mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-16 11:36:46 +00:00

This implements arm, armeb, thumb, thumbeb PLT entries parsing support in ELF for llvm-objdump. Implementation is similar to AArch64MCInstrAnalysis::findPltEntries. PLT entry signatures are based on LLD code for PLT generation (ARM::writePlt). llvm-objdump tests are produced from lld/test/ELF/arm-plt-reloc.s, lld/test/ELF/armv8-thumb-plt-reloc.s.
824 lines
30 KiB
C++
824 lines
30 KiB
C++
//===-- ARMMCTargetDesc.cpp - ARM Target Descriptions ---------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file provides ARM specific target descriptions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "ARMMCTargetDesc.h"
|
|
#include "ARMAddressingModes.h"
|
|
#include "ARMBaseInfo.h"
|
|
#include "ARMInstPrinter.h"
|
|
#include "ARMMCAsmInfo.h"
|
|
#include "TargetInfo/ARMTargetInfo.h"
|
|
#include "llvm/DebugInfo/CodeView/CodeView.h"
|
|
#include "llvm/MC/MCAsmBackend.h"
|
|
#include "llvm/MC/MCCodeEmitter.h"
|
|
#include "llvm/MC/MCELFStreamer.h"
|
|
#include "llvm/MC/MCInstrAnalysis.h"
|
|
#include "llvm/MC/MCInstrInfo.h"
|
|
#include "llvm/MC/MCObjectWriter.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/MC/MCSubtargetInfo.h"
|
|
#include "llvm/MC/TargetRegistry.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/TargetParser/Triple.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define GET_REGINFO_MC_DESC
|
|
#include "ARMGenRegisterInfo.inc"
|
|
|
|
static bool getMCRDeprecationInfo(MCInst &MI, const MCSubtargetInfo &STI,
|
|
std::string &Info) {
|
|
if (STI.hasFeature(llvm::ARM::HasV7Ops) &&
|
|
(MI.getOperand(0).isImm() && MI.getOperand(0).getImm() == 15) &&
|
|
(MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 0) &&
|
|
// Checks for the deprecated CP15ISB encoding:
|
|
// mcr p15, #0, rX, c7, c5, #4
|
|
(MI.getOperand(3).isImm() && MI.getOperand(3).getImm() == 7)) {
|
|
if ((MI.getOperand(5).isImm() && MI.getOperand(5).getImm() == 4)) {
|
|
if (MI.getOperand(4).isImm() && MI.getOperand(4).getImm() == 5) {
|
|
Info = "deprecated since v7, use 'isb'";
|
|
return true;
|
|
}
|
|
|
|
// Checks for the deprecated CP15DSB encoding:
|
|
// mcr p15, #0, rX, c7, c10, #4
|
|
if (MI.getOperand(4).isImm() && MI.getOperand(4).getImm() == 10) {
|
|
Info = "deprecated since v7, use 'dsb'";
|
|
return true;
|
|
}
|
|
}
|
|
// Checks for the deprecated CP15DMB encoding:
|
|
// mcr p15, #0, rX, c7, c10, #5
|
|
if (MI.getOperand(4).isImm() && MI.getOperand(4).getImm() == 10 &&
|
|
(MI.getOperand(5).isImm() && MI.getOperand(5).getImm() == 5)) {
|
|
Info = "deprecated since v7, use 'dmb'";
|
|
return true;
|
|
}
|
|
}
|
|
if (STI.hasFeature(llvm::ARM::HasV7Ops) &&
|
|
((MI.getOperand(0).isImm() && MI.getOperand(0).getImm() == 10) ||
|
|
(MI.getOperand(0).isImm() && MI.getOperand(0).getImm() == 11))) {
|
|
Info = "since v7, cp10 and cp11 are reserved for advanced SIMD or floating "
|
|
"point instructions";
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool getMRCDeprecationInfo(MCInst &MI, const MCSubtargetInfo &STI,
|
|
std::string &Info) {
|
|
if (STI.hasFeature(llvm::ARM::HasV7Ops) &&
|
|
((MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 10) ||
|
|
(MI.getOperand(1).isImm() && MI.getOperand(1).getImm() == 11))) {
|
|
Info = "since v7, cp10 and cp11 are reserved for advanced SIMD or floating "
|
|
"point instructions";
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool getARMStoreDeprecationInfo(MCInst &MI, const MCSubtargetInfo &STI,
|
|
std::string &Info) {
|
|
assert(!STI.hasFeature(llvm::ARM::ModeThumb) &&
|
|
"cannot predicate thumb instructions");
|
|
|
|
assert(MI.getNumOperands() >= 4 && "expected >= 4 arguments");
|
|
for (unsigned OI = 4, OE = MI.getNumOperands(); OI < OE; ++OI) {
|
|
assert(MI.getOperand(OI).isReg() && "expected register");
|
|
if (MI.getOperand(OI).getReg() == ARM::PC) {
