llvm-project/mlir/lib/Dialect/Tensor/Transforms/BufferizableOpInterfaceImpl.cpp
Matthias Springer c0b0b6a00a [mlir][bufferize] Infer memory space in all bufferization patterns
This change updates all remaining bufferization patterns (except for scf.while) and the remaining bufferization infrastructure to infer the memory space whenever possible instead of falling back to "0". (If a default memory space is set in the bufferization options, we still fall back to that value if the memory space could not be inferred.)

Differential Revision: https://reviews.llvm.org/D128423
2022-06-27 16:32:52 +02:00

834 lines
34 KiB
C++

//===- BufferizableOpInterfaceImpl.cpp - Impl. of BufferizableOpInterface -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Tensor/Transforms/BufferizableOpInterfaceImpl.h"
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/Operation.h"
using namespace mlir;
using namespace mlir::bufferization;
using namespace mlir::tensor;
namespace mlir {
namespace tensor {
namespace {
struct CastOpInterface
: public BufferizableOpInterface::ExternalModel<CastOpInterface,
tensor::CastOp> {
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
SmallVector<OpResult> getAliasingOpResult(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return {op->getResult(0)};
}
BufferRelation bufferRelation(Operation *op, OpResult opResult,
const AnalysisState &state) const {
return BufferRelation::Equivalent;
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
auto castOp = cast<tensor::CastOp>(op);
// The result buffer still has the old (pre-cast) type.
FailureOr<Value> resultBuffer =
getBuffer(rewriter, castOp.getSource(), options);
if (failed(resultBuffer))
return failure();
auto sourceMemRefType = resultBuffer->getType().cast<BaseMemRefType>();
TensorType resultTensorType =
castOp.getResult().getType().cast<TensorType>();
MemRefLayoutAttrInterface layout;
if (auto rankedMemRefType = sourceMemRefType.dyn_cast<MemRefType>())
if (resultTensorType.isa<RankedTensorType>())
layout = rankedMemRefType.getLayout();
// Compute the new memref type.
Type resultMemRefType =
getMemRefType(resultTensorType, options, layout,
sourceMemRefType.getMemorySpaceAsInt());
// Replace the op with a memref.cast.
assert(memref::CastOp::areCastCompatible(resultBuffer->getType(),
resultMemRefType) &&
"CallOp::bufferize: cast incompatible");
replaceOpWithNewBufferizedOp<memref::CastOp>(rewriter, op, resultMemRefType,
*resultBuffer);
return success();
}
};
/// Bufferization of tensor.collapse_shape. Replace with memref.collapse_shape.
struct CollapseShapeOpInterface
: public BufferizableOpInterface::ExternalModel<CollapseShapeOpInterface,
tensor::CollapseShapeOp> {
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
SmallVector<OpResult> getAliasingOpResult(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
if (&opOperand == &op->getOpOperand(0) /*src*/)
return {op->getOpResult(0)};
return {};
}
BufferRelation bufferRelation(Operation *op, OpResult opResult,
const AnalysisState &state) const {
return BufferRelation::Equivalent;
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
auto collapseShapeOp = cast<tensor::CollapseShapeOp>(op);
RankedTensorType tensorResultType = collapseShapeOp.getResultType();
FailureOr<Value> maybeBuffer =
getBuffer(rewriter, collapseShapeOp.getSrc(), options);
if (failed(maybeBuffer))
return failure();
Value buffer = *maybeBuffer;
auto bufferType = buffer.getType().cast<MemRefType>();
if (tensorResultType.getRank() == 0) {
// 0-d collapses must go through a different op builder.
MemRefType resultType;
if (bufferType.getLayout().isIdentity()) {
// Standard layout: result type has no offset.
MemRefLayoutAttrInterface layout;
resultType = MemRefType::get({}, tensorResultType.getElementType(),
layout, bufferType.getMemorySpace());
} else {
// Source memref has a layout map: result type has the same offset as
// the source type.
