llvm-project/llvm/lib/CodeGen/WindowScheduler.cpp
Hua Tian b6bf4024a0
[llvm][CodeGen] Add a new software pipeliner 'Window Scheduler' (#84443)
This commit implements the Window Scheduler as described in the RFC:

https://discourse.llvm.org/t/rfc-window-scheduling-algorithm-for-machinepipeliner-in-llvm/74718

This Window Scheduler implements the window algorithm designed by
Steven Muchnick in the book "Advanced Compiler Design And
Implementation",
with some improvements:

1. Copy 3 times of the loop kernel and construct the corresponding DAG
   to identify dependencies between MIs;
2. Use heuristic algorithm to obtain a set of window offsets.

The window algorithm is equivalent to modulo scheduling algorithm with a
stage of 2. It is mainly applied in targets where hardware resource
conflicts are severe, and the SMS algorithm often fails in such cases.
On our own DSA, this window algorithm typically can achieve a
performance
improvement of over 10%.

Co-authored-by: Kai Yan <aklkaiyan@tencent.com>
Co-authored-by: Ran Xiao <lennyxiao@tencent.com>

---------

Co-authored-by: Kai Yan <aklkaiyan@tencent.com>
Co-authored-by: Ran Xiao <lennyxiao@tencent.com>
2024-06-13 17:51:09 +08:00

689 lines
26 KiB
C++

//======----------- WindowScheduler.cpp - window scheduler -------------======//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// An implementation of the Window Scheduling software pipelining algorithm.
//
// The fundamental concept of the window scheduling algorithm involves folding
// the original MBB at a specific position, followed by list scheduling on the
// folded MIs. The optimal scheduling result is then chosen from various folding
// positions as the final scheduling outcome.
//
// The primary challenge in this algorithm lies in generating the folded MIs and
// establishing their dependencies. We have innovatively employed a new MBB,
// created by copying the original MBB three times, known as TripleMBB. This
// TripleMBB enables the convenient implementation of MI folding and dependency
// establishment. To facilitate the algorithm's implementation, we have also
// devised data structures such as OriMIs, TriMIs, TriToOri, and OriToCycle.
//
// Another challenge in the algorithm is the scheduling of phis. Semantically,
// it is difficult to place the phis in the window and perform list scheduling.
// Therefore, we schedule these phis separately after each list scheduling.
//
// The provided implementation is designed for use before the Register Allocator
// (RA). If the target requires implementation after RA, it is recommended to
// reimplement analyseII(), schedulePhi(), and expand(). Additionally,
// target-specific logic can be added in initialize(), preProcess(), and
// postProcess().
//
// Lastly, it is worth mentioning that getSearchIndexes() is an important
// function. We have experimented with more complex heuristics on downstream
// target and achieved favorable results.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/WindowScheduler.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachinePipeliner.h"
#include "llvm/CodeGen/ModuloSchedule.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/TimeProfiler.h"
using namespace llvm;
#define DEBUG_TYPE "pipeliner"
namespace {
STATISTIC(NumTryWindowSchedule,
"Number of loops that we attempt to use window scheduling");
STATISTIC(NumTryWindowSearch,
"Number of times that we run list schedule in the window scheduling");
STATISTIC(NumWindowSchedule,
"Number of loops that we successfully use window scheduling");
STATISTIC(NumFailAnalyseII,
"Window scheduling abort due to the failure of the II analysis");
cl::opt<unsigned>
WindowSearchNum("window-search-num",
cl::desc("The number of searches per loop in the window "
"algorithm. 0 means no search number limit."),
cl::Hidden, cl::init(6));
cl::opt<unsigned> WindowSearchRatio(
"window-search-ratio",
cl::desc("The ratio of searches per loop in the window algorithm. 100 "
"means search all positions in the loop, while 0 means not "
"performing any search."),
cl::Hidden, cl::init(40));
cl::opt<unsigned> WindowIICoeff(
"window-ii-coeff",
cl::desc(
"The coefficient used when initializing II in the window algorithm."),
cl::Hidden, cl::init(5));
cl::opt<unsigned> WindowRegionLimit(
"window-region-limit",
cl::desc(
"The lower limit of the scheduling region in the window algorithm."),
cl::Hidden, cl::init(3));
cl::opt<unsigned> WindowDiffLimit(
"window-diff-limit",
cl::desc("The lower limit of the difference between best II and base II in "
"the window algorithm. If the difference is smaller than "
"this lower limit, window scheduling will not be performed."),
cl::Hidden, cl::init(2));
} // namespace
// WindowIILimit serves as an indicator of abnormal scheduling results and could
// potentially be referenced by the derived target window scheduler.
