martinboehme c4c59192e6
[clang][dataflow] Clear ExprToLoc and ExprToVal at the start of a block. (#72985)
We never need to access entries from these maps outside of the current
basic
block. This could only ever become a consideration when flow control
happens
inside a full-expression (i.e. we have multiple basic blocks for a full
expression); there are two kinds of expression where this can happen,
but we
already deal with these in other ways:

* Short-circuiting logical operators (`&&` and `||`) have operands that
live in
different basic blocks than the operator itself, but we already have
code in
the framework to retrieve the value of these operands from the
environment
for the block they are computed in, rather than in the environment of
the
   block containing the operator.

* The conditional operator similarly has operands that live in different
basic
blocks. However, we currently don't implement a transfer function for
the
conditional operator. When we do this, we need to retrieve the values of
the
operands from the environments of the basic blocks they live in, as we
already do for logical operators. This patch adds a comment to this
effect
   to the code.

Clearing out `ExprToLoc` and `ExprToVal` has two benefits:

* We avoid performing joins on boolean expressions contained in
`ExprToVal` and
hence extending the flow condition in cases where this is not needed.
Simpler
flow conditions should reduce the amount of work we do in the SAT
solver.

* Debugging becomes easier when flow conditions are simpler and
`ExprToLoc` /
  `ExprToVal` don’t contain any extraneous entries.

Benchmark results on Crubit's `pointer_nullability_analysis_benchmark
show a
slight runtime increase for simple benchmarks, offset by substantial
runtime
reductions for more complex benchmarks:

```
name                              old cpu/op   new cpu/op   delta
BM_PointerAnalysisCopyPointer     29.8µs ± 1%  29.9µs ± 4%     ~     (p=0.879 n=46+49)
BM_PointerAnalysisIntLoop          101µs ± 3%   104µs ± 4%   +2.96%  (p=0.000 n=55+57)
BM_PointerAnalysisPointerLoop      378µs ± 3%   245µs ± 3%  -35.09%  (p=0.000 n=47+55)
BM_PointerAnalysisBranch           118µs ± 2%   122µs ± 3%   +3.37%  (p=0.000 n=59+59)
BM_PointerAnalysisLoopAndBranch    779µs ± 3%   413µs ± 5%  -47.01%  (p=0.000 n=56+45)
BM_PointerAnalysisTwoLoops         187µs ± 3%   192µs ± 5%   +2.80%  (p=0.000 n=57+58)
BM_PointerAnalysisJoinFilePath    17.4ms ± 3%   7.2ms ± 3%  -58.75%  (p=0.000 n=58+57)
BM_PointerAnalysisCallInLoop      14.7ms ± 4%  10.3ms ± 2%  -29.87%  (p=0.000 n=56+58)
```
2023-11-22 16:34:24 +01:00

832 lines
28 KiB
C++

//===-- Transfer.cpp --------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines transfer functions that evaluate program statements and
// update an environment accordingly.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/FlowSensitive/Transfer.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/Analysis/FlowSensitive/ControlFlowContext.h"
#include "clang/Analysis/FlowSensitive/DataflowEnvironment.h"
#include "clang/Analysis/FlowSensitive/NoopAnalysis.h"
#include "clang/Analysis/FlowSensitive/RecordOps.h"
#include "clang/Analysis/FlowSensitive/Value.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/OperatorKinds.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include <assert.h>
#include <cassert>
#define DEBUG_TYPE "dataflow"
namespace clang {
namespace dataflow {
const Environment *StmtToEnvMap::getEnvironment(const Stmt &S) const {
auto BlockIt = CFCtx.getStmtToBlock().find(&ignoreCFGOmittedNodes(S));
assert(BlockIt != CFCtx.getStmtToBlock().end());
if (!CFCtx.isBlockReachable(*BlockIt->getSecond()))
return nullptr;
const auto &State = BlockToState[BlockIt->getSecond()->getBlockID()];
if (!(State))
return nullptr;
return &State->Env;
}
static BoolValue &evaluateBooleanEquality(const Expr &LHS, const Expr &RHS,
Environment &Env) {
Value *LHSValue = Env.getValue(LHS);
Value *RHSValue = Env.getValue(RHS);
if (LHSValue == RHSValue)
return Env.getBoolLiteralValue(true);
if (auto *LHSBool = dyn_cast_or_null<BoolValue>(LHSValue))
if (auto *RHSBool = dyn_cast_or_null<BoolValue>(RHSValue))
return Env.makeIff(*LHSBool, *RHSBool);
return Env.makeAtomicBoolValue();
}
static BoolValue &unpackValue(BoolValue &V, Environment &Env) {
if (auto *Top = llvm::dyn_cast<TopBoolValue>(&V)) {
auto &A = Env.getDataflowAnalysisContext().arena();
return A.makeBoolValue(A.makeAtomRef(Top->getAtom()));
}
return V;
}
// Unpacks the value (if any) associated with `E` and updates `E` to the new
// value, if any unpacking occured. Also, does the lvalue-to-rvalue conversion,
// by skipping past the reference.