|
|
Info = "use of PC in the list is deprecated";
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool getARMLoadDeprecationInfo(MCInst &MI, const MCSubtargetInfo &STI,
|
|
std::string &Info) {
|
|
assert(!STI.hasFeature(llvm::ARM::ModeThumb) &&
|
|
"cannot predicate thumb instructions");
|
|
|
|
assert(MI.getNumOperands() >= 4 && "expected >= 4 arguments");
|
|
bool ListContainsPC = false, ListContainsLR = false;
|
|
for (unsigned OI = 4, OE = MI.getNumOperands(); OI < OE; ++OI) {
|
|
assert(MI.getOperand(OI).isReg() && "expected register");
|
|
switch (MI.getOperand(OI).getReg().id()) {
|
|
default:
|
|
break;
|
|
case ARM::LR:
|
|
ListContainsLR = true;
|
|
break;
|
|
case ARM::PC:
|
|
ListContainsPC = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ListContainsPC && ListContainsLR) {
|
|
Info = "use of LR and PC simultaneously in the list is deprecated";
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
#define GET_INSTRINFO_MC_DESC
|
|
#define ENABLE_INSTR_PREDICATE_VERIFIER
|
|
#include "ARMGenInstrInfo.inc"
|
|
|
|
#define GET_SUBTARGETINFO_MC_DESC
|
|
#include "ARMGenSubtargetInfo.inc"
|
|
|
|
std::string ARM_MC::ParseARMTriple(const Triple &TT, StringRef CPU) {
|
|
std::string ARMArchFeature;
|
|
|
|
ARM::ArchKind ArchID = ARM::parseArch(TT.getArchName());
|
|
if (ArchID != ARM::ArchKind::INVALID && (CPU.empty() || CPU == "generic"))
|
|
ARMArchFeature = (ARMArchFeature + "+" + ARM::getArchName(ArchID)).str();
|
|
|
|
if (TT.isThumb()) {
|
|
if (!ARMArchFeature.empty())
|
|
ARMArchFeature += ",";
|
|
ARMArchFeature += "+thumb-mode,+v4t";
|
|
}
|
|
|
|
if (TT.isOSNaCl()) {
|
|
if (!ARMArchFeature.empty())
|
|
ARMArchFeature += ",";
|
|
ARMArchFeature += "+nacl-trap";
|
|
}
|
|
|
|
if (TT.isOSWindows()) {
|
|
if (!ARMArchFeature.empty())
|
|
ARMArchFeature += ",";
|
|
ARMArchFeature += "+noarm";
|
|
}
|
|
|
|
return ARMArchFeature;
|
|
}
|
|
|
|
bool ARM_MC::isPredicated(const MCInst &MI, const MCInstrInfo *MCII) {
|
|
const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
|
|
int PredOpIdx = Desc.findFirstPredOperandIdx();
|
|
return PredOpIdx != -1 && MI.getOperand(PredOpIdx).getImm() != ARMCC::AL;
|
|
}
|
|
|
|
bool ARM_MC::isCPSRDefined(const MCInst &MI, const MCInstrInfo *MCII) {
|
|
const MCInstrDesc &Desc = MCII->get(MI.getOpcode());
|
|
for (unsigned I = 0; I < MI.getNumOperands(); ++I) {
|
|
const MCOperand &MO = MI.getOperand(I);
|
|
if (MO.isReg() && MO.getReg() == ARM::CPSR &&
|
|
Desc.operands()[I].isOptionalDef())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
uint64_t ARM_MC::evaluateBranchTarget(const MCInstrDesc &InstDesc,
|
|
uint64_t Addr, int64_t Imm) {
|
|
// For ARM instructions the PC offset is 8 bytes, for Thumb instructions it
|
|
// is 4 bytes.
|
|
uint64_t Offset =
|
|
((InstDesc.TSFlags & ARMII::FormMask) == ARMII::ThumbFrm) ? 4 : 8;
|
|
|
|
// A Thumb instruction BLX(i) can be 16-bit aligned while targets Arm code
|
|
// which is 32-bit aligned. The target address for the case is calculated as
|
|
// targetAddress = Align(PC,4) + imm32;
|
|
// where
|
|
// Align(x, y) = y * (x DIV y);
|
|
if (InstDesc.getOpcode() == ARM::tBLXi)
|
|
Addr &= ~0x3;
|
|
|
|
return Addr + Imm + Offset;
|
|
}
|
|
|
|
MCSubtargetInfo *ARM_MC::createARMMCSubtargetInfo(const Triple &TT,
|
|
StringRef CPU, StringRef FS) {
|
|
std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU);
|
|
if (!FS.empty()) {
|
|
if (!ArchFS.empty())
|
|
ArchFS = (Twine(ArchFS) + "," + FS).str();
|
|
else
|
|
ArchFS = std::string(FS);
|
|
}
|
|
|
|
return createARMMCSubtargetInfoImpl(TT, CPU, /*TuneCPU*/ CPU, ArchFS);
|
|
}
|
|
|
|
static MCInstrInfo *createARMMCInstrInfo() {
|
|
MCInstrInfo *X = new MCInstrInfo();
|
|
InitARMMCInstrInfo(X);
|
|
return X;
|
|
}
|
|
|
|
void ARM_MC::initLLVMToCVRegMapping(MCRegisterInfo *MRI) {
|
|
// Mapping from CodeView to MC register id.
