mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-26 14:46:07 +00:00
596 lines
20 KiB
C++
596 lines
20 KiB
C++
// RUN: %clang_cc1 -fexperimental-new-constant-interpreter -verify=expected,both %s
|
|
// RUN: %clang_cc1 -std=c++20 -fexperimental-new-constant-interpreter -verify=expected,both %s
|
|
// RUN: %clang_cc1 -triple=i686-linux-gnu -std=c++20 -fexperimental-new-constant-interpreter -verify=expected,both %s
|
|
// RUN: %clang_cc1 -verify=ref,both %s
|
|
// RUN: %clang_cc1 -std=c++20 -verify=ref,both %s
|
|
// RUN: %clang_cc1 -triple=i686-linux-gnu -std=c++20 -verify=ref,both %s
|
|
|
|
#if __cplusplus >= 202002L
|
|
|
|
constexpr int *Global = new int(12); // both-error {{must be initialized by a constant expression}} \
|
|
// both-note {{pointer to heap-allocated object}} \
|
|
// both-note {{heap allocation performed here}}
|
|
|
|
static_assert(*(new int(12)) == 12); // both-error {{not an integral constant expression}} \
|
|
// both-note {{allocation performed here was not deallocated}}
|
|
|
|
|
|
constexpr int a() {
|
|
new int(12); // both-note {{allocation performed here was not deallocated}}
|
|
return 1;
|
|
}
|
|
static_assert(a() == 1, ""); // both-error {{not an integral constant expression}}
|
|
|
|
constexpr int b() {
|
|
int *i = new int(12);
|
|
int m = *i;
|
|
delete(i);
|
|
return m;
|
|
}
|
|
static_assert(b() == 12, "");
|
|
|
|
|
|
struct S {
|
|
int a;
|
|
int b;
|
|
|
|
static constexpr S *create(int a, int b) {
|
|
return new S(a, b);
|
|
}
|
|
};
|
|
|
|
constexpr int c() {
|
|
S *s = new S(12, 13);
|
|
|
|
int i = s->a;
|
|
delete s;
|
|
|
|
return i;
|
|
}
|
|
static_assert(c() == 12, "");
|
|
|
|
/// Dynamic allocation in function ::create(), freed in function d().
|
|
constexpr int d() {
|
|
S* s = S::create(12, 14);
|
|
|
|
int sum = s->a + s->b;
|
|
delete s;
|
|
return sum;
|
|
}
|
|
static_assert(d() == 26);
|
|
|
|
|
|
/// Test we emit the right diagnostic for several allocations done on
|
|
/// the same site.
|
|
constexpr int loop() {
|
|
for (int i = 0; i < 10; ++i) {
|
|
int *a = new int[10]; // both-note {{not deallocated (along with 9 other memory leaks)}}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
static_assert(loop() == 1, ""); // both-error {{not an integral constant expression}}
|
|
|
|
/// No initializer.
|
|
constexpr int noInit() {
|
|
int *i = new int;
|
|
delete i;
|
|
return 0;
|
|
}
|
|
static_assert(noInit() == 0, "");
|
|
|
|
/// Try to delete a pointer that hasn't been heap allocated.
