto &S : VI.getSummaryList()) {
if (S->linkage() == GlobalValue::AvailableExternallyLinkage ||
S->linkage() == GlobalValue::WeakODRLinkage ||
S->linkage() == GlobalValue::LinkOnceODRLinkage)
KeepAliveLinkage = true;
else if (GlobalValue::isInterposableLinkage(S->linkage()))
Interposable = true;
}
if (!IsAliasee) {
if (!KeepAliveLinkage)
return;
if (Interposable)
report_fatal_error(
"Interposable and available_externally/linkonce_odr/weak_odr "
"symbol");
}
}
for (const auto &S : VI.getSummaryList())
S->setLive(true);
++LiveSymbols;
Worklist.push_back(VI);
};
while (!Worklist.empty()) {
auto VI = Worklist.pop_back_val();
for (const auto &Summary : VI.getSummaryList()) {
if (auto *AS = dyn_cast<AliasSummary>(Summary.get())) {
// If this is an alias, visit the aliasee VI to ensure that all copies
// are marked live and it is added to the worklist for further
// processing of its references.
visit(AS->getAliaseeVI(), true);
continue;
}
for (auto Ref : Summary->refs())
visit(Ref, false);
if (auto *FS = dyn_cast<FunctionSummary>(Summary.get()))
for (auto Call : FS->calls())
visit(Call.first, false);
}
}
Index.setWithGlobalValueDeadStripping();
unsigned DeadSymbols = Index.size() - LiveSymbols;
LLVM_DEBUG(dbgs() << LiveSymbols << " symbols Live, and " << DeadSymbols
<< " symbols Dead \n");
NumDeadSymbols += DeadSymbols;
NumLiveSymbols += LiveSymbols;
}
// Compute dead symbols and propagate constants in combined index.
void llvm::computeDeadSymbolsWithConstProp(
ModuleSummaryIndex &Index,
const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols,
function_ref<PrevailingType(GlobalValue::GUID)> isPrevailing,
bool ImportEnabled) {
computeDeadSymbolsAndUpdateIndirectCalls(Index, GUIDPreservedSymbols,
isPrevailing);
if (ImportEnabled)
Index.propagateAttributes(GUIDPreservedSymbols);
}
/// Compute the set of summaries needed for a ThinLTO backend compilation of
/// \p ModulePath.
void llvm::gatherImportedSummariesForModule(
StringRef ModulePath,
const DenseMap<StringRef, GVSummaryMapTy> &ModuleToDefinedGVSummaries,
const FunctionImporter::ImportMapTy &ImportList,
ModuleToSummariesForIndexTy &ModuleToSummariesForIndex,
GVSummaryPtrSet &DecSummaries) {
// Include all summaries from the importing module.
ModuleToSummariesForIndex[std::string(ModulePath)] =
ModuleToDefinedGVSummaries.lookup(ModulePath);
// Forward port the heterogeneous std::map::operator[]() from C++26, which
// lets us look up the map without allocating an instance of std::string when
// the key-value pair exists in the map.
// TODO: Remove this in favor of the heterogenous std::map::operator[]() from
// C++26 when it becomes available for our codebase.
auto LookupOrCreate = [](ModuleToSummariesForIndexTy &Map,
StringRef Key) -> GVSummaryMapTy & {
auto It = Map.find(Key);
if (It == Map.end())
std::tie(It, std::ignore) =
Map.try_emplace(std::string(Key), GVSummaryMapTy());
return It->second;
};
// Include summaries for imports.
for (const auto &[FromModule, GUID, ImportType] : ImportList) {
auto &SummariesForIndex =
LookupOrCreate(ModuleToSummariesForIndex, FromModule);
const auto &DefinedGVSummaries = ModuleToDefinedGVSummaries.at(FromModule);
const auto &DS = DefinedGVSummaries.find(GUID);
assert(DS != DefinedGVSummaries.end() &&
"Expected a defined summary for imported global value");
if (ImportType == GlobalValueSummary::Declaration)
DecSummaries.insert(DS->second);
SummariesForIndex[GUID] = DS->second;
}
}
/// Emit the files \p ModulePath will import from into \p OutputFilename.
