llvm-project/clang/lib/Sema/SemaSwift.cpp
2025-01-13 13:42:22 +01:00

774 lines
25 KiB
C++

//===------ SemaSwift.cpp ------ Swift language-specific routines ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements semantic analysis functions specific to Swift.
//
//===----------------------------------------------------------------------===//
#include "clang/Sema/SemaSwift.h"
#include "clang/AST/DeclBase.h"
#include "clang/Basic/AttributeCommonInfo.h"
#include "clang/Basic/DiagnosticSema.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Sema/Attr.h"
#include "clang/Sema/ParsedAttr.h"
#include "clang/Sema/Sema.h"
#include "clang/Sema/SemaObjC.h"
namespace clang {
SemaSwift::SemaSwift(Sema &S) : SemaBase(S) {}
SwiftNameAttr *SemaSwift::mergeNameAttr(Decl *D, const SwiftNameAttr &SNA,
StringRef Name) {
if (const auto *PrevSNA = D->getAttr<SwiftNameAttr>()) {
if (PrevSNA->getName() != Name && !PrevSNA->isImplicit()) {
Diag(PrevSNA->getLocation(), diag::err_attributes_are_not_compatible)
<< PrevSNA << &SNA
<< (PrevSNA->isRegularKeywordAttribute() ||
SNA.isRegularKeywordAttribute());
Diag(SNA.getLoc(), diag::note_conflicting_attribute);
}
D->dropAttr<SwiftNameAttr>();
}
return ::new (getASTContext()) SwiftNameAttr(getASTContext(), SNA, Name);
}
/// Pointer-like types in the default address space.
static bool isValidSwiftContextType(QualType Ty) {
if (!Ty->hasPointerRepresentation())
return Ty->isDependentType();
return Ty->getPointeeType().getAddressSpace() == LangAS::Default;
}
/// Pointers and references in the default address space.
static bool isValidSwiftIndirectResultType(QualType Ty) {
if (const auto *PtrType = Ty->getAs<PointerType>()) {
Ty = PtrType->getPointeeType();
} else if (const auto *RefType = Ty->getAs<ReferenceType>()) {
Ty = RefType->getPointeeType();
} else {
return Ty->isDependentType();
}
return Ty.getAddressSpace() == LangAS::Default;
}
/// Pointers and references to pointers in the default address space.
static bool isValidSwiftErrorResultType(QualType Ty) {
if (const auto *PtrType = Ty->getAs<PointerType>()) {
Ty = PtrType->getPointeeType();
} else if (const auto *RefType = Ty->getAs<ReferenceType>()) {
Ty = RefType->getPointeeType();
} else {
return Ty->isDependentType();
}
if (!Ty.getQualifiers().empty())
return false;
return isValidSwiftContextType(Ty);
}
void SemaSwift::handleAttrAttr(Decl *D, const ParsedAttr &AL) {
if (AL.isInvalid() || AL.isUsedAsTypeAttr())
return;
// Make sure that there is a string literal as the annotation's single
// argument.
StringRef Str;
if (!SemaRef.checkStringLiteralArgumentAttr(AL, 0, Str)) {
AL.setInvalid();
return;
}
D->addAttr(::new (getASTContext()) SwiftAttrAttr(getASTContext(), AL, Str));
}
void SemaSwift::handleBridge(Decl *D, const ParsedAttr &AL) {
// Make sure that there is a string literal as the annotation's single
// argument.