|
|
constexpr int notHeapAllocated() { // both-error {{never produces a constant expression}}
|
|
int A = 0; // both-note 2{{declared here}}
|
|
delete &A; // ref-note 2{{delete of pointer '&A' that does not point to a heap-allocated object}} \
|
|
// expected-note 2{{delete of pointer '&A' that does not point to a heap-allocated object}}
|
|
|
|
return 1;
|
|
}
|
|
static_assert(notHeapAllocated() == 1, ""); // both-error {{not an integral constant expression}} \
|
|
// both-note {{in call to 'notHeapAllocated()'}}
|
|
|
|
consteval int deleteNull() {
|
|
int *A = nullptr;
|
|
delete A;
|
|
return 1;
|
|
}
|
|
static_assert(deleteNull() == 1, "");
|
|
|
|
consteval int doubleDelete() { // both-error {{never produces a constant expression}}
|
|
int *A = new int;
|
|
delete A;
|
|
delete A; // both-note 2{{delete of pointer that has already been deleted}}
|
|
return 1;
|
|
}
|
|
static_assert(doubleDelete() == 1); // both-error {{not an integral constant expression}} \
|
|
// both-note {{in call to 'doubleDelete()'}}
|
|
|
|
constexpr int AutoArray() {
|
|
auto array = new int[]{0, 1, 2, 3};
|
|
int ret = array[3];
|
|
delete [] array;
|
|
return ret;
|
|
}
|
|
|
|
static_assert(AutoArray() == 3);
|
|
|
|
#if 0
|
|
consteval int largeArray1(bool b) {
|
|
if (b) {
|
|
int *a = new int[1ull<<32]; // both-note {{cannot allocate array; evaluated array bound 4294967296 is too large}}
|
|
delete[] a;
|
|
}
|
|
return 1;
|
|
}
|
|
static_assert(largeArray1(false) == 1, "");
|
|
static_assert(largeArray1(true) == 1, ""); // both-error {{not an integral constant expression}} \
|
|
// both-note {{in call to 'largeArray1(true)'}}
|
|
|
|
consteval int largeArray2(bool b) {
|
|
if (b) {
|
|
S *a = new S[1ull<<32]; // both-note {{cannot allocate array; evaluated array bound 4294967296 is too large}}
|
|
delete[] a;
|
|
}
|
|
return 1;
|
|
}
|
|
static_assert(largeArray2(false) == 1, "");
|
|
static_assert(largeArray2(true) == 1, ""); // both-error {{not an integral constant expression}} \
|
|
// both-note {{in call to 'largeArray2(true)'}}
|
|
#endif
|
|
namespace Arrays {
|
|
constexpr int d() {
|
|
int *Arr = new int[12];
|
|
|
|
Arr[0] = 1;
|
|
Arr[1] = 5;
|
|
|
|
int sum = Arr[0] + Arr[1];
|
|
delete[] Arr;
|
|
return sum;
|
|
}
|
|
static_assert(d() == 6);
|
|
|
|
|
|
constexpr int mismatch1() { // both-error {{never produces a constant expression}}
|
|
int *i = new int(12); // both-note {{allocated with 'new' here}} \
|
|
// both-note 2{{heap allocation performed here}}
|
|
delete[] i; // both-warning {{'delete[]' applied to a pointer that was allocated with 'new'}} \
|
|
// both-note 2{{array delete used to delete pointer to non-array object of type 'int'}}
|
|
return 6;
|
|
}
|
|
static_assert(mismatch1() == 6); // both-error {{not an integral constant expression}} \
|
|
// both-note {{in call to 'mismatch1()'}}
|
|
|
|
constexpr int mismatch2() { // both-error {{never produces a constant expression}}
|
|
int *i = new int[12]; // both-note {{allocated with 'new[]' here}} \
|
|
// both-note 2{{heap allocation performed here}}
|
|
delete i; // both-warning {{'delete' applied to a pointer that was allocated with 'new[]'}} \
|
|
// both-note 2{{non-array delete used to delete pointer to array object of type 'int[12]'}}
|
|
return 6;
|
|
}
|
|
static_assert(mismatch2() == 6); // both-error {{not an integral constant expression}} \
|
|
// both-note {{in call to 'mismatch2()'}}
|
|
/// Array of composite elements.