|
|
static const struct {
|
|
codeview::RegisterId CVReg;
|
|
MCPhysReg Reg;
|
|
} RegMap[] = {
|
|
{codeview::RegisterId::ARM_R0, ARM::R0},
|
|
{codeview::RegisterId::ARM_R1, ARM::R1},
|
|
{codeview::RegisterId::ARM_R2, ARM::R2},
|
|
{codeview::RegisterId::ARM_R3, ARM::R3},
|
|
{codeview::RegisterId::ARM_R4, ARM::R4},
|
|
{codeview::RegisterId::ARM_R5, ARM::R5},
|
|
{codeview::RegisterId::ARM_R6, ARM::R6},
|
|
{codeview::RegisterId::ARM_R7, ARM::R7},
|
|
{codeview::RegisterId::ARM_R8, ARM::R8},
|
|
{codeview::RegisterId::ARM_R9, ARM::R9},
|
|
{codeview::RegisterId::ARM_R10, ARM::R10},
|
|
{codeview::RegisterId::ARM_R11, ARM::R11},
|
|
{codeview::RegisterId::ARM_R12, ARM::R12},
|
|
{codeview::RegisterId::ARM_SP, ARM::SP},
|
|
{codeview::RegisterId::ARM_LR, ARM::LR},
|
|
{codeview::RegisterId::ARM_PC, ARM::PC},
|
|
{codeview::RegisterId::ARM_CPSR, ARM::CPSR},
|
|
{codeview::RegisterId::ARM_FPSCR, ARM::FPSCR},
|
|
{codeview::RegisterId::ARM_FPEXC, ARM::FPEXC},
|
|
{codeview::RegisterId::ARM_FS0, ARM::S0},
|
|
{codeview::RegisterId::ARM_FS1, ARM::S1},
|
|
{codeview::RegisterId::ARM_FS2, ARM::S2},
|
|
{codeview::RegisterId::ARM_FS3, ARM::S3},
|
|
{codeview::RegisterId::ARM_FS4, ARM::S4},
|
|
{codeview::RegisterId::ARM_FS5, ARM::S5},
|
|
{codeview::RegisterId::ARM_FS6, ARM::S6},
|
|
{codeview::RegisterId::ARM_FS7, ARM::S7},
|
|
{codeview::RegisterId::ARM_FS8, ARM::S8},
|
|
{codeview::RegisterId::ARM_FS9, ARM::S9},
|
|
{codeview::RegisterId::ARM_FS10, ARM::S10},
|
|
{codeview::RegisterId::ARM_FS11, ARM::S11},
|
|
{codeview::RegisterId::ARM_FS12, ARM::S12},
|
|
{codeview::RegisterId::ARM_FS13, ARM::S13},
|
|
{codeview::RegisterId::ARM_FS14, ARM::S14},
|
|
{codeview::RegisterId::ARM_FS15, ARM::S15},
|
|
{codeview::RegisterId::ARM_FS16, ARM::S16},
|
|
{codeview::RegisterId::ARM_FS17, ARM::S17},
|
|
{codeview::RegisterId::ARM_FS18, ARM::S18},
|
|
{codeview::RegisterId::ARM_FS19, ARM::S19},
|
|
{codeview::RegisterId::ARM_FS20, ARM::S20},
|
|
{codeview::RegisterId::ARM_FS21, ARM::S21},
|
|
{codeview::RegisterId::ARM_FS22, ARM::S22},
|
|
{codeview::RegisterId::ARM_FS23, ARM::S23},
|
|
{codeview::RegisterId::ARM_FS24, ARM::S24},
|
|
{codeview::RegisterId::ARM_FS25, ARM::S25},
|
|
{codeview::RegisterId::ARM_FS26, ARM::S26},
|
|
{codeview::RegisterId::ARM_FS27, ARM::S27},
|
|
{codeview::RegisterId::ARM_FS28, ARM::S28},
|
|
{codeview::RegisterId::ARM_FS29, ARM::S29},
|
|
{codeview::RegisterId::ARM_FS30, ARM::S30},
|
|
{codeview::RegisterId::ARM_FS31, ARM::S31},
|
|
{codeview::RegisterId::ARM_ND0, ARM::D0},
|
|
{codeview::RegisterId::ARM_ND1, ARM::D1},
|
|
{codeview::RegisterId::ARM_ND2, ARM::D2},
|
|
{codeview::RegisterId::ARM_ND3, ARM::D3},
|
|
{codeview::RegisterId::ARM_ND4, ARM::D4},
|
|
{codeview::RegisterId::ARM_ND5, ARM::D5},
|
|
{codeview::RegisterId::ARM_ND6, ARM::D6},
|
|
{codeview::RegisterId::ARM_ND7, ARM::D7},
|
|
{codeview::RegisterId::ARM_ND8, ARM::D8},
|
|
{codeview::RegisterId::ARM_ND9, ARM::D9},
|
|
{codeview::RegisterId::ARM_ND10, ARM::D10},
|
|
{codeview::RegisterId::ARM_ND11, ARM::D11},
|
|
{codeview::RegisterId::ARM_ND12, ARM::D12},
|
|
{codeview::RegisterId::ARM_ND13, ARM::D13},
|
|
{codeview::RegisterId::ARM_ND14, ARM::D14},
|
|
{codeview::RegisterId::ARM_ND15, ARM::D15},
|
|
{codeview::RegisterId::ARM_ND16, ARM::D16},
|
|
{codeview::RegisterId::ARM_ND17, ARM::D17},
|
|
{codeview::RegisterId::ARM_ND18, ARM::D18},
|
|
{codeview::RegisterId::ARM_ND19, ARM::D19},
|
|
{codeview::RegisterId::ARM_ND20, ARM::D20},
|
|
{codeview::RegisterId::ARM_ND21, ARM::D21},
|
|
{codeview::RegisterId::ARM_ND22, ARM::D22},
|
|
{codeview::RegisterId::ARM_ND23, ARM::D23},
|
|
{codeview::RegisterId::ARM_ND24, ARM::D24},
