llvm-project/compiler-rt/lib/xray/xray_segmented_array.h
Chandler Carruth 2946cd7010 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

651 lines
21 KiB
C++

//===-- xray_segmented_array.h ---------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// Defines the implementation of a segmented array, with fixed-size segments
// backing the segments.
//
//===----------------------------------------------------------------------===//
#ifndef XRAY_SEGMENTED_ARRAY_H
#define XRAY_SEGMENTED_ARRAY_H
#include "sanitizer_common/sanitizer_allocator.h"
#include "xray_allocator.h"
#include "xray_utils.h"
#include <cassert>
#include <type_traits>
#include <utility>
namespace __xray {
/// The Array type provides an interface similar to std::vector<...> but does
/// not shrink in size. Once constructed, elements can be appended but cannot be
/// removed. The implementation is heavily dependent on the contract provided by
/// the Allocator type, in that all memory will be released when the Allocator
/// is destroyed. When an Array is destroyed, it will destroy elements in the
/// backing store but will not free the memory.
template <class T> class Array {
struct Segment {
Segment *Prev;
Segment *Next;
char Data[1];
};
public:
// Each segment of the array will be laid out with the following assumptions:
//
// - Each segment will be on a cache-line address boundary (kCacheLineSize
// aligned).
//
// - The elements will be accessed through an aligned pointer, dependent on
// the alignment of T.
//
// - Each element is at least two-pointers worth from the beginning of the
// Segment, aligned properly, and the rest of the elements are accessed
// through appropriate alignment.
//
// We then compute the size of the segment to follow this logic:
//
// - Compute the number of elements that can fit within
// kCacheLineSize-multiple segments, minus the size of two pointers.
//
// - Request cacheline-multiple sized elements from the allocator.
static constexpr uint64_t AlignedElementStorageSize =
sizeof(typename std::aligned_storage<sizeof(T), alignof(T)>::type);
static constexpr uint64_t SegmentControlBlockSize = sizeof(Segment *) * 2;
static constexpr uint64_t SegmentSize = nearest_boundary(
SegmentControlBlockSize + next_pow2(sizeof(T)), kCacheLineSize);
using AllocatorType = Allocator<SegmentSize>;
static constexpr uint64_t ElementsPerSegment =
(SegmentSize - SegmentControlBlockSize) / next_pow2(sizeof(T));
static_assert(ElementsPerSegment > 0,
"Must have at least 1 element per segment.");
static Segment SentinelSegment;
using size_type = uint64_t;
private:
// This Iterator models a BidirectionalIterator.
template <class U> class Iterator {
Segment *S = &SentinelSegment;
uint64_t Offset = 0;
uint64_t Size = 0;
public:
Iterator(Segment *IS, uint64_t Off, uint64_t S) XRAY_NEVER_INSTRUMENT
: S(IS),
Offset(Off),
Size(S) {}
Iterator(const Iterator &) NOEXCEPT XRAY_NEVER_INSTRUMENT = default;
Iterator() NOEXCEPT XRAY_NEVER_INSTRUMENT = default;
Iterator(Iterator &&) NOEXCEPT XRAY_NEVER_INSTRUMENT = default;
Iterator &operator=(const Iterator &) XRAY_NEVER_INSTRUMENT = default;
Iterator &operator=(Iterator &&) XRAY_NEVER_INSTRUMENT = default;
~Iterator() XRAY_NEVER_INSTRUMENT = default;
Iterator &operator++() XRAY_NEVER_INSTRUMENT {
if (++Offset % ElementsPerSegment || Offset == Size)
return *this;
// At this point, we know that Offset % N == 0, so we must advance the
// segment pointer.