SmallVector<int64_t> strides;
int64_t offset;
if (failed(getStridesAndOffset(bufferType, strides, offset)))
return failure();
AffineMap resultLayout =
makeStridedLinearLayoutMap({}, offset, op->getContext());
resultType =
MemRefType::get({}, tensorResultType.getElementType(), resultLayout,
bufferType.getMemorySpaceAsInt());
}
replaceOpWithNewBufferizedOp<memref::CollapseShapeOp>(
rewriter, op, resultType, buffer, collapseShapeOp.getReassociation());
return success();
}
// If the dims are not collapsible (due to an incompatible source layout
// map), force an out-of-place bufferization, i.e., a buffer copy. This
// newly allocated buffer will have no layout map and thus be collapsible.
bool canBeCollapsed = memref::CollapseShapeOp::isGuaranteedCollapsible(
bufferType, collapseShapeOp.getReassociationIndices());
if (!canBeCollapsed) {
// TODO: Create alloc_tensor ops during TensorCopyInsertion.
AnalysisState analysisState(options);
FailureOr<Value> tensorAlloc = allocateTensorForShapedValue(
rewriter, op->getLoc(), collapseShapeOp.getSrc(),
analysisState.isTensorYielded(collapseShapeOp.getResult()), options);
if (failed(tensorAlloc))
return failure();
auto memrefType =
MemRefType::get(collapseShapeOp.getSrcType().getShape(),
collapseShapeOp.getSrcType().getElementType(),
AffineMap(), bufferType.getMemorySpaceAsInt());
buffer = rewriter.create<bufferization::ToMemrefOp>(
op->getLoc(), memrefType, *tensorAlloc);
}
// Result type is inferred by the builder.
replaceOpWithNewBufferizedOp<memref::CollapseShapeOp>(
rewriter, op, buffer, collapseShapeOp.getReassociationIndices());
return success();
}
};
/// Bufferization of tensor.dim. Replace with memref.dim.
struct DimOpInterface
: public BufferizableOpInterface::ExternalModel<DimOpInterface,
tensor::DimOp> {
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return true;
}
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
SmallVector<OpResult> getAliasingOpResult(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return {};
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
auto dimOp = cast<tensor::DimOp>(op);
FailureOr<Value> v = getBuffer(rewriter, dimOp.getSource(), options);
if (failed(v))
return failure();
replaceOpWithNewBufferizedOp<memref::DimOp>(rewriter, op, *v,
dimOp.index());
return success();
}
};
/// Bufferization of tensor.expand_shape. Replace with memref.expand_shape.
struct ExpandShapeOpInterface
: public BufferizableOpInterface::ExternalModel<ExpandShapeOpInterface,
tensor::ExpandShapeOp> {
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
SmallVector<OpResult> getAliasingOpResult(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
if (&opOperand == &op->getOpOperand(0) /*src*/)
return {op->getOpResult(0)};
return {};
}
BufferRelation bufferRelation(Operation *op, OpResult opResult,
const AnalysisState &state) const {
return BufferRelation::Equivalent;
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
auto expandShapeOp = cast<tensor::ExpandShapeOp>(op);
auto tensorResultType = expandShapeOp.getResultType();
FailureOr<Value> buffer =
getBuffer(rewriter, expandShapeOp.getSrc(), options);
if (failed(buffer))
return failure();
// Memref result type is inferred by the builder based on reassociation
// indices and result shape.
replaceOpWithNewBufferizedOp<memref::ExpandShapeOp>(
rewriter, op, tensorResultType.getShape(), *buffer,
expandShapeOp.getReassociationIndices());
return success();
}
};
/// Bufferization of tensor.extract_slice. Replace with memref.subview.
struct ExtractSliceOpInterface
: public BufferizableOpInterface::ExternalModel<ExtractSliceOpInterface,
tensor::ExtractSliceOp> {
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
SmallVector<OpResult> getAliasingOpResult(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
if (&opOperand == &op->getOpOperand(0) /*source*/)
return {op->getOpResult(0)};
return {};
}
BufferRelation bufferRelation(Operation *op, OpResult opResult,
const AnalysisState &state) const {
return BufferRelation::None;
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
auto extractSliceOp = cast<tensor::ExtractSliceOp>(op);
Location loc = extractSliceOp.getLoc();
// Even if this op was decided to bufferize out-of-place, do not insert the
// buffer copy yet. This is done later in this function.