static Value *maybeUnpackLValueExpr(const Expr &E, Environment &Env) {
auto *Loc = Env.getStorageLocation(E);
if (Loc == nullptr)
return nullptr;
auto *Val = Env.getValue(*Loc);
auto *B = dyn_cast_or_null<BoolValue>(Val);
if (B == nullptr)
return Val;
auto &UnpackedVal = unpackValue(*B, Env);
if (&UnpackedVal == Val)
return Val;
Env.setValue(*Loc, UnpackedVal);
return &UnpackedVal;
}
static void propagateValue(const Expr &From, const Expr &To, Environment &Env) {
if (auto *Val = Env.getValue(From))
Env.setValue(To, *Val);
}
static void propagateStorageLocation(const Expr &From, const Expr &To,
Environment &Env) {
if (auto *Loc = Env.getStorageLocation(From))
Env.setStorageLocation(To, *Loc);
}
// Propagates the value or storage location of `From` to `To` in cases where
// `From` may be either a glvalue or a prvalue. `To` must be a glvalue iff
// `From` is a glvalue.
static void propagateValueOrStorageLocation(const Expr &From, const Expr &To,
Environment &Env) {
assert(From.isGLValue() == To.isGLValue());
if (From.isGLValue())
propagateStorageLocation(From, To, Env);
else
propagateValue(From, To, Env);
}
namespace {
class TransferVisitor : public ConstStmtVisitor<TransferVisitor> {
public:
TransferVisitor(const StmtToEnvMap &StmtToEnv, Environment &Env)
: StmtToEnv(StmtToEnv), Env(Env) {}
void VisitBinaryOperator(const BinaryOperator *S) {
const Expr *LHS = S->getLHS();
assert(LHS != nullptr);
const Expr *RHS = S->getRHS();
assert(RHS != nullptr);
switch (S->getOpcode()) {
case BO_Assign: {
auto *LHSLoc = Env.getStorageLocation(*LHS);
if (LHSLoc == nullptr)
break;
auto *RHSVal = Env.getValue(*RHS);
if (RHSVal == nullptr)
break;
// Assign a value to the storage location of the left-hand side.
Env.setValue(*LHSLoc, *RHSVal);
// Assign a storage location for the whole expression.
Env.setStorageLocation(*S, *LHSLoc);
break;
}
case BO_LAnd:
case BO_LOr: {
BoolValue &LHSVal = getLogicOperatorSubExprValue(*LHS);
BoolValue &RHSVal = getLogicOperatorSubExprValue(*RHS);
if (S->getOpcode() == BO_LAnd)
Env.setValue(*S, Env.makeAnd(LHSVal, RHSVal));
else
Env.setValue(*S, Env.makeOr(LHSVal, RHSVal));
break;
}
case BO_NE:
case BO_EQ: {
auto &LHSEqRHSValue = evaluateBooleanEquality(*LHS, *RHS, Env);
Env.setValue(*S, S->getOpcode() == BO_EQ ? LHSEqRHSValue
: Env.makeNot(LHSEqRHSValue));
break;
}
case BO_Comma: {
propagateValueOrStorageLocation(*RHS, *S, Env);
break;
}
default:
break;
}
}
void VisitDeclRefExpr(const DeclRefExpr *S) {
const ValueDecl *VD = S->getDecl();
assert(VD != nullptr);
// Some `DeclRefExpr`s aren't glvalues, so we can't associate them with a
// `StorageLocation`, and there's also no sensible `Value` that we can
// assign to them. Examples:
// - Non-static member variables
// - Non static member functions
// Note: Member operators are an exception to this, but apparently only
// if the `DeclRefExpr` is used within the callee of a
// `CXXOperatorCallExpr`. In other cases, for example when applying the
// address-of operator, the `DeclRefExpr` is a prvalue.