DCHECK_EQ(Offset % ElementsPerSegment, 0);
DCHECK_NE(Offset, Size);
DCHECK_NE(S, &SentinelSegment);
DCHECK_NE(S->Next, &SentinelSegment);
S = S->Next;
DCHECK_NE(S, &SentinelSegment);
return *this;
}
Iterator &operator--() XRAY_NEVER_INSTRUMENT {
DCHECK_NE(S, &SentinelSegment);
DCHECK_GT(Offset, 0);
auto PreviousOffset = Offset--;
if (PreviousOffset != Size && PreviousOffset % ElementsPerSegment == 0) {
DCHECK_NE(S->Prev, &SentinelSegment);
S = S->Prev;
}
return *this;
}
Iterator operator++(int) XRAY_NEVER_INSTRUMENT {
Iterator Copy(*this);
++(*this);
return Copy;
}
Iterator operator--(int) XRAY_NEVER_INSTRUMENT {
Iterator Copy(*this);
--(*this);
return Copy;
}
template <class V, class W>
friend bool operator==(const Iterator<V> &L,
const Iterator<W> &R) XRAY_NEVER_INSTRUMENT {
return L.S == R.S && L.Offset == R.Offset;
}
template <class V, class W>
friend bool operator!=(const Iterator<V> &L,
const Iterator<W> &R) XRAY_NEVER_INSTRUMENT {
return !(L == R);
}
U &operator*() const XRAY_NEVER_INSTRUMENT {
DCHECK_NE(S, &SentinelSegment);
auto RelOff = Offset % ElementsPerSegment;
// We need to compute the character-aligned pointer, offset from the
// segment's Data location to get the element in the position of Offset.
auto Base = &S->Data;
auto AlignedOffset = Base + (RelOff * AlignedElementStorageSize);
return *reinterpret_cast<U *>(AlignedOffset);
}
U *operator->() const XRAY_NEVER_INSTRUMENT { return &(**this); }
};
AllocatorType *Alloc;
Segment *Head;
Segment *Tail;
// Here we keep track of segments in the freelist, to allow us to re-use
// segments when elements are trimmed off the end.
Segment *Freelist;
uint64_t Size;
// ===============================
// In the following implementation, we work through the algorithms and the
// list operations using the following notation:
//
// - pred(s) is the predecessor (previous node accessor) and succ(s) is
// the successor (next node accessor).
//
// - S is a sentinel segment, which has the following property:
//
// pred(S) == succ(S) == S
//
// - @ is a loop operator, which can imply pred(s) == s if it appears on
// the left of s, or succ(s) == S if it appears on the right of s.
//
// - sL <-> sR : means a bidirectional relation between sL and sR, which
// means:
//
// succ(sL) == sR && pred(SR) == sL
//
// - sL -> sR : implies a unidirectional relation between sL and SR,
// with the following properties:
//
// succ(sL) == sR
//
// sL <- sR : implies a unidirectional relation between sR and sL,
// with the following properties:
//
// pred(sR) == sL
//
// ===============================
Segment *NewSegment() XRAY_NEVER_INSTRUMENT {
// We need to handle the case in which enough elements have been trimmed to
// allow us to re-use segments we've allocated before. For this we look into
// the Freelist, to see whether we need to actually allocate new blocks or
// just re-use blocks we've already seen before.
if (Freelist != &SentinelSegment) {
// The current state of lists resemble something like this at this point:
//
// Freelist: @S@<-f0->...<->fN->@S@
// ^ Freelist
//
// We want to perform a splice of `f0` from Freelist to a temporary list,
// which looks like:
//
// Templist: @S@<-f0->@S@
// ^ FreeSegment
//
// Our algorithm preconditions are:
DCHECK_EQ(Freelist->Prev, &SentinelSegment);
// Then the algorithm we implement is:
//
// SFS = Freelist
// Freelist = succ(Freelist)
// if (Freelist != S)
// pred(Freelist) = S
// succ(SFS) = S
// pred(SFS) = S
//
auto *FreeSegment = Freelist;
Freelist = Freelist->Next;
// Note that we need to handle the case where Freelist is now pointing to
// S, which we don't want to be overwriting.
// TODO: Determine whether the cost of the branch is higher than the cost
// of the blind assignment.
if (Freelist != &SentinelSegment)
Freelist->Prev = &SentinelSegment;
FreeSegment->Next = &SentinelSegment;
FreeSegment->Prev = &SentinelSegment;
// Our postconditions are:
DCHECK_EQ(Freelist->Prev, &SentinelSegment);
DCHECK_NE(FreeSegment, &SentinelSegment);
return FreeSegment;
}
auto SegmentBlock = Alloc->Allocate();
if (SegmentBlock.Data == nullptr)
return nullptr;
// Placement-new the Segment element at the beginning of the SegmentBlock.
