llvm-project/llvm/lib/DebugInfo/DWARF/DWARFVerifier.cpp
Jonas Devlieghere a15f25d325 [dwarfdump][NFC] Consistent printing of address ranges
This implement the insertion operator for DWARF address ranges so they
are consistently printed as [LowPC, HighPC).

While a dump method might have felt more consistent, it is used
exclusively for printing error messages in the verifier and never used
for actual dumping. Hence this approach is more intuitive and creates
less clutter at the call sites.

Differential revision: https://reviews.llvm.org/D38395

llvm-svn: 314523
2017-09-29 15:41:22 +00:00

778 lines
26 KiB
C++

//===- DWARFVerifier.cpp --------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "SyntaxHighlighting.h"
#include "llvm/DebugInfo/DWARF/DWARFVerifier.h"
#include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugLine.h"
#include "llvm/DebugInfo/DWARF/DWARFDie.h"
#include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
#include "llvm/DebugInfo/DWARF/DWARFSection.h"
#include "llvm/DebugInfo/DWARF/DWARFAcceleratorTable.h"
#include "llvm/Support/raw_ostream.h"
#include <map>
#include <set>
#include <vector>
using namespace llvm;
using namespace dwarf;
using namespace object;
using namespace syntax;
DWARFVerifier::DieRangeInfo::address_range_iterator
DWARFVerifier::DieRangeInfo::insert(const DWARFAddressRange &R) {
auto Begin = Ranges.begin();
auto End = Ranges.end();
auto Pos = std::lower_bound(Begin, End, R);
if (Pos != End) {
if (Pos->intersects(R))
return Pos;
if (Pos != Begin) {
auto Iter = Pos - 1;
if (Iter->intersects(R))
return Iter;
}
}
Ranges.insert(Pos, R);
return Ranges.end();
}
DWARFVerifier::DieRangeInfo::die_range_info_iterator
DWARFVerifier::DieRangeInfo::insert(const DieRangeInfo &RI) {
auto End = Children.end();
auto Iter = Children.begin();
while (Iter != End) {
if (Iter->intersects(RI))
return Iter;
++Iter;
}
Children.insert(RI);
return Children.end();
}
bool DWARFVerifier::DieRangeInfo::contains(const DieRangeInfo &RHS) const {
// Both list of ranges are sorted so we can make this fast.
if (Ranges.empty() || RHS.Ranges.empty())
return false;
// Since the ranges are sorted we can advance where we start searching with
// this object's ranges as we traverse RHS.Ranges.
auto End = Ranges.end();
auto Iter = findRange(RHS.Ranges.front());
// Now linearly walk the ranges in this object and see if they contain each
// ranges from RHS.Ranges.
for (const auto &R : RHS.Ranges) {
while (Iter != End) {
if (Iter->contains(R))
break;
++Iter;
}
if (Iter == End)
return false;
}
return true;
}
bool DWARFVerifier::DieRangeInfo::intersects(const DieRangeInfo &RHS) const {
if (Ranges.empty() || RHS.Ranges.empty())
return false;
auto End = Ranges.end();
auto Iter = findRange(RHS.Ranges.front());
for (const auto &R : RHS.Ranges) {
if(Iter == End)
return false;
if (R.HighPC <= Iter->LowPC)
continue;
while (Iter != End) {
if (Iter->intersects(R))
return true;
++Iter;
}
}
return false;
}
bool DWARFVerifier::verifyUnitHeader(const DWARFDataExtractor DebugInfoData,
uint32_t *Offset, unsigned UnitIndex,
uint8_t &UnitType, bool &isUnitDWARF64) {
uint32_t AbbrOffset, Length;
uint8_t AddrSize = 0;
uint16_t Version;
bool Success = true;
