mirror of
https://github.com/llvm/llvm-project.git
synced 2025-05-19 05:56:06 +00:00

Previously, we were only checking the origin expressions of inlined calls. Checkers using the generic postCall and older postObjCMessage callbacks were ignored. Now that we have CallEventManager, it is much easier to create a CallEvent generically when exiting an inlined function, which we can then use for post-call checks. No test case because we don't (yet) have any checkers that depend on this behavior (which is why it hadn't been fixed before now). llvm-svn: 161005
701 lines
22 KiB
C++
701 lines
22 KiB
C++
//===- Calls.cpp - Wrapper for all function and method calls ------*- C++ -*--//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
/// \file This file defines CallEvent and its subclasses, which represent path-
|
|
/// sensitive instances of different kinds of function and method calls
|
|
/// (C, C++, and Objective-C).
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
|
|
#include "clang/Analysis/ProgramPoint.h"
|
|
#include "clang/AST/ParentMap.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
|
|
using namespace clang;
|
|
using namespace ento;
|
|
|
|
QualType CallEvent::getResultType() const {
|
|
QualType ResultTy = getDeclaredResultType();
|
|
|
|
if (ResultTy.isNull())
|
|
ResultTy = getOriginExpr()->getType();
|
|
|
|
return ResultTy;
|
|
}
|
|
|
|
static bool isCallbackArg(SVal V, QualType T) {
|
|
// If the parameter is 0, it's harmless.
|
|
if (V.isZeroConstant())
|
|
return false;
|
|
|
|
// If a parameter is a block or a callback, assume it can modify pointer.
|
|
if (T->isBlockPointerType() ||
|
|
T->isFunctionPointerType() ||
|
|
T->isObjCSelType())
|
|
return true;
|
|
|
|
// Check if a callback is passed inside a struct (for both, struct passed by
|
|
// reference and by value). Dig just one level into the struct for now.
|
|
|
|
if (isa<PointerType>(T) || isa<ReferenceType>(T))
|
|
T = T->getPointeeType();
|
|
|
|
if (const RecordType *RT = T->getAsStructureType()) {
|
|
const RecordDecl *RD = RT->getDecl();
|
|
for (RecordDecl::field_iterator I = RD->field_begin(), E = RD->field_end();
|
|
I != E; ++I) {
|
|
QualType FieldT = I->getType();
|
|
if (FieldT->isBlockPointerType() || FieldT->isFunctionPointerType())
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool CallEvent::hasNonZeroCallbackArg() const {
|
|
unsigned NumOfArgs = getNumArgs();
|
|
|
|
// If calling using a function pointer, assume the function does not
|
|
// have a callback. TODO: We could check the types of the arguments here.
|
|
if (!getDecl())
|
|
return false;
|
|
|
|
unsigned Idx = 0;
|
|
for (CallEvent::param_type_iterator I = param_type_begin(),
|
|
E = param_type_end();
|
|
I != E && Idx < NumOfArgs; ++I, ++Idx) {
|
|
if (NumOfArgs <= Idx)
|
|
break;
|
|
|
|
if (isCallbackArg(getArgSVal(Idx), *I))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// \brief Returns true if a type is a pointer-to-const or reference-to-const
|
|
/// with no further indirection.
|
|
static bool isPointerToConst(QualType Ty) {
|
|
QualType PointeeTy = Ty->getPointeeType();
|
|
if (PointeeTy == QualType())
|
|
return false;
|
|
if (!PointeeTy.isConstQualified())
|
|
return false;
|
|
if (PointeeTy->isAnyPointerType())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
// Try to retrieve the function declaration and find the function parameter
|
|
// types which are pointers/references to a non-pointer const.
|
|
// We will not invalidate the corresponding argument regions.
|
|
static void findPtrToConstParams(llvm::SmallSet<unsigned, 1> &PreserveArgs,
|
|
const CallEvent &Call) {
|
|
unsigned Idx = 0;
|
|
for (CallEvent::param_type_iterator I = Call.param_type_begin(),
|
|
E = Call.param_type_end();
|
|
I != E; ++I, ++Idx) {
|
|
if (isPointerToConst(*I))
|
|
PreserveArgs.insert(Idx);
|
|
}
|
|
}
|
|
|
|
ProgramStateRef CallEvent::invalidateRegions(unsigned BlockCount,
|
|
ProgramStateRef Orig) const {
|
|
ProgramStateRef Result = (Orig ? Orig : getState());
|
|
|
|
SmallVector<const MemRegion *, 8> RegionsToInvalidate;
|
|
getExtraInvalidatedRegions(RegionsToInvalidate);
|
|
|
|
// Indexes of arguments whose values will be preserved by the call.