|
|
constexpr int foo() {
|
|
S *ss = new S[12];
|
|
|
|
ss[0].a = 12;
|
|
|
|
int m = ss[0].a;
|
|
|
|
delete[] ss;
|
|
return m;
|
|
}
|
|
static_assert(foo() == 12);
|
|
|
|
|
|
|
|
constexpr int ArrayInit() {
|
|
auto array = new int[4]{0, 1, 2, 3};
|
|
int ret = array[0];
|
|
delete [] array;
|
|
return ret;
|
|
}
|
|
static_assert(ArrayInit() == 0, "");
|
|
|
|
struct S {
|
|
float F;
|
|
};
|
|
constexpr float ArrayInit2() {
|
|
auto array = new S[4]{};
|
|
float ret = array[0].F;
|
|
delete [] array;
|
|
return ret;
|
|
}
|
|
static_assert(ArrayInit2() == 0.0f, "");
|
|
}
|
|
|
|
namespace std {
|
|
struct type_info;
|
|
struct destroying_delete_t {
|
|
explicit destroying_delete_t() = default;
|
|
} inline constexpr destroying_delete{};
|
|
struct nothrow_t {
|
|
explicit nothrow_t() = default;
|
|
} inline constexpr nothrow{};
|
|
using size_t = decltype(sizeof(0));
|
|
enum class align_val_t : size_t {};
|
|
};
|
|
|
|
[[nodiscard]] void *operator new(std::size_t, const std::nothrow_t&) noexcept;
|
|
[[nodiscard]] void *operator new(std::size_t, std::align_val_t, const std::nothrow_t&) noexcept;
|
|
[[nodiscard]] void *operator new[](std::size_t, const std::nothrow_t&) noexcept;
|
|
[[nodiscard]] void *operator new[](std::size_t, std::align_val_t, const std::nothrow_t&) noexcept;
|
|
[[nodiscard]] void *operator new[](std::size_t, std::align_val_t);
|
|
void operator delete(void*, const std::nothrow_t&) noexcept;
|
|
void operator delete(void*, std::align_val_t, const std::nothrow_t&) noexcept;
|
|
void operator delete[](void*, const std::nothrow_t&) noexcept;
|
|
void operator delete[](void*, std::align_val_t, const std::nothrow_t&) noexcept;
|
|
|
|
struct placement_new_arg {};
|
|
void *operator new(std::size_t, placement_new_arg);
|
|
void operator delete(void*, placement_new_arg);
|
|
|
|
|
|
constexpr void *operator new(std::size_t, void *p) { return p; }
|
|
namespace std {
|
|
template<typename T> constexpr T *construct(T *p) { return new (p) T; }
|
|
template<typename T> constexpr void destroy(T *p) { p->~T(); }
|
|
}
|
|
|
|
|
|
|
|
/// FIXME: The new interpreter produces the wrong diagnostic.
|
|
namespace PlacementNew {
|
|
constexpr int foo() { // both-error {{never produces a constant expression}}
|
|
char c[sizeof(int)];
|
|
new (c) int{12}; // ref-note {{this placement new expression is not supported in constant expressions before C++2c}} \
|
|
// expected-note {{subexpression not valid in a constant expression}}
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
namespace NowThrowNew {
|
|
constexpr bool erroneous_array_bound_nothrow(long long n) {
|
|
int *p = new (std::nothrow) int[n];
|
|
bool result = p != nullptr;
|
|
delete[] p;
|
|
return result;
|
|
}
|
|
static_assert(erroneous_array_bound_nothrow(3));
|
|
static_assert(erroneous_array_bound_nothrow(0));
|
|
static_assert(erroneous_array_bound_nothrow(-1) == 0);
|
|
static_assert(!erroneous_array_bound_nothrow(1LL << 62));
|
|
|
|
struct S { int a; };
|
|
constexpr bool erroneous_array_bound_nothrow2(long long n) {
|
|
S *p = new (std::nothrow) S[n];
|
|
bool result = p != nullptr;
|
|
delete[] p;
|
|
return result;
|
|
}
|
|
/// This needs support for CXXConstrucExprs with non-constant array sizes.
|
|
static_assert(erroneous_array_bound_nothrow2(3)); // expected-error {{not an integral constant expression}}
|
|
static_assert(erroneous_array_bound_nothrow2(0));// expected-error {{not an integral constant expression}}
|
|
static_assert(erroneous_array_bound_nothrow2(-1) == 0);// expected-error {{not an integral constant expression}}
|
|
static_assert(!erroneous_array_bound_nothrow2(1LL << 62));// expected-error {{not an integral constant expression}}
|
|
|
|
constexpr bool evaluate_nothrow_arg() {
|
|
bool ok = false;
|
|
delete new ((ok = true, std::nothrow)) int;
|
|
return ok;
|
|
}
|
|
static_assert(evaluate_nothrow_arg());
|
|
}
|
|
|
|
namespace placement_new_delete {
|
|
struct ClassSpecificNew {
|
|
void *operator new(std::size_t);
|
|
};
|
|
struct ClassSpecificDelete {
|
|
void operator delete(void*);
|
|
};
|
|
struct DestroyingDelete {
|
|
void operator delete(DestroyingDelete*, std::destroying_delete_t);
|
|
};
|
|
struct alignas(64) Overaligned {};
|
|
|
|
constexpr bool ok() {
|
|
delete new Overaligned;
|
|
delete ::new ClassSpecificNew;
|
|
::delete new ClassSpecificDelete;
|
|
::delete new DestroyingDelete;
|
|
return true;
|
|
}
|
|
static_assert(ok());
|
|
|
|
/// FIXME: Diagnosting placement new.