cl::opt<unsigned>
WindowIILimit("window-ii-limit",
cl::desc("The upper limit of II in the window algorithm."),
cl::Hidden, cl::init(1000));
WindowScheduler::WindowScheduler(MachineSchedContext *C, MachineLoop &ML)
: Context(C), MF(C->MF), MBB(ML.getHeader()), Loop(ML),
Subtarget(&MF->getSubtarget()), TII(Subtarget->getInstrInfo()),
TRI(Subtarget->getRegisterInfo()), MRI(&MF->getRegInfo()) {
TripleDAG = std::unique_ptr<ScheduleDAGInstrs>(
createMachineScheduler(/*OnlyBuildGraph=*/true));
}
bool WindowScheduler::run() {
if (!initialize()) {
LLVM_DEBUG(dbgs() << "The WindowScheduler failed to initialize!\n");
return false;
}
// The window algorithm is time-consuming, and its compilation time should be
// taken into consideration.
TimeTraceScope Scope("WindowSearch");
++NumTryWindowSchedule;
// Performing the relevant processing before window scheduling.
preProcess();
// The main window scheduling begins.
std::unique_ptr<ScheduleDAGInstrs> SchedDAG(createMachineScheduler());
auto SearchIndexes = getSearchIndexes(WindowSearchNum, WindowSearchRatio);
for (unsigned Idx : SearchIndexes) {
OriToCycle.clear();
++NumTryWindowSearch;
// The scheduling starts with non-phi instruction, so SchedPhiNum needs to
// be added to Idx.
unsigned Offset = Idx + SchedPhiNum;
auto Range = getScheduleRange(Offset, SchedInstrNum);
SchedDAG->startBlock(MBB);
SchedDAG->enterRegion(MBB, Range.begin(), Range.end(), SchedInstrNum);
SchedDAG->schedule();
LLVM_DEBUG(SchedDAG->dump());
unsigned II = analyseII(*SchedDAG, Offset);
if (II == WindowIILimit) {
restoreTripleMBB();
LLVM_DEBUG(dbgs() << "Can't find a valid II. Keep searching...\n");
++NumFailAnalyseII;
continue;
}
schedulePhi(Offset, II);
updateScheduleResult(Offset, II);
restoreTripleMBB();
LLVM_DEBUG(dbgs() << "Current window Offset is " << Offset << " and II is "
<< II << ".\n");
}
// Performing the relevant processing after window scheduling.
postProcess();
// Check whether the scheduling result is valid.
if (!isScheduleValid()) {
LLVM_DEBUG(dbgs() << "Window scheduling is not needed!\n");
return false;
}
LLVM_DEBUG(dbgs() << "\nBest window offset is " << BestOffset
<< " and Best II is " << BestII << ".\n");
// Expand the scheduling result to prologue, kernel, and epilogue.
expand();
++NumWindowSchedule;
return true;
}
ScheduleDAGInstrs *
WindowScheduler::createMachineScheduler(bool OnlyBuildGraph) {
return OnlyBuildGraph
? new ScheduleDAGMI(
Context, std::make_unique<PostGenericScheduler>(Context),
true)
: Context->PassConfig->createMachineScheduler(Context);
}
bool WindowScheduler::initialize() {
if (!Subtarget->enableWindowScheduler()) {
LLVM_DEBUG(dbgs() << "Target disables the window scheduling!\n");
return false;
}
// Initialized the member variables used by window algorithm.