StringRef BT;
if (!SemaRef.checkStringLiteralArgumentAttr(AL, 0, BT))
return;
// Warn about duplicate attributes if they have different arguments, but drop
// any duplicate attributes regardless.
if (const auto *Other = D->getAttr<SwiftBridgeAttr>()) {
if (Other->getSwiftType() != BT)
Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL;
return;
}
D->addAttr(::new (getASTContext()) SwiftBridgeAttr(getASTContext(), AL, BT));
}
static bool isErrorParameter(Sema &S, QualType QT) {
const auto *PT = QT->getAs<PointerType>();
if (!PT)
return false;
QualType Pointee = PT->getPointeeType();
// Check for NSError**.
if (const auto *OPT = Pointee->getAs<ObjCObjectPointerType>())
if (const auto *ID = OPT->getInterfaceDecl())
if (ID->getIdentifier() == S.ObjC().getNSErrorIdent())
return true;
// Check for CFError**.
if (const auto *PT = Pointee->getAs<PointerType>())
if (const auto *RT = PT->getPointeeType()->getAs<RecordType>())
if (S.ObjC().isCFError(RT->getDecl()))
return true;
return false;
}
void SemaSwift::handleError(Decl *D, const ParsedAttr &AL) {
auto hasErrorParameter = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool {
for (unsigned I = 0, E = getFunctionOrMethodNumParams(D); I != E; ++I) {
if (isErrorParameter(S, getFunctionOrMethodParamType(D, I)))
return true;
}
S.Diag(AL.getLoc(), diag::err_attr_swift_error_no_error_parameter)
<< AL << isa<ObjCMethodDecl>(D);
return false;
};
auto hasPointerResult = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool {
// - C, ObjC, and block pointers are definitely okay.
// - References are definitely not okay.
// - nullptr_t is weird, but acceptable.
QualType RT = getFunctionOrMethodResultType(D);
if (RT->hasPointerRepresentation() && !RT->isReferenceType())
return true;
S.Diag(AL.getLoc(), diag::err_attr_swift_error_return_type)
<< AL << AL.getArgAsIdent(0)->Ident->getName() << isa<ObjCMethodDecl>(D)
<< /*pointer*/ 1;
return false;
};
auto hasIntegerResult = [](Sema &S, Decl *D, const ParsedAttr &AL) -> bool {
QualType RT = getFunctionOrMethodResultType(D);
if (RT->isIntegralType(S.Context))
return true;
S.Diag(AL.getLoc(), diag::err_attr_swift_error_return_type)
<< AL << AL.getArgAsIdent(0)->Ident->getName() << isa<ObjCMethodDecl>(D)
<< /*integral*/ 0;
return false;
};
if (D->isInvalidDecl())
return;
IdentifierLoc *Loc = AL.getArgAsIdent(0);
SwiftErrorAttr::ConventionKind Convention;
if (!SwiftErrorAttr::ConvertStrToConventionKind(Loc->Ident->getName(),
Convention)) {
Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
<< AL << Loc->Ident;
return;
}
switch (Convention) {
case SwiftErrorAttr::None:
// No additional validation required.
break;
case SwiftErrorAttr::NonNullError:
if (!hasErrorParameter(SemaRef, D, AL))
return;
break;
case SwiftErrorAttr::NullResult:
if (!hasErrorParameter(SemaRef, D, AL) || !hasPointerResult(SemaRef, D, AL))
return;
break;
case SwiftErrorAttr::NonZeroResult:
case SwiftErrorAttr::ZeroResult:
if (!hasErrorParameter(SemaRef, D, AL) || !hasIntegerResult(SemaRef, D, AL))
return;
break;
}
D->addAttr(::new (getASTContext())
SwiftErrorAttr(getASTContext(), AL, Convention));
}
static void checkSwiftAsyncErrorBlock(Sema &S, Decl *D,
const SwiftAsyncErrorAttr *ErrorAttr,
const SwiftAsyncAttr *AsyncAttr) {
if (AsyncAttr->getKind() == SwiftAsyncAttr::None) {
if (ErrorAttr->getConvention() != SwiftAsyncErrorAttr::None) {
S.Diag(AsyncAttr->getLocation(),
diag::err_swift_async_error_without_swift_async)
<< AsyncAttr << isa<ObjCMethodDecl>(D);
}
return;
}
const ParmVarDecl *HandlerParam = getFunctionOrMethodParam(
D, AsyncAttr->getCompletionHandlerIndex().getASTIndex());
// handleSwiftAsyncAttr already verified the type is correct, so no need to
// double-check it here.