|
|
constexpr bool bad(int which) {
|
|
switch (which) {
|
|
case 0:
|
|
delete new (placement_new_arg{}) int; // ref-note {{this placement new expression is not supported in constant expressions}} \
|
|
// expected-note {{subexpression not valid in a constant expression}}
|
|
break;
|
|
|
|
case 1:
|
|
delete new ClassSpecificNew; // ref-note {{call to class-specific 'operator new'}}
|
|
break;
|
|
|
|
case 2:
|
|
delete new ClassSpecificDelete; // ref-note {{call to class-specific 'operator delete'}}
|
|
break;
|
|
|
|
case 3:
|
|
delete new DestroyingDelete; // ref-note {{call to class-specific 'operator delete'}}
|
|
break;
|
|
|
|
case 4:
|
|
// FIXME: This technically follows the standard's rules, but it seems
|
|
// unreasonable to expect implementations to support this.
|
|
delete new (std::align_val_t{64}) Overaligned; // ref-note {{this placement new expression is not supported in constant expressions}} \
|
|
// expected-note {{subexpression not valid in a constant expression}}
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
static_assert(bad(0)); // both-error {{constant expression}} \
|
|
// both-note {{in call}}
|
|
static_assert(bad(1)); // ref-error {{constant expression}} ref-note {{in call}}
|
|
static_assert(bad(2)); // ref-error {{constant expression}} ref-note {{in call}}
|
|
static_assert(bad(3)); // ref-error {{constant expression}} ref-note {{in call}}
|
|
static_assert(bad(4)); // both-error {{constant expression}} \
|
|
// both-note {{in call}}
|
|
}
|
|
|
|
|
|
|
|
|
|
namespace delete_random_things {
|
|
static_assert((delete new int, true));
|
|
static_assert((delete (int*)0, true));
|
|
int n; // both-note {{declared here}}
|
|
static_assert((delete &n, true)); // both-error {{}} \
|
|
// both-note {{delete of pointer '&n' that does not point to a heap-allocated object}}
|
|
struct A { int n; };
|
|
static_assert((delete &(new A)->n, true)); // both-error {{}} \
|
|
// both-note {{delete of pointer to subobject }}
|
|
static_assert((delete (new int + 1), true)); // both-error {{}} \
|
|
// ref-note {{delete of pointer '&{*new int#0} + 1' that does not point to complete object}} \
|
|
// expected-note {{delete of pointer '&{*new int#1} + 1' that does not point to complete object}}
|
|
static_assert((delete[] (new int[3] + 1), true)); // both-error {{}} \
|
|
// both-note {{delete of pointer to subobject}}
|
|
static_assert((delete &(int&)(int&&)0, true)); // both-error {{}} \
|
|
// both-note {{delete of pointer '&0' that does not point to a heap-allocated object}} \
|
|
// both-note {{temporary created here}}
|
|
}
|
|
|
|
namespace value_dependent_delete {
|
|
template<typename T> void f(T *p) {
|
|
int arr[(delete p, 0)];
|
|
}
|
|
}
|
|
|
|
namespace memory_leaks {
|
|
static_assert(*new bool(true)); // both-error {{}} both-note {{allocation performed here was not deallocated}}
|
|
|
|
constexpr bool *f() { return new bool(true); } // both-note {{allocation performed here was not deallocated}}
|
|
static_assert(*f()); // both-error {{}}
|
|
|
|
struct UP {
|
|
bool *p;
|
|
constexpr ~UP() { delete p; }
|
|
constexpr bool &operator*() { return *p; }
|
|
};
|
|
constexpr UP g() { return {new bool(true)}; }
|
|
static_assert(*g()); // ok
|
|
|
|
constexpr bool h(UP p) { return *p; }
|
|
static_assert(h({new bool(true)})); // ok
|
|
}
|
|
|
|
/// From test/SemaCXX/cxx2a-consteval.cpp
|
|
|
|
namespace std {
|
|
template <typename T> struct remove_reference { using type = T; };
|
|
template <typename T> struct remove_reference<T &> { using type = T; };
|
|
template <typename T> struct remove_reference<T &&> { using type = T; };
|
|
template <typename T>
|
|
constexpr typename std::remove_reference<T>::type&& move(T &&t) noexcept {