if (!S->isGLValue())
return;
auto *DeclLoc = Env.getStorageLocation(*VD);
if (DeclLoc == nullptr)
return;
Env.setStorageLocation(*S, *DeclLoc);
}
void VisitDeclStmt(const DeclStmt *S) {
// Group decls are converted into single decls in the CFG so the cast below
// is safe.
const auto &D = *cast<VarDecl>(S->getSingleDecl());
ProcessVarDecl(D);
}
void ProcessVarDecl(const VarDecl &D) {
// Static local vars are already initialized in `Environment`.
if (D.hasGlobalStorage())
return;
// If this is the holding variable for a `BindingDecl`, we may already
// have a storage location set up -- so check. (See also explanation below
// where we process the `BindingDecl`.)
if (D.getType()->isReferenceType() && Env.getStorageLocation(D) != nullptr)
return;
assert(Env.getStorageLocation(D) == nullptr);
Env.setStorageLocation(D, Env.createObject(D));
// `DecompositionDecl` must be handled after we've interpreted the loc
// itself, because the binding expression refers back to the
// `DecompositionDecl` (even though it has no written name).
if (const auto *Decomp = dyn_cast<DecompositionDecl>(&D)) {
// If VarDecl is a DecompositionDecl, evaluate each of its bindings. This
// needs to be evaluated after initializing the values in the storage for
// VarDecl, as the bindings refer to them.
// FIXME: Add support for ArraySubscriptExpr.
// FIXME: Consider adding AST nodes used in BindingDecls to the CFG.
for (const auto *B : Decomp->bindings()) {
if (auto *ME = dyn_cast_or_null<MemberExpr>(B->getBinding())) {
auto *DE = dyn_cast_or_null<DeclRefExpr>(ME->getBase());
if (DE == nullptr)
continue;
// ME and its base haven't been visited because they aren't included
// in the statements of the CFG basic block.
VisitDeclRefExpr(DE);
VisitMemberExpr(ME);
if (auto *Loc = Env.getStorageLocation(*ME))
Env.setStorageLocation(*B, *Loc);
} else if (auto *VD = B->getHoldingVar()) {
// Holding vars are used to back the `BindingDecl`s of tuple-like
// types. The holding var declarations appear after the
// `DecompositionDecl`, so we have to explicitly process them here
// to know their storage location. They will be processed a second
// time when we visit their `VarDecl`s, so we have code that protects
// against this above.
ProcessVarDecl(*VD);
auto *VDLoc = Env.getStorageLocation(*VD);
assert(VDLoc != nullptr);
Env.setStorageLocation(*B, *VDLoc);
}
}
}
}
void VisitImplicitCastExpr(const ImplicitCastExpr *S) {
const Expr *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
switch (S->getCastKind()) {
case CK_IntegralToBoolean: {
// This cast creates a new, boolean value from the integral value. We
// model that with a fresh value in the environment, unless it's already a
// boolean.
if (auto *SubExprVal =
dyn_cast_or_null<BoolValue>(Env.getValue(*SubExpr)))
Env.setValue(*S, *SubExprVal);
else
// FIXME: If integer modeling is added, then update this code to create
// the boolean based on the integer model.
Env.setValue(*S, Env.makeAtomicBoolValue());
break;
}
case CK_LValueToRValue: {
// When an L-value is used as an R-value, it may result in sharing, so we
// need to unpack any nested `Top`s.
auto *SubExprVal = maybeUnpackLValueExpr(*SubExpr, Env);
if (SubExprVal == nullptr)
break;
Env.setValue(*S, *SubExprVal);
break;
}
case CK_IntegralCast:
// FIXME: This cast creates a new integral value from the
// subexpression. But, because we don't model integers, we don't
// distinguish between this new value and the underlying one. If integer
// modeling is added, then update this code to create a fresh location and
// value.
case CK_UncheckedDerivedToBase:
case CK_ConstructorConversion:
case CK_UserDefinedConversion:
// FIXME: Add tests that excercise CK_UncheckedDerivedToBase,
// CK_ConstructorConversion, and CK_UserDefinedConversion.
case CK_NoOp: {
// FIXME: Consider making `Environment::getStorageLocation` skip noop
// expressions (this and other similar expressions in the file) instead
// of assigning them storage locations.