bool ValidLength = false;
bool ValidVersion = false;
bool ValidAddrSize = false;
bool ValidType = true;
bool ValidAbbrevOffset = true;
uint32_t OffsetStart = *Offset;
Length = DebugInfoData.getU32(Offset);
if (Length == UINT32_MAX) {
isUnitDWARF64 = true;
OS << format(
"Unit[%d] is in 64-bit DWARF format; cannot verify from this point.\n",
UnitIndex);
return false;
}
Version = DebugInfoData.getU16(Offset);
if (Version >= 5) {
UnitType = DebugInfoData.getU8(Offset);
AddrSize = DebugInfoData.getU8(Offset);
AbbrOffset = DebugInfoData.getU32(Offset);
ValidType = DWARFUnit::isValidUnitType(UnitType);
} else {
UnitType = 0;
AbbrOffset = DebugInfoData.getU32(Offset);
AddrSize = DebugInfoData.getU8(Offset);
}
if (!DCtx.getDebugAbbrev()->getAbbreviationDeclarationSet(AbbrOffset))
ValidAbbrevOffset = false;
ValidLength = DebugInfoData.isValidOffset(OffsetStart + Length + 3);
ValidVersion = DWARFContext::isSupportedVersion(Version);
ValidAddrSize = AddrSize == 4 || AddrSize == 8;
if (!ValidLength || !ValidVersion || !ValidAddrSize || !ValidAbbrevOffset ||
!ValidType) {
Success = false;
error() << format("Units[%d] - start offset: 0x%08x \n", UnitIndex,
OffsetStart);
if (!ValidLength)
note() << "The length for this unit is too "
"large for the .debug_info provided.\n";
if (!ValidVersion)
note() << "The 16 bit unit header version is not valid.\n";
if (!ValidType)
note() << "The unit type encoding is not valid.\n";
if (!ValidAbbrevOffset)
note() << "The offset into the .debug_abbrev section is "
"not valid.\n";
if (!ValidAddrSize)
note() << "The address size is unsupported.\n";
}
*Offset = OffsetStart + Length + 4;
return Success;
}
bool DWARFVerifier::verifyUnitContents(DWARFUnit Unit) {
uint32_t NumUnitErrors = 0;
unsigned NumDies = Unit.getNumDIEs();
for (unsigned I = 0; I < NumDies; ++I) {
auto Die = Unit.getDIEAtIndex(I);
if (Die.getTag() == DW_TAG_null)
continue;
for (auto AttrValue : Die.attributes()) {
NumUnitErrors += verifyDebugInfoAttribute(Die, AttrValue);
NumUnitErrors += verifyDebugInfoForm(Die, AttrValue);
}
}
if (DWARFDie Die = Unit.getUnitDIE(/* ExtractUnitDIEOnly = */ false)) {
DieRangeInfo RI;
NumUnitErrors += verifyDieRanges(Die, RI);
} else {
error() << "Compilation unit without unit DIE.\n";
NumUnitErrors++;
}
return NumUnitErrors == 0;
}
unsigned DWARFVerifier::verifyAbbrevSection(const DWARFDebugAbbrev *Abbrev) {
unsigned NumErrors = 0;
if (Abbrev) {
const DWARFAbbreviationDeclarationSet *AbbrDecls =
Abbrev->getAbbreviationDeclarationSet(0);
for (auto AbbrDecl : *AbbrDecls) {
SmallDenseSet<uint16_t> AttributeSet;
for (auto Attribute : AbbrDecl.attributes()) {
auto Result = AttributeSet.insert(Attribute.Attr);
if (!Result.second) {
error() << "Abbreviation declaration contains multiple "
<< AttributeString(Attribute.Attr) << " attributes.\n";
AbbrDecl.dump(OS);
++NumErrors;
}
}
}
}
return NumErrors;
}
bool DWARFVerifier::handleDebugAbbrev() {
OS << "Verifying .debug_abbrev...\n";
const DWARFObject &DObj = DCtx.getDWARFObj();
bool noDebugAbbrev = DObj.getAbbrevSection().empty();
bool noDebugAbbrevDWO = DObj.getAbbrevDWOSection().empty();
if (noDebugAbbrev && noDebugAbbrevDWO) {
return true;
}
unsigned NumErrors = 0;
if (!noDebugAbbrev)