|
|
return static_cast<typename std::remove_reference<T>::type &&>(t);
|
|
}
|
|
}
|
|
|
|
namespace cxx2a {
|
|
struct A {
|
|
int* p = new int(42); // both-note 3{{heap allocation performed here}}
|
|
consteval int ret_i() const { return p ? *p : 0; }
|
|
consteval A ret_a() const { return A{}; }
|
|
constexpr ~A() { delete p; }
|
|
};
|
|
|
|
consteval int by_value_a(A a) { return a.ret_i(); }
|
|
|
|
consteval int const_a_ref(const A &a) {
|
|
return a.ret_i();
|
|
}
|
|
|
|
consteval int rvalue_ref(const A &&a) {
|
|
return a.ret_i();
|
|
}
|
|
|
|
consteval const A &to_lvalue_ref(const A &&a) {
|
|
return a;
|
|
}
|
|
|
|
void test() {
|
|
constexpr A a{ nullptr };
|
|
{ int k = A().ret_i(); }
|
|
|
|
{ A k = A().ret_a(); } // both-error {{'cxx2a::A::ret_a' is not a constant expression}} \
|
|
// both-note {{heap-allocated object is not a constant expression}}
|
|
{ A k = to_lvalue_ref(A()); } // both-error {{'cxx2a::to_lvalue_ref' is not a constant expression}} \
|
|
// both-note {{reference to temporary is not a constant expression}} \
|
|
// both-note {{temporary created here}}
|
|
{ A k = to_lvalue_ref(A().ret_a()); } // both-error {{'cxx2a::to_lvalue_ref' is not a constant expression}} \
|
|
// both-note {{reference to temporary is not a constant expression}} \
|
|
// both-note {{temporary created here}}
|
|
{ int k = A().ret_a().ret_i(); } // both-error {{'cxx2a::A::ret_a' is not a constant expression}} \
|
|
// both-note {{heap-allocated object is not a constant expression}}
|
|
{ int k = by_value_a(A()); }
|
|
{ int k = const_a_ref(A()); }
|
|
{ int k = const_a_ref(a); }
|
|
{ int k = rvalue_ref(A()); }
|
|
{ int k = rvalue_ref(std::move(a)); }
|
|
{ int k = const_a_ref(A().ret_a()); }
|
|
{ int k = const_a_ref(to_lvalue_ref(A().ret_a())); }
|
|
{ int k = const_a_ref(to_lvalue_ref(std::move(a))); }
|
|
{ int k = by_value_a(A().ret_a()); }
|
|
{ int k = by_value_a(to_lvalue_ref(static_cast<const A&&>(a))); }
|
|
{ int k = (A().ret_a(), A().ret_i()); } // both-error {{'cxx2a::A::ret_a' is not a constant expression}} \
|
|
// both-note {{is not a constant expression}} \
|
|
// both-warning {{left operand of comma operator has no effect}}
|
|
{ int k = (const_a_ref(A().ret_a()), A().ret_i()); } // both-warning {{left operand of comma operator has no effect}}
|
|
}
|
|
}
|
|
|
|
constexpr int *const &p = new int; // both-error {{must be initialized by a constant expression}} \
|
|
// both-note {{pointer to heap-allocated object}} \
|
|
// both-note {{allocation performed here}}
|
|
|
|
constexpr const int *A[] = {nullptr, nullptr, new int{12}}; // both-error {{must be initialized by a constant expression}} \
|
|
// both-note {{pointer to heap-allocated object}} \
|
|
// both-note {{allocation performed here}}
|
|
|
|
struct Sp {
|
|
const int *p;
|
|
};
|
|
constexpr Sp ss[] = {Sp{new int{154}}}; // both-error {{must be initialized by a constant expression}} \
|
|
// both-note {{pointer to heap-allocated object}} \
|
|
// both-note {{allocation performed here}}
|
|
|
|
namespace DeleteRunsDtors {
|
|
struct InnerFoo {
|
|
int *mem;
|
|
constexpr ~InnerFoo() {
|
|
delete mem;
|
|
}
|
|
};
|
|
|
|
struct Foo {
|
|
int *a;
|
|
InnerFoo IF;
|
|
|
|
constexpr Foo() {
|
|
a = new int(13);
|
|
IF.mem = new int(100);
|
|
}
|
|
constexpr ~Foo() { delete a; }
|
|
};
|
|
|
|
constexpr int abc() {
|
|
Foo *F = new Foo();
|
|
int n = *F->a;
|
|
delete F;
|
|
|
|
return n;
|
|
}
|
|
static_assert(abc() == 13);
|
|
|
|
constexpr int abc2() {
|
|
Foo *f = new Foo[3];
|
|
|
|
delete[] f;
|
|
|
|
return 1;
|
|
}
|
|
static_assert(abc2() == 1);
|
|
}
|
|
|
|
/// FIXME: There is a slight difference in diagnostics here.