propagateValueOrStorageLocation(*SubExpr, *S, Env);
break;
}
case CK_NullToPointer: {
auto &NullPointerVal =
Env.getOrCreateNullPointerValue(S->getType()->getPointeeType());
Env.setValue(*S, NullPointerVal);
break;
}
case CK_NullToMemberPointer:
// FIXME: Implement pointers to members. For now, don't associate a value
// with this expression.
break;
case CK_FunctionToPointerDecay: {
StorageLocation *PointeeLoc = Env.getStorageLocation(*SubExpr);
if (PointeeLoc == nullptr)
break;
Env.setValue(*S, Env.create<PointerValue>(*PointeeLoc));
break;
}
case CK_BuiltinFnToFnPtr:
// Despite its name, the result type of `BuiltinFnToFnPtr` is a function,
// not a function pointer. In addition, builtin functions can only be
// called directly; it is not legal to take their address. We therefore
// don't need to create a value or storage location for them.
break;
default:
break;
}
}
void VisitUnaryOperator(const UnaryOperator *S) {
const Expr *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
switch (S->getOpcode()) {
case UO_Deref: {
const auto *SubExprVal =
cast_or_null<PointerValue>(Env.getValue(*SubExpr));
if (SubExprVal == nullptr)
break;
Env.setStorageLocation(*S, SubExprVal->getPointeeLoc());
break;
}
case UO_AddrOf: {
// FIXME: Model pointers to members.
if (S->getType()->isMemberPointerType())
break;
if (StorageLocation *PointeeLoc = Env.getStorageLocation(*SubExpr))
Env.setValue(*S, Env.create<PointerValue>(*PointeeLoc));
break;
}
case UO_LNot: {
auto *SubExprVal = dyn_cast_or_null<BoolValue>(Env.getValue(*SubExpr));
if (SubExprVal == nullptr)
break;
Env.setValue(*S, Env.makeNot(*SubExprVal));
break;
}
default:
break;
}
}
void VisitCXXThisExpr(const CXXThisExpr *S) {
auto *ThisPointeeLoc = Env.getThisPointeeStorageLocation();
if (ThisPointeeLoc == nullptr)
// Unions are not supported yet, and will not have a location for the
// `this` expression's pointee.
return;
Env.setValue(*S, Env.create<PointerValue>(*ThisPointeeLoc));
}
void VisitCXXNewExpr(const CXXNewExpr *S) {
if (Value *Val = Env.createValue(S->getType()))
Env.setValue(*S, *Val);
}
void VisitCXXDeleteExpr(const CXXDeleteExpr *S) {
// Empty method.
// We consciously don't do anything on deletes. Diagnosing double deletes
// (for example) should be done by a specific analysis, not by the
// framework.
}
void VisitReturnStmt(const ReturnStmt *S) {
if (!Env.getDataflowAnalysisContext().getOptions().ContextSensitiveOpts)
return;
auto *Ret = S->getRetValue();
if (Ret == nullptr)
return;
if (Ret->isPRValue()) {
auto *Val = Env.getValue(*Ret);
if (Val == nullptr)
return;
// FIXME: Model NRVO.
Env.setReturnValue(Val);
} else {
auto *Loc = Env.getStorageLocation(*Ret);
if (Loc == nullptr)
return;
// FIXME: Model NRVO.
Env.setReturnStorageLocation(Loc);
}
}
void VisitMemberExpr(const MemberExpr *S) {
ValueDecl *Member = S->getMemberDecl();
assert(Member != nullptr);
// FIXME: Consider assigning pointer values to function member expressions.
if (Member->isFunctionOrFunctionTemplate())
return;
// FIXME: if/when we add support for modeling enums, use that support here.
if (isa<EnumConstantDecl>(Member))
return;
if (auto *D = dyn_cast<VarDecl>(Member)) {
if (D->hasGlobalStorage()) {
auto *VarDeclLoc = Env.getStorageLocation(*D);
if (VarDeclLoc == nullptr)
return;
Env.setStorageLocation(*S, *VarDeclLoc);
return;
}
}
RecordStorageLocation *BaseLoc = getBaseObjectLocation(*S, Env);
if (BaseLoc == nullptr)
return;
auto *MemberLoc = BaseLoc->getChild(*Member);
if (MemberLoc == nullptr)
return;
Env.setStorageLocation(*S, *MemberLoc);
}
void VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *S) {
const Expr *InitExpr = S->getExpr();
assert(InitExpr != nullptr);
propagateValueOrStorageLocation(*InitExpr, *S, Env);
}
void VisitCXXConstructExpr(const CXXConstructExpr *S) {
const CXXConstructorDecl *ConstructorDecl = S->getConstructor();
assert(ConstructorDecl != nullptr);
if (ConstructorDecl->isCopyOrMoveConstructor()) {
// It is permissible for a copy/move constructor to have additional
// parameters as long as they have default arguments defined for them.