new (SegmentBlock.Data) Segment{&SentinelSegment, &SentinelSegment, {0}};
auto SB = reinterpret_cast<Segment *>(SegmentBlock.Data);
return SB;
}
Segment *InitHeadAndTail() XRAY_NEVER_INSTRUMENT {
DCHECK_EQ(Head, &SentinelSegment);
DCHECK_EQ(Tail, &SentinelSegment);
auto S = NewSegment();
if (S == nullptr)
return nullptr;
DCHECK_EQ(S->Next, &SentinelSegment);
DCHECK_EQ(S->Prev, &SentinelSegment);
DCHECK_NE(S, &SentinelSegment);
Head = S;
Tail = S;
DCHECK_EQ(Head, Tail);
DCHECK_EQ(Tail->Next, &SentinelSegment);
DCHECK_EQ(Tail->Prev, &SentinelSegment);
return S;
}
Segment *AppendNewSegment() XRAY_NEVER_INSTRUMENT {
auto S = NewSegment();
if (S == nullptr)
return nullptr;
DCHECK_NE(Tail, &SentinelSegment);
DCHECK_EQ(Tail->Next, &SentinelSegment);
DCHECK_EQ(S->Prev, &SentinelSegment);
DCHECK_EQ(S->Next, &SentinelSegment);
S->Prev = Tail;
Tail->Next = S;
Tail = S;
DCHECK_EQ(S, S->Prev->Next);
DCHECK_EQ(Tail->Next, &SentinelSegment);
return S;
}
public:
explicit Array(AllocatorType &A) XRAY_NEVER_INSTRUMENT
: Alloc(&A),
Head(&SentinelSegment),
Tail(&SentinelSegment),
Freelist(&SentinelSegment),
Size(0) {}
Array() XRAY_NEVER_INSTRUMENT : Alloc(nullptr),
Head(&SentinelSegment),
Tail(&SentinelSegment),
Freelist(&SentinelSegment),
Size(0) {}
Array(const Array &) = delete;
Array &operator=(const Array &) = delete;
Array(Array &&O) XRAY_NEVER_INSTRUMENT : Alloc(O.Alloc),
Head(O.Head),
Tail(O.Tail),
Freelist(O.Freelist),
Size(O.Size) {
O.Alloc = nullptr;
O.Head = &SentinelSegment;
O.Tail = &SentinelSegment;
O.Size = 0;
O.Freelist = &SentinelSegment;
}
Array &operator=(Array &&O) XRAY_NEVER_INSTRUMENT {
Alloc = O.Alloc;
O.Alloc = nullptr;
Head = O.Head;
O.Head = &SentinelSegment;
Tail = O.Tail;
O.Tail = &SentinelSegment;
Freelist = O.Freelist;
O.Freelist = &SentinelSegment;
Size = O.Size;
O.Size = 0;
return *this;
}
~Array() XRAY_NEVER_INSTRUMENT {
for (auto &E : *this)
(&E)->~T();
}
bool empty() const XRAY_NEVER_INSTRUMENT { return Size == 0; }
AllocatorType &allocator() const XRAY_NEVER_INSTRUMENT {
DCHECK_NE(Alloc, nullptr);
return *Alloc;
}
uint64_t size() const XRAY_NEVER_INSTRUMENT { return Size; }
template <class... Args>
T *AppendEmplace(Args &&... args) XRAY_NEVER_INSTRUMENT {
DCHECK((Size == 0 && Head == &SentinelSegment && Head == Tail) ||
(Size != 0 && Head != &SentinelSegment && Tail != &SentinelSegment));
if (UNLIKELY(Head == &SentinelSegment)) {
auto R = InitHeadAndTail();
if (R == nullptr)
return nullptr;
}
DCHECK_NE(Head, &SentinelSegment);
DCHECK_NE(Tail, &SentinelSegment);
auto Offset = Size % ElementsPerSegment;
if (UNLIKELY(Size != 0 && Offset == 0))
if (AppendNewSegment() == nullptr)
return nullptr;
DCHECK_NE(Tail, &SentinelSegment);
auto Base = &Tail->Data;
auto AlignedOffset = Base + (Offset * AlignedElementStorageSize);
DCHECK_LE(AlignedOffset + sizeof(T),
reinterpret_cast<unsigned char *>(Base) + SegmentSize);
// In-place construct at Position.
new (AlignedOffset) T{std::forward<Args>(args)...};
++Size;
return reinterpret_cast<T *>(AlignedOffset);
}
T *Append(const T &E) XRAY_NEVER_INSTRUMENT {
// FIXME: This is a duplication of AppenEmplace with the copy semantics
// explicitly used, as a work-around to GCC 4.8 not invoking the copy
// constructor with the placement new with braced-init syntax.