const auto *FuncTy = HandlerParam->getType()
->castAs<BlockPointerType>()
->getPointeeType()
->getAs<FunctionProtoType>();
ArrayRef<QualType> BlockParams;
if (FuncTy)
BlockParams = FuncTy->getParamTypes();
switch (ErrorAttr->getConvention()) {
case SwiftAsyncErrorAttr::ZeroArgument:
case SwiftAsyncErrorAttr::NonZeroArgument: {
uint32_t ParamIdx = ErrorAttr->getHandlerParamIdx();
if (ParamIdx == 0 || ParamIdx > BlockParams.size()) {
S.Diag(ErrorAttr->getLocation(),
diag::err_attribute_argument_out_of_bounds)
<< ErrorAttr << 2;
return;
}
QualType ErrorParam = BlockParams[ParamIdx - 1];
if (!ErrorParam->isIntegralType(S.Context)) {
StringRef ConvStr =
ErrorAttr->getConvention() == SwiftAsyncErrorAttr::ZeroArgument
? "zero_argument"
: "nonzero_argument";
S.Diag(ErrorAttr->getLocation(), diag::err_swift_async_error_non_integral)
<< ErrorAttr << ConvStr << ParamIdx << ErrorParam;
return;
}
break;
}
case SwiftAsyncErrorAttr::NonNullError: {
bool AnyErrorParams = false;
for (QualType Param : BlockParams) {
// Check for NSError *.
if (const auto *ObjCPtrTy = Param->getAs<ObjCObjectPointerType>()) {
if (const auto *ID = ObjCPtrTy->getInterfaceDecl()) {
if (ID->getIdentifier() == S.ObjC().getNSErrorIdent()) {
AnyErrorParams = true;
break;
}
}
}
// Check for CFError *.
if (const auto *PtrTy = Param->getAs<PointerType>()) {
if (const auto *RT = PtrTy->getPointeeType()->getAs<RecordType>()) {
if (S.ObjC().isCFError(RT->getDecl())) {
AnyErrorParams = true;
break;
}
}
}
}
if (!AnyErrorParams) {
S.Diag(ErrorAttr->getLocation(),
diag::err_swift_async_error_no_error_parameter)
<< ErrorAttr << isa<ObjCMethodDecl>(D);
return;
}
break;
}
case SwiftAsyncErrorAttr::None:
break;
}
}
void SemaSwift::handleAsyncError(Decl *D, const ParsedAttr &AL) {
IdentifierLoc *IDLoc = AL.getArgAsIdent(0);
SwiftAsyncErrorAttr::ConventionKind ConvKind;
if (!SwiftAsyncErrorAttr::ConvertStrToConventionKind(IDLoc->Ident->getName(),
ConvKind)) {
Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
<< AL << IDLoc->Ident;
return;
}
uint32_t ParamIdx = 0;
switch (ConvKind) {
case SwiftAsyncErrorAttr::ZeroArgument:
case SwiftAsyncErrorAttr::NonZeroArgument: {
if (!AL.checkExactlyNumArgs(SemaRef, 2))
return;
Expr *IdxExpr = AL.getArgAsExpr(1);
if (!SemaRef.checkUInt32Argument(AL, IdxExpr, ParamIdx))
return;
break;
}
case SwiftAsyncErrorAttr::NonNullError:
case SwiftAsyncErrorAttr::None: {
if (!AL.checkExactlyNumArgs(SemaRef, 1))
return;
break;
}
}
auto *ErrorAttr = ::new (getASTContext())
SwiftAsyncErrorAttr(getASTContext(), AL, ConvKind, ParamIdx);
D->addAttr(ErrorAttr);
if (auto *AsyncAttr = D->getAttr<SwiftAsyncAttr>())
checkSwiftAsyncErrorBlock(SemaRef, D, ErrorAttr, AsyncAttr);
}
// For a function, this will validate a compound Swift name, e.g.