assert(S->getNumArgs() != 0);
const Expr *Arg = S->getArg(0);
assert(Arg != nullptr);
auto *ArgLoc =
cast_or_null<RecordStorageLocation>(Env.getStorageLocation(*Arg));
if (ArgLoc == nullptr)
return;
if (S->isElidable()) {
if (Value *Val = Env.getValue(*ArgLoc))
Env.setValue(*S, *Val);
} else {
auto &Val = *cast<RecordValue>(Env.createValue(S->getType()));
Env.setValue(*S, Val);
copyRecord(*ArgLoc, Val.getLoc(), Env);
}
return;
}
// `CXXConstructExpr` can have array type if default-initializing an array
// of records, and we currently can't create values for arrays. So check if
// we've got a record type.
if (S->getType()->isRecordType()) {
auto &InitialVal = *cast<RecordValue>(Env.createValue(S->getType()));
Env.setValue(*S, InitialVal);
copyRecord(InitialVal.getLoc(), Env.getResultObjectLocation(*S), Env);
}
transferInlineCall(S, ConstructorDecl);
}
void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *S) {
if (S->getOperator() == OO_Equal) {
assert(S->getNumArgs() == 2);
const Expr *Arg0 = S->getArg(0);
assert(Arg0 != nullptr);
const Expr *Arg1 = S->getArg(1);
assert(Arg1 != nullptr);
// Evaluate only copy and move assignment operators.
const auto *Method =
dyn_cast_or_null<CXXMethodDecl>(S->getDirectCallee());
if (!Method)
return;
if (!Method->isCopyAssignmentOperator() &&
!Method->isMoveAssignmentOperator())
return;
RecordStorageLocation *LocSrc = nullptr;
if (Arg1->isPRValue()) {
if (auto *Val = cast_or_null<RecordValue>(Env.getValue(*Arg1)))
LocSrc = &Val->getLoc();
} else {
LocSrc =
cast_or_null<RecordStorageLocation>(Env.getStorageLocation(*Arg1));
}
auto *LocDst =
cast_or_null<RecordStorageLocation>(Env.getStorageLocation(*Arg0));
if (LocSrc == nullptr || LocDst == nullptr)
return;
// The assignment operators are different from the type of the destination
// in this model (i.e. in one of their base classes). This must be very
// rare and we just bail.
if (Method->getFunctionObjectParameterType()
.getCanonicalType()
.getUnqualifiedType() !=
LocDst->getType().getCanonicalType().getUnqualifiedType())
return;
copyRecord(*LocSrc, *LocDst, Env);
Env.setStorageLocation(*S, *LocDst);
}
}
void VisitCXXFunctionalCastExpr(const CXXFunctionalCastExpr *S) {
if (S->getCastKind() == CK_ConstructorConversion) {
const Expr *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
propagateValue(*SubExpr, *S, Env);
}
}
void VisitCXXTemporaryObjectExpr(const CXXTemporaryObjectExpr *S) {
if (Value *Val = Env.createValue(S->getType()))
Env.setValue(*S, *Val);
}
void VisitCallExpr(const CallExpr *S) {
// Of clang's builtins, only `__builtin_expect` is handled explicitly, since
// others (like trap, debugtrap, and unreachable) are handled by CFG
// construction.