Error llvm::EmitImportsFiles(
StringRef ModulePath, StringRef OutputFilename,
const ModuleToSummariesForIndexTy &ModuleToSummariesForIndex) {
std::error_code EC;
raw_fd_ostream ImportsOS(OutputFilename, EC, sys::fs::OpenFlags::OF_Text);
if (EC)
return createFileError("cannot open " + OutputFilename,
errorCodeToError(EC));
for (const auto &ILI : ModuleToSummariesForIndex)
// The ModuleToSummariesForIndex map includes an entry for the current
// Module (needed for writing out the index files). We don't want to
// include it in the imports file, however, so filter it out.
if (ILI.first != ModulePath)
ImportsOS << ILI.first << "\n";
return Error::success();
}
bool llvm::convertToDeclaration(GlobalValue &GV) {
LLVM_DEBUG(dbgs() << "Converting to a declaration: `" << GV.getName()
<< "\n");
if (Function *F = dyn_cast<Function>(&GV)) {
F->deleteBody();
F->clearMetadata();
F->setComdat(nullptr);
} else if (GlobalVariable *V = dyn_cast<GlobalVariable>(&GV)) {
V->setInitializer(nullptr);
V->setLinkage(GlobalValue::ExternalLinkage);
V->clearMetadata();
V->setComdat(nullptr);
} else {
GlobalValue *NewGV;
if (GV.getValueType()->isFunctionTy())
NewGV =
Function::Create(cast<FunctionType>(GV.getValueType()),
GlobalValue::ExternalLinkage, GV.getAddressSpace(),
"", GV.getParent());
else
NewGV =
new GlobalVariable(*GV.getParent(), GV.getValueType(),
/*isConstant*/ false, GlobalValue::ExternalLinkage,
/*init*/ nullptr, "",
/*insertbefore*/ nullptr, GV.getThreadLocalMode(),
GV.getType()->getAddressSpace());
NewGV->takeName(&GV);
GV.replaceAllUsesWith(NewGV);
return false;
}
if (!GV.isImplicitDSOLocal())
GV.setDSOLocal(false);
return true;
}
void llvm::thinLTOFinalizeInModule(Module &TheModule,
const GVSummaryMapTy &DefinedGlobals,
bool PropagateAttrs) {
DenseSet<Comdat *> NonPrevailingComdats;
auto FinalizeInModule = [&](GlobalValue &GV, bool Propagate = false) {
// See if the global summary analysis computed a new resolved linkage.
const auto &GS = DefinedGlobals.find(GV.getGUID());
if (GS == DefinedGlobals.end())
return;
if (Propagate)
if (FunctionSummary *FS = dyn_cast<FunctionSummary>(GS->second)) {
if (Function *F = dyn_cast<Function>(&GV)) {
// TODO: propagate ReadNone and ReadOnly.
if (FS->fflags().ReadNone && !F->doesNotAccessMemory())
F->setDoesNotAccessMemory();
if (FS->fflags().ReadOnly && !F->onlyReadsMemory())
F->setOnlyReadsMemory();
if (FS->fflags().NoRecurse && !F->doesNotRecurse())
F->setDoesNotRecurse();
if (FS->fflags().NoUnwind && !F->doesNotThrow())
F->setDoesNotThrow();
}
}
auto NewLinkage = GS->second->linkage();
if (GlobalValue::isLocalLinkage(GV.getLinkage()) ||
// Don't internalize anything here, because the code below
// lacks necessary correctness checks. Leave this job to
// LLVM 'internalize' pass.
GlobalValue::isLocalLinkage(NewLinkage) ||
// In case it was dead and already converted to declaration.
GV.isDeclaration())
return;
// Set the potentially more constraining visibility computed from summaries.