// <code>init(foo:bar:baz:)</code> or <code>controllerForName(_:)</code>, and
// the function will output the number of parameter names, and whether this is a
// single-arg initializer.
//
// For a type, enum constant, property, or variable declaration, this will
// validate either a simple identifier, or a qualified
// <code>context.identifier</code> name.
static bool validateSwiftFunctionName(Sema &S, const ParsedAttr &AL,
SourceLocation Loc, StringRef Name,
unsigned &SwiftParamCount,
bool &IsSingleParamInit) {
SwiftParamCount = 0;
IsSingleParamInit = false;
// Check whether this will be mapped to a getter or setter of a property.
bool IsGetter = false, IsSetter = false;
if (Name.consume_front("getter:"))
IsGetter = true;
else if (Name.consume_front("setter:"))
IsSetter = true;
if (Name.back() != ')') {
S.Diag(Loc, diag::warn_attr_swift_name_function) << AL;
return false;
}
bool IsMember = false;
StringRef ContextName, BaseName, Parameters;
std::tie(BaseName, Parameters) = Name.split('(');
// Split at the first '.', if it exists, which separates the context name
// from the base name.
std::tie(ContextName, BaseName) = BaseName.split('.');
if (BaseName.empty()) {
BaseName = ContextName;
ContextName = StringRef();
} else if (ContextName.empty() || !isValidAsciiIdentifier(ContextName)) {
S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
<< AL << /*context*/ 1;
return false;
} else {
IsMember = true;
}
if (!isValidAsciiIdentifier(BaseName) || BaseName == "_") {
S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
<< AL << /*basename*/ 0;
return false;
}
bool IsSubscript = BaseName == "subscript";
// A subscript accessor must be a getter or setter.
if (IsSubscript && !IsGetter && !IsSetter) {
S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter)
<< AL << /* getter or setter */ 0;
return false;
}
if (Parameters.empty()) {
S.Diag(Loc, diag::warn_attr_swift_name_missing_parameters) << AL;
return false;
}
assert(Parameters.back() == ')' && "expected ')'");
Parameters = Parameters.drop_back(); // ')'
if (Parameters.empty()) {
// Setters and subscripts must have at least one parameter.
if (IsSubscript) {
S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter)
<< AL << /* have at least one parameter */ 1;
return false;
}
if (IsSetter) {
S.Diag(Loc, diag::warn_attr_swift_name_setter_parameters) << AL;
return false;
}
return true;
}
if (Parameters.back() != ':') {
S.Diag(Loc, diag::warn_attr_swift_name_function) << AL;
return false;
}
StringRef CurrentParam;
std::optional<unsigned> SelfLocation;
unsigned NewValueCount = 0;
std::optional<unsigned> NewValueLocation;
do {
std::tie(CurrentParam, Parameters) = Parameters.split(':');
if (!isValidAsciiIdentifier(CurrentParam)) {
S.Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
<< AL << /*parameter*/ 2;
return false;
}
if (IsMember && CurrentParam == "self") {
// "self" indicates the "self" argument for a member.
// More than one "self"?
if (SelfLocation) {
S.Diag(Loc, diag::warn_attr_swift_name_multiple_selfs) << AL;
return false;
}
// The "self" location is the current parameter.
SelfLocation = SwiftParamCount;
} else if (CurrentParam == "newValue") {
// "newValue" indicates the "newValue" argument for a setter.
// There should only be one 'newValue', but it's only significant for
// subscript accessors, so don't error right away.