|
|
{codeview::RegisterId::ARM_ND25, ARM::D25},
|
|
{codeview::RegisterId::ARM_ND26, ARM::D26},
|
|
{codeview::RegisterId::ARM_ND27, ARM::D27},
|
|
{codeview::RegisterId::ARM_ND28, ARM::D28},
|
|
{codeview::RegisterId::ARM_ND29, ARM::D29},
|
|
{codeview::RegisterId::ARM_ND30, ARM::D30},
|
|
{codeview::RegisterId::ARM_ND31, ARM::D31},
|
|
{codeview::RegisterId::ARM_NQ0, ARM::Q0},
|
|
{codeview::RegisterId::ARM_NQ1, ARM::Q1},
|
|
{codeview::RegisterId::ARM_NQ2, ARM::Q2},
|
|
{codeview::RegisterId::ARM_NQ3, ARM::Q3},
|
|
{codeview::RegisterId::ARM_NQ4, ARM::Q4},
|
|
{codeview::RegisterId::ARM_NQ5, ARM::Q5},
|
|
{codeview::RegisterId::ARM_NQ6, ARM::Q6},
|
|
{codeview::RegisterId::ARM_NQ7, ARM::Q7},
|
|
{codeview::RegisterId::ARM_NQ8, ARM::Q8},
|
|
{codeview::RegisterId::ARM_NQ9, ARM::Q9},
|
|
{codeview::RegisterId::ARM_NQ10, ARM::Q10},
|
|
{codeview::RegisterId::ARM_NQ11, ARM::Q11},
|
|
{codeview::RegisterId::ARM_NQ12, ARM::Q12},
|
|
{codeview::RegisterId::ARM_NQ13, ARM::Q13},
|
|
{codeview::RegisterId::ARM_NQ14, ARM::Q14},
|
|
{codeview::RegisterId::ARM_NQ15, ARM::Q15},
|
|
};
|
|
for (const auto &I : RegMap)
|
|
MRI->mapLLVMRegToCVReg(I.Reg, static_cast<int>(I.CVReg));
|
|
}
|
|
|
|
static MCRegisterInfo *createARMMCRegisterInfo(const Triple &Triple) {
|
|
MCRegisterInfo *X = new MCRegisterInfo();
|
|
InitARMMCRegisterInfo(X, ARM::LR, 0, 0, ARM::PC);
|
|
ARM_MC::initLLVMToCVRegMapping(X);
|
|
return X;
|
|
}
|
|
|
|
static MCAsmInfo *createARMMCAsmInfo(const MCRegisterInfo &MRI,
|
|
const Triple &TheTriple,
|
|
const MCTargetOptions &Options) {
|
|
MCAsmInfo *MAI;
|
|
if (TheTriple.isOSDarwin() || TheTriple.isOSBinFormatMachO())
|
|
MAI = new ARMMCAsmInfoDarwin(TheTriple);
|
|
else if (TheTriple.isWindowsMSVCEnvironment())
|
|
MAI = new ARMCOFFMCAsmInfoMicrosoft();
|
|
else if (TheTriple.isOSWindows())
|
|
MAI = new ARMCOFFMCAsmInfoGNU();
|
|
else
|
|
MAI = new ARMELFMCAsmInfo(TheTriple);
|
|
|
|
unsigned Reg = MRI.getDwarfRegNum(ARM::SP, true);
|
|
MAI->addInitialFrameState(MCCFIInstruction::cfiDefCfa(nullptr, Reg, 0));
|
|
|
|
return MAI;
|
|
}
|
|
|
|
static MCStreamer *createELFStreamer(const Triple &T, MCContext &Ctx,
|
|
std::unique_ptr<MCAsmBackend> &&MAB,
|
|
std::unique_ptr<MCObjectWriter> &&OW,
|
|
std::unique_ptr<MCCodeEmitter> &&Emitter) {
|
|
return createARMELFStreamer(
|
|
Ctx, std::move(MAB), std::move(OW), std::move(Emitter),
|
|
(T.getArch() == Triple::thumb || T.getArch() == Triple::thumbeb),
|
|
T.isAndroid());
|
|
}
|
|
|
|
static MCStreamer *
|
|
createARMMachOStreamer(MCContext &Ctx, std::unique_ptr<MCAsmBackend> &&MAB,
|
|
std::unique_ptr<MCObjectWriter> &&OW,
|
|
std::unique_ptr<MCCodeEmitter> &&Emitter) {
|
|
return createMachOStreamer(Ctx, std::move(MAB), std::move(OW),
|
|
std::move(Emitter), false);
|
|
}
|
|
|
|
static MCInstPrinter *createARMMCInstPrinter(const Triple &T,
|
|
unsigned SyntaxVariant,
|
|
const MCAsmInfo &MAI,
|
|
const MCInstrInfo &MII,
|
|
const MCRegisterInfo &MRI) {
|
|
if (SyntaxVariant == 0)
|
|
return new ARMInstPrinter(MAI, MII, MRI);
|
|
return nullptr;
|
|
}
|
|
|
|
static MCRelocationInfo *createARMMCRelocationInfo(const Triple &TT,
|
|
MCContext &Ctx) {
|
|
if (TT.isOSBinFormatMachO())
|
|
return createARMMachORelocationInfo(Ctx);
|
|
// Default to the stock relocation info.
|
|
return llvm::createMCRelocationInfo(TT, Ctx);
|
|
}
|
|
|
|
namespace {
|
|
|
|
class ARMMCInstrAnalysis : public MCInstrAnalysis {
|
|
public:
|
|
ARMMCInstrAnalysis(const MCInstrInfo *Info) : MCInstrAnalysis(Info) {}
|
|
|
|
bool isUnconditionalBranch(const MCInst &Inst) const override {
|
|
// BCCs with the "always" predicate are unconditional branches.