// The DefaultVisibility condition is because older GlobalValueSummary does
// not record DefaultVisibility and we don't want to change protected/hidden
// to default.
if (GS->second->getVisibility() != GlobalValue::DefaultVisibility)
GV.setVisibility(GS->second->getVisibility());
if (NewLinkage == GV.getLinkage())
return;
// Check for a non-prevailing def that has interposable linkage
// (e.g. non-odr weak or linkonce). In that case we can't simply
// convert to available_externally, since it would lose the
// interposable property and possibly get inlined. Simply drop
// the definition in that case.
if (GlobalValue::isAvailableExternallyLinkage(NewLinkage) &&
GlobalValue::isInterposableLinkage(GV.getLinkage())) {
if (!convertToDeclaration(GV))
// FIXME: Change this to collect replaced GVs and later erase
// them from the parent module once thinLTOResolvePrevailingGUID is
// changed to enable this for aliases.
llvm_unreachable("Expected GV to be converted");
} else {
// If all copies of the original symbol had global unnamed addr and
// linkonce_odr linkage, or if all of them had local unnamed addr linkage
// and are constants, then it should be an auto hide symbol. In that case
// the thin link would have marked it as CanAutoHide. Add hidden
// visibility to the symbol to preserve the property.
if (NewLinkage == GlobalValue::WeakODRLinkage &&
GS->second->canAutoHide()) {
assert(GV.canBeOmittedFromSymbolTable());
GV.setVisibility(GlobalValue::HiddenVisibility);
}
LLVM_DEBUG(dbgs() << "ODR fixing up linkage for `" << GV.getName()
<< "` from " << GV.getLinkage() << " to " << NewLinkage
<< "\n");
GV.setLinkage(NewLinkage);
}
// Remove declarations from comdats, including available_externally
// as this is a declaration for the linker, and will be dropped eventually.
// It is illegal for comdats to contain declarations.
auto *GO = dyn_cast_or_null<GlobalObject>(&GV);
if (GO && GO->isDeclarationForLinker() && GO->hasComdat()) {
if (GO->getComdat()->getName() == GO->getName())
NonPrevailingComdats.insert(GO->getComdat());
GO->setComdat(nullptr);
}
};
// Process functions and global now
for (auto &GV : TheModule)
FinalizeInModule(GV, PropagateAttrs);
for (auto &GV : TheModule.globals())
FinalizeInModule(GV);
for (auto &GV : TheModule.aliases())
FinalizeInModule(GV);
// For a non-prevailing comdat, all its members must be available_externally.
// FinalizeInModule has handled non-local-linkage GlobalValues. Here we handle
// local linkage GlobalValues.
if (NonPrevailingComdats.empty())
return;
for (auto &GO : TheModule.global_objects()) {
if (auto *C = GO.getComdat(); C && NonPrevailingComdats.count(C)) {
GO.setComdat(nullptr);
GO.setLinkage(GlobalValue::AvailableExternallyLinkage);
}
}
bool Changed;
do {
Changed = false;
// If an alias references a GlobalValue in a non-prevailing comdat, change
// it to available_externally. For simplicity we only handle GlobalValue and
// ConstantExpr with a base object. ConstantExpr without a base object is
// unlikely used in a COMDAT.
for (auto &GA : TheModule.aliases()) {
if (GA.hasAvailableExternallyLinkage())
continue;
GlobalObject *Obj = GA.getAliaseeObject();
assert(Obj && "aliasee without an base object is unimplemented");
if (Obj->hasAvailableExternallyLinkage()) {
GA.setLinkage(GlobalValue::AvailableExternallyLinkage);
Changed = true;
}
}
} while (Changed);
}
/// Run internalization on \p TheModule based on symmary analysis.
void llvm::thinLTOInternalizeModule(Module &TheModule,
const GVSummaryMapTy &DefinedGlobals) {
// Declare a callback for the internalize pass that will ask for every
// candidate GlobalValue if it can be internalized or not.
auto MustPreserveGV = [&](const GlobalValue &GV) -> bool {
// It may be the case that GV is on a chain of an ifunc, its alias and
// subsequent aliases. In this case, the summary for the value is not
// available.
if (isa<GlobalIFunc>(&GV) ||
(isa<GlobalAlias>(&GV) &&
isa<GlobalIFunc>(cast<GlobalAlias>(&GV)->getAliaseeObject())))
return true;
// Lookup the linkage recorded in the summaries during global analysis.
auto GS = DefinedGlobals.find(GV.getGUID());
if (GS == DefinedGlobals.end()) {
// Must have been promoted (possibly conservatively). Find original
// name so that we can access the correct summary and see if it can
// be internalized again.
// FIXME: Eventually we should control promotion instead of promoting
// and internalizing again.