FailureOr<Value> srcMemref =
getBuffer(rewriter, extractSliceOp.getSource(), options);
if (failed(srcMemref))
return failure();
auto srcMemrefType = srcMemref->getType().cast<MemRefType>();
auto dstTensorType =
extractSliceOp.getResult().getType().cast<RankedTensorType>();
// Expand offsets, sizes and strides to the full rank to handle the
// rank-reducing case.
SmallVector<OpFoldResult> mixedOffsets = extractSliceOp.getMixedOffsets();
SmallVector<OpFoldResult> mixedSizes = extractSliceOp.getMixedSizes();
SmallVector<OpFoldResult> mixedStrides = extractSliceOp.getMixedStrides();
OffsetSizeAndStrideOpInterface::expandToRank(
*srcMemref, mixedOffsets, mixedSizes, mixedStrides,
[&](Value target, int64_t dim) -> OpFoldResult {
auto shapedType = target.getType().cast<ShapedType>();
if (shapedType.isDynamicDim(dim))
return rewriter.create<memref::DimOp>(loc, target, dim).result();
return rewriter.getIndexAttr(shapedType.getDimSize(dim));
});
// Bufferize to subview.
auto subviewMemRefType = memref::SubViewOp::inferRankReducedResultType(
dstTensorType.getRank(), srcMemrefType,
mixedOffsets, mixedSizes, mixedStrides)
.cast<MemRefType>();
Value subView = rewriter.create<memref::SubViewOp>(
loc, subviewMemRefType, *srcMemref, mixedOffsets, mixedSizes,
mixedStrides);
replaceOpWithBufferizedValues(rewriter, op, subView);
return success();
}
};
/// Bufferization of tensor.extract. Replace with memref.load.
struct ExtractOpInterface
: public BufferizableOpInterface::ExternalModel<ExtractOpInterface,
tensor::ExtractOp> {
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return true;
}
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
SmallVector<OpResult> getAliasingOpResult(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return {};
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
auto extractOp = cast<tensor::ExtractOp>(op);
FailureOr<Value> srcMemref =
getBuffer(rewriter, extractOp.getTensor(), options);
if (failed(srcMemref))
return failure();
replaceOpWithNewBufferizedOp<memref::LoadOp>(rewriter, op, *srcMemref,
extractOp.indices());
return success();
}
};
// Implements backtracking to traverse indices of the output buffer while
// iterating over op.elements().
static void createStores(RewriterBase &rewriter, Location loc, int dim,
Value buffer, ArrayRef<int64_t> shape,
ArrayRef<Value> constants,
OperandRange::iterator &elementIt,
SmallVectorImpl<Value> &indices) {
if (dim == static_cast<int>(shape.size()) - 1) {
for (int i = 0; i < shape.back(); ++i) {
indices.back() = constants[i];
rewriter.create<memref::StoreOp>(loc, *elementIt, buffer, indices);
++elementIt;
}
return;
}
for (int i = 0; i < shape[dim]; ++i) {
indices[dim] = constants[i];
createStores(rewriter, loc, dim + 1, buffer, shape, constants, elementIt,
indices);
}
}
/// Bufferization of tensor.from_elements.
struct FromElementsOpInterface
: public BufferizableOpInterface::ExternalModel<FromElementsOpInterface,
tensor::FromElementsOp> {
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
auto fromElementsOp = cast<tensor::FromElementsOp>(op);
// TODO: Implement memory space for this op.
if (options.defaultMemorySpace != static_cast<unsigned>(0))
return op->emitError("memory space not implemented yet");
// Allocate a buffer for the result.
Location loc = op->getLoc();
auto tensorType = fromElementsOp.getType().cast<RankedTensorType>();
auto shape = tensorType.getShape();
// TODO: Create alloc_tensor ops during TensorCopyInsertion.