|
|
if (Inst.getOpcode() == ARM::Bcc && Inst.getOperand(1).getImm()==ARMCC::AL)
|
|
return true;
|
|
return MCInstrAnalysis::isUnconditionalBranch(Inst);
|
|
}
|
|
|
|
bool isConditionalBranch(const MCInst &Inst) const override {
|
|
// BCCs with the "always" predicate are unconditional branches.
|
|
if (Inst.getOpcode() == ARM::Bcc && Inst.getOperand(1).getImm()==ARMCC::AL)
|
|
return false;
|
|
return MCInstrAnalysis::isConditionalBranch(Inst);
|
|
}
|
|
|
|
bool evaluateBranch(const MCInst &Inst, uint64_t Addr, uint64_t Size,
|
|
uint64_t &Target) const override {
|
|
const MCInstrDesc &Desc = Info->get(Inst.getOpcode());
|
|
|
|
// Find the PC-relative immediate operand in the instruction.
|
|
for (unsigned OpNum = 0; OpNum < Desc.getNumOperands(); ++OpNum) {
|
|
if (Inst.getOperand(OpNum).isImm() &&
|
|
Desc.operands()[OpNum].OperandType == MCOI::OPERAND_PCREL) {
|
|
int64_t Imm = Inst.getOperand(OpNum).getImm();
|
|
Target = ARM_MC::evaluateBranchTarget(Desc, Addr, Imm);
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
std::optional<uint64_t>
|
|
evaluateMemoryOperandAddress(const MCInst &Inst, const MCSubtargetInfo *STI,
|
|
uint64_t Addr, uint64_t Size) const override;
|
|
|
|
std::vector<std::pair<uint64_t, uint64_t>>
|
|
findPltEntries(uint64_t PltSectionVA, ArrayRef<uint8_t> PltContents,
|
|
const MCSubtargetInfo &STI) const override;
|
|
};
|
|
|
|
} // namespace
|
|
|
|
static std::optional<uint64_t>
|
|
// NOLINTNEXTLINE(readability-identifier-naming)
|
|
evaluateMemOpAddrForAddrMode_i12(const MCInst &Inst, const MCInstrDesc &Desc,
|
|
unsigned MemOpIndex, uint64_t Addr) {
|
|
if (MemOpIndex + 1 >= Desc.getNumOperands())
|
|
return std::nullopt;
|
|
|
|
const MCOperand &MO1 = Inst.getOperand(MemOpIndex);
|
|
const MCOperand &MO2 = Inst.getOperand(MemOpIndex + 1);
|
|
if (!MO1.isReg() || MO1.getReg() != ARM::PC || !MO2.isImm())
|
|
return std::nullopt;
|
|
|
|
int32_t OffImm = (int32_t)MO2.getImm();
|
|
// Special value for #-0. All others are normal.
|
|
if (OffImm == INT32_MIN)
|
|
OffImm = 0;
|
|
return Addr + OffImm;
|
|
}
|
|
|
|
static std::optional<uint64_t>
|
|
evaluateMemOpAddrForAddrMode3(const MCInst &Inst, const MCInstrDesc &Desc,
|
|
unsigned MemOpIndex, uint64_t Addr) {
|
|
if (MemOpIndex + 2 >= Desc.getNumOperands())
|
|
return std::nullopt;
|
|
|
|
const MCOperand &MO1 = Inst.getOperand(MemOpIndex);
|
|
const MCOperand &MO2 = Inst.getOperand(MemOpIndex + 1);
|
|
const MCOperand &MO3 = Inst.getOperand(MemOpIndex + 2);
|
|
if (!MO1.isReg() || MO1.getReg() != ARM::PC || MO2.getReg() || !MO3.isImm())
|
|
return std::nullopt;
|
|
|
|
unsigned ImmOffs = ARM_AM::getAM3Offset(MO3.getImm());
|
|
ARM_AM::AddrOpc Op = ARM_AM::getAM3Op(MO3.getImm());
|
|
|
|
if (Op == ARM_AM::sub)
|
|
return Addr - ImmOffs;
|
|
return Addr + ImmOffs;
|
|
}
|
|
|
|
static std::optional<uint64_t>
|
|
evaluateMemOpAddrForAddrMode5(const MCInst &Inst, const MCInstrDesc &Desc,
|
|
unsigned MemOpIndex, uint64_t Addr) {
|
|
if (MemOpIndex + 1 >= Desc.getNumOperands())
|
|
return std::nullopt;
|
|
|
|
const MCOperand &MO1 = Inst.getOperand(MemOpIndex);
|
|
const MCOperand &MO2 = Inst.getOperand(MemOpIndex + 1);
|
|
if (!MO1.isReg() || MO1.getReg() != ARM::PC || !MO2.isImm())
|
|
return std::nullopt;
|
|
|
|
unsigned ImmOffs = ARM_AM::getAM5Offset(MO2.getImm());
|
|
ARM_AM::AddrOpc Op = ARM_AM::getAM5Op(MO2.getImm());
|
|
|
|
if (Op == ARM_AM::sub)
|
|
return Addr - ImmOffs * 4;
|
|
return Addr + ImmOffs * 4;
|
|
}
|
|
|
|
static std::optional<uint64_t>
|
|