|
|
namespace FaultyDtorCalledByDelete {
|
|
struct InnerFoo {
|
|
int *mem;
|
|
constexpr ~InnerFoo() {
|
|
if (mem) {
|
|
(void)(1/0); // both-warning {{division by zero is undefined}} \
|
|
// both-note {{division by zero}}
|
|
}
|
|
delete mem;
|
|
}
|
|
};
|
|
|
|
struct Foo {
|
|
int *a;
|
|
InnerFoo IF;
|
|
|
|
constexpr Foo() {
|
|
a = new int(13);
|
|
IF.mem = new int(100);
|
|
}
|
|
constexpr ~Foo() { delete a; } // expected-note {{in call to}}
|
|
};
|
|
|
|
constexpr int abc() {
|
|
Foo *F = new Foo();
|
|
int n = *F->a;
|
|
delete F; // both-note {{in call to}} \
|
|
// ref-note {{in call to}}
|
|
|
|
return n;
|
|
}
|
|
static_assert(abc() == 13); // both-error {{not an integral constant expression}} \
|
|
// both-note {{in call to 'abc()'}}
|
|
}
|
|
|
|
namespace DeleteThis {
|
|
constexpr bool super_secret_double_delete() {
|
|
struct A {
|
|
constexpr ~A() { delete this; } // both-note {{destruction of object that is already being destroyed}} \
|
|
// ref-note {{in call to}}
|
|
};
|
|
delete new A; // both-note {{in call to}}
|
|
return true;
|
|
}
|
|
static_assert(super_secret_double_delete()); // both-error {{not an integral constant expression}} \
|
|
// both-note {{in call to 'super_secret_double_delete()'}}
|
|
}
|
|
|
|
/// FIXME: This is currently diagnosed, but should work.
|
|
/// If the destructor for S is _not_ virtual however, it should fail.
|
|
namespace CastedDelete {
|
|
struct S {
|
|
constexpr S(int *p) : p(p) {}
|
|
constexpr virtual ~S() { *p = 1; }
|
|
int *p;
|
|
};
|
|
struct T: S {
|
|
// implicit destructor defined eagerly because it is constexpr and virtual
|
|
using S::S;
|
|
};
|
|
|
|
constexpr int vdtor_1() {
|
|
int a;
|
|
delete (S*)new T(&a); // expected-note {{delete of pointer to subobject}}
|
|
return a;
|
|
}
|
|
static_assert(vdtor_1() == 1); // expected-error {{not an integral constant expression}} \
|
|
// expected-note {{in call to}}
|
|
}
|
|
|
|
#else
|
|
/// Make sure we reject this prior to C++20
|
|
constexpr int a() { // both-error {{never produces a constant expression}}
|
|
delete new int(12); // both-note 2{{dynamic memory allocation is not permitted in constant expressions until C++20}}
|
|
return 1;
|
|
}
|
|
static_assert(a() == 1, ""); // both-error {{not an integral constant expression}} \
|
|
// both-note {{in call to 'a()'}}
|
|
|
|
|
|
static_assert(true ? *new int : 4, ""); // both-error {{expression is not an integral constant expression}} \
|
|
// both-note {{read of uninitialized object is not allowed in a constant expression}}
|
|
|
|
#endif
|