|
|
llvm::SmallSet<unsigned, 1> PreserveArgs;
|
|
if (!argumentsMayEscape())
|
|
findPtrToConstParams(PreserveArgs, *this);
|
|
|
|
for (unsigned Idx = 0, Count = getNumArgs(); Idx != Count; ++Idx) {
|
|
if (PreserveArgs.count(Idx))
|
|
continue;
|
|
|
|
SVal V = getArgSVal(Idx);
|
|
|
|
// If we are passing a location wrapped as an integer, unwrap it and
|
|
// invalidate the values referred by the location.
|
|
if (nonloc::LocAsInteger *Wrapped = dyn_cast<nonloc::LocAsInteger>(&V))
|
|
V = Wrapped->getLoc();
|
|
else if (!isa<Loc>(V))
|
|
continue;
|
|
|
|
if (const MemRegion *R = V.getAsRegion()) {
|
|
// Invalidate the value of the variable passed by reference.
|
|
|
|
// Are we dealing with an ElementRegion? If the element type is
|
|
// a basic integer type (e.g., char, int) and the underlying region
|
|
// is a variable region then strip off the ElementRegion.
|
|
// FIXME: We really need to think about this for the general case
|
|
// as sometimes we are reasoning about arrays and other times
|
|
// about (char*), etc., is just a form of passing raw bytes.
|
|
// e.g., void *p = alloca(); foo((char*)p);
|
|
if (const ElementRegion *ER = dyn_cast<ElementRegion>(R)) {
|
|
// Checking for 'integral type' is probably too promiscuous, but
|
|
// we'll leave it in for now until we have a systematic way of
|
|
// handling all of these cases. Eventually we need to come up
|
|
// with an interface to StoreManager so that this logic can be
|
|
// appropriately delegated to the respective StoreManagers while
|
|
// still allowing us to do checker-specific logic (e.g.,
|
|
// invalidating reference counts), probably via callbacks.
|
|
if (ER->getElementType()->isIntegralOrEnumerationType()) {
|
|
const MemRegion *superReg = ER->getSuperRegion();
|
|
if (isa<VarRegion>(superReg) || isa<FieldRegion>(superReg) ||
|
|
isa<ObjCIvarRegion>(superReg))
|
|
R = cast<TypedRegion>(superReg);
|
|
}
|
|
// FIXME: What about layers of ElementRegions?
|
|
}
|
|
|
|
// Mark this region for invalidation. We batch invalidate regions
|
|
// below for efficiency.
|
|
RegionsToInvalidate.push_back(R);
|
|
}
|
|
}
|
|
|
|
// Invalidate designated regions using the batch invalidation API.
|
|
// NOTE: Even if RegionsToInvalidate is empty, we may still invalidate
|
|
// global variables.
|
|
return Result->invalidateRegions(RegionsToInvalidate, getOriginExpr(),
|
|
BlockCount, getLocationContext(),
|
|
/*Symbols=*/0, this);
|
|
}
|
|
|
|
ProgramPoint CallEvent::getProgramPoint(bool IsPreVisit,
|
|
const ProgramPointTag *Tag) const {
|
|
if (const Expr *E = getOriginExpr()) {
|
|
if (IsPreVisit)
|
|
return PreStmt(E, getLocationContext(), Tag);
|
|
return PostStmt(E, getLocationContext(), Tag);
|
|
}
|
|
|
|
const Decl *D = getDecl();
|
|
assert(D && "Cannot get a program point without a statement or decl");
|
|
|
|
SourceLocation Loc = getSourceRange().getBegin();
|
|
if (IsPreVisit)
|
|
return PreImplicitCall(D, Loc, getLocationContext(), Tag);
|
|
return PostImplicitCall(D, Loc, getLocationContext(), Tag);
|
|
}
|
|
|
|
SVal CallEvent::getArgSVal(unsigned Index) const {
|
|
const Expr *ArgE = getArgExpr(Index);
|
|
if (!ArgE)
|
|
return UnknownVal();
|
|
return getSVal(ArgE);
|
|
}
|
|
|
|
SourceRange CallEvent::getArgSourceRange(unsigned Index) const {
|
|
const Expr *ArgE = getArgExpr(Index);
|
|
if (!ArgE)
|
|
return SourceRange();
|
|
return ArgE->getSourceRange();
|
|
}
|
|
|
|
void CallEvent::dump(raw_ostream &Out) const {
|
|
ASTContext &Ctx = getState()->getStateManager().getContext();
|
|
if (const Expr *E = getOriginExpr()) {
|
|
E->printPretty(Out, Ctx, 0, Ctx.getPrintingPolicy());
|
|
Out << "\n";
|
|
return;
|
|
}
|
|
|
|
if (const Decl *D = getDecl()) {
|
|
Out << "Call to ";
|
|
D->print(Out, Ctx.getPrintingPolicy());
|
|
return;
|
|
}
|
|
|
|
// FIXME: a string representation of the kind would be nice.