AnalysisState analysisState(options);
FailureOr<Value> tensorAlloc = allocateTensorForShapedValue(
rewriter, loc, fromElementsOp.getResult(),
analysisState.isTensorYielded(fromElementsOp.getResult()), options,
/*copy=*/false);
if (failed(tensorAlloc))
return failure();
auto memrefType =
MemRefType::get(tensorType.getShape(), tensorType.getElementType());
Value buffer = rewriter.create<bufferization::ToMemrefOp>(
op->getLoc(), memrefType, *tensorAlloc);
// Case: tensor<0xelem_type>.
if (fromElementsOp.getElements().empty()) {
replaceOpWithBufferizedValues(rewriter, op, buffer);
return success();
}
// Case: tensor<elem_type>.
if (shape.empty()) {
rewriter.create<memref::StoreOp>(
loc, fromElementsOp.getElements().front(), buffer);
replaceOpWithBufferizedValues(rewriter, op, buffer);
return success();
}
// Create constants for the range of possible indices [0, max{shape_i}).
auto maxDim = *std::max_element(shape.begin(), shape.end());
SmallVector<Value, 2> constants;
constants.reserve(maxDim);
for (int i = 0; i < maxDim; ++i)
constants.push_back(rewriter.create<arith::ConstantIndexOp>(loc, i));
// Traverse all `elements` and create `memref.store` ops.
auto elementIt = fromElementsOp.getElements().begin();
SmallVector<Value, 2> indices(tensorType.getRank(), constants[0]);
createStores(rewriter, loc, /*dim=*/0, buffer, shape, constants, elementIt,
indices);
replaceOpWithBufferizedValues(rewriter, op, buffer);
return success();
}
};
/// Bufferization of tensor.generate.
struct GenerateOpInterface
: public BufferizableOpInterface::ExternalModel<GenerateOpInterface,
tensor::GenerateOp> {
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
auto generateOp = cast<tensor::GenerateOp>(op);
// TODO: Implement memory space for this op.
if (options.defaultMemorySpace != static_cast<unsigned>(0))
return op->emitError("memory space not implemented yet");
auto tensorType = generateOp.getType().cast<RankedTensorType>();
// Allocate memory.
Location loc = op->getLoc();
// TODO: Create alloc_tensor ops during TensorCopyInsertion.
AnalysisState analysisState(options);
FailureOr<Value> tensorAlloc = allocateTensorForShapedValue(
rewriter, loc, generateOp.getResult(),
analysisState.isTensorYielded(generateOp.getResult()), options,
/*copy=*/false);
if (failed(tensorAlloc))
return failure();
auto memrefType =
MemRefType::get(tensorType.getShape(), tensorType.getElementType());
Value buffer = rewriter.create<bufferization::ToMemrefOp>(
op->getLoc(), memrefType, *tensorAlloc);
// Collect loop bounds.
int64_t rank = memrefType.getRank();
Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
Value one = rewriter.create<arith::ConstantIndexOp>(loc, 1);
SmallVector<Value, 4> lowerBounds(rank, zero);
SmallVector<Value, 4> steps(rank, one);
SmallVector<Value, 4> upperBounds;
int nextDynamicIndex = 0;
for (int i = 0; i < rank; i++) {
Value upperBound =
memrefType.isDynamicDim(i)
? generateOp.getDynamicExtents()[nextDynamicIndex++]
: rewriter.create<arith::ConstantIndexOp>(
loc, memrefType.getDimSize(i));
upperBounds.push_back(upperBound);
}
// Generate tensor elements with a parallel loop that stores into
// each element of the resulting memref. We use mergeBlockBefore to "move"
// this op's body into the scf.parallel's body.
auto parallel =
rewriter.create<scf::ParallelOp>(loc, lowerBounds, upperBounds, steps);
Block *parallelBody = parallel.getBody();
rewriter.mergeBlockBefore(&generateOp.getBody().front(),
parallelBody->getTerminator(),
parallelBody->getArguments());
// Replace the inlined yield op with a store op. The scf.parallel's builder
// already populated an scf.yield at the end, so we don't need to worry
// about creating that.