if (S->isCallToStdMove()) {
assert(S->getNumArgs() == 1);
const Expr *Arg = S->getArg(0);
assert(Arg != nullptr);
auto *ArgLoc = Env.getStorageLocation(*Arg);
if (ArgLoc == nullptr)
return;
Env.setStorageLocation(*S, *ArgLoc);
} else if (S->getDirectCallee() != nullptr &&
S->getDirectCallee()->getBuiltinID() ==
Builtin::BI__builtin_expect) {
assert(S->getNumArgs() > 0);
assert(S->getArg(0) != nullptr);
auto *ArgVal = Env.getValue(*S->getArg(0));
if (ArgVal == nullptr)
return;
Env.setValue(*S, *ArgVal);
} else if (const FunctionDecl *F = S->getDirectCallee()) {
transferInlineCall(S, F);
}
}
void VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *S) {
const Expr *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
Value *SubExprVal = Env.getValue(*SubExpr);
if (SubExprVal == nullptr)
return;
if (RecordValue *RecordVal = dyn_cast<RecordValue>(SubExprVal)) {
Env.setStorageLocation(*S, RecordVal->getLoc());
return;
}
StorageLocation &Loc = Env.createStorageLocation(*S);
Env.setValue(Loc, *SubExprVal);
Env.setStorageLocation(*S, Loc);
}
void VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *S) {
const Expr *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
propagateValue(*SubExpr, *S, Env);
}
void VisitCXXStaticCastExpr(const CXXStaticCastExpr *S) {
if (S->getCastKind() == CK_NoOp) {
const Expr *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
propagateValueOrStorageLocation(*SubExpr, *S, Env);
}
}
void VisitConditionalOperator(const ConditionalOperator *S) {
// FIXME: Revisit this once flow conditions are added to the framework. For
// `a = b ? c : d` we can add `b => a == c && !b => a == d` to the flow
// condition.
// When we do this, we will need to retrieve the values of the operands from
// the environments for the basic blocks they are computed in, in a similar
// way to how this is done for short-circuited logical operators in
// `getLogicOperatorSubExprValue()`.
if (S->isGLValue())
Env.setStorageLocation(*S, Env.createObject(S->getType()));
else if (Value *Val = Env.createValue(S->getType()))
Env.setValue(*S, *Val);
}
void VisitInitListExpr(const InitListExpr *S) {
QualType Type = S->getType();
if (!Type->isStructureOrClassType()) {
if (auto *Val = Env.createValue(Type))
Env.setValue(*S, *Val);
return;
}
// In case the initializer list is transparent, we just need to propagate
// the value that it contains.
if (S->isSemanticForm() && S->isTransparent()) {
propagateValue(*S->getInit(0), *S, Env);
return;
}
llvm::DenseMap<const ValueDecl *, StorageLocation *> FieldLocs;
// This only contains the direct fields for the given type.
std::vector<FieldDecl *> FieldsForInit =
getFieldsForInitListExpr(Type->getAsRecordDecl());
// `S->inits()` contains all the initializer epressions, including the
// ones for direct base classes.
auto Inits = S->inits();
size_t InitIdx = 0;
// Initialize base classes.
if (auto* R = S->getType()->getAsCXXRecordDecl()) {
assert(FieldsForInit.size() + R->getNumBases() == Inits.size());
for ([[maybe_unused]] const CXXBaseSpecifier &Base : R->bases()) {
assert(InitIdx < Inits.size());
auto Init = Inits[InitIdx++];
assert(Base.getType().getCanonicalType() ==
Init->getType().getCanonicalType());
auto* BaseVal = cast_or_null<RecordValue>(Env.getValue(*Init));
if (!BaseVal)
BaseVal = cast<RecordValue>(Env.createValue(Init->getType()));
// Take ownership of the fields of the `RecordValue` for the base class
// and incorporate them into the "flattened" set of fields for the
// derived class.
auto Children = BaseVal->getLoc().children();
FieldLocs.insert(Children.begin(), Children.end());
}
}
assert(FieldsForInit.size() == Inits.size() - InitIdx);
for (auto Field : FieldsForInit) {
assert(InitIdx < Inits.size());
auto Init = Inits[InitIdx++];
assert(
// The types are same, or
Field->getType().getCanonicalType().getUnqualifiedType() ==
Init->getType().getCanonicalType().getUnqualifiedType() ||
// The field's type is T&, and initializer is T
(Field->getType()->isReferenceType() &&
Field->getType().getCanonicalType()->getPointeeType() ==
Init->getType().getCanonicalType()));
auto& Loc = Env.createObject(Field->getType(), Init);
FieldLocs.insert({Field, &Loc});
}
// Check that we satisfy the invariant that a `RecordStorageLoation`
// contains exactly the set of modeled fields for that type.