|
|
Out << "Unknown call (type " << getKind() << ")";
|
|
}
|
|
|
|
|
|
bool CallEvent::mayBeInlined(const Stmt *S) {
|
|
// FIXME: Kill this.
|
|
return isa<CallExpr>(S) || isa<ObjCMessageExpr>(S)
|
|
|| isa<CXXConstructExpr>(S);
|
|
}
|
|
|
|
|
|
CallEvent::param_iterator
|
|
AnyFunctionCall::param_begin(bool UseDefinitionParams) const {
|
|
const Decl *D = UseDefinitionParams ? getRuntimeDefinition()
|
|
: getDecl();
|
|
if (!D)
|
|
return 0;
|
|
|
|
return cast<FunctionDecl>(D)->param_begin();
|
|
}
|
|
|
|
CallEvent::param_iterator
|
|
AnyFunctionCall::param_end(bool UseDefinitionParams) const {
|
|
const Decl *D = UseDefinitionParams ? getRuntimeDefinition()
|
|
: getDecl();
|
|
if (!D)
|
|
return 0;
|
|
|
|
return cast<FunctionDecl>(D)->param_end();
|
|
}
|
|
|
|
QualType AnyFunctionCall::getDeclaredResultType() const {
|
|
const FunctionDecl *D = getDecl();
|
|
if (!D)
|
|
return QualType();
|
|
|
|
return D->getResultType();
|
|
}
|
|
|
|
bool AnyFunctionCall::argumentsMayEscape() const {
|
|
if (hasNonZeroCallbackArg())
|
|
return true;
|
|
|
|
const FunctionDecl *D = getDecl();
|
|
if (!D)
|
|
return true;
|
|
|
|
const IdentifierInfo *II = D->getIdentifier();
|
|
if (!II)
|
|
return true;
|
|
|
|
// This set of "escaping" APIs is
|
|
|
|
// - 'int pthread_setspecific(ptheread_key k, const void *)' stores a
|
|
// value into thread local storage. The value can later be retrieved with
|
|
// 'void *ptheread_getspecific(pthread_key)'. So even thought the
|
|
// parameter is 'const void *', the region escapes through the call.
|
|
if (II->isStr("pthread_setspecific"))
|
|
return true;
|
|
|
|
// - xpc_connection_set_context stores a value which can be retrieved later
|
|
// with xpc_connection_get_context.
|
|
if (II->isStr("xpc_connection_set_context"))
|
|
return true;
|
|
|
|
// - funopen - sets a buffer for future IO calls.
|
|
if (II->isStr("funopen"))
|
|
return true;
|
|
|
|
StringRef FName = II->getName();
|
|
|
|
// - CoreFoundation functions that end with "NoCopy" can free a passed-in
|
|
// buffer even if it is const.
|
|
if (FName.endswith("NoCopy"))
|
|
return true;
|
|
|
|
// - NSXXInsertXX, for example NSMapInsertIfAbsent, since they can
|
|
// be deallocated by NSMapRemove.