Operation *elementYield = parallelBody->getTerminator()->getPrevNode();
rewriter.setInsertionPointAfter(elementYield);
rewriter.replaceOpWithNewOp<memref::StoreOp>(
elementYield, elementYield->getOperands()[0], buffer,
parallelBody->getArguments());
replaceOpWithBufferizedValues(rewriter, op, buffer);
return success();
}
};
/// Bufferization of tensor.insert. Replace with memref.store.
struct InsertOpInterface
: public BufferizableOpInterface::ExternalModel<InsertOpInterface,
tensor::InsertOp> {
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return true;
}
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return true;
}
SmallVector<OpResult> getAliasingOpResult(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
assert(&opOperand == &op->getOpOperand(1) /*dest*/ &&
"expected dest OpOperand");
return {op->getOpResult(0)};
}
SmallVector<OpOperand *>
getAliasingOpOperand(Operation *op, OpResult opResult,
const AnalysisState &state) const {
return {&op->getOpOperand(1) /*dest*/};
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
auto insertOp = cast<tensor::InsertOp>(op);
FailureOr<Value> destMemref =
getBuffer(rewriter, insertOp.getDest(), options);
if (failed(destMemref))
return failure();
rewriter.create<memref::StoreOp>(insertOp.getLoc(), insertOp.getScalar(),
*destMemref, insertOp.getIndices());
replaceOpWithBufferizedValues(rewriter, op, *destMemref);
return success();
}
BufferRelation bufferRelation(Operation *op, OpResult opResult,
const AnalysisState &state) const {
return BufferRelation::Equivalent;
}
};
/// Return true if the (ExtractSliceOp, InsertSliceOp) pair match (i.e.
/// equivalent operand / result and same offset/sizes/strides specification).
///
/// This is one particular type of relationship between ops on tensors that
/// reduce to an equivalence on buffers. This should be generalized and
/// exposed as interfaces on the proper types.
static bool areEquivalentExtractSliceOps(const AnalysisState &state,
ExtractSliceOp st, InsertSliceOp sti) {
if (!st || !sti)
return false;
if (sti != sti &&
!state.areEquivalentBufferizedValues(st.getSource(), sti.getDest()))
return false;
if (!sameOffsetsSizesAndStrides(st, sti, isEqualConstantIntOrValue))
return false;
return true;
}
/// Return true if `value` is originating from an ExtractSliceOp that matches
/// the given InsertSliceOp.
static bool hasMatchingExtractSliceOp(const AnalysisState &state, Value value,
InsertSliceOp insertOp) {
auto condition = [&](Value val) {
if (auto extractOp = val.getDefiningOp<ExtractSliceOp>())
if (areEquivalentExtractSliceOps(state, extractOp, insertOp))
return true;
return false;
};
return llvm::all_of(state.findValueInReverseUseDefChain(value, condition),
condition);
}
/// Bufferization of tensor.insert_slice. Replace with a memory copy. Under
/// certain circumstances, this op can also be a no-op.
struct InsertSliceOpInterface
: public BufferizableOpInterface::ExternalModel<InsertSliceOpInterface,
tensor::InsertSliceOp> {
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return true;
}
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return &opOperand == &op->getOpOperand(1) /*dest*/;
}
SmallVector<OpResult> getAliasingOpResult(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
if (&opOperand == &op->getOpOperand(1) /*dest*/)
return {op->getResult(0)};
return {};
}
BufferRelation bufferRelation(Operation *op, OpResult opResult,
const AnalysisState &state) const {
return BufferRelation::Equivalent;
}
bool isNotConflicting(Operation *op, OpOperand *uRead,
OpOperand *uConflictingWrite,
const AnalysisState &state) const {
Operation *readingOp = uRead->getOwner();
Operation *conflictingWritingOp = uConflictingWrite->getOwner();
// Special rules for matching ExtractSliceOp/InsertSliceOp pairs. If
// uRead is an InsertSliceOp...
if (auto insertSliceOp = dyn_cast<InsertSliceOp>(readingOp)) {
// As an example, consider the following IR.