OriMIs.clear();
TriMIs.clear();
TriToOri.clear();
OriToCycle.clear();
SchedResult.clear();
SchedPhiNum = 0;
SchedInstrNum = 0;
BestII = UINT_MAX;
BestOffset = 0;
BaseII = 0;
// List scheduling used in the window algorithm depends on LiveIntervals.
if (!Context->LIS) {
LLVM_DEBUG(dbgs() << "There is no LiveIntervals information!\n");
return false;
}
// Check each MI in MBB.
SmallVector<Register, 8> PhiDefs;
auto PLI = TII->analyzeLoopForPipelining(MBB);
for (auto &MI : *MBB) {
if (MI.isMetaInstruction() || MI.isTerminator())
continue;
if (MI.isPHI()) {
for (auto Def : PhiDefs)
if (MI.readsRegister(Def, TRI)) {
LLVM_DEBUG(
dbgs()
<< "Consecutive phis are not allowed in window scheduling!\n");
return false;
}
for (auto Def : MI.defs())
if (Def.isReg())
PhiDefs.push_back(Def.getReg());
++SchedPhiNum;
++BestOffset;
} else
++SchedInstrNum;
if (TII->isSchedulingBoundary(MI, MBB, *MF)) {
LLVM_DEBUG(
dbgs() << "Boundary MI is not allowed in window scheduling!\n");
return false;
}
if (PLI->shouldIgnoreForPipelining(&MI)) {
LLVM_DEBUG(dbgs() << "Special MI defined by target is not allowed in "
"window scheduling!\n");
return false;
}
for (auto &Def : MI.all_defs())
if (Def.isReg() && Def.getReg().isPhysical())
return false;
}
if (SchedInstrNum <= WindowRegionLimit) {
LLVM_DEBUG(dbgs() << "There are too few MIs in the window region!\n");
return false;
}
return true;
}
void WindowScheduler::preProcess() {
// Prior to window scheduling, it's necessary to backup the original MBB,
// generate a new TripleMBB, and build a TripleDAG based on the TripleMBB.
backupMBB();
generateTripleMBB();
TripleDAG->startBlock(MBB);
TripleDAG->enterRegion(
MBB, MBB->begin(), MBB->getFirstTerminator(),
std::distance(MBB->begin(), MBB->getFirstTerminator()));
TripleDAG->buildSchedGraph(Context->AA);
}
void WindowScheduler::postProcess() {
// After window scheduling, it's necessary to clear the TripleDAG and restore
// to the original MBB.
TripleDAG->exitRegion();
TripleDAG->finishBlock();
restoreMBB();
}
void WindowScheduler::backupMBB() {
for (auto &MI : MBB->instrs())
OriMIs.push_back(&MI);
// Remove MIs and the corresponding live intervals.
for (auto &MI : make_early_inc_range(*MBB)) {
Context->LIS->getSlotIndexes()->removeMachineInstrFromMaps(MI, true);
MBB->remove(&MI);
}
}
void WindowScheduler::restoreMBB() {
// Erase MIs and the corresponding live intervals.
for (auto &MI : make_early_inc_range(*MBB)) {
Context->LIS->getSlotIndexes()->removeMachineInstrFromMaps(MI, true);
MI.eraseFromParent();
}
// Restore MBB to the state before window scheduling.
for (auto *MI : OriMIs)
MBB->push_back(MI);
updateLiveIntervals();
}
void WindowScheduler::generateTripleMBB() {
const unsigned DuplicateNum = 3;
TriMIs.clear();
TriToOri.clear();
assert(OriMIs.size() > 0 && "The Original MIs were not backed up!");
// Step 1: Performing the first copy of MBB instructions, excluding
// terminators. At the same time, we back up the anti-register of phis.
// DefPairs hold the old and new define register pairs.