StringRef OrigName =
ModuleSummaryIndex::getOriginalNameBeforePromote(GV.getName());
std::string OrigId = GlobalValue::getGlobalIdentifier(
OrigName, GlobalValue::InternalLinkage,
TheModule.getSourceFileName());
GS = DefinedGlobals.find(GlobalValue::getGUID(OrigId));
if (GS == DefinedGlobals.end()) {
// Also check the original non-promoted non-globalized name. In some
// cases a preempted weak value is linked in as a local copy because
// it is referenced by an alias (IRLinker::linkGlobalValueProto).
// In that case, since it was originally not a local value, it was
// recorded in the index using the original name.
// FIXME: This may not be needed once PR27866 is fixed.
GS = DefinedGlobals.find(GlobalValue::getGUID(OrigName));
assert(GS != DefinedGlobals.end());
}
}
return !GlobalValue::isLocalLinkage(GS->second->linkage());
};
// FIXME: See if we can just internalize directly here via linkage changes
// based on the index, rather than invoking internalizeModule.
internalizeModule(TheModule, MustPreserveGV);
}
/// Make alias a clone of its aliasee.
static Function *replaceAliasWithAliasee(Module *SrcModule, GlobalAlias *GA) {
Function *Fn = cast<Function>(GA->getAliaseeObject());
ValueToValueMapTy VMap;
Function *NewFn = CloneFunction(Fn, VMap);
// Clone should use the original alias's linkage, visibility and name, and we
// ensure all uses of alias instead use the new clone (casted if necessary).
NewFn->setLinkage(GA->getLinkage());
NewFn->setVisibility(GA->getVisibility());
GA->replaceAllUsesWith(NewFn);
NewFn->takeName(GA);
return NewFn;
}
// Internalize values that we marked with specific attribute
// in processGlobalForThinLTO.
static void internalizeGVsAfterImport(Module &M) {
for (auto &GV : M.globals())
// Skip GVs which have been converted to declarations
// by dropDeadSymbols.
if (!GV.isDeclaration() && GV.hasAttribute("thinlto-internalize")) {
GV.setLinkage(GlobalValue::InternalLinkage);
GV.setVisibility(GlobalValue::DefaultVisibility);
}
}
// Automatically import functions in Module \p DestModule based on the summaries
// index.
Expected<bool> FunctionImporter::importFunctions(
Module &DestModule, const FunctionImporter::ImportMapTy &ImportList) {
LLVM_DEBUG(dbgs() << "Starting import for Module "
<< DestModule.getModuleIdentifier() << "\n");
unsigned ImportedCount = 0, ImportedGVCount = 0;
// Before carrying out any imports, see if this module defines functions in
// MoveSymbolGUID. If it does, delete them here (but leave the declaration).
// The function will be imported elsewhere, as extenal linkage, and the
// destination doesn't yet have its definition.
DenseSet<GlobalValue::GUID> MoveSymbolGUIDSet;
MoveSymbolGUIDSet.insert_range(MoveSymbolGUID);
for (auto &F : DestModule)
if (!F.isDeclaration() && MoveSymbolGUIDSet.contains(F.getGUID()))
F.deleteBody();
IRMover Mover(DestModule);
// Do the actual import of functions now, one Module at a time
for (const auto &ModName : ImportList.getSourceModules()) {
// Get the module for the import
Expected<std::unique_ptr<Module>> SrcModuleOrErr = ModuleLoader(ModName);
if (!SrcModuleOrErr)
return SrcModuleOrErr.takeError();
std::unique_ptr<Module> SrcModule = std::move(*SrcModuleOrErr);
assert(&DestModule.getContext() == &SrcModule->getContext() &&
"Context mismatch");
// If modules were created with lazy metadata loading, materialize it
// now, before linking it (otherwise this will be a noop).
if (Error Err = SrcModule->materializeMetadata())
return std::move(Err);
// Find the globals to import
SetVector<GlobalValue *> GlobalsToImport;
for (Function &F : *SrcModule) {
if (!F.hasName())
continue;
auto GUID = F.getGUID();
auto MaybeImportType = ImportList.getImportType(ModName, GUID);
bool ImportDefinition = MaybeImportType == GlobalValueSummary::Definition;
LLVM_DEBUG(dbgs() << (MaybeImportType ? "Is" : "Not")
<< " importing function"
<< (ImportDefinition
? " definition "
: (MaybeImportType ? " declaration " : " "))
<< GUID << " " << F.getName() << " from "
<< SrcModule->getSourceFileName() << "\n");
if (ImportDefinition) {
if (Error Err = F.materialize())
return std::move(Err);
// MemProf should match function's definition and summary,
// 'thinlto_src_module' is needed.
if (EnableImportMetadata || EnableMemProfContextDisambiguation) {
// Add 'thinlto_src_module' and 'thinlto_src_file' metadata for
// statistics and debugging.