++NewValueCount;
NewValueLocation = SwiftParamCount;
}
++SwiftParamCount;
} while (!Parameters.empty());
// Only instance subscripts are currently supported.
if (IsSubscript && !SelfLocation) {
S.Diag(Loc, diag::warn_attr_swift_name_subscript_invalid_parameter)
<< AL << /*have a 'self:' parameter*/ 2;
return false;
}
IsSingleParamInit =
SwiftParamCount == 1 && BaseName == "init" && CurrentParam != "_";
// Check the number of parameters for a getter/setter.
if (IsGetter || IsSetter) {
// Setters have one parameter for the new value.
unsigned NumExpectedParams = IsGetter ? 0 : 1;
unsigned ParamDiag = IsGetter
? diag::warn_attr_swift_name_getter_parameters
: diag::warn_attr_swift_name_setter_parameters;
// Instance methods have one parameter for "self".
if (SelfLocation)
++NumExpectedParams;
// Subscripts may have additional parameters beyond the expected params for
// the index.
if (IsSubscript) {
if (SwiftParamCount < NumExpectedParams) {
S.Diag(Loc, ParamDiag) << AL;
return false;
}
// A subscript setter must explicitly label its newValue parameter to
// distinguish it from index parameters.
if (IsSetter) {
if (!NewValueLocation) {
S.Diag(Loc, diag::warn_attr_swift_name_subscript_setter_no_newValue)
<< AL;
return false;
}
if (NewValueCount > 1) {
S.Diag(Loc,
diag::warn_attr_swift_name_subscript_setter_multiple_newValues)
<< AL;
return false;
}
} else {
// Subscript getters should have no 'newValue:' parameter.
if (NewValueLocation) {
S.Diag(Loc, diag::warn_attr_swift_name_subscript_getter_newValue)
<< AL;
return false;
}
}
} else {
// Property accessors must have exactly the number of expected params.
if (SwiftParamCount != NumExpectedParams) {
S.Diag(Loc, ParamDiag) << AL;
return false;
}
}
}
return true;
}
bool SemaSwift::DiagnoseName(Decl *D, StringRef Name, SourceLocation Loc,
const ParsedAttr &AL, bool IsAsync) {
if (isa<ObjCMethodDecl>(D) || isa<FunctionDecl>(D)) {
ArrayRef<ParmVarDecl *> Params;
unsigned ParamCount;
if (const auto *Method = dyn_cast<ObjCMethodDecl>(D)) {
ParamCount = Method->getSelector().getNumArgs();
Params = Method->parameters().slice(0, ParamCount);
} else {
const auto *F = cast<FunctionDecl>(D);
ParamCount = F->getNumParams();
Params = F->parameters();
if (!F->hasWrittenPrototype()) {
Diag(Loc, diag::warn_attribute_wrong_decl_type)
<< AL << AL.isRegularKeywordAttribute()
<< ExpectedFunctionWithProtoType;
return false;
}
}
// The async name drops the last callback parameter.
if (IsAsync) {
if (ParamCount == 0) {
Diag(Loc, diag::warn_attr_swift_name_decl_missing_params)
<< AL << isa<ObjCMethodDecl>(D);
return false;
}
ParamCount -= 1;
}
unsigned SwiftParamCount;
bool IsSingleParamInit;
if (!validateSwiftFunctionName(SemaRef, AL, Loc, Name, SwiftParamCount,
IsSingleParamInit))
return false;
bool ParamCountValid;
if (SwiftParamCount == ParamCount) {
ParamCountValid = true;
} else if (SwiftParamCount > ParamCount) {
ParamCountValid = IsSingleParamInit && ParamCount == 0;
} else {
// We have fewer Swift parameters than Objective-C parameters, but that
// might be because we've transformed some of them. Check for potential
// "out" parameters and err on the side of not warning.