DenseMap<Register, Register> DefPairs;
for (auto *MI : OriMIs) {
if (MI->isMetaInstruction() || MI->isTerminator())
continue;
if (MI->isPHI())
if (Register AntiReg = getAntiRegister(MI))
DefPairs[MI->getOperand(0).getReg()] = AntiReg;
auto *NewMI = MF->CloneMachineInstr(MI);
MBB->push_back(NewMI);
TriMIs.push_back(NewMI);
TriToOri[NewMI] = MI;
}
// Step 2: Performing the remaining two copies of MBB instructions excluding
// phis, and the last one contains terminators. At the same time, registers
// are updated accordingly.
for (size_t Cnt = 1; Cnt < DuplicateNum; ++Cnt) {
for (auto *MI : OriMIs) {
if (MI->isPHI() || MI->isMetaInstruction() ||
(MI->isTerminator() && Cnt < DuplicateNum - 1))
continue;
auto *NewMI = MF->CloneMachineInstr(MI);
DenseMap<Register, Register> NewDefs;
// New defines are updated.
for (auto MO : NewMI->all_defs())
if (MO.isReg() && MO.getReg().isVirtual()) {
Register NewDef =
MRI->createVirtualRegister(MRI->getRegClass(MO.getReg()));
NewMI->substituteRegister(MO.getReg(), NewDef, 0, *TRI);
NewDefs[MO.getReg()] = NewDef;
}
// New uses are updated.
for (auto DefRegPair : DefPairs)
if (NewMI->readsRegister(DefRegPair.first, TRI)) {
Register NewUse = DefRegPair.second;
// Note the update process for '%1 -> %9' in '%10 = sub i32 %9, %3':
//
// BB.3: DefPairs
// ==================================
// %1 = phi i32 [%2, %BB.1], [%7, %BB.3] (%1,%7)
// ...
// ==================================
// ...
// %4 = sub i32 %1, %3
// ...
// %7 = add i32 %5, %6
// ...
// ----------------------------------
// ...
// %8 = sub i32 %7, %3 (%1,%7),(%4,%8)
// ...
// %9 = add i32 %5, %6 (%1,%7),(%4,%8),(%7,%9)
// ...
// ----------------------------------
// ...
// %10 = sub i32 %9, %3 (%1,%7),(%4,%10),(%7,%9)
// ... ^
// %11 = add i32 %5, %6 (%1,%7),(%4,%10),(%7,%11)
// ...
// ==================================
// < Terminators >
// ==================================
if (DefPairs.count(NewUse))
NewUse = DefPairs[NewUse];
NewMI->substituteRegister(DefRegPair.first, NewUse, 0, *TRI);
}
// DefPairs is updated at last.
for (auto &NewDef : NewDefs)
DefPairs[NewDef.first] = NewDef.second;
MBB->push_back(NewMI);
TriMIs.push_back(NewMI);
TriToOri[NewMI] = MI;
}
}
// Step 3: The registers used by phis are updated, and they are generated in
// the third copy of MBB.
// In the privious example, the old phi is:
// %1 = phi i32 [%2, %BB.1], [%7, %BB.3]
// The new phi is:
// %1 = phi i32 [%2, %BB.1], [%11, %BB.3]
for (auto &Phi : MBB->phis()) {
for (auto DefRegPair : DefPairs)
if (Phi.readsRegister(DefRegPair.first, TRI))
Phi.substituteRegister(DefRegPair.first, DefRegPair.second, 0, *TRI);
}
updateLiveIntervals();
}
void WindowScheduler::restoreTripleMBB() {
// After list scheduling, the MBB is restored in one traversal.
for (size_t I = 0; I < TriMIs.size(); ++I) {
auto *MI = TriMIs[I];
auto OldPos = MBB->begin();
std::advance(OldPos, I);
auto CurPos = MI->getIterator();
if (CurPos != OldPos) {
MBB->splice(OldPos, MBB, CurPos);
Context->LIS->handleMove(*MI, /*UpdateFlags=*/false);
}
}
}
SmallVector<unsigned> WindowScheduler::getSearchIndexes(unsigned SearchNum,
unsigned SearchRatio) {
// We use SearchRatio to get the index range, and then evenly get the indexes
// according to the SearchNum. This is a simple huristic. Depending on the
// characteristics of the target, more complex algorithms can be used for both
// performance and compilation time.
assert(SearchRatio <= 100 && "SearchRatio should be equal or less than 100!");
unsigned MaxIdx = SchedInstrNum * SearchRatio / 100;
unsigned Step = SearchNum > 0 && SearchNum <= MaxIdx ? MaxIdx / SearchNum : 1;
SmallVector<unsigned> SearchIndexes;
for (unsigned Idx = 0; Idx < MaxIdx; Idx += Step)
SearchIndexes.push_back(Idx);
return SearchIndexes;
}
int WindowScheduler::getEstimatedII(ScheduleDAGInstrs &DAG) {
// Sometimes MaxDepth is 0, so it should be limited to the minimum of 1.