evaluateMemOpAddrForAddrMode5FP16(const MCInst &Inst, const MCInstrDesc &Desc,
|
|
unsigned MemOpIndex, uint64_t Addr) {
|
|
if (MemOpIndex + 1 >= Desc.getNumOperands())
|
|
return std::nullopt;
|
|
|
|
const MCOperand &MO1 = Inst.getOperand(MemOpIndex);
|
|
const MCOperand &MO2 = Inst.getOperand(MemOpIndex + 1);
|
|
if (!MO1.isReg() || MO1.getReg() != ARM::PC || !MO2.isImm())
|
|
return std::nullopt;
|
|
|
|
unsigned ImmOffs = ARM_AM::getAM5FP16Offset(MO2.getImm());
|
|
ARM_AM::AddrOpc Op = ARM_AM::getAM5FP16Op(MO2.getImm());
|
|
|
|
if (Op == ARM_AM::sub)
|
|
return Addr - ImmOffs * 2;
|
|
return Addr + ImmOffs * 2;
|
|
}
|
|
|
|
static std::optional<uint64_t>
|
|
// NOLINTNEXTLINE(readability-identifier-naming)
|
|
evaluateMemOpAddrForAddrModeT2_i8s4(const MCInst &Inst, const MCInstrDesc &Desc,
|
|
unsigned MemOpIndex, uint64_t Addr) {
|
|
if (MemOpIndex + 1 >= Desc.getNumOperands())
|
|
return std::nullopt;
|
|
|
|
const MCOperand &MO1 = Inst.getOperand(MemOpIndex);
|
|
const MCOperand &MO2 = Inst.getOperand(MemOpIndex + 1);
|
|
if (!MO1.isReg() || MO1.getReg() != ARM::PC || !MO2.isImm())
|
|
return std::nullopt;
|
|
|
|
int32_t OffImm = (int32_t)MO2.getImm();
|
|
assert(((OffImm & 0x3) == 0) && "Not a valid immediate!");
|
|
|
|
// Special value for #-0. All others are normal.
|
|
if (OffImm == INT32_MIN)
|
|
OffImm = 0;
|
|
return Addr + OffImm;
|
|
}
|
|
|
|
static std::optional<uint64_t>
|
|
// NOLINTNEXTLINE(readability-identifier-naming)
|
|
evaluateMemOpAddrForAddrModeT2_pc(const MCInst &Inst, const MCInstrDesc &Desc,
|
|
unsigned MemOpIndex, uint64_t Addr) {
|
|
const MCOperand &MO1 = Inst.getOperand(MemOpIndex);
|
|
if (!MO1.isImm())
|
|
return std::nullopt;
|
|
|
|
int32_t OffImm = (int32_t)MO1.getImm();
|
|
|
|
// Special value for #-0. All others are normal.
|
|
if (OffImm == INT32_MIN)
|
|
OffImm = 0;
|
|
return Addr + OffImm;
|
|
}
|
|
|
|
static std::optional<uint64_t>
|
|
// NOLINTNEXTLINE(readability-identifier-naming)
|
|
evaluateMemOpAddrForAddrModeT1_s(const MCInst &Inst, const MCInstrDesc &Desc,
|
|
unsigned MemOpIndex, uint64_t Addr) {
|
|
return evaluateMemOpAddrForAddrModeT2_pc(Inst, Desc, MemOpIndex, Addr);
|
|
}
|
|
|
|
std::optional<uint64_t> ARMMCInstrAnalysis::evaluateMemoryOperandAddress(
|
|
const MCInst &Inst, const MCSubtargetInfo *STI, uint64_t Addr,
|
|
uint64_t Size) const {
|
|
const MCInstrDesc &Desc = Info->get(Inst.getOpcode());
|
|
|
|
// Only load instructions can have PC-relative memory addressing.
|
|
if (!Desc.mayLoad())
|
|
return std::nullopt;
|
|
|
|
// PC-relative addressing does not update the base register.
|
|
uint64_t TSFlags = Desc.TSFlags;
|
|
unsigned IndexMode =
|
|
(TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift;
|
|
if (IndexMode != ARMII::IndexModeNone)
|
|
return std::nullopt;
|
|
|
|
// Find the memory addressing operand in the instruction.
|
|
unsigned OpIndex = Desc.NumDefs;
|
|
while (OpIndex < Desc.getNumOperands() &&
|
|
Desc.operands()[OpIndex].OperandType != MCOI::OPERAND_MEMORY)
|
|
++OpIndex;
|
|
if (OpIndex == Desc.getNumOperands())
|
|
return std::nullopt;
|
|
|
|
// Base address for PC-relative addressing is always 32-bit aligned.
|
|
Addr &= ~0x3;
|
|
|
|
// For ARM instructions the PC offset is 8 bytes, for Thumb instructions it
|
|
// is 4 bytes.
|
|
switch (Desc.TSFlags & ARMII::FormMask) {
|
|
default:
|
|
Addr += 8;
|
|
break;
|
|
case ARMII::ThumbFrm:
|
|
Addr += 4;
|
|
break;
|
|
// VLDR* instructions share the same opcode (and thus the same form) for Arm
|
|
// and Thumb. Use a bit longer route through STI in that case.