NumErrors += verifyAbbrevSection(DCtx.getDebugAbbrev());
if (!noDebugAbbrevDWO)
NumErrors += verifyAbbrevSection(DCtx.getDebugAbbrevDWO());
return NumErrors == 0;
}
bool DWARFVerifier::handleDebugInfo() {
OS << "Verifying .debug_info Unit Header Chain...\n";
const DWARFObject &DObj = DCtx.getDWARFObj();
DWARFDataExtractor DebugInfoData(DObj, DObj.getInfoSection(),
DCtx.isLittleEndian(), 0);
uint32_t NumDebugInfoErrors = 0;
uint32_t OffsetStart = 0, Offset = 0, UnitIdx = 0;
uint8_t UnitType = 0;
bool isUnitDWARF64 = false;
bool isHeaderChainValid = true;
bool hasDIE = DebugInfoData.isValidOffset(Offset);
while (hasDIE) {
OffsetStart = Offset;
if (!verifyUnitHeader(DebugInfoData, &Offset, UnitIdx, UnitType,
isUnitDWARF64)) {
isHeaderChainValid = false;
if (isUnitDWARF64)
break;
} else {
std::unique_ptr<DWARFUnit> Unit;
switch (UnitType) {
case dwarf::DW_UT_type:
case dwarf::DW_UT_split_type: {
DWARFUnitSection<DWARFTypeUnit> TUSection{};
Unit.reset(new DWARFTypeUnit(
DCtx, DObj.getInfoSection(), DCtx.getDebugAbbrev(),
&DObj.getRangeSection(), DObj.getStringSection(),
DObj.getStringOffsetSection(), &DObj.getAppleObjCSection(),
DObj.getLineSection(), DCtx.isLittleEndian(), false, TUSection,
nullptr));
break;
}
case dwarf::DW_UT_skeleton:
case dwarf::DW_UT_split_compile:
case dwarf::DW_UT_compile:
case dwarf::DW_UT_partial:
// UnitType = 0 means that we are
// verifying a compile unit in DWARF v4.
case 0: {
DWARFUnitSection<DWARFCompileUnit> CUSection{};
Unit.reset(new DWARFCompileUnit(
DCtx, DObj.getInfoSection(), DCtx.getDebugAbbrev(),
&DObj.getRangeSection(), DObj.getStringSection(),
DObj.getStringOffsetSection(), &DObj.getAppleObjCSection(),
DObj.getLineSection(), DCtx.isLittleEndian(), false, CUSection,
nullptr));
break;
}
default: { llvm_unreachable("Invalid UnitType."); }
}
Unit->extract(DebugInfoData, &OffsetStart);
if (!verifyUnitContents(*Unit))
++NumDebugInfoErrors;
}
hasDIE = DebugInfoData.isValidOffset(Offset);
++UnitIdx;
}
if (UnitIdx == 0 && !hasDIE) {
warn() << ".debug_info is empty.\n";
isHeaderChainValid = true;
}
NumDebugInfoErrors += verifyDebugInfoReferences();
return (isHeaderChainValid && NumDebugInfoErrors == 0);
}
unsigned DWARFVerifier::verifyDieRanges(const DWARFDie &Die,
DieRangeInfo &ParentRI) {
unsigned NumErrors = 0;
if (!Die.isValid())
return NumErrors;
DWARFAddressRangesVector Ranges = Die.getAddressRanges();
// Build RI for this DIE and check that ranges within this DIE do not
// overlap.
DieRangeInfo RI(Die);
for (auto Range : Ranges) {
if (!Range.valid()) {
++NumErrors;
error() << "Invalid address range " << Range << "\n";
continue;
}
// Verify that ranges don't intersect.
const auto IntersectingRange = RI.insert(Range);
if (IntersectingRange != RI.Ranges.end()) {
++NumErrors;
error() << "DIE has overlapping address ranges: " << Range << " and "
<< *IntersectingRange << "\n";
break;
}
}
// Verify that children don't intersect.
const auto IntersectingChild = ParentRI.insert(RI);
if (IntersectingChild != ParentRI.Children.end()) {
++NumErrors;
error() << "DIEs have overlapping address ranges:";
Die.dump(OS, 0);
IntersectingChild->Die.dump(OS, 0);
OS << "\n";
}
// Verify that ranges are contained within their parent.