F.setMetadata(
"thinlto_src_module",
MDNode::get(DestModule.getContext(),
{MDString::get(DestModule.getContext(),
SrcModule->getModuleIdentifier())}));
F.setMetadata(
"thinlto_src_file",
MDNode::get(DestModule.getContext(),
{MDString::get(DestModule.getContext(),
SrcModule->getSourceFileName())}));
}
GlobalsToImport.insert(&F);
}
}
for (GlobalVariable &GV : SrcModule->globals()) {
if (!GV.hasName())
continue;
auto GUID = GV.getGUID();
auto MaybeImportType = ImportList.getImportType(ModName, GUID);
bool ImportDefinition = MaybeImportType == GlobalValueSummary::Definition;
LLVM_DEBUG(dbgs() << (MaybeImportType ? "Is" : "Not")
<< " importing global"
<< (ImportDefinition
? " definition "
: (MaybeImportType ? " declaration " : " "))
<< GUID << " " << GV.getName() << " from "
<< SrcModule->getSourceFileName() << "\n");
if (ImportDefinition) {
if (Error Err = GV.materialize())
return std::move(Err);
ImportedGVCount += GlobalsToImport.insert(&GV);
}
}
for (GlobalAlias &GA : SrcModule->aliases()) {
if (!GA.hasName() || isa<GlobalIFunc>(GA.getAliaseeObject()))
continue;
auto GUID = GA.getGUID();
auto MaybeImportType = ImportList.getImportType(ModName, GUID);
bool ImportDefinition = MaybeImportType == GlobalValueSummary::Definition;
LLVM_DEBUG(dbgs() << (MaybeImportType ? "Is" : "Not")
<< " importing alias"
<< (ImportDefinition
? " definition "
: (MaybeImportType ? " declaration " : " "))
<< GUID << " " << GA.getName() << " from "
<< SrcModule->getSourceFileName() << "\n");
if (ImportDefinition) {
if (Error Err = GA.materialize())
return std::move(Err);
// Import alias as a copy of its aliasee.
GlobalObject *GO = GA.getAliaseeObject();
if (Error Err = GO->materialize())
return std::move(Err);
auto *Fn = replaceAliasWithAliasee(SrcModule.get(), &GA);
LLVM_DEBUG(dbgs() << "Is importing aliasee fn " << GO->getGUID() << " "
<< GO->getName() << " from "
<< SrcModule->getSourceFileName() << "\n");
if (EnableImportMetadata || EnableMemProfContextDisambiguation) {
// Add 'thinlto_src_module' and 'thinlto_src_file' metadata for
// statistics and debugging.
Fn->setMetadata(
"thinlto_src_module",
MDNode::get(DestModule.getContext(),
{MDString::get(DestModule.getContext(),
SrcModule->getModuleIdentifier())}));
Fn->setMetadata(
"thinlto_src_file",
MDNode::get(DestModule.getContext(),
{MDString::get(DestModule.getContext(),
SrcModule->getSourceFileName())}));
}
GlobalsToImport.insert(Fn);
}
}
// Upgrade debug info after we're done materializing all the globals and we
// have loaded all the required metadata!
UpgradeDebugInfo(*SrcModule);
// Set the partial sample profile ratio in the profile summary module flag
// of the imported source module, if applicable, so that the profile summary
// module flag will match with that of the destination module when it's
// imported.