|
|
case ARMII::VFPLdStFrm:
|
|
Addr += STI->hasFeature(ARM::ModeThumb) ? 4 : 8;
|
|
break;
|
|
}
|
|
|
|
// Eveluate the address depending on the addressing mode
|
|
unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
|
|
switch (AddrMode) {
|
|
default:
|
|
return std::nullopt;
|
|
case ARMII::AddrMode_i12:
|
|
return evaluateMemOpAddrForAddrMode_i12(Inst, Desc, OpIndex, Addr);
|
|
case ARMII::AddrMode3:
|
|
return evaluateMemOpAddrForAddrMode3(Inst, Desc, OpIndex, Addr);
|
|
case ARMII::AddrMode5:
|
|
return evaluateMemOpAddrForAddrMode5(Inst, Desc, OpIndex, Addr);
|
|
case ARMII::AddrMode5FP16:
|
|
return evaluateMemOpAddrForAddrMode5FP16(Inst, Desc, OpIndex, Addr);
|
|
case ARMII::AddrModeT2_i8s4:
|
|
return evaluateMemOpAddrForAddrModeT2_i8s4(Inst, Desc, OpIndex, Addr);
|
|
case ARMII::AddrModeT2_pc:
|
|
return evaluateMemOpAddrForAddrModeT2_pc(Inst, Desc, OpIndex, Addr);
|
|
case ARMII::AddrModeT1_s:
|
|
return evaluateMemOpAddrForAddrModeT1_s(Inst, Desc, OpIndex, Addr);
|
|
}
|
|
}
|
|
|
|
template <typename T, size_t N>
|
|
static bool instructionsMatch(const T (&Insns)[N], const uint8_t *Buf,
|
|
llvm::endianness E) {
|
|
for (size_t I = 0; I < N; ++I) {
|
|
T Val = support::endian::read<T>(Buf + I * sizeof(T), E);
|
|
if (Val != Insns[I])
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
std::vector<std::pair<uint64_t, uint64_t>>
|
|
ARMMCInstrAnalysis::findPltEntries(uint64_t PltSectionVA,
|
|
ArrayRef<uint8_t> PltContents,
|
|
const MCSubtargetInfo &STI) const {
|
|
llvm::endianness DataEndianness = STI.getTargetTriple().isLittleEndian()
|
|
? endianness::little
|
|
: endianness::big;
|
|
llvm::endianness InstrEndianness =
|
|
STI.checkFeatures("+big-endian-instructions") ? endianness::big
|
|
: endianness::little;
|
|
|
|
// Do a lightweight parsing of PLT entries.
|
|
std::vector<std::pair<uint64_t, uint64_t>> Result;
|
|
if (STI.checkFeatures("+thumb-mode")) {
|
|
for (uint64_t Byte = 0, End = PltContents.size(); Byte + 12 < End;
|
|
Byte += 16) {
|
|
// Expected instruction sequence:
|
|
//
|
|
// movw ip, #lower16
|
|
// movt ip, #upper16
|
|
// add ip, pc
|
|
// ldr.w pc, [ip]
|
|
// b . -4
|
|
|
|
uint32_t MovwPart1 =
|
|
support::endian::read16(PltContents.data() + Byte, InstrEndianness);
|
|
if ((MovwPart1 & 0xffb0) != 0xf200)
|
|
continue;
|
|
|
|
uint32_t MovwPart2 = support::endian::read16(
|
|
PltContents.data() + Byte + 2, InstrEndianness);
|
|
if ((MovwPart2 & 0x8f00) != 0xc00)
|
|
continue;
|
|
|
|
uint64_t OffsetLower = (MovwPart2 & 0xff) + ((MovwPart2 & 0x7000) >> 4) +
|
|
((MovwPart1 & 0x400) << 1) +
|
|
((MovwPart1 & 0xf) << 12);
|
|
|
|
uint32_t MovtPart1 = support::endian::read16(
|
|
PltContents.data() + Byte + 4, InstrEndianness);
|
|
if ((MovtPart1 & 0xfbf0) != 0xf2c0)
|
|
continue;
|
|
|
|
uint32_t MovtPart2 = support::endian::read16(
|
|
PltContents.data() + Byte + 6, InstrEndianness);
|
|
if ((MovtPart2 & 0x8f00) != 0xc00)
|
|
continue;
|
|
|
|
uint64_t OffsetHigher =
|
|
((MovtPart2 & 0xff) << 16) + ((MovtPart2 & 0x7000) << 12) +
|
|
((MovtPart1 & 0x400) << 17) + ((MovtPart1 & 0xf) << 28);
|
|
|
|
const uint16_t Insns[] = {
|
|
0x44fc, // add ip, pc
|
|
0xf8dc, 0xf000, // ldr.w pc, [ip]
|
|
0xe7fc, // b . -4
|
|
};
|
|
|
|
if (!instructionsMatch(Insns, PltContents.data() + Byte + 8,
|
|
InstrEndianness))
|
|
continue;
|
|
|
|
// add ip, pc at Byte + 8 + thumb-pc-bias = 12
|
|
uint64_t Offset = (PltSectionVA + Byte + 12) + OffsetLower + OffsetHigher;
|
|
Result.emplace_back(PltSectionVA + Byte, Offset);
|
|
}
|
|
} else {
|
|
const uint32_t LongEntryInsns[] = {
|
|
0xe59fc004, // ldr ip, L2
|
|
0xe08cc00f, // L1: add ip, ip, pc
|
|
0xe59cf000, // ldr pc, [ip]
|
|
};
|
|
|
|
for (uint64_t Byte = 0, End = PltContents.size(); Byte + 12 < End;
|
|
Byte += 4) {
|
|
// Is it a long entry?