bool ShouldBeContained = !Ranges.empty() && !ParentRI.Ranges.empty() &&
!(Die.getTag() == DW_TAG_subprogram &&
ParentRI.Die.getTag() == DW_TAG_subprogram);
if (ShouldBeContained && !ParentRI.contains(RI)) {
++NumErrors;
error() << "DIE address ranges are not "
"contained in its parent's ranges:";
Die.dump(OS, 0);
ParentRI.Die.dump(OS, 0);
OS << "\n";
}
// Recursively check children.
for (DWARFDie Child : Die)
NumErrors += verifyDieRanges(Child, RI);
return NumErrors;
}
unsigned DWARFVerifier::verifyDebugInfoAttribute(const DWARFDie &Die,
DWARFAttribute &AttrValue) {
const DWARFObject &DObj = DCtx.getDWARFObj();
unsigned NumErrors = 0;
const auto Attr = AttrValue.Attr;
switch (Attr) {
case DW_AT_ranges:
// Make sure the offset in the DW_AT_ranges attribute is valid.
if (auto SectionOffset = AttrValue.Value.getAsSectionOffset()) {
if (*SectionOffset >= DObj.getRangeSection().Data.size()) {
++NumErrors;
error() << "DW_AT_ranges offset is beyond .debug_ranges "
"bounds:\n";
Die.dump(OS, 0, DumpOpts);
OS << "\n";
}
} else {
++NumErrors;
error() << "DIE has invalid DW_AT_ranges encoding:\n";
Die.dump(OS, 0, DumpOpts);
OS << "\n";
}
break;
case DW_AT_stmt_list:
// Make sure the offset in the DW_AT_stmt_list attribute is valid.
if (auto SectionOffset = AttrValue.Value.getAsSectionOffset()) {
if (*SectionOffset >= DObj.getLineSection().Data.size()) {
++NumErrors;
error() << "DW_AT_stmt_list offset is beyond .debug_line "
"bounds: "
<< format("0x%08" PRIx64, *SectionOffset) << "\n";
Die.dump(OS, 0, DumpOpts);
OS << "\n";
}
} else {
++NumErrors;
error() << "DIE has invalid DW_AT_stmt_list encoding:\n";
Die.dump(OS, 0, DumpOpts);
OS << "\n";
}
break;
default:
break;
}
return NumErrors;
}
unsigned DWARFVerifier::verifyDebugInfoForm(const DWARFDie &Die,
DWARFAttribute &AttrValue) {
const DWARFObject &DObj = DCtx.getDWARFObj();
unsigned NumErrors = 0;
const auto Form = AttrValue.Value.getForm();
switch (Form) {
case DW_FORM_ref1:
case DW_FORM_ref2:
case DW_FORM_ref4:
case DW_FORM_ref8:
case DW_FORM_ref_udata: {
// Verify all CU relative references are valid CU offsets.
Optional<uint64_t> RefVal = AttrValue.Value.getAsReference();
assert(RefVal);
if (RefVal) {
auto DieCU = Die.getDwarfUnit();
auto CUSize = DieCU->getNextUnitOffset() - DieCU->getOffset();
auto CUOffset = AttrValue.Value.getRawUValue();
if (CUOffset >= CUSize) {
++NumErrors;
error() << FormEncodingString(Form) << " CU offset "
<< format("0x%08" PRIx64, CUOffset)
<< " is invalid (must be less than CU size of "
<< format("0x%08" PRIx32, CUSize) << "):\n";
Die.dump(OS, 0, DumpOpts);
OS << "\n";
} else {
// Valid reference, but we will verify it points to an actual
// DIE later.
ReferenceToDIEOffsets[*RefVal].insert(Die.getOffset());
}
}
break;
}
case DW_FORM_ref_addr: {
// Verify all absolute DIE references have valid offsets in the
// .debug_info section.
Optional<uint64_t> RefVal = AttrValue.Value.getAsReference();
assert(RefVal);
if (RefVal) {
if (*RefVal >= DObj.getInfoSection().Data.size()) {
++NumErrors;
error() << "DW_FORM_ref_addr offset beyond .debug_info "
"bounds:\n";
Die.dump(OS, 0, DumpOpts);
OS << "\n";
} else {
// Valid reference, but we will verify it points to an actual
// DIE later.