|
|
if (FName.startswith("NS") && (FName.find("Insert") != StringRef::npos))
|
|
return true;
|
|
|
|
// - Many CF containers allow objects to escape through custom
|
|
// allocators/deallocators upon container construction. (PR12101)
|
|
if (FName.startswith("CF") || FName.startswith("CG")) {
|
|
return StrInStrNoCase(FName, "InsertValue") != StringRef::npos ||
|
|
StrInStrNoCase(FName, "AddValue") != StringRef::npos ||
|
|
StrInStrNoCase(FName, "SetValue") != StringRef::npos ||
|
|
StrInStrNoCase(FName, "WithData") != StringRef::npos ||
|
|
StrInStrNoCase(FName, "AppendValue") != StringRef::npos ||
|
|
StrInStrNoCase(FName, "SetAttribute") != StringRef::npos;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
const FunctionDecl *SimpleCall::getDecl() const {
|
|
const FunctionDecl *D = getOriginExpr()->getDirectCallee();
|
|
if (D)
|
|
return D;
|
|
|
|
return getSVal(getOriginExpr()->getCallee()).getAsFunctionDecl();
|
|
}
|
|
|
|
|
|
void CXXInstanceCall::getExtraInvalidatedRegions(RegionList &Regions) const {
|
|
if (const MemRegion *R = getCXXThisVal().getAsRegion())
|
|
Regions.push_back(R);
|
|
}
|
|
|
|
static const CXXMethodDecl *devirtualize(const CXXMethodDecl *MD, SVal ThisVal){
|
|
const MemRegion *R = ThisVal.getAsRegion();
|
|
if (!R)
|
|
return 0;
|
|
|
|
const TypedValueRegion *TR = dyn_cast<TypedValueRegion>(R->StripCasts());
|
|
if (!TR)
|
|
return 0;
|
|
|
|
const CXXRecordDecl *RD = TR->getValueType()->getAsCXXRecordDecl();
|
|
if (!RD)
|
|
return 0;
|
|
|
|
const CXXMethodDecl *Result = MD->getCorrespondingMethodInClass(RD);
|
|
const FunctionDecl *Definition;
|
|
if (!Result->hasBody(Definition))
|
|
return 0;
|
|
|
|
return cast<CXXMethodDecl>(Definition);
|
|
}
|
|
|
|
|
|
const Decl *CXXInstanceCall::getRuntimeDefinition() const {
|
|
const Decl *D = SimpleCall::getRuntimeDefinition();
|
|
if (!D)
|
|
return 0;
|
|
|
|
const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
|
|
if (!MD->isVirtual())
|
|
return MD;
|
|
|
|
// If the method is virtual, see if we can find the actual implementation
|
|
// based on context-sensitivity.
|
|
if (const CXXMethodDecl *Devirtualized = devirtualize(MD, getCXXThisVal()))
|
|
return Devirtualized;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
SVal CXXMemberCall::getCXXThisVal() const {
|
|
const Expr *Base = getOriginExpr()->getImplicitObjectArgument();
|
|
|
|
// FIXME: Will eventually need to cope with member pointers. This is
|
|
// a limitation in getImplicitObjectArgument().
|
|
if (!Base)
|
|
return UnknownVal();
|
|
|
|
return getSVal(Base);
|
|
}
|
|
|
|
|
|
SVal CXXMemberOperatorCall::getCXXThisVal() const {
|
|
const Expr *Base = getOriginExpr()->getArg(0);
|
|
return getSVal(Base);
|
|
}
|
|
|
|
|
|
const BlockDataRegion *BlockCall::getBlockRegion() const {
|
|
const Expr *Callee = getOriginExpr()->getCallee();
|
|
const MemRegion *DataReg = getSVal(Callee).getAsRegion();
|
|
|
|
return dyn_cast_or_null<BlockDataRegion>(DataReg);
|
|
}
|
|
|
|
CallEvent::param_iterator
|
|
BlockCall::param_begin(bool UseDefinitionParams) const {
|
|
// Blocks don't have distinct declarations and definitions.
|
|
(void)UseDefinitionParams;
|
|
|
|
const BlockDecl *D = getBlockDecl();
|
|
if (!D)
|
|
return 0;
|
|
return D->param_begin();
|
|
}
|
|
|
|
CallEvent::param_iterator
|
|
BlockCall::param_end(bool UseDefinitionParams) const {
|
|
// Blocks don't have distinct declarations and definitions.