//
// %0 = tensor.extract_slice %t[%a, %b][%c, %d][1, 1] {inplace = [true] }
// %1 = linalg.fill %cst, %0 {inplace= [true] }
// %2 = tensor.insert_slice %1 into %t[%a, %b][%c, %d][1, 1]
// {inplace= [true] }
// TODO: Use insertSliceOp.getDestOpOperand etc. when available.
if (uRead == &insertSliceOp->getOpOperand(1) /*dest*/ &&
hasMatchingExtractSliceOp(state, uConflictingWrite->get(),
insertSliceOp))
// Case 1: The main insight is that InsertSliceOp reads only part of
// the destination tensor. The overwritten area is not read. If
// uConflictingWrite writes into exactly the memory location that is
// being read by uRead, this is not a conflict.
//
// In the above example:
// uRead = OpOperand 1 (%t) of tensor.insert_slice
// uConflictingWrite = OpOperand 1 (%0) of linalg.fill
//
// The read of %t does not conflict with the write of the FillOp
// (same aliases!) because the area that the FillOp operates on is
// exactly the one that is *not* read via %t.
return true;
if (uRead == &insertSliceOp->getOpOperand(0) /*source*/ &&
uConflictingWrite == &insertSliceOp->getOpOperand(1) /*dest*/ &&
hasMatchingExtractSliceOp(state, uRead->get(), insertSliceOp))
// Case 2: The read of the source tensor and the write to the dest
// tensor via an InsertSliceOp is not a conflict if the read is
// reading exactly that part of an equivalent tensor that the
// InsertSliceOp is writing.
//
// In the above example:
// uRead = OpOperand 0 (%1) of tensor.insert_slice
// uConflictingWrite = OpOperand 1 (%t) of tensor.insert_slice
return true;
}
// If uConflictingWrite is an InsertSliceOp...
if (auto insertSliceOp = dyn_cast<InsertSliceOp>(conflictingWritingOp))
// As an example, consider the following IR.
//
// %0 = tensor.extract_slice %t[%a, %b][%c, %d][1, 1] {inplace = [true] }
// %1 = linalg.fill %cst, %0 {inplace= [true] }
// %2 = tensor.insert_slice %1 into %t[%a, %b][%c, %d][1, 1]
// {inplace= [true] }
// %3 = vector.transfer_read %1, %cst
//
// In the above example:
// uRead = OpOperand 0 (%1) of vector.transfer_read
// uConflictingWrite = OpOperand 1 (%t) of tensor.insert_slice
// lastWrite = %1
//
// This is not a conflict because the InsertSliceOp overwrites the
// memory segment of %1 with the exact same data. (Effectively, there
// is no memory write here.)
if (uConflictingWrite == &insertSliceOp->getOpOperand(1) /*dest*/ &&
state.areEquivalentBufferizedValues(uRead->get(),
insertSliceOp.getSource()) &&
hasMatchingExtractSliceOp(state, insertSliceOp.getSource(),
insertSliceOp))
return true;
return false;
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
// insert_slice ops arise from tiling and bufferizing them out-of-place is
// generally a deal breaker. When used with loops, this ends up cloning the
// whole tensor on every single iteration and is a symptom of a
// catastrophically bad scheduling decision.
// TODO: be very loud about it or even consider failing the pass.
auto insertSliceOp = cast<tensor::InsertSliceOp>(op);
Location loc = insertSliceOp.getLoc();
FailureOr<Value> dstMemref =
getBuffer(rewriter, insertSliceOp.getDest(), options);
if (failed(dstMemref))
return failure();
// Expand offsets, sizes and strides to the full rank to handle the
// rank-reducing case.
SmallVector<OpFoldResult> mixedOffsets = insertSliceOp.getMixedOffsets();
SmallVector<OpFoldResult> mixedSizes = insertSliceOp.getMixedSizes();
SmallVector<OpFoldResult> mixedStrides = insertSliceOp.getMixedStrides();
OffsetSizeAndStrideOpInterface::expandToRank(
*dstMemref, mixedOffsets, mixedSizes, mixedStrides,
[&](Value target, int64_t dim) -> OpFoldResult {
auto shapedType = target.getType().cast<ShapedType>();
if (shapedType.isDynamicDim(dim))
return rewriter.create<memref::DimOp>(loc, target, dim).result();
return rewriter.getIndexAttr(shapedType.getDimSize(dim));
});
// Take a subview of the dst.
auto dstMemrefType = dstMemref->getType().cast<MemRefType>();
auto subviewMemRefType =
memref::SubViewOp::inferRankReducedResultType(
insertSliceOp.getSourceType().getRank(), dstMemrefType,
mixedOffsets, mixedSizes, mixedStrides)
.cast<MemRefType>();
Value subView = rewriter.create<memref::SubViewOp>(
loc, subviewMemRefType, *dstMemref, mixedOffsets, mixedSizes,
mixedStrides);
// Copy tensor. If this tensor.insert_slice has a matching
// tensor.extract_slice, the copy operation will eventually fold away.