ReferenceToDIEOffsets[*RefVal].insert(Die.getOffset());
}
}
break;
}
case DW_FORM_strp: {
auto SecOffset = AttrValue.Value.getAsSectionOffset();
assert(SecOffset); // DW_FORM_strp is a section offset.
if (SecOffset && *SecOffset >= DObj.getStringSection().size()) {
++NumErrors;
error() << "DW_FORM_strp offset beyond .debug_str bounds:\n";
Die.dump(OS, 0, DumpOpts);
OS << "\n";
}
break;
}
default:
break;
}
return NumErrors;
}
unsigned DWARFVerifier::verifyDebugInfoReferences() {
// Take all references and make sure they point to an actual DIE by
// getting the DIE by offset and emitting an error
OS << "Verifying .debug_info references...\n";
unsigned NumErrors = 0;
for (auto Pair : ReferenceToDIEOffsets) {
auto Die = DCtx.getDIEForOffset(Pair.first);
if (Die)
continue;
++NumErrors;
error() << "invalid DIE reference " << format("0x%08" PRIx64, Pair.first)
<< ". Offset is in between DIEs:\n";
for (auto Offset : Pair.second) {
auto ReferencingDie = DCtx.getDIEForOffset(Offset);
ReferencingDie.dump(OS, 0, DumpOpts);
OS << "\n";
}
OS << "\n";
}
return NumErrors;
}
void DWARFVerifier::verifyDebugLineStmtOffsets() {
std::map<uint64_t, DWARFDie> StmtListToDie;
for (const auto &CU : DCtx.compile_units()) {
auto Die = CU->getUnitDIE();
// Get the attribute value as a section offset. No need to produce an
// error here if the encoding isn't correct because we validate this in
// the .debug_info verifier.
auto StmtSectionOffset = toSectionOffset(Die.find(DW_AT_stmt_list));
if (!StmtSectionOffset)
continue;
const uint32_t LineTableOffset = *StmtSectionOffset;
auto LineTable = DCtx.getLineTableForUnit(CU.get());
if (LineTableOffset < DCtx.getDWARFObj().getLineSection().Data.size()) {
if (!LineTable) {
++NumDebugLineErrors;
error() << ".debug_line[" << format("0x%08" PRIx32, LineTableOffset)
<< "] was not able to be parsed for CU:\n";
Die.dump(OS, 0, DumpOpts);
OS << '\n';
continue;
}
} else {
// Make sure we don't get a valid line table back if the offset is wrong.
assert(LineTable == nullptr);
// Skip this line table as it isn't valid. No need to create an error
// here because we validate this in the .debug_info verifier.
continue;
}
auto Iter = StmtListToDie.find(LineTableOffset);
if (Iter != StmtListToDie.end()) {
++NumDebugLineErrors;
error() << "two compile unit DIEs, "
<< format("0x%08" PRIx32, Iter->second.getOffset()) << " and "
<< format("0x%08" PRIx32, Die.getOffset())
<< ", have the same DW_AT_stmt_list section offset:\n";
Iter->second.dump(OS, 0, DumpOpts);
Die.dump(OS, 0, DumpOpts);
OS << '\n';
// Already verified this line table before, no need to do it again.
continue;
}
StmtListToDie[LineTableOffset] = Die;
}
}
void DWARFVerifier::verifyDebugLineRows() {
for (const auto &CU : DCtx.compile_units()) {
auto Die = CU->getUnitDIE();
auto LineTable = DCtx.getLineTableForUnit(CU.get());
// If there is no line table we will have created an error in the
// .debug_info verifier or in verifyDebugLineStmtOffsets().
if (!LineTable)
continue;
// Verify prologue.
uint32_t MaxFileIndex = LineTable->Prologue.FileNames.size();
uint32_t MaxDirIndex = LineTable->Prologue.IncludeDirectories.size();
uint32_t FileIndex = 1;
StringMap<uint16_t> FullPathMap;
for (const auto &FileName : LineTable->Prologue.FileNames) {
// Verify directory index.