|
|
(void)UseDefinitionParams;
|
|
|
|
const BlockDecl *D = getBlockDecl();
|
|
if (!D)
|
|
return 0;
|
|
return D->param_end();
|
|
}
|
|
|
|
void BlockCall::getExtraInvalidatedRegions(RegionList &Regions) const {
|
|
// FIXME: This also needs to invalidate captured globals.
|
|
if (const MemRegion *R = getBlockRegion())
|
|
Regions.push_back(R);
|
|
}
|
|
|
|
QualType BlockCall::getDeclaredResultType() const {
|
|
const BlockDataRegion *BR = getBlockRegion();
|
|
if (!BR)
|
|
return QualType();
|
|
QualType BlockTy = BR->getCodeRegion()->getLocationType();
|
|
return cast<FunctionType>(BlockTy->getPointeeType())->getResultType();
|
|
}
|
|
|
|
|
|
SVal CXXConstructorCall::getCXXThisVal() const {
|
|
if (Data)
|
|
return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
|
|
return UnknownVal();
|
|
}
|
|
|
|
void CXXConstructorCall::getExtraInvalidatedRegions(RegionList &Regions) const {
|
|
if (Data)
|
|
Regions.push_back(static_cast<const MemRegion *>(Data));
|
|
}
|
|
|
|
|
|
SVal CXXDestructorCall::getCXXThisVal() const {
|
|
if (Data)
|
|
return loc::MemRegionVal(static_cast<const MemRegion *>(Data));
|
|
return UnknownVal();
|
|
}
|
|
|
|
void CXXDestructorCall::getExtraInvalidatedRegions(RegionList &Regions) const {
|
|
if (Data)
|
|
Regions.push_back(static_cast<const MemRegion *>(Data));
|
|
}
|
|
|
|
const Decl *CXXDestructorCall::getRuntimeDefinition() const {
|
|
const Decl *D = AnyFunctionCall::getRuntimeDefinition();
|
|
if (!D)
|
|
return 0;
|
|
|
|
const CXXMethodDecl *MD = cast<CXXMethodDecl>(D);
|
|
if (!MD->isVirtual())
|
|
return MD;
|
|
|
|
// If the method is virtual, see if we can find the actual implementation
|
|
// based on context-sensitivity.
|
|
if (const CXXMethodDecl *Devirtualized = devirtualize(MD, getCXXThisVal()))
|
|
return Devirtualized;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
CallEvent::param_iterator
|
|
ObjCMethodCall::param_begin(bool UseDefinitionParams) const {
|
|
const Decl *D = UseDefinitionParams ? getRuntimeDefinition()
|
|
: getDecl();
|
|
if (!D)
|
|
return 0;
|
|
|
|
return cast<ObjCMethodDecl>(D)->param_begin();
|
|
}
|
|
|
|
CallEvent::param_iterator
|
|
ObjCMethodCall::param_end(bool UseDefinitionParams) const {
|
|
const Decl *D = UseDefinitionParams ? getRuntimeDefinition()
|
|
: getDecl();
|
|
if (!D)
|
|
return 0;
|
|
|
|
return cast<ObjCMethodDecl>(D)->param_end();
|
|
}
|
|
|
|
void
|
|
ObjCMethodCall::getExtraInvalidatedRegions(RegionList &Regions) const {
|
|
if (const MemRegion *R = getReceiverSVal().getAsRegion())
|
|
Regions.push_back(R);
|
|
}
|
|
|
|
QualType ObjCMethodCall::getDeclaredResultType() const {
|
|
const ObjCMethodDecl *D = getDecl();
|
|
if (!D)
|
|
return QualType();
|
|
|
|
return D->getResultType();
|
|
}
|
|
|
|
SVal ObjCMethodCall::getReceiverSVal() const {
|
|
// FIXME: Is this the best way to handle class receivers?
|
|
if (!isInstanceMessage())
|
|
return UnknownVal();
|
|
|
|
if (const Expr *Base = getOriginExpr()->getInstanceReceiver())
|
|
return getSVal(Base);
|
|
|
|
// An instance message with no expression means we are sending to super.
|
|
// In this case the object reference is the same as 'self'.