// `ModeledFields` includes fields from all the bases, but only the
// modeled ones. However, if a class type is initialized with an
// `InitListExpr`, all fields in the class, including those from base
// classes, are included in the set of modeled fields. The code above
// should therefore populate exactly the modeled fields.
assert([&]() {
auto ModeledFields =
Env.getDataflowAnalysisContext().getModeledFields(Type);
if (ModeledFields.size() != FieldLocs.size())
return false;
for ([[maybe_unused]] auto [Field, Loc] : FieldLocs)
if (!ModeledFields.contains(cast_or_null<FieldDecl>(Field)))
return false;
return true;
}());
auto &Loc =
Env.getDataflowAnalysisContext().arena().create<RecordStorageLocation>(
Type, std::move(FieldLocs));
RecordValue &RecordVal = Env.create<RecordValue>(Loc);
Env.setValue(Loc, RecordVal);
Env.setValue(*S, RecordVal);
// FIXME: Implement array initialization.
}
void VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *S) {
Env.setValue(*S, Env.getBoolLiteralValue(S->getValue()));
}
void VisitIntegerLiteral(const IntegerLiteral *S) {
Env.setValue(*S, Env.getIntLiteralValue(S->getValue()));
}
void VisitParenExpr(const ParenExpr *S) {
// The CFG does not contain `ParenExpr` as top-level statements in basic
// blocks, however manual traversal to sub-expressions may encounter them.
// Redirect to the sub-expression.
auto *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
Visit(SubExpr);
}
void VisitExprWithCleanups(const ExprWithCleanups *S) {
// The CFG does not contain `ExprWithCleanups` as top-level statements in
// basic blocks, however manual traversal to sub-expressions may encounter
// them. Redirect to the sub-expression.
auto *SubExpr = S->getSubExpr();
assert(SubExpr != nullptr);
Visit(SubExpr);
}
private:
/// Returns the value for the sub-expression `SubExpr` of a logic operator.
BoolValue &getLogicOperatorSubExprValue(const Expr &SubExpr) {
// `SubExpr` and its parent logic operator might be part of different basic
// blocks. We try to access the value that is assigned to `SubExpr` in the
// corresponding environment.
if (const Environment *SubExprEnv = StmtToEnv.getEnvironment(SubExpr))
if (auto *Val =
dyn_cast_or_null<BoolValue>(SubExprEnv->getValue(SubExpr)))
return *Val;
// The sub-expression may lie within a basic block that isn't reachable,
// even if we need it to evaluate the current (reachable) expression
// (see https://discourse.llvm.org/t/70775). In this case, visit `SubExpr`
// within the current environment and then try to get the value that gets
// assigned to it.
if (Env.getValue(SubExpr) == nullptr)
Visit(&SubExpr);
if (auto *Val = dyn_cast_or_null<BoolValue>(Env.getValue(SubExpr)))
return *Val;
// If the value of `SubExpr` is still unknown, we create a fresh symbolic
// boolean value for it.
return Env.makeAtomicBoolValue();
}
// If context sensitivity is enabled, try to analyze the body of the callee
// `F` of `S`. The type `E` must be either `CallExpr` or `CXXConstructExpr`.
template <typename E>
void transferInlineCall(const E *S, const FunctionDecl *F) {
const auto &Options = Env.getDataflowAnalysisContext().getOptions();
if (!(Options.ContextSensitiveOpts &&
Env.canDescend(Options.ContextSensitiveOpts->Depth, F)))
return;
const ControlFlowContext *CFCtx =
Env.getDataflowAnalysisContext().getControlFlowContext(F);
if (!CFCtx)
return;
// FIXME: We don't support context-sensitive analysis of recursion, so
// we should return early here if `F` is the same as the `FunctionDecl`
// holding `S` itself.
auto ExitBlock = CFCtx->getCFG().getExit().getBlockID();
auto CalleeEnv = Env.pushCall(S);
// FIXME: Use the same analysis as the caller for the callee. Note,
// though, that doing so would require support for changing the analysis's
// ASTContext.
auto Analysis = NoopAnalysis(CFCtx->getDecl().getASTContext(),
DataflowAnalysisOptions{Options});
auto BlockToOutputState =
dataflow::runDataflowAnalysis(*CFCtx, Analysis, CalleeEnv);
assert(BlockToOutputState);
assert(ExitBlock < BlockToOutputState->size());
auto &ExitState = (*BlockToOutputState)[ExitBlock];
assert(ExitState);
Env.popCall(S, ExitState->Env);
}
const StmtToEnvMap &StmtToEnv;
Environment &Env;
};
} // namespace
void transfer(const StmtToEnvMap &StmtToEnv, const Stmt &S, Environment &Env) {
TransferVisitor(StmtToEnv, Env).Visit(&S);
}
} // namespace dataflow
} // namespace clang