unsigned MaybeOutParamCount =
llvm::count_if(Params, [](const ParmVarDecl *Param) -> bool {
QualType ParamTy = Param->getType();
if (ParamTy->isReferenceType() || ParamTy->isPointerType())
return !ParamTy->getPointeeType().isConstQualified();
return false;
});
ParamCountValid = SwiftParamCount + MaybeOutParamCount >= ParamCount;
}
if (!ParamCountValid) {
Diag(Loc, diag::warn_attr_swift_name_num_params)
<< (SwiftParamCount > ParamCount) << AL << ParamCount
<< SwiftParamCount;
return false;
}
} else if ((isa<EnumConstantDecl>(D) || isa<ObjCProtocolDecl>(D) ||
isa<ObjCInterfaceDecl>(D) || isa<ObjCPropertyDecl>(D) ||
isa<VarDecl>(D) || isa<TypedefNameDecl>(D) || isa<TagDecl>(D) ||
isa<IndirectFieldDecl>(D) || isa<FieldDecl>(D)) &&
!IsAsync) {
StringRef ContextName, BaseName;
std::tie(ContextName, BaseName) = Name.split('.');
if (BaseName.empty()) {
BaseName = ContextName;
ContextName = StringRef();
} else if (!isValidAsciiIdentifier(ContextName)) {
Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
<< AL << /*context*/ 1;
return false;
}
if (!isValidAsciiIdentifier(BaseName)) {
Diag(Loc, diag::warn_attr_swift_name_invalid_identifier)
<< AL << /*basename*/ 0;
return false;
}
} else {
Diag(Loc, diag::warn_attr_swift_name_decl_kind) << AL;
return false;
}
return true;
}
void SemaSwift::handleName(Decl *D, const ParsedAttr &AL) {
StringRef Name;
SourceLocation Loc;
if (!SemaRef.checkStringLiteralArgumentAttr(AL, 0, Name, &Loc))
return;
if (!DiagnoseName(D, Name, Loc, AL, /*IsAsync=*/false))
return;
D->addAttr(::new (getASTContext()) SwiftNameAttr(getASTContext(), AL, Name));
}
void SemaSwift::handleAsyncName(Decl *D, const ParsedAttr &AL) {
StringRef Name;
SourceLocation Loc;
if (!SemaRef.checkStringLiteralArgumentAttr(AL, 0, Name, &Loc))
return;
if (!DiagnoseName(D, Name, Loc, AL, /*IsAsync=*/true))
return;
D->addAttr(::new (getASTContext())
SwiftAsyncNameAttr(getASTContext(), AL, Name));
}
void SemaSwift::handleNewType(Decl *D, const ParsedAttr &AL) {
// Make sure that there is an identifier as the annotation's single argument.
if (!AL.checkExactlyNumArgs(SemaRef, 1))
return;
if (!AL.isArgIdent(0)) {
Diag(AL.getLoc(), diag::err_attribute_argument_type)
<< AL << AANT_ArgumentIdentifier;
return;
}
SwiftNewTypeAttr::NewtypeKind Kind;
IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
if (!SwiftNewTypeAttr::ConvertStrToNewtypeKind(II->getName(), Kind)) {
Diag(AL.getLoc(), diag::warn_attribute_type_not_supported) << AL << II;
return;
}
if (!isa<TypedefNameDecl>(D)) {
Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
<< AL << AL.isRegularKeywordAttribute() << ExpectedTypedef;
return;
}
D->addAttr(::new (getASTContext())
SwiftNewTypeAttr(getASTContext(), AL, Kind));
}
void SemaSwift::handleAsyncAttr(Decl *D, const ParsedAttr &AL) {
if (!AL.isArgIdent(0)) {
Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
<< AL << 1 << AANT_ArgumentIdentifier;
return;
}
SwiftAsyncAttr::Kind Kind;
IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
if (!SwiftAsyncAttr::ConvertStrToKind(II->getName(), Kind)) {
Diag(AL.getLoc(), diag::err_swift_async_no_access) << AL << II;
return;
}
ParamIdx Idx;
if (Kind == SwiftAsyncAttr::None) {
// If this is 'none', then there shouldn't be any additional arguments.