|
|
const LocationContext *LCtx = getLocationContext();
|
|
const ImplicitParamDecl *SelfDecl = LCtx->getSelfDecl();
|
|
assert(SelfDecl && "No message receiver Expr, but not in an ObjC method");
|
|
return getState()->getSVal(getState()->getRegion(SelfDecl, LCtx));
|
|
}
|
|
|
|
SourceRange ObjCMethodCall::getSourceRange() const {
|
|
switch (getMessageKind()) {
|
|
case OCM_Message:
|
|
return getOriginExpr()->getSourceRange();
|
|
case OCM_PropertyAccess:
|
|
case OCM_Subscript:
|
|
return getContainingPseudoObjectExpr()->getSourceRange();
|
|
}
|
|
llvm_unreachable("unknown message kind");
|
|
}
|
|
|
|
typedef llvm::PointerIntPair<const PseudoObjectExpr *, 2> ObjCMessageDataTy;
|
|
|
|
const PseudoObjectExpr *ObjCMethodCall::getContainingPseudoObjectExpr() const {
|
|
assert(Data != 0 && "Lazy lookup not yet performed.");
|
|
assert(getMessageKind() != OCM_Message && "Explicit message send.");
|
|
return ObjCMessageDataTy::getFromOpaqueValue(Data).getPointer();
|
|
}
|
|
|
|
ObjCMessageKind ObjCMethodCall::getMessageKind() const {
|
|
if (Data == 0) {
|
|
ParentMap &PM = getLocationContext()->getParentMap();
|
|
const Stmt *S = PM.getParent(getOriginExpr());
|
|
if (const PseudoObjectExpr *POE = dyn_cast_or_null<PseudoObjectExpr>(S)) {
|
|
const Expr *Syntactic = POE->getSyntacticForm();
|
|
|
|
// This handles the funny case of assigning to the result of a getter.
|
|
// This can happen if the getter returns a non-const reference.
|
|
if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(Syntactic))
|
|
Syntactic = BO->getLHS();
|
|
|
|
ObjCMessageKind K;
|
|
switch (Syntactic->getStmtClass()) {
|
|
case Stmt::ObjCPropertyRefExprClass:
|
|
K = OCM_PropertyAccess;
|
|
break;
|
|
case Stmt::ObjCSubscriptRefExprClass:
|
|
K = OCM_Subscript;
|
|
break;
|
|
default:
|
|
// FIXME: Can this ever happen?
|
|
K = OCM_Message;
|
|
break;
|
|
}
|
|
|
|
if (K != OCM_Message) {
|
|
const_cast<ObjCMethodCall *>(this)->Data
|
|
= ObjCMessageDataTy(POE, K).getOpaqueValue();
|
|
assert(getMessageKind() == K);
|
|
return K;
|
|
}
|
|
}
|
|
|
|
const_cast<ObjCMethodCall *>(this)->Data
|
|
= ObjCMessageDataTy(0, 1).getOpaqueValue();
|
|
assert(getMessageKind() == OCM_Message);
|
|
return OCM_Message;
|
|
}
|
|
|
|
ObjCMessageDataTy Info = ObjCMessageDataTy::getFromOpaqueValue(Data);
|
|
if (!Info.getPointer())
|
|
return OCM_Message;
|
|
return static_cast<ObjCMessageKind>(Info.getInt());
|
|
}
|
|
|
|
const Decl *ObjCMethodCall::getRuntimeDefinition() const {
|
|
const ObjCMessageExpr *E = getOriginExpr();
|
|
Selector Sel = E->getSelector();
|
|
assert(E);
|
|
|
|
if (E->isInstanceMessage()) {
|
|
const MemRegion *Receiver = getReceiverSVal().getAsRegion();
|
|
DynamicTypeInfo TI = getState()->getDynamicTypeInfo(Receiver);
|
|
const ObjCObjectPointerType *T =
|
|
dyn_cast<ObjCObjectPointerType>(TI.getType().getTypePtr());
|
|
if (!T)
|
|
return 0;
|
|
if (ObjCInterfaceDecl *IDecl = T->getInterfaceDecl()) {
|
|
// Find the method implementation.
|
|
return IDecl->lookupPrivateMethod(Sel);
|
|
}
|
|
|
|
} else {
|
|
// This is a class method.
|
|
// If we have type info for the receiver class, we are calling via
|
|
// class name.
|
|
if (ObjCInterfaceDecl *IDecl = E->getReceiverInterface()) {
|
|
// Find/Return the method implementation.