|
|
if (instructionsMatch(LongEntryInsns, PltContents.data() + Byte,
|
|
InstrEndianness)) {
|
|
// Expected instruction sequence:
|
|
//
|
|
// ldr ip, L2
|
|
// L1: add ip, ip, pc
|
|
// ldr pc, [ip]
|
|
// L2: .word Offset(&(.got.plt) - L1 - 8
|
|
|
|
uint64_t Offset = (PltSectionVA + Byte + 12) +
|
|
support::endian::read32(
|
|
PltContents.data() + Byte + 12, DataEndianness);
|
|
Result.emplace_back(PltSectionVA + Byte, Offset);
|
|
Byte += 12;
|
|
} else {
|
|
// Expected instruction sequence:
|
|
//
|
|
// L1: add ip, pc, #0x0NN00000 Offset(&(.got.plt) - L1 - 8
|
|
// add ip, ip, #0x000NN000 Offset(&(.got.plt) - L1 - 8
|
|
// ldr pc, [ip, #0x00000NNN] Offset(&(.got.plt) - L1 - 8
|
|
|
|
uint32_t Add1 =
|
|
support::endian::read32(PltContents.data() + Byte, InstrEndianness);
|
|
if ((Add1 & 0xe28fc600) != 0xe28fc600)
|
|
continue;
|
|
uint32_t Add2 = support::endian::read32(PltContents.data() + Byte + 4,
|
|
InstrEndianness);
|
|
if ((Add2 & 0xe28cca00) != 0xe28cca00)
|
|
continue;
|
|
uint32_t Ldr = support::endian::read32(PltContents.data() + Byte + 8,
|
|
InstrEndianness);
|
|
if ((Ldr & 0xe5bcf000) != 0xe5bcf000)
|
|
continue;
|
|
|
|
// add ip, pc, #offset at Byte + 0 + arm-pc-bias = 8
|
|
uint64_t Offset = (PltSectionVA + Byte + 8) + ((Add1 & 0xff) << 20) +
|
|
((Add2 & 0xff) << 12) + (Ldr & 0xfff);
|
|
Result.emplace_back(PltSectionVA + Byte, Offset);
|
|
Byte += 8;
|
|
}
|
|
}
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
static MCInstrAnalysis *createARMMCInstrAnalysis(const MCInstrInfo *Info) {
|
|
return new ARMMCInstrAnalysis(Info);
|
|
}
|
|
|
|
bool ARM::isCDECoproc(size_t Coproc, const MCSubtargetInfo &STI) {
|
|
// Unfortunately we don't have ARMTargetInfo in the disassembler, so we have
|
|
// to rely on feature bits.
|
|
if (Coproc >= 8)
|
|
return false;
|
|
return STI.getFeatureBits()[ARM::FeatureCoprocCDE0 + Coproc];
|
|
}
|
|
|
|
// Force static initialization.
|
|
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeARMTargetMC() {
|
|
for (Target *T : {&getTheARMLETarget(), &getTheARMBETarget(),
|
|
&getTheThumbLETarget(), &getTheThumbBETarget()}) {
|
|
// Register the MC asm info.
|
|
RegisterMCAsmInfoFn X(*T, createARMMCAsmInfo);
|
|
|
|
// Register the MC instruction info.
|
|
TargetRegistry::RegisterMCInstrInfo(*T, createARMMCInstrInfo);
|
|
|
|
// Register the MC register info.
|
|
TargetRegistry::RegisterMCRegInfo(*T, createARMMCRegisterInfo);
|
|
|
|
// Register the MC subtarget info.
|
|
TargetRegistry::RegisterMCSubtargetInfo(*T,
|
|
ARM_MC::createARMMCSubtargetInfo);
|
|
|
|
TargetRegistry::RegisterELFStreamer(*T, createELFStreamer);
|
|
TargetRegistry::RegisterCOFFStreamer(*T, createARMWinCOFFStreamer);
|
|
TargetRegistry::RegisterMachOStreamer(*T, createARMMachOStreamer);
|
|
|
|
// Register the obj target streamer.
|
|
TargetRegistry::RegisterObjectTargetStreamer(*T,
|
|
createARMObjectTargetStreamer);
|
|
|
|
// Register the asm streamer.
|
|
TargetRegistry::RegisterAsmTargetStreamer(*T, createARMTargetAsmStreamer);
|
|
|
|
// Register the null TargetStreamer.
|
|
TargetRegistry::RegisterNullTargetStreamer(*T, createARMNullTargetStreamer);
|
|
|
|
// Register the MCInstPrinter.
|
|
TargetRegistry::RegisterMCInstPrinter(*T, createARMMCInstPrinter);
|
|
|
|
// Register the MC relocation info.
|
|
TargetRegistry::RegisterMCRelocationInfo(*T, createARMMCRelocationInfo);
|
|
}
|
|
|
|
// Register the MC instruction analyzer.
|
|
for (Target *T : {&getTheARMLETarget(), &getTheARMBETarget(),
|
|
&getTheThumbLETarget(), &getTheThumbBETarget()})
|
|
TargetRegistry::RegisterMCInstrAnalysis(*T, createARMMCInstrAnalysis);
|
|
|
|
for (Target *T : {&getTheARMLETarget(), &getTheThumbLETarget()}) {
|
|
TargetRegistry::RegisterMCCodeEmitter(*T, createARMLEMCCodeEmitter);
|
|
TargetRegistry::RegisterMCAsmBackend(*T, createARMLEAsmBackend);
|
|
}
|
|
for (Target *T : {&getTheARMBETarget(), &getTheThumbBETarget()}) {
|
|
TargetRegistry::RegisterMCCodeEmitter(*T, createARMBEMCCodeEmitter);
|
|
TargetRegistry::RegisterMCAsmBackend(*T, createARMBEAsmBackend);
|
|
}
|
|
}
|