FailureOr<Value> srcMemref =
getBuffer(rewriter, insertSliceOp.getSource(), options);
if (failed(srcMemref))
return failure();
if (failed(options.createMemCpy(rewriter, loc, *srcMemref, subView)))
return failure();
replaceOpWithBufferizedValues(rewriter, op, *dstMemref);
return success();
}
};
/// Bufferization of tensor.rank. Replace with memref.rank.
struct RankOpInterface
: public BufferizableOpInterface::ExternalModel<RankOpInterface,
tensor::RankOp> {
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return true;
}
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
SmallVector<OpResult> getAliasingOpResult(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return {};
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
auto rankOp = cast<tensor::RankOp>(op);
FailureOr<Value> v = getBuffer(rewriter, rankOp.getTensor(), options);
if (failed(v))
return failure();
replaceOpWithNewBufferizedOp<memref::RankOp>(rewriter, op, rankOp.getType(),
*v);
return success();
}
};
/// Bufferization of tensor.reshape. Replace with memref.reshape.
struct ReshapeOpInterface
: public BufferizableOpInterface::ExternalModel<ReshapeOpInterface,
tensor::ReshapeOp> {
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
if (&opOperand == &op->getOpOperand(1) /* shape */)
return true;
return false;
}
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
SmallVector<OpResult> getAliasingOpResult(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return {op->getOpResult(0)};
}
BufferRelation bufferRelation(Operation *op, OpResult opResult,
const AnalysisState &state) const {
return BufferRelation::Equivalent;
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
auto reshapeOp = cast<tensor::ReshapeOp>(op);
FailureOr<Value> srcBuffer =
getBuffer(rewriter, reshapeOp.getSource(), options);
FailureOr<Value> shapeBuffer =
getBuffer(rewriter, reshapeOp.getShape(), options);
if (failed(srcBuffer) || failed(shapeBuffer))
return failure();
auto resultTensorType = reshapeOp.getResult().getType().cast<TensorType>();
auto resultMemRefType = getMemRefType(
resultTensorType, options, /*layout=*/{},
srcBuffer->getType().cast<BaseMemRefType>().getMemorySpaceAsInt());
replaceOpWithNewBufferizedOp<memref::ReshapeOp>(
rewriter, op, resultMemRefType, *srcBuffer, *shapeBuffer);
return success();
}
};
} // namespace
} // namespace tensor
} // namespace mlir
void mlir::tensor::registerBufferizableOpInterfaceExternalModels(
DialectRegistry &registry) {
registry.addExtension(+[](MLIRContext *ctx, tensor::TensorDialect *dialect) {
CastOp::attachInterface<CastOpInterface>(*ctx);
CollapseShapeOp::attachInterface<CollapseShapeOpInterface>(*ctx);
DimOp::attachInterface<DimOpInterface>(*ctx);
ExpandShapeOp::attachInterface<ExpandShapeOpInterface>(*ctx);
ExtractSliceOp::attachInterface<ExtractSliceOpInterface>(*ctx);
ExtractOp::attachInterface<ExtractOpInterface>(*ctx);
FromElementsOp::attachInterface<FromElementsOpInterface>(*ctx);
GenerateOp::attachInterface<GenerateOpInterface>(*ctx);
InsertOp::attachInterface<InsertOpInterface>(*ctx);
InsertSliceOp::attachInterface<InsertSliceOpInterface>(*ctx);
RankOp::attachInterface<RankOpInterface>(*ctx);
ReshapeOp::attachInterface<ReshapeOpInterface>(*ctx);
});
}