DCHECK((Size == 0 && Head == &SentinelSegment && Head == Tail) ||
(Size != 0 && Head != &SentinelSegment && Tail != &SentinelSegment));
if (UNLIKELY(Head == &SentinelSegment)) {
auto R = InitHeadAndTail();
if (R == nullptr)
return nullptr;
}
DCHECK_NE(Head, &SentinelSegment);
DCHECK_NE(Tail, &SentinelSegment);
auto Offset = Size % ElementsPerSegment;
if (UNLIKELY(Size != 0 && Offset == 0))
if (AppendNewSegment() == nullptr)
return nullptr;
DCHECK_NE(Tail, &SentinelSegment);
auto Base = &Tail->Data;
auto AlignedOffset = Base + (Offset * AlignedElementStorageSize);
DCHECK_LE(AlignedOffset + sizeof(T),
reinterpret_cast<unsigned char *>(Tail) + SegmentSize);
// In-place construct at Position.
new (AlignedOffset) T(E);
++Size;
return reinterpret_cast<T *>(AlignedOffset);
}
T &operator[](uint64_t Offset) const XRAY_NEVER_INSTRUMENT {
DCHECK_LE(Offset, Size);
// We need to traverse the array enough times to find the element at Offset.
auto S = Head;
while (Offset >= ElementsPerSegment) {
S = S->Next;
Offset -= ElementsPerSegment;
DCHECK_NE(S, &SentinelSegment);
}
auto Base = &S->Data;
auto AlignedOffset = Base + (Offset * AlignedElementStorageSize);
auto Position = reinterpret_cast<T *>(AlignedOffset);
return *reinterpret_cast<T *>(Position);
}
T &front() const XRAY_NEVER_INSTRUMENT {
DCHECK_NE(Head, &SentinelSegment);
DCHECK_NE(Size, 0u);
return *begin();
}
T &back() const XRAY_NEVER_INSTRUMENT {
DCHECK_NE(Tail, &SentinelSegment);
DCHECK_NE(Size, 0u);
auto It = end();
--It;
return *It;
}
template <class Predicate>
T *find_element(Predicate P) const XRAY_NEVER_INSTRUMENT {
if (empty())
return nullptr;
auto E = end();
for (auto I = begin(); I != E; ++I)
if (P(*I))
return &(*I);
return nullptr;
}
/// Remove N Elements from the end. This leaves the blocks behind, and not
/// require allocation of new blocks for new elements added after trimming.
void trim(uint64_t Elements) XRAY_NEVER_INSTRUMENT {
auto OldSize = Size;
Elements = Elements > Size ? Size : Elements;
Size -= Elements;
// We compute the number of segments we're going to return from the tail by
// counting how many elements have been trimmed. Given the following:
//
// - Each segment has N valid positions, where N > 0
// - The previous size > current size
//
// To compute the number of segments to return, we need to perform the
// following calculations for the number of segments required given 'x'
// elements:
//
// f(x) = {
// x == 0 : 0
// , 0 < x <= N : 1
// , N < x <= max : x / N + (x % N ? 1 : 0)
// }
//
// We can simplify this down to:
//
// f(x) = {
// x == 0 : 0,
// , 0 < x <= max : x / N + (x < N || x % N ? 1 : 0)
// }
//
// And further down to:
//
// f(x) = x ? x / N + (x < N || x % N ? 1 : 0) : 0
//
// We can then perform the following calculation `s` which counts the number
// of segments we need to remove from the end of the data structure:
//
// s(p, c) = f(p) - f(c)
//
// If we treat p = previous size, and c = current size, and given the
// properties above, the possible range for s(...) is [0..max(typeof(p))/N]
// given that typeof(p) == typeof(c).
auto F = [](uint64_t X) {
return X ? (X / ElementsPerSegment) +
(X < ElementsPerSegment || X % ElementsPerSegment ? 1 : 0)
: 0;
};
auto PS = F(OldSize);
auto CS = F(Size);
DCHECK_GE(PS, CS);
auto SegmentsToTrim = PS - CS;
for (auto I = 0uL; I < SegmentsToTrim; ++I) {
// Here we place the current tail segment to the freelist. To do this
// appropriately, we need to perform a splice operation on two
// bidirectional linked-lists. In particular, we have the current state of
// the doubly-linked list of segments:
//
// @S@ <- s0 <-> s1 <-> ... <-> sT -> @S@
//
DCHECK_NE(Head, &SentinelSegment);
DCHECK_NE(Tail, &SentinelSegment);
DCHECK_EQ(Tail->Next, &SentinelSegment);
if (Freelist == &SentinelSegment) {
// Our two lists at this point are in this configuration:
//
// Freelist: (potentially) @S@
// Mainlist: @S@<-s0<->s1<->...<->sPT<->sT->@S@
// ^ Head ^ Tail
//
// The end state for us will be this configuration:
//
// Freelist: @S@<-sT->@S@
// Mainlist: @S@<-s0<->s1<->...<->sPT->@S@
// ^ Head ^ Tail
//
// The first step for us is to hold a reference to the tail of Mainlist,
// which in our notation is represented by sT. We call this our "free
// segment" which is the segment we are placing on the Freelist.