SrcModule->setPartialSampleProfileRatio(Index);
// Link in the specified functions.
renameModuleForThinLTO(*SrcModule, Index, ClearDSOLocalOnDeclarations,
&GlobalsToImport);
if (PrintImports) {
for (const auto *GV : GlobalsToImport)
dbgs() << DestModule.getSourceFileName() << ": Import " << GV->getName()
<< " from " << SrcModule->getSourceFileName() << "\n";
}
if (Error Err = Mover.move(std::move(SrcModule),
GlobalsToImport.getArrayRef(), nullptr,
/*IsPerformingImport=*/true))
return createStringError(errc::invalid_argument,
Twine("Function Import: link error: ") +
toString(std::move(Err)));
ImportedCount += GlobalsToImport.size();
NumImportedModules++;
}
internalizeGVsAfterImport(DestModule);
NumImportedFunctions += (ImportedCount - ImportedGVCount);
NumImportedGlobalVars += ImportedGVCount;
// TODO: Print counters for definitions and declarations in the debugging log.
LLVM_DEBUG(dbgs() << "Imported " << ImportedCount - ImportedGVCount
<< " functions for Module "
<< DestModule.getModuleIdentifier() << "\n");
LLVM_DEBUG(dbgs() << "Imported " << ImportedGVCount
<< " global variables for Module "
<< DestModule.getModuleIdentifier() << "\n");
return ImportedCount;
}
static bool doImportingForModuleForTest(
Module &M, function_ref<bool(GlobalValue::GUID, const GlobalValueSummary *)>
isPrevailing) {
if (SummaryFile.empty())
report_fatal_error("error: -function-import requires -summary-file\n");
Expected<std::unique_ptr<ModuleSummaryIndex>> IndexPtrOrErr =
getModuleSummaryIndexForFile(SummaryFile);
if (!IndexPtrOrErr) {
logAllUnhandledErrors(IndexPtrOrErr.takeError(), errs(),
"Error loading file '" + SummaryFile + "': ");
return false;
}
std::unique_ptr<ModuleSummaryIndex> Index = std::move(*IndexPtrOrErr);
// First step is collecting the import list.
FunctionImporter::ImportIDTable ImportIDs;
FunctionImporter::ImportMapTy ImportList(ImportIDs);
// If requested, simply import all functions in the index. This is used
// when testing distributed backend handling via the opt tool, when
// we have distributed indexes containing exactly the summaries to import.
if (ImportAllIndex)
ComputeCrossModuleImportForModuleFromIndexForTest(M.getModuleIdentifier(),
*Index, ImportList);
else
ComputeCrossModuleImportForModuleForTest(M.getModuleIdentifier(),
isPrevailing, *Index, ImportList);
// Conservatively mark all internal values as promoted. This interface is
// only used when doing importing via the function importing pass. The pass
// is only enabled when testing importing via the 'opt' tool, which does
// not do the ThinLink that would normally determine what values to promote.
for (auto &I : *Index) {
for (auto &S : I.second.SummaryList) {
if (GlobalValue::isLocalLinkage(S->linkage()))
S->setLinkage(GlobalValue::ExternalLinkage);
}
}
// Next we need to promote to global scope and rename any local values that
// are potentially exported to other modules.
renameModuleForThinLTO(M, *Index, /*ClearDSOLocalOnDeclarations=*/false,
/*GlobalsToImport=*/nullptr);
// Perform the import now.
auto ModuleLoader = [&M](StringRef Identifier) {
return loadFile(std::string(Identifier), M.getContext());
};
FunctionImporter Importer(*Index, ModuleLoader,
/*ClearDSOLocalOnDeclarations=*/false);
Expected<bool> Result = Importer.importFunctions(M, ImportList);
// FIXME: Probably need to propagate Errors through the pass manager.
if (!Result) {
logAllUnhandledErrors(Result.takeError(), errs(),
"Error importing module: ");
return true;
}
return true;
}
PreservedAnalyses FunctionImportPass::run(Module &M,
ModuleAnalysisManager &AM) {
// This is only used for testing the function import pass via opt, where we
// don't have prevailing information from the LTO context available, so just
// conservatively assume everything is prevailing (which is fine for the very
// limited use of prevailing checking in this pass).
auto isPrevailing = [](GlobalValue::GUID, const GlobalValueSummary *) {
return true;
};
if (!doImportingForModuleForTest(M, isPrevailing))
return PreservedAnalyses::all();
return PreservedAnalyses::none();
}