unsigned MaxDepth = 1;
for (auto &SU : DAG.SUnits)
MaxDepth = std::max(SU.getDepth() + SU.Latency, MaxDepth);
return MaxDepth * WindowIICoeff;
}
int WindowScheduler::calculateMaxCycle(ScheduleDAGInstrs &DAG,
unsigned Offset) {
int InitII = getEstimatedII(DAG);
ResourceManager RM(Subtarget, &DAG);
RM.init(InitII);
// ResourceManager and DAG are used to calculate the maximum cycle for the
// scheduled MIs. Since MIs in the Region have already been scheduled, the
// emit cycles can be estimated in order here.
int CurCycle = 0;
auto Range = getScheduleRange(Offset, SchedInstrNum);
for (auto &MI : Range) {
auto *SU = DAG.getSUnit(&MI);
int ExpectCycle = CurCycle;
// The predecessors of current MI determine its earliest issue cycle.
for (auto &Pred : SU->Preds) {
auto *PredMI = Pred.getSUnit()->getInstr();
int PredCycle = getOriCycle(PredMI);
ExpectCycle = std::max(ExpectCycle, PredCycle + (int)Pred.getLatency());
}
// ResourceManager can be used to detect resource conflicts between the
// current MI and the previously inserted MIs.
while (!RM.canReserveResources(*SU, CurCycle) || CurCycle < ExpectCycle) {
++CurCycle;
if (CurCycle == (int)WindowIILimit)
return CurCycle;
}
RM.reserveResources(*SU, CurCycle);
OriToCycle[getOriMI(&MI)] = CurCycle;
LLVM_DEBUG(dbgs() << "\tCycle " << CurCycle << " [S."
<< getOriStage(getOriMI(&MI), Offset) << "]: " << MI);
}
LLVM_DEBUG(dbgs() << "MaxCycle is " << CurCycle << ".\n");
return CurCycle;
}
// By utilizing TripleDAG, we can easily establish dependencies between A and B.
// Based on the MaxCycle and the issue cycle of A and B, we can determine
// whether it is necessary to add a stall cycle. This is because, without
// inserting the stall cycle, the latency constraint between A and B cannot be
// satisfied. The details are as follows:
//
// New MBB:
// ========================================
// < Phis >
// ======================================== (sliding direction)
// MBB copy 1 |
// V
//
// ~~~~~~~~~~~~~~~~~~~|~~~~~~~~~~~~~~~~~~~~ ----schedule window-----
// | |
// ===================V==================== |
// MBB copy 2 < MI B > |
// |
// < MI A > V
// ~~~~~~~~~~~~~~~~~~~:~~~~~~~~~~~~~~~~~~~~ ------------------------
// :
// ===================V====================
// MBB copy 3 < MI B'>
//
//
//
//
// ========================================
// < Terminators >
// ========================================
int WindowScheduler::calculateStallCycle(unsigned Offset, int MaxCycle) {
int MaxStallCycle = 0;
auto Range = getScheduleRange(Offset, SchedInstrNum);
for (auto &MI : Range) {
auto *SU = TripleDAG->getSUnit(&MI);
int DefCycle = getOriCycle(&MI);
for (auto &Succ : SU->Succs) {
if (Succ.getSUnit() == &TripleDAG->ExitSU)
continue;
// If the expected cycle does not exceed MaxCycle, no check is needed.
if (DefCycle + (int)Succ.getLatency() <= MaxCycle)
continue;
// If the cycle of the scheduled MI A is less than that of the scheduled
// MI B, the scheduling will fail because the lifetime of the
// corresponding register exceeds II.
auto *SuccMI = Succ.getSUnit()->getInstr();
int UseCycle = getOriCycle(SuccMI);
if (DefCycle < UseCycle)
return WindowIILimit;
// Get the stall cycle introduced by the register between two trips.