|
|
return IDecl->lookupPrivateClassMethod(Sel);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
CallEventRef<SimpleCall>
|
|
CallEventManager::getSimpleCall(const CallExpr *CE, ProgramStateRef State,
|
|
const LocationContext *LCtx) {
|
|
if (const CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(CE))
|
|
return create<CXXMemberCall>(MCE, State, LCtx);
|
|
|
|
if (const CXXOperatorCallExpr *OpCE = dyn_cast<CXXOperatorCallExpr>(CE)) {
|
|
const FunctionDecl *DirectCallee = OpCE->getDirectCallee();
|
|
if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DirectCallee))
|
|
if (MD->isInstance())
|
|
return create<CXXMemberOperatorCall>(OpCE, State, LCtx);
|
|
|
|
} else if (CE->getCallee()->getType()->isBlockPointerType()) {
|
|
return create<BlockCall>(CE, State, LCtx);
|
|
}
|
|
|
|
// Otherwise, it's a normal function call, static member function call, or
|
|
// something we can't reason about.
|
|
return create<FunctionCall>(CE, State, LCtx);
|
|
}
|
|
|
|
|
|
CallEventRef<>
|
|
CallEventManager::getCaller(const StackFrameContext *CalleeCtx,
|
|
ProgramStateRef State) {
|
|
const LocationContext *ParentCtx = CalleeCtx->getParent();
|
|
const LocationContext *CallerCtx = ParentCtx->getCurrentStackFrame();
|
|
assert(CallerCtx && "This should not be used for top-level stack frames");
|
|
|
|
const Stmt *CallSite = CalleeCtx->getCallSite();
|
|
|
|
if (CallSite) {
|
|
if (const CallExpr *CE = dyn_cast<CallExpr>(CallSite))
|
|
return getSimpleCall(CE, State, CallerCtx);
|
|
|
|
switch (CallSite->getStmtClass()) {
|
|
case Stmt::CXXConstructExprClass: {
|
|
SValBuilder &SVB = State->getStateManager().getSValBuilder();
|
|
const CXXMethodDecl *Ctor = cast<CXXMethodDecl>(CalleeCtx->getDecl());
|
|
Loc ThisPtr = SVB.getCXXThis(Ctor, CalleeCtx);
|
|
SVal ThisVal = State->getSVal(ThisPtr);
|
|
|
|
return getCXXConstructorCall(cast<CXXConstructExpr>(CallSite),
|
|
ThisVal.getAsRegion(), State, CallerCtx);
|
|
}
|
|
case Stmt::CXXNewExprClass:
|
|
return getCXXAllocatorCall(cast<CXXNewExpr>(CallSite), State, CallerCtx);
|
|
case Stmt::ObjCMessageExprClass:
|
|
return getObjCMethodCall(cast<ObjCMessageExpr>(CallSite),
|
|
State, CallerCtx);
|
|
default:
|
|
llvm_unreachable("This is not an inlineable statement.");
|
|
}
|
|
}
|
|
|
|
// Fall back to the CFG. The only thing we haven't handled yet is
|
|
// destructors, though this could change in the future.
|
|
const CFGBlock *B = CalleeCtx->getCallSiteBlock();
|
|
CFGElement E = (*B)[CalleeCtx->getIndex()];
|
|
assert(isa<CFGImplicitDtor>(E) && "All other CFG elements should have exprs");
|
|
assert(!isa<CFGTemporaryDtor>(E) && "We don't handle temporaries yet");
|
|
|
|
SValBuilder &SVB = State->getStateManager().getSValBuilder();
|
|
const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CalleeCtx->getDecl());
|
|
Loc ThisPtr = SVB.getCXXThis(Dtor, CalleeCtx);
|
|
SVal ThisVal = State->getSVal(ThisPtr);
|
|
|
|
const Stmt *Trigger;
|
|
if (const CFGAutomaticObjDtor *AutoDtor = dyn_cast<CFGAutomaticObjDtor>(&E))
|
|
Trigger = AutoDtor->getTriggerStmt();
|
|
else
|
|
Trigger = Dtor->getBody();
|
|
|
|
return getCXXDestructorCall(Dtor, Trigger, ThisVal.getAsRegion(),
|
|
State, CallerCtx);
|
|
}
|
|
|