if (!AL.checkExactlyNumArgs(SemaRef, 1))
return;
} else {
// Non-none swift_async requires a completion handler index argument.
if (!AL.checkExactlyNumArgs(SemaRef, 2))
return;
Expr *HandlerIdx = AL.getArgAsExpr(1);
if (!SemaRef.checkFunctionOrMethodParameterIndex(D, AL, 2, HandlerIdx, Idx))
return;
const ParmVarDecl *CompletionBlock =
getFunctionOrMethodParam(D, Idx.getASTIndex());
QualType CompletionBlockType = CompletionBlock->getType();
if (!CompletionBlockType->isBlockPointerType()) {
Diag(CompletionBlock->getLocation(), diag::err_swift_async_bad_block_type)
<< CompletionBlock->getType();
return;
}
QualType BlockTy =
CompletionBlockType->castAs<BlockPointerType>()->getPointeeType();
if (!BlockTy->castAs<FunctionType>()->getReturnType()->isVoidType()) {
Diag(CompletionBlock->getLocation(), diag::err_swift_async_bad_block_type)
<< CompletionBlock->getType();
return;
}
}
auto *AsyncAttr =
::new (getASTContext()) SwiftAsyncAttr(getASTContext(), AL, Kind, Idx);
D->addAttr(AsyncAttr);
if (auto *ErrorAttr = D->getAttr<SwiftAsyncErrorAttr>())
checkSwiftAsyncErrorBlock(SemaRef, D, ErrorAttr, AsyncAttr);
}
void SemaSwift::AddParameterABIAttr(Decl *D, const AttributeCommonInfo &CI,
ParameterABI abi) {
ASTContext &Context = getASTContext();
QualType type = cast<ParmVarDecl>(D)->getType();
if (auto existingAttr = D->getAttr<ParameterABIAttr>()) {
if (existingAttr->getABI() != abi) {
Diag(CI.getLoc(), diag::err_attributes_are_not_compatible)
<< getParameterABISpelling(abi) << existingAttr
<< (CI.isRegularKeywordAttribute() ||
existingAttr->isRegularKeywordAttribute());
Diag(existingAttr->getLocation(), diag::note_conflicting_attribute);
return;
}
}
switch (abi) {
case ParameterABI::HLSLOut:
case ParameterABI::HLSLInOut:
llvm_unreachable("explicit attribute for non-swift parameter ABI?");
case ParameterABI::Ordinary:
llvm_unreachable("explicit attribute for ordinary parameter ABI?");
case ParameterABI::SwiftContext:
if (!isValidSwiftContextType(type)) {
Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
<< getParameterABISpelling(abi) << /*pointer to pointer */ 0 << type;
}
D->addAttr(::new (Context) SwiftContextAttr(Context, CI));
return;
case ParameterABI::SwiftAsyncContext:
if (!isValidSwiftContextType(type)) {
Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
<< getParameterABISpelling(abi) << /*pointer to pointer */ 0 << type;
}
D->addAttr(::new (Context) SwiftAsyncContextAttr(Context, CI));
return;
case ParameterABI::SwiftErrorResult:
if (!isValidSwiftErrorResultType(type)) {
Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
<< getParameterABISpelling(abi) << /*pointer to pointer */ 1 << type;
}
D->addAttr(::new (Context) SwiftErrorResultAttr(Context, CI));
return;
case ParameterABI::SwiftIndirectResult:
if (!isValidSwiftIndirectResultType(type)) {
Diag(CI.getLoc(), diag::err_swift_abi_parameter_wrong_type)
<< getParameterABISpelling(abi) << /*pointer*/ 0 << type;
}
D->addAttr(::new (Context) SwiftIndirectResultAttr(Context, CI));
return;
}
llvm_unreachable("bad parameter ABI attribute");
}
} // namespace clang