int StallCycle = DefCycle + (int)Succ.getLatency() - MaxCycle - UseCycle;
MaxStallCycle = std::max(MaxStallCycle, StallCycle);
}
}
LLVM_DEBUG(dbgs() << "MaxStallCycle is " << MaxStallCycle << ".\n");
return MaxStallCycle;
}
unsigned WindowScheduler::analyseII(ScheduleDAGInstrs &DAG, unsigned Offset) {
LLVM_DEBUG(dbgs() << "Start analyzing II:\n");
int MaxCycle = calculateMaxCycle(DAG, Offset);
if (MaxCycle == (int)WindowIILimit)
return MaxCycle;
int StallCycle = calculateStallCycle(Offset, MaxCycle);
if (StallCycle == (int)WindowIILimit)
return StallCycle;
// The value of II is equal to the maximum execution cycle plus 1.
return MaxCycle + StallCycle + 1;
}
void WindowScheduler::schedulePhi(int Offset, unsigned &II) {
LLVM_DEBUG(dbgs() << "Start scheduling Phis:\n");
for (auto &Phi : MBB->phis()) {
int LateCycle = INT_MAX;
auto *SU = TripleDAG->getSUnit(&Phi);
for (auto &Succ : SU->Succs) {
// Phi doesn't have any Anti successors.
if (Succ.getKind() != SDep::Data)
continue;
// Phi is scheduled before the successor of stage 0. The issue cycle of
// phi is the latest cycle in this interval.
auto *SuccMI = Succ.getSUnit()->getInstr();
int Cycle = getOriCycle(SuccMI);
if (getOriStage(getOriMI(SuccMI), Offset) == 0)
LateCycle = std::min(LateCycle, Cycle);
}
// The anti-dependency of phi need to be handled separately in the same way.
if (Register AntiReg = getAntiRegister(&Phi)) {
auto *AntiMI = MRI->getVRegDef(AntiReg);
auto AntiCycle = getOriCycle(AntiMI);
if (getOriStage(getOriMI(AntiMI), Offset) == 0)
LateCycle = std::min(LateCycle, AntiCycle);
}
// If there is no limit to the late cycle, a default value is given.
if (LateCycle == INT_MAX)
LateCycle = (int)(II - 1);
LLVM_DEBUG(dbgs() << "\tCycle range [0, " << LateCycle << "] " << Phi);
// The issue cycle of phi is set to the latest cycle in the interval.
auto *OriPhi = getOriMI(&Phi);
OriToCycle[OriPhi] = LateCycle;
}
}
DenseMap<MachineInstr *, int> WindowScheduler::getIssueOrder(unsigned Offset,
unsigned II) {
// At each issue cycle, phi is placed before MIs in stage 0. So the simplest
// way is to put phi at the beginning of the current cycle.
DenseMap<int, SmallVector<MachineInstr *>> CycleToMIs;
auto Range = getScheduleRange(Offset, SchedInstrNum);
for (auto &Phi : MBB->phis())
CycleToMIs[getOriCycle(&Phi)].push_back(getOriMI(&Phi));
for (auto &MI : Range)
CycleToMIs[getOriCycle(&MI)].push_back(getOriMI(&MI));
// Each MI is assigned a separate ordered Id, which is used as a sort marker
// in the following expand process.
DenseMap<MachineInstr *, int> IssueOrder;
int Id = 0;
for (int Cycle = 0; Cycle < (int)II; ++Cycle) {
if (!CycleToMIs.count(Cycle))
continue;
for (auto *MI : CycleToMIs[Cycle])
IssueOrder[MI] = Id++;
}
return IssueOrder;
}
void WindowScheduler::updateScheduleResult(unsigned Offset, unsigned II) {
// At the first update, Offset is equal to SchedPhiNum. At this time, only
// BestII, BestOffset, and BaseII need to be updated.
if (Offset == SchedPhiNum) {
BestII = II;
BestOffset = SchedPhiNum;
BaseII = II;
return;
}
// The update will only continue if the II is smaller than BestII and the II
// is sufficiently small.
if ((II >= BestII) || (II + WindowDiffLimit > BaseII))
return;
BestII = II;
BestOffset = Offset;
// Record the result of the current list scheduling, noting that each MI is
// stored unordered in SchedResult.