//
// sF = sT
//
// Then, we also hold a reference to the "pre-tail" element, which we
// call sPT:
//
// sPT = pred(sT)
//
// We want to splice sT into the beginning of the Freelist, which in
// an empty Freelist means placing a segment whose predecessor and
// successor is the sentinel segment.
//
// The splice operation then can be performed in the following
// algorithm:
//
// succ(sPT) = S
// pred(sT) = S
// succ(sT) = Freelist
// Freelist = sT
// Tail = sPT
//
auto SPT = Tail->Prev;
SPT->Next = &SentinelSegment;
Tail->Prev = &SentinelSegment;
Tail->Next = Freelist;
Freelist = Tail;
Tail = SPT;
// Our post-conditions here are:
DCHECK_EQ(Tail->Next, &SentinelSegment);
DCHECK_EQ(Freelist->Prev, &SentinelSegment);
} else {
// In the other case, where the Freelist is not empty, we perform the
// following transformation instead:
//
// This transforms the current state:
//
// Freelist: @S@<-f0->@S@
// ^ Freelist
// Mainlist: @S@<-s0<->s1<->...<->sPT<->sT->@S@
// ^ Head ^ Tail
//
// Into the following:
//
// Freelist: @S@<-sT<->f0->@S@
// ^ Freelist
// Mainlist: @S@<-s0<->s1<->...<->sPT->@S@
// ^ Head ^ Tail
//
// The algorithm is:
//
// sFH = Freelist
// sPT = pred(sT)
// pred(SFH) = sT
// succ(sT) = Freelist
// pred(sT) = S
// succ(sPT) = S
// Tail = sPT
// Freelist = sT
//
auto SFH = Freelist;
auto SPT = Tail->Prev;
auto ST = Tail;
SFH->Prev = ST;
ST->Next = Freelist;
ST->Prev = &SentinelSegment;
SPT->Next = &SentinelSegment;
Tail = SPT;
Freelist = ST;
// Our post-conditions here are:
DCHECK_EQ(Tail->Next, &SentinelSegment);
DCHECK_EQ(Freelist->Prev, &SentinelSegment);
DCHECK_EQ(Freelist->Next->Prev, Freelist);
}
}
// Now in case we've spliced all the segments in the end, we ensure that the
// main list is "empty", or both the head and tail pointing to the sentinel
// segment.
if (Tail == &SentinelSegment)
Head = Tail;
DCHECK(
(Size == 0 && Head == &SentinelSegment && Tail == &SentinelSegment) ||
(Size != 0 && Head != &SentinelSegment && Tail != &SentinelSegment));
DCHECK(
(Freelist != &SentinelSegment && Freelist->Prev == &SentinelSegment) ||
(Freelist == &SentinelSegment && Tail->Next == &SentinelSegment));
}
// Provide iterators.
Iterator<T> begin() const XRAY_NEVER_INSTRUMENT {
return Iterator<T>(Head, 0, Size);
}
Iterator<T> end() const XRAY_NEVER_INSTRUMENT {
return Iterator<T>(Tail, Size, Size);
}
Iterator<const T> cbegin() const XRAY_NEVER_INSTRUMENT {
return Iterator<const T>(Head, 0, Size);
}
Iterator<const T> cend() const XRAY_NEVER_INSTRUMENT {
return Iterator<const T>(Tail, Size, Size);
}
};
// We need to have this storage definition out-of-line so that the compiler can
// ensure that storage for the SentinelSegment is defined and has a single
// address.
template <class T>
typename Array<T>::Segment Array<T>::SentinelSegment{
&Array<T>::SentinelSegment, &Array<T>::SentinelSegment, {'\0'}};
} // namespace __xray
#endif // XRAY_SEGMENTED_ARRAY_H