if (FileName.DirIdx > MaxDirIndex) {
++NumDebugLineErrors;
error() << ".debug_line["
<< format("0x%08" PRIx64,
*toSectionOffset(Die.find(DW_AT_stmt_list)))
<< "].prologue.file_names[" << FileIndex
<< "].dir_idx contains an invalid index: " << FileName.DirIdx
<< "\n";
}
// Check file paths for duplicates.
std::string FullPath;
const bool HasFullPath = LineTable->getFileNameByIndex(
FileIndex, CU->getCompilationDir(),
DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, FullPath);
assert(HasFullPath && "Invalid index?");
(void)HasFullPath;
auto It = FullPathMap.find(FullPath);
if (It == FullPathMap.end())
FullPathMap[FullPath] = FileIndex;
else if (It->second != FileIndex) {
warn() << ".debug_line["
<< format("0x%08" PRIx64,
*toSectionOffset(Die.find(DW_AT_stmt_list)))
<< "].prologue.file_names[" << FileIndex
<< "] is a duplicate of file_names[" << It->second << "]\n";
}
FileIndex++;
}
// Verify rows.
uint64_t PrevAddress = 0;
uint32_t RowIndex = 0;
for (const auto &Row : LineTable->Rows) {
// Verify row address.
if (Row.Address < PrevAddress) {
++NumDebugLineErrors;
error() << ".debug_line["
<< format("0x%08" PRIx64,
*toSectionOffset(Die.find(DW_AT_stmt_list)))
<< "] row[" << RowIndex
<< "] decreases in address from previous row:\n";
DWARFDebugLine::Row::dumpTableHeader(OS);
if (RowIndex > 0)
LineTable->Rows[RowIndex - 1].dump(OS);
Row.dump(OS);
OS << '\n';
}
// Verify file index.
if (Row.File > MaxFileIndex) {
++NumDebugLineErrors;
error() << ".debug_line["
<< format("0x%08" PRIx64,
*toSectionOffset(Die.find(DW_AT_stmt_list)))
<< "][" << RowIndex << "] has invalid file index " << Row.File
<< " (valid values are [1," << MaxFileIndex << "]):\n";
DWARFDebugLine::Row::dumpTableHeader(OS);
Row.dump(OS);
OS << '\n';
}
if (Row.EndSequence)
PrevAddress = 0;
else
PrevAddress = Row.Address;
++RowIndex;
}
}
}
bool DWARFVerifier::handleDebugLine() {
NumDebugLineErrors = 0;
OS << "Verifying .debug_line...\n";
verifyDebugLineStmtOffsets();
verifyDebugLineRows();
return NumDebugLineErrors == 0;
}
unsigned DWARFVerifier::verifyAccelTable(const DWARFSection *AccelSection,
DataExtractor *StrData,
const char *SectionName) {
unsigned NumErrors = 0;
DWARFDataExtractor AccelSectionData(DCtx.getDWARFObj(), *AccelSection,
DCtx.isLittleEndian(), 0);
DWARFAcceleratorTable AccelTable(AccelSectionData, *StrData);
OS << "Verifying " << SectionName << "...\n";
// Verify that the fixed part of the header is not too short.
if (!AccelSectionData.isValidOffset(AccelTable.getSizeHdr())) {
error() << "Section is too small to fit a section header.\n";
return 1;
}
// Verify that the section is not too short.
if (!AccelTable.extract()) {
error() << "Section is smaller than size described in section header.\n";
return 1;
}
// Verify that all buckets have a valid hash index or are empty.