SchedResult.clear();
auto IssueOrder = getIssueOrder(Offset, II);
for (auto &Pair : OriToCycle) {
assert(IssueOrder.count(Pair.first) && "Cannot find original MI!");
SchedResult.push_back(std::make_tuple(Pair.first, Pair.second,
getOriStage(Pair.first, Offset),
IssueOrder[Pair.first]));
}
}
void WindowScheduler::expand() {
// The MIs in the SchedResult are sorted by the issue order ID.
llvm::stable_sort(SchedResult,
[](const std::tuple<MachineInstr *, int, int, int> &A,
const std::tuple<MachineInstr *, int, int, int> &B) {
return std::get<3>(A) < std::get<3>(B);
});
// Use the scheduling infrastructure for expansion, noting that InstrChanges
// is not supported here.
DenseMap<MachineInstr *, int> Cycles, Stages;
std::vector<MachineInstr *> OrderedInsts;
for (auto &Info : SchedResult) {
auto *MI = std::get<0>(Info);
OrderedInsts.push_back(MI);
Cycles[MI] = std::get<1>(Info);
Stages[MI] = std::get<2>(Info);
LLVM_DEBUG(dbgs() << "\tCycle " << Cycles[MI] << " [S." << Stages[MI]
<< "]: " << *MI);
}
ModuloSchedule MS(*MF, &Loop, std::move(OrderedInsts), std::move(Cycles),
std::move(Stages));
ModuloScheduleExpander MSE(*MF, MS, *Context->LIS,
ModuloScheduleExpander::InstrChangesTy());
MSE.expand();
MSE.cleanup();
}
void WindowScheduler::updateLiveIntervals() {
SmallVector<Register, 128> UsedRegs;
for (MachineInstr &MI : *MBB)
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isReg() || MO.getReg() == 0)
continue;
Register Reg = MO.getReg();
if (!is_contained(UsedRegs, Reg))
UsedRegs.push_back(Reg);
}
Context->LIS->repairIntervalsInRange(MBB, MBB->begin(), MBB->end(), UsedRegs);
}
iterator_range<MachineBasicBlock::iterator>
WindowScheduler::getScheduleRange(unsigned Offset, unsigned Num) {
auto RegionBegin = MBB->begin();
std::advance(RegionBegin, Offset);
auto RegionEnd = RegionBegin;
std::advance(RegionEnd, Num);
return make_range(RegionBegin, RegionEnd);
}
int WindowScheduler::getOriCycle(MachineInstr *NewMI) {
assert(TriToOri.count(NewMI) && "Cannot find original MI!");
auto *OriMI = TriToOri[NewMI];
assert(OriToCycle.count(OriMI) && "Cannot find schedule cycle!");
return OriToCycle[OriMI];
}
MachineInstr *WindowScheduler::getOriMI(MachineInstr *NewMI) {
assert(TriToOri.count(NewMI) && "Cannot find original MI!");
return TriToOri[NewMI];
}
unsigned WindowScheduler::getOriStage(MachineInstr *OriMI, unsigned Offset) {
assert(llvm::find(OriMIs, OriMI) != OriMIs.end() &&
"Cannot find OriMI in OriMIs!");
// If there is no instruction fold, all MI stages are 0.
if (Offset == SchedPhiNum)
return 0;
// For those MIs with an ID less than the Offset, their stages are set to 0,
// while the rest are set to 1.
unsigned Id = 0;
for (auto *MI : OriMIs) {
if (MI->isMetaInstruction())
continue;
if (MI == OriMI)
break;
++Id;
}
return Id >= (size_t)Offset ? 1 : 0;
}
Register WindowScheduler::getAntiRegister(MachineInstr *Phi) {
assert(Phi->isPHI() && "Expecting PHI!");
Register AntiReg;
for (auto MO : Phi->uses()) {
if (MO.isReg())
AntiReg = MO.getReg();
else if (MO.isMBB() && MO.getMBB()->getNumber() == MBB->getNumber())
return AntiReg;
}
return 0;
}