uint32_t NumBuckets = AccelTable.getNumBuckets();
uint32_t NumHashes = AccelTable.getNumHashes();
uint32_t BucketsOffset =
AccelTable.getSizeHdr() + AccelTable.getHeaderDataLength();
uint32_t HashesBase = BucketsOffset + NumBuckets * 4;
uint32_t OffsetsBase = HashesBase + NumHashes * 4;
for (uint32_t BucketIdx = 0; BucketIdx < NumBuckets; ++BucketIdx) {
uint32_t HashIdx = AccelSectionData.getU32(&BucketsOffset);
if (HashIdx >= NumHashes && HashIdx != UINT32_MAX) {
error() << format("Bucket[%d] has invalid hash index: %u.\n", BucketIdx,
HashIdx);
++NumErrors;
}
}
uint32_t NumAtoms = AccelTable.getAtomsDesc().size();
if (NumAtoms == 0) {
error() << "No atoms: failed to read HashData.\n";
return 1;
}
if (!AccelTable.validateForms()) {
error() << "Unsupported form: failed to read HashData.\n";
return 1;
}
for (uint32_t HashIdx = 0; HashIdx < NumHashes; ++HashIdx) {
uint32_t HashOffset = HashesBase + 4 * HashIdx;
uint32_t DataOffset = OffsetsBase + 4 * HashIdx;
uint32_t Hash = AccelSectionData.getU32(&HashOffset);
uint32_t HashDataOffset = AccelSectionData.getU32(&DataOffset);
if (!AccelSectionData.isValidOffsetForDataOfSize(HashDataOffset,
sizeof(uint64_t))) {
error() << format("Hash[%d] has invalid HashData offset: 0x%08x.\n",
HashIdx, HashDataOffset);
++NumErrors;
}
uint32_t StrpOffset;
uint32_t StringOffset;
uint32_t StringCount = 0;
unsigned Offset;
unsigned Tag;
while ((StrpOffset = AccelSectionData.getU32(&HashDataOffset)) != 0) {
const uint32_t NumHashDataObjects =
AccelSectionData.getU32(&HashDataOffset);
for (uint32_t HashDataIdx = 0; HashDataIdx < NumHashDataObjects;
++HashDataIdx) {
std::tie(Offset, Tag) = AccelTable.readAtoms(HashDataOffset);
auto Die = DCtx.getDIEForOffset(Offset);
if (!Die) {
const uint32_t BucketIdx =
NumBuckets ? (Hash % NumBuckets) : UINT32_MAX;
StringOffset = StrpOffset;
const char *Name = StrData->getCStr(&StringOffset);
if (!Name)
Name = "<NULL>";
error() << format(
"%s Bucket[%d] Hash[%d] = 0x%08x "
"Str[%u] = 0x%08x "
"DIE[%d] = 0x%08x is not a valid DIE offset for \"%s\".\n",
SectionName, BucketIdx, HashIdx, Hash, StringCount, StrpOffset,
HashDataIdx, Offset, Name);
++NumErrors;
continue;
}
if ((Tag != dwarf::DW_TAG_null) && (Die.getTag() != Tag)) {
error() << "Tag " << dwarf::TagString(Tag)
<< " in accelerator table does not match Tag "
<< dwarf::TagString(Die.getTag()) << " of DIE[" << HashDataIdx
<< "].\n";
++NumErrors;
}
}
++StringCount;
}
}
return NumErrors;
}
bool DWARFVerifier::handleAccelTables() {
const DWARFObject &D = DCtx.getDWARFObj();
DataExtractor StrData(D.getStringSection(), DCtx.isLittleEndian(), 0);
unsigned NumErrors = 0;
if (!D.getAppleNamesSection().Data.empty())
NumErrors +=
verifyAccelTable(&D.getAppleNamesSection(), &StrData, ".apple_names");
if (!D.getAppleTypesSection().Data.empty())
NumErrors +=
verifyAccelTable(&D.getAppleTypesSection(), &StrData, ".apple_types");
if (!D.getAppleNamespacesSection().Data.empty())
NumErrors += verifyAccelTable(&D.getAppleNamespacesSection(), &StrData,
".apple_namespaces");
if (!D.getAppleObjCSection().Data.empty())
NumErrors +=
verifyAccelTable(&D.getAppleObjCSection(), &StrData, ".apple_objc");
return NumErrors == 0;
}
raw_ostream &DWARFVerifier::error() const {
return WithColor(OS, syntax::Error).get() << "error: ";
}
raw_ostream &DWARFVerifier::warn() const {
return WithColor(OS, syntax::Warning).get() << "warning: ";
}
raw_ostream &DWARFVerifier::note() const {
return WithColor(OS, syntax::Note).get